TWI764130B - 焊接系統及焊接參數優化方法 - Google Patents

焊接系統及焊接參數優化方法

Info

Publication number
TWI764130B
TWI764130B TW109112366A TW109112366A TWI764130B TW I764130 B TWI764130 B TW I764130B TW 109112366 A TW109112366 A TW 109112366A TW 109112366 A TW109112366 A TW 109112366A TW I764130 B TWI764130 B TW I764130B
Authority
TW
Taiwan
Prior art keywords
welding
weldments
welding torch
motion trajectory
torch
Prior art date
Application number
TW109112366A
Other languages
English (en)
Other versions
TW202138103A (zh
Inventor
林其禹
拜達克 阿密特 庫馬爾
Original Assignee
迅智自動化科技股份有限公司
虹朗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 迅智自動化科技股份有限公司, 虹朗科技股份有限公司 filed Critical 迅智自動化科技股份有限公司
Priority to TW109112366A priority Critical patent/TWI764130B/zh
Priority to CN202110384045.3A priority patent/CN113523651A/zh
Publication of TW202138103A publication Critical patent/TW202138103A/zh
Application granted granted Critical
Publication of TWI764130B publication Critical patent/TWI764130B/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0252Steering means

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)

Abstract

本發明實施例提供一種焊接系統及焊接參數優化方法。在此方法中,決定數位立體模型中的兩個以上焊件的結構尺寸及其相連接處的幾何形狀,依據這些焊件的結構尺寸及其相連接處的幾何形狀決定焊槍的運動軌跡及焊接參數,並規劃運動軌跡及焊接參數的對應關係。此數位立體模型對應於真實物件。運動軌跡相關於焊槍的移動路徑,且焊接參數相關於電力特性及移動速度中的至少一者。此對應關係用於控制焊槍操作於真實物件。藉此,可提升焊接品質。

Description

焊接系統及焊接參數優化方法
本發明是有關於一種焊接技術,且特別是有關於一種焊接系統及焊接參數優化方法。
焊接是廣泛應用的工藝及技術,並可能應用在製造諸如汽車、腳踏車、運動器材、機械結構、器具或家具等多種產品。值得注意的是,現今焊接操作相當仰賴操作者的經驗。經驗不足的操作者可能造成焊件毀損或是連接不夠牢固等缺陷。事實上,焊接操作有許多變因,且這些變因可能會影響成品的優劣。例如,待焊接成為一個物件的兩種物件的厚度可能不同,且任一個焊接點的兩種相鄰物件所形成的夾角在不同處也可能不同。因此,每一個焊接點可能因為相鄰物件的厚度不同且兩個物件形成的夾角也不同,所以如果焊槍移動速度事先知道的情況下,所對應到該焊接點的焊接優化參數(例如,焊槍設備的電壓和電流)也會不同。如果焊槍的電壓和電流設定值不佳,焊接時兩個相鄰物件的熱熔效果便會降低。此現象不是待焊區域溫度不足導致焊接效果變差,便是溫度過熱而讓待焊區域物件過度融化,且同樣造成物件結構破壞。然而,大部分手動焊接操作者通常都會選擇單一焊槍移動速度,並在整個焊接軌跡上選擇使用一組相同的焊接參數(例如,電流和電壓)進行焊接。因為採用手動焊接,使用者也無法隨不同焊接點即時進行改變電壓和電流的操作。
此外,使用機器手臂執行焊接是產業的趨勢,且許多軟體可以自動產生機器手臂進行焊接所需的軌跡。然而,在無法知道焊接軌跡上每一個焊接點所相鄰的物件厚度和兩個相鄰物件所形成的角度的前提下,無法將每一個焊接點所對應的優化焊接參數(例如,電壓和電流)與焊接軌跡相關聯。因此,既使軟體產生機器手臂的焊接軌跡,但是焊槍的參數設定也只能依經驗手動設定成相同一組或少數的不同組,而無法針對每一個焊接點,根據相臨物件的實際厚度和相臨物件形成的角度選定一個對應的優化參數組合。如此,焊接的效果無法優化,焊接後結構的機械強度理論上變差,更難以提升。
有鑑於此,本發明實施例提供一種焊接系統及焊接參數優化方法,分析出適於各待焊軌跡線的優化焊接參數組合,並藉以提升焊接品質。
本發明實施例的焊接參數優化方法包括(但不僅限於)下列步驟:決定數位立體模型中的兩個或更多個焊件(待焊接成一個結構的物件)的結構尺寸及其相連接處(對應到一條或更多條待焊軌跡線)的幾何形狀,依據這些待焊軌跡線決定攜帶焊槍的機器手臂和/或夾持待焊物件的機器手臂或運動平台的運動軌跡,並規劃在不同運動軌跡點上所對應的焊接參數。此數位立體模型對應於真實物件。運動軌跡相關於攜帶焊槍的機器手臂的移動路徑、以及攜帶待焊物件的機器手臂或運動平台的移動軌跡,且焊接參數相關於電力特性及移動速度中的至少一者。此對應關係用於控制焊槍操作於真實物件。
本發明實施例的焊接系統包括(但不僅限於)焊槍、焊槍控制器及控制裝置。焊槍用以焊接。焊槍控制器耦接焊槍,並用以控制焊槍操作。控制裝置耦接焊槍控制器,並用以決定數位立體模型中的兩個或更多個焊件的結構尺寸及其相連接處的幾何形狀,依據這些焊件的結構尺寸及其相連接幾何形狀決定焊槍的運動軌跡及焊接參數,並規劃運動軌跡及焊接參數的對應關係。此數位立體模型對應於真實物件。運動軌跡相關於焊槍的移動路徑,且焊接參數相關於電力特性及移動速度中的至少一者。此對應關係用於控制焊槍操作於真實物件。
基於上述,本發明實施例的焊接系統及焊接參數優化方法,分析對應於真實物件的數位立體模型的結構形狀,並據以得出各待焊軌跡線合適的焊接參數。接著,將這些焊接參數與焊槍的運動軌跡一對一相關聯,使焊接參數在焊槍運作且移動的過程中能被切換。藉此,可快速得出對應於不同待焊點的焊接參數,不僅提升效率,更能改善焊接品質。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
圖1是依據本發明的一實施例的焊接系統100的元件方塊圖。請參照圖     1,焊接系統100包括(但不僅限於)焊槍10、焊槍控制器30、移動機構50、及控制裝置70。
焊槍10可以是使用電弧、雷射、或電子束等能量來源,並用以進行焊接作業。
焊槍控制器30耦接焊槍10,並用以控制焊槍10操作。在一實施例中,焊槍控制器30控制供應焊槍10能量的電力特性。電力特性可以是電壓、電流或其組合。例如,在電弧焊過程中,供應給焊槍10的電壓決定電弧的長度,且輸入的電流決定輸出的熱量。
移動機構50用以供真實物件5(即,待焊接的物件;例如,腳踏車、汽車、機械結構、器具或家具的零件)及/或焊槍10放置。例如,移動機構50夾持、抵頂、或支撐真實物件5或焊槍10。移動機構50可以是一組或更多組多軸機械手臂、多自由度機構、高度調整台、滑軌、轉台、螺桿、馬達、或汽缸等各類型可驅動連接元件移動或旋轉的機械構件或其組合,以帶動放置於其上的真實物件5及/或焊槍10升降、移動及/或旋轉。
控制裝置70有線或無線地耦接焊槍控制器30及移動機構50,控制裝置70並可以是桌上型電腦、智慧型手機、平板電腦、工作站、主機等裝置。控制裝置70包括(但不僅限於)儲存器71及處理器73。
儲存器71可以是任何型態的固定或可移動隨機存取記憶體(Radom Access Memory,RAM)、唯讀記憶體(Read Only Memory,ROM)、快閃記憶體(flash memory)、傳統硬碟(Hard Disk Drive,HDD)、固態硬碟(Solid-State Drive,SSD)或類似元件,並用以記錄程式碼、軟體模組、對應於真實物件5的數位立體模型7、運動軌跡、焊接參數、其對應關係、焊槍控制器30及移動機構50的驅動程式、及其他資料或檔案,其詳細內容待後續實施例詳述。
處理器73可以是中央處理單元(Central Processing Unit,CPU)、圖形處理單元(Graphic Processing Unit,GPU)、微控制單元(Micro Control Unit,MCU)、或特殊應用積體電路(Application-Specific Integrated Circuit,ASIC)等運算單元,並用以執行控制裝置70的所有運作。例如,產生並傳送控制指令至焊槍控制器30或移動機構50,以控制焊槍控制器30或移動機構50的協同運作或動作,其詳細運作待後續實施例詳述。
在一些實施例中,控制裝置70可更包括諸如液晶顯示器(Liquid Crystal Display,LCD)、發光二極體(Light-Emitting Diode,LED)顯示器、或有機發光二極體(Organic Light-Emitting Diode,OLED)顯示器等顯示器,並用以提供使用者介面。使用者介面可呈現數位立體模型7、焊槍10的焊接參數、運動軌跡及/或使用者輸入欄位。
此外,在一些實施例中,焊槍10、焊槍控制器30、移動機構50、及控制裝置70中的至少兩者可能整合成一體或分別為獨立裝置。
為了方便理解本發明實施例的操作流程,以下將舉諸多實施例詳細說明本發明實施例中針對焊接系統100的運作流程。下文中,將搭配焊接系統100中的各項裝置、元件及模組說明本發明實施例所述之方法。本方法的各個流程可依照實施情形而隨之調整,且並不僅限於此。
圖2是依據本發明的一實施例的焊接參數優化方法的流程圖。請參照圖2,控制裝置70的處理器73決定數位立體模型7中的兩個以上焊件的結構尺寸及其一個或更多個相連接處的幾何形狀(步驟S210)。具體而言,數位立體模型7是對應於真實物件5的立體圖資料(例如,由影像、物件、CAD資料或點雲資料所形成的立體物件)。即,數位立體模型7與真實物件5的形狀外觀相同或相似。
舉例而言,請參照圖3是一範例說明數位立體模型7。數位立體模型7是腳踏車骨架的一部份(即,真實物件5是腳踏車骨架)。數位立體模型7中的焊件t1、t2、t3、t4代表在腳踏車骨架中即將被焊接的零件(例如,鋁合金桿件)。這些焊件t1、t2、t3、t4兩兩相互連接。其中,相連接處c1形成於焊件t1、t2之間,相連接處c2形成於焊件t2、t4之間,相連接處c3形成於焊件t3、t4之間,且相連接處c4形成於焊件t1、t3之間。焊件t1、t2的相連接處c1代表真實物件5的對應兩零件的所欲連接部位,並據以形成待焊軌跡線。相連接處c2、c3及c4可依此類推。
在一實施例中,處理器73可根據數位立體模型7,並量測那些焊件的結構尺寸及每兩個焊件或兩個以上焊件之間相連接處的幾何形狀。例如,處理器73可辨識焊件及相連接處,並計算出對應形狀。在另一實施例中,這些結構尺寸及/或幾何形狀也可能是事先定義或設定在規格表並記錄在儲存器71。例如,處理器73可自儲存器71讀取生成數位立體模型7所使用的規格。
需說明的是,在一些實施例中,使用者可在使用者介面上自行挑選特定數量或位置的焊件及其相連接處,且處理器73可判斷受挑選的這些焊件的結構尺寸及對應相連接處的幾何形狀。
在一實施例中,那些焊件的結構尺寸相關於其厚度。即,真實物件5的零件材質厚度。另一方面,兩焊件的相連接處的幾何形狀相關於兩焊件在待焊接軌跡線上所形成的夾角。舉例而言,請參照圖4A是圖3的局部放大圖(對應到焊件t1、t2之間的相連接處c1)。焊件t1、t2在相連接處c1包括相鄰點np1、np2、np3、np4(即,兩焊件t1、t2的交會處,並據以形成待焊接軌跡線)。請接著參照圖4B是圖4A中數個相鄰點np1、np2、np3、np4對應的夾角θ1、θ2、θ3、θ4。焊件t1、t2在這些相鄰點np1、np2、np3、np4所形成的夾角θ1、θ2、θ3、θ4不同。
須說明的是,圖4A及圖4B僅作為範例說明,在其他實施例中,相鄰點的數量、位置及對應夾角可能不同。
接著,處理器73依據那些焊件的結構尺寸及其相連接處的幾何形狀決定焊槍10的運動軌跡及焊接參數(圖2中步驟S230)。具體而言,針對運動軌跡,運動軌跡相關於焊槍10及/或真實物件5的移動路徑。處理器73可事先規劃移動機構50在特定時間以特定姿態移動至特定位置,或者處理器73可基於查表或AI推論得出焊槍10及/或真實物件5該如何運動,使焊槍10可移動到真實物件5的零件的相連接處的對應位置且可對相連接處焊接。而關於運動過程中焊槍10/或真實物件5的停留位置、移動方向、移動速度及/或姿態即可作為運動軌跡的內容。
另一方面,針對焊接參數,焊接參數相關於焊槍10的電力特性(例如,電壓、電流或其組合)及/或移動速度。值得注意的是,在部分焊接技術手冊中,不同結構尺寸及幾何形狀有對應的優化焊接參數。舉例而言,表(1)是焊槍移動速度在每分鐘30公分的條件下,不同夾角及厚度下優化電流和電壓對應表(其數值僅用於範例說明): 表(1)
厚度 夾角 2公厘 4公厘 6公厘
電流(安培) 電壓(伏特) 電流(安培) 電壓(伏特) 電流(安培) 電壓(伏特)
90° 40~50 12~15 55~60 17~22 70~90 25~27
180° 100~150 22~25 120~180 24~27 175~200 26~28
在一實施例中,焊接技術手冊可記錄在儲存器71。此外,移動速度可供使用者事先選擇或是處理器73自手冊所記錄的移動速度中挑選出任一者。接著,處理器73可查詢焊接技術手冊的對應表,並據以取得那些焊件的厚度及其相連接處所形成的夾角對應的電力特性及移動速度。當實際相連接處所形成的夾角不是剛好90°或180°時,可以使用內插方式來計算適合的電流和電壓數據。當然,相連接處所形成待焊軌跡線的夾角不是剛好90°或180°時,也可以選擇較靠近的角度90°或180°直接當成選用依據。值得一提的是,許多焊接手冊建議使用兩個焊件中較薄的一個厚度當作焊接參數選擇的厚度依據。不過,例如選兩個厚度的平均值或其他計算方法也是可以執行的方式。值得一提的是,焊槍移動速度在不同數值下,不同組合的夾角及厚度也可能形成新的優化電流及電壓對應表。
在另一實施例中,處理器73可將焊接技術手冊中針對結構尺寸、幾何形狀及對應焊接參數的內容作為機器學習的訓練樣本,並據以建立推論器模型。處理器73即可將實際的焊件的結構尺寸及其相連接處的幾何形狀輸入至此推論器模型,以得出對應的電力特性及移動速度。
接著,處理器73可規劃運動軌跡及焊接參數的對應關係(圖2中步驟S250)。具體而言,此對應關係是用於控制焊槍10操作於真實物件5所應行經的運動軌跡及所使用的焊接參數。例如,針對不同厚度的焊件,焊槍10在第一位置(假設對應於第一及第二焊件之間的相連接處),焊槍控制器30使用第一電壓及第一電流供應能量給焊槍10,且移動機構50驅動焊槍10以第一速度移動;焊槍10在第二位置(假設對應於第二及第三焊件之間的相連接處),焊槍控制器30使用第二電壓及第二電流供應能量給焊槍10,且移動機構50驅動焊槍10以第二速度移動。
在一實施例中,針對不同夾角的相鄰點,處理器73可分別決定對應於任一待焊軌跡線上的那些相鄰點的焊接操作組合。各焊接操作組合是焊槍10及/或真實物件5的運動軌跡中對應於一個相鄰點的位置與電力特性或移動速度的對應關係。不同相鄰點對應的夾角(數值)可能不同,使不同焊接操作組合中的電力特性或移動速度不同。以圖4A為例,焊接操作組合是,焊槍10在第三位置(假設對應於相鄰點np1),焊槍控制器30使用第三電壓及第三電流供應能量給焊槍10;另一焊接操作組合是,焊槍10在第四位置(假設對應於相鄰點np2),焊槍控制器30使用第四電壓及第四電流供應能量給焊槍10。
在一實施例中,處理器73可將規劃的運動軌跡及對應的焊接參數呈現在使用者介面或輸出到其他外部裝置(例如,智慧型手機、平板電腦、桌上型電腦、或伺服器等)。
在另一實施例中,處理器73可控制移動機構50依據決定的運動軌跡驅動真實物件5或焊槍10,並產生相關於對應關係的控制指令。而控制指令是,當移動機構50帶動真實物件5或焊槍10至運動軌跡所記錄的特定位置時,焊槍控制器30供電給焊槍10所使用的電力特性。焊槍控制器30即可依據控制指令指示並控制焊槍10依據所在位置對應的電力特性進行焊接,移動機構50並依據決定的移動速度驅動焊槍10沿指定方向移動。
綜上所述,本發明實施例的焊接系統及焊接參數優化方法,取得真實物件的數位立體模型中的焊件的結構尺寸及其相連接處的幾何形狀,並據以決定焊槍及/或真實物件的運動軌跡及焊槍所使用的焊接參數(例如,電力特性及/或移動速度等)。接著,運動軌跡的各位置將與對應的一組焊接參數相關聯以形成對應關係。而此對應關係將可使焊槍在特定位置對特定相連接處甚至其上的相鄰點使用特定焊接參數進行焊接。藉此,可快速且有效率地得出合適的焊接參數,進而改善焊接品質。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
100:焊接系統 5:真實物件 10:焊槍 30:焊槍控制器 50:移動機構 70:控制裝置 71:儲存器 7:數位立體模型 73:處理器 S210~S250:步驟 t1、t2、t3、t4:焊件 c1、c2、c3、c4:相連接處 np1、np2、np3、np4:相鄰點 θ1、θ2、θ3、θ4:夾角
圖1是依據本發明的一實施例的焊接系統的元件方塊圖。 圖2是依據本發明的一實施例的焊接參數優化方法的流程圖。 圖3是一範例說明數位立體模型。 圖4A是圖3的局部放大圖。 圖4B是圖4A中數個相鄰點對應的夾角。
S210~S250:步驟

Claims (10)

  1. 一種焊接參數優化方法,包括:決定一數位立體模型中的至少二焊件的結構尺寸及其相連接處的幾何形狀,其中該數位立體模型對應於一真實物件,一待焊軌跡線是由二該焊件的相連接處所形成,該二焊件的該相連接處的該幾何形狀相關於該二焊件在該待焊軌跡線上所形成的夾角,該相連接處包括至少二相鄰點,且該二焊件在該至少二相鄰點所形成的至少二夾角不同;依據該至少二焊件的該結構尺寸及該相連接處的該幾何形狀決定一焊槍的運動軌跡及焊接參數,其中該運動軌跡相關於該焊槍的移動路徑,且該焊接參數相關於該焊槍的一電力特性及一移動速度中的至少一者;以及規劃該運動軌跡及該焊接參數的一對應關係,其中該對應關係用於控制該焊槍操作於該真實物件。
  2. 如請求項1所述的焊接參數優化方法,其中該二焊件的該結構尺寸相關於其厚度,且依據該至少二焊件的該結構尺寸及其相連接處的該幾何形狀決定該焊槍的運動軌跡及焊接參數包括:取得該二焊件的厚度及其相連接處所形成的夾角對應的該電力特性及該移動速度。
  3. 如請求項2所述的焊接參數優化方法,其中該電力特性是電壓或電流中的至少一者。
  4. 如請求項2所述的焊接參數優化方法,其中規劃該運動軌跡及該焊接參數的該對應關係的步驟包括:分別決定對應於該至少二相鄰點的焊接操作組合,其中每一該焊接操作組合是該運動軌跡中對應於一該相鄰點的位置與該電力特性或該移動速度的該對應關係,且不同該焊接操作組合中的該電力特性或該移動速度不同。
  5. 如請求項1所述的焊接參數優化方法,其中規劃該運動軌跡及該焊接參數的該對應關係的步驟之後,更包括:產生相關於該對應關係的控制指令,其中該控制指令用以指示該焊槍依據所在位置對應的該電力特性進行焊接。
  6. 一種焊接系統,包括:一焊槍,用以焊接;一焊槍控制器,耦接該焊槍,並用以控制該焊槍操作;以及一控制裝置,耦接該焊槍控制器,並用以:決定一數位立體模型中的至少二焊件的結構尺寸及其相連接處的幾何形狀,其中該數位立體模型對應於一真實物件,一待焊軌跡線是由二該焊件的相連接處所形成,該二焊件的該相連接處的該幾何形狀相關於該二焊件在該待焊軌跡線上所形成的夾角,該相連接處包括至少二相鄰點,且該二焊件在該至少二相鄰點所形成的至少二夾角不同;依據該至少二焊件的該結構尺寸及該相連接處的該幾何形狀決定該焊槍的運動軌跡及焊接參數,其中該運動軌跡相關於 該焊槍的移動路徑,且該焊接參數相關於該焊槍的一電力特性及一移動速度中的至少一者;以及規劃該運動軌跡及該焊接參數的一對應關係,其中該對應關係用於控制該焊槍操作於該真實物件。
  7. 如請求項6所述的焊接系統,其中該二焊件的該結構尺寸相關於其厚度,且該控制裝置更用以取得該二焊件的厚度及其相連接處所形成的夾角對應的該電力特性及該移動速度。
  8. 如請求項7所述的焊接系統,其中該電力特性是電壓或電流中的至少一者。
  9. 如請求項7所述的焊接系統,其中該控制裝置更用以分別決定對應於該至少二相鄰點的焊接操作組合,其中每一該焊接操作組合是該運動軌跡中對應於一該相鄰點的位置與該電力特性或該移動速度的該對應關係,且不同該焊接操作組合中的該電力特性或該移動速度不同。
  10. 如請求項6所述的焊接系統,更包括:一移動機構,耦接該控制裝置,並供該真實物件或該焊槍放置,其中該控制裝置控制該移動機構依據該運動軌跡驅動該真實物件或該焊槍,並產生相關於該對應關係的控制指令,其中該焊槍控制器依據該控制指令控制該焊槍依據所在位置對應的該電力特性進行焊接。
TW109112366A 2020-04-13 2020-04-13 焊接系統及焊接參數優化方法 TWI764130B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW109112366A TWI764130B (zh) 2020-04-13 2020-04-13 焊接系統及焊接參數優化方法
CN202110384045.3A CN113523651A (zh) 2020-04-13 2021-04-09 焊接***及焊接参数优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109112366A TWI764130B (zh) 2020-04-13 2020-04-13 焊接系統及焊接參數優化方法

Publications (2)

Publication Number Publication Date
TW202138103A TW202138103A (zh) 2021-10-16
TWI764130B true TWI764130B (zh) 2022-05-11

Family

ID=78124303

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109112366A TWI764130B (zh) 2020-04-13 2020-04-13 焊接系統及焊接參數優化方法

Country Status (2)

Country Link
CN (1) CN113523651A (zh)
TW (1) TWI764130B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022213374A1 (zh) * 2021-04-09 2022-10-13 迅智自动化科技股份有限公司 焊接***及焊接参数优化方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101657767A (zh) * 2007-02-19 2010-02-24 费劳恩霍弗应用技术研究院 用于控制焊接工件的机器人的方法和装置
CN204397136U (zh) * 2015-01-08 2015-06-17 中国二十二冶集团有限公司 移动式弧焊机器人
TWI520808B (zh) * 2013-12-11 2016-02-11 Metal Ind Res & Dev Ct A 3D Cutting Method and Device for Preform Welding of Shaped Fittings
TWI532555B (zh) * 2012-08-30 2016-05-11 蘋果公司 基於焊接溫度之磨擦攪拌焊接製程參數的動態調整
TWI650231B (zh) * 2013-12-17 2019-02-11 美商康寧公司 雷射切割複合玻璃製品及切割方法
CN109623206A (zh) * 2018-12-19 2019-04-16 清华大学 用于机器人管道焊接中优化离线规划的焊枪位姿的方法
TWI659279B (zh) * 2018-02-02 2019-05-11 國立清華大學 基於擴充實境的加工規劃設備

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101657767A (zh) * 2007-02-19 2010-02-24 费劳恩霍弗应用技术研究院 用于控制焊接工件的机器人的方法和装置
TWI532555B (zh) * 2012-08-30 2016-05-11 蘋果公司 基於焊接溫度之磨擦攪拌焊接製程參數的動態調整
TWI520808B (zh) * 2013-12-11 2016-02-11 Metal Ind Res & Dev Ct A 3D Cutting Method and Device for Preform Welding of Shaped Fittings
TWI650231B (zh) * 2013-12-17 2019-02-11 美商康寧公司 雷射切割複合玻璃製品及切割方法
CN204397136U (zh) * 2015-01-08 2015-06-17 中国二十二冶集团有限公司 移动式弧焊机器人
TWI659279B (zh) * 2018-02-02 2019-05-11 國立清華大學 基於擴充實境的加工規劃設備
CN109623206A (zh) * 2018-12-19 2019-04-16 清华大学 用于机器人管道焊接中优化离线规划的焊枪位姿的方法

Also Published As

Publication number Publication date
CN113523651A (zh) 2021-10-22
TW202138103A (zh) 2021-10-16

Similar Documents

Publication Publication Date Title
US11961417B2 (en) Systems and methods to provide weld training
JP7186512B2 (ja) ハイブリッド溶着速度のニアネットシェイプ積層造形のための方法及びシステム
US20170036288A1 (en) Systems and methods for selecting weld parameters
WO2022213374A1 (zh) 焊接***及焊接参数优化方法
CN100460124C (zh) 电弧焊接用数据处理装置
JP4578056B2 (ja) 作業ロボットを用いた制御システムによるワーク加工方法
JP4571225B1 (ja) 消費電力推定装置
JP5729404B2 (ja) ティーチングシステムおよびティーチング方法
US20160243640A1 (en) Systems and methods for selecting weld parameters
CN105171742B (zh) 一种利用多自由度机器人的3d打印焊接方法
CA3039677A1 (en) System and method for selecting weld parameters
US20050224480A1 (en) Robotic cylinder welding
CN109029453B (zh) 熔覆头姿态路径规划方法、装置、终端、存储介质及***
CN108701427B (zh) 提供焊接训练的***和方法
US20220226922A1 (en) Systems and methods to select weld parameters based on thermal, electrical, and/or chemical properties
TWI764130B (zh) 焊接系統及焊接參數優化方法
CN109834409A (zh) 用于增材制造的方法和***
WO2021111759A1 (ja) リペア溶接装置およびリペア溶接方法
JP7289087B2 (ja) リペア溶接装置およびリペア溶接方法
CN113664431A (zh) 一种可实时调整姿态的钢结构件焊接臂及调整方法
WO2022014240A1 (ja) 機械学習装置、積層造形システム、溶接条件の機械学習方法、溶接条件の調整方法、およびプログラム
Shen Research on virtual simulation design of ABB robot welding operation based on Robotstudio
CN206105117U (zh) 四轴焊接机器人
WO2013068826A1 (en) System and method for welding materials of different conductivity with oscillation of a end of a robotic arm carrying a welding torch
Abebe et al. Study of Simulation Technology for Gas Metal Arc welding Robot using Robot Studio