TWI753448B - 分析組織標本的方法 - Google Patents

分析組織標本的方法 Download PDF

Info

Publication number
TWI753448B
TWI753448B TW109118737A TW109118737A TWI753448B TW I753448 B TWI753448 B TW I753448B TW 109118737 A TW109118737 A TW 109118737A TW 109118737 A TW109118737 A TW 109118737A TW I753448 B TWI753448 B TW I753448B
Authority
TW
Taiwan
Prior art keywords
image
tissue
cancer
slice
specimen
Prior art date
Application number
TW109118737A
Other languages
English (en)
Other versions
TW202102832A (zh
Inventor
江安世
張大慈
楊嘉鈴
林彥穎
林宇捷
Original Assignee
捷絡生物科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 捷絡生物科技股份有限公司 filed Critical 捷絡生物科技股份有限公司
Publication of TW202102832A publication Critical patent/TW202102832A/zh
Application granted granted Critical
Publication of TWI753448B publication Critical patent/TWI753448B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/60Editing figures and text; Combining figures or text
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/60Complex ways of combining multiple protein biomarkers for diagnosis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10064Fluorescence image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30024Cell structures in vitro; Tissue sections in vitro
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30096Tumor; Lesion

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Geometry (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本發明提供一種分析組織標本的方法,包含以水性澄清劑及至少二種螢光探針處理一組織標本以獲得澄清且標記的組織標本;對該澄清且標記的組織標本進行成像以生成該組織標本的三維影像;從該澄清且標記的組織標本製備染色組織切片;獲取該染色組織切片的參考二維影像;比對該參考二維影像與該三維影像以從該三維影像中擷取一系列二維影像切片,其包含對應該參考二維影像的一相應二維影像切片;及為該系列二維影像切片中每一影像切片決定至少一個病理評分,並基於該些病理評分報告疾病存在與否及其程度。該方法能提高組織病理學診斷的準確性。

Description

分析組織標本的方法
本發明係關於一種組織病理診斷方法。更具體而言,本發明係關於一種分析組織標本的方法,其藉由對同一組織標本進行三維(3D)及二維(2D)成像,以及利用三維影像資料去輔助基於二維影像的組織病理診斷。
對組織的組織學檢查(histological examination)是分析組織結構及細胞形態的標準方法,並且已被運用於診斷多種疾病,包括癌症。組織學檢查的典型程序包含以下步驟:將一活體組織切片(biopsy)標本或組織標本固定(fixing),包埋該組織標本於包埋材料(embedding materials)中以產生一組織塊(tissue block),將該組織塊切割成薄切片,使用例如蘇木素及伊紅(haematoxylin and eosin,H&E)之染劑對該薄切片進行染色以製備染色切片,以及獲取該染色切片的二維顯微影像以供目視分析。
當診斷結論是基於傳統的組織學檢查而做出時,病理學家遇到的一個主要問題是樣品(即染色切片)的代表性以及樣品影像的品質。干擾組織學檢查從而降低診斷結論準確性的因素包括樣品製備所引起的組織變形,特別是由於組織標本脫水及切片導致的組織變形,以及由於切片與組織不連續而導致的形態方面的訊息損失。
儘管如磁振造影(magnetic resonance imaging,MRI)及電腦斷層掃描(computed tomography,CT)等與人體三維成像相關的技術已廣泛應用於直接監測身體的患病部位,臨床診斷仍有賴於組織切片所揭示的細節訊息。另一方面,為了使緣於組織不連續的訊息損失降至最低,數種基於電腦的方法已被用於將染色組織切片的二維影像轉換為組織標本的虛擬三維影像堆疊。然而,填補不連續的組織切片間形成的間隙以及消除源自組織製備過程的人為偏差(artifacts)相當困難。
因此,開發一種改善傳統組織學檢查過程的新策略以實現更準確的診斷,實有其必要。
本發明係關於一種分析組織標本以輔助診斷一個體的疾病的方法。該方法至少包含以下步驟:(a)以一水性澄清劑及用於標記細胞膜與細胞核的至少二種螢光探針處理來自一個體的一組織標本,以獲得一澄清且標記的組織標本;(b)對該澄清且標記的組織標本進行成像以生成該組織標本的一個三維(three-dimensional,3D)影像;(c)從該澄清且標記的組織標本製備一染色組織切片;(d)獲取該染色組織切片的一參考二維(two-dimensional,2D)影像;(e)比對該參考二維影像與該三維影像以從該三維影像中擷取一系列二維影像切片,其中該系列二維影像切片中的一影像切片是一相應二維影像切片,並且相比該系列二維影像切片中的其他二維影像切片,該相應二維影像切片和該參考二維影像在形態上的差異最小;及(f)為該系列二維影像切片中每一二維影像切片決定至少一個病理評分,並且基於該些病理評分報告一疾病是否存在及該疾病的程度。
在本發明的某些實施例中,用於組織澄清(tissue clearing)的該水性澄清劑的折射率為1.33-1.55,較佳為1.40-1.52,更佳為1.45-1.52。該水性澄清劑可包含一成分,該成分係選自由甘油(glycerol)、碘苯六醇(histodenz)、甲醯胺(formamide)、三乙醇胺(triethanolamine)、泛影葡胺(meglumine diatrizoate)及其任意組合所組成的群組。使用此種水性澄清劑進行的處理不超過12小時,其能使得一厚度至少為200 µm的組織標本變得足夠透明,同時防止該澄清的組織標本收縮或變形,並且避免脂質被移除。由於該澄清的組織標本的結構完整性被完好地保存,在此步驟後獲得的顯微影像可提供更準確的形態方面的訊息。此外,對細胞膜及膜相關蛋白質的螢光標記處理能夠和這種澄清劑相容,因此得以檢測多種疾病的各類標誌蛋白質(marker proteins),特別是癌症的標誌蛋白質。
在本發明的某些實施例中,該三維影像係由複數個連續二維影像生成的一個三維複合影像,該複數個連續二維影像係使用包含一掃描式雷射共軛焦顯微鏡(laser scanning confocal microscope)的一螢光成像系統(fluorescence imaging system)對該澄清且標記的組織標本攝像而獲得。
在本發明的某些實施例中,步驟(e)之比對係藉由比較該參考二維影像的一參考特徵向量(feature vector)與該系列二維影像切片中每一二維影像切片的一相應特徵向量而達成。該參考特徵向量或該相應特徵向量所描述者可以是細胞形狀、細胞核分布、或其組合。
在本發明的某些實施例中,在步驟(a)中進一步使用另一螢光探針處理該組織標本以標記至少一胞器(organelle)或至少一生物分子,例如疾病的特徵蛋白質。基於該標記,作為疾病標誌的該生物分子或該胞器可被定量以產生該系列二維影像切片中每一二維影像切片的病理評分。在某些實施例中,當該系列二維影像切片中的任二個二維影像切片的病理評分間的差異在一預定範圍內時,報告該疾病存在。
在本發明的某些實施例中,該疾病係為腫瘤(neoplasm),例如乳癌、肺癌、胃癌、肝癌、膽囊癌、胰腺癌、結腸癌、結腸直腸癌、***癌、子宮頸癌、卵巢癌、腎癌、膀胱癌、神經膠質瘤(glioma)、視網膜母細胞瘤(retinoblastoma)、黑色素瘤(melanoma)、及頭頸癌。
本發明之另一目的係提供一種用於輔助疾病診斷的系統。該系統包含一儲存媒介,其儲存可被一處理器讀取的複數指令。當該些指令由處理器執行時,能促使以下操作之進行,包含(s1)將從一組織標本製備的一染色組織切片的一參考二維(2D)影像與該組織標本的一個三維影像進行比對,以從該三維影像中擷取一系列二維影像切片,其中,該系列二維影像切片中的一影像切片是一相應二維影像切片,並且相比該系列二維影像切片中的其他二維影像切片,該相應二維影像切片和該參考二維影像在形態上的差異最小;以及(s2)為各該二維影像切片決定至少一個病理評分,並依據該些病理評分報告一疾病是否存在及該疾病的程度。
本發明的方法生成了一組織標本的三維影像,並將其與該組織標本切片的傳統二維影像相比對,以便擷取與該傳統二維影像相對應的一系列二維影像切片,並獲得可用於驗證組織病理結果的病理評分。相比傳統組織病理診斷之進行是檢視組織切片的二維影像,本發明公開的方法利用從原始組織標本的三維影像擷取出的額外訊息,以產生更可靠的診斷報告。因此,醫師可以藉由使用本發明公開的方法做出更準確的診斷,並且決定適當的治療方式。
以下實施方式及舉例係進一步說明本發明。應當理解,以下列舉的實施例非用以限定本發明的範圍,並且所屬技術領域中的熟習技藝者在不超出所附請求項的範圍內當可進行調整修飾。
除非另有定義,本文中使用的所有技術和科學術語及縮寫的含意與本發明所屬技術領域中熟習技藝者的通常理解相同。定義
除非上下文另有明確定義,本文中所用單數形式的「一」、「一個」及「該」包含複數指稱。
本文提供的數值為近似值,並且實驗數值可以在20%的範圍內變化,較佳為在10%的範圍內變化,更佳為在5%的範圍內變化。因此,「約」及「近似」等用語係指一給定數值或範圍的20%範圍內,較佳為在10%的範圍內,更佳為在5%的範圍內。
本文中所用「wt%」或「%w/w」係指一組合物的重量%。
本文中所用「影像」一詞係指一生物組織標本或該標本的切片的二維(2D)或三維(3D)顯微影像。該影像可以用包含一顯微鏡的任何成像系統來獲取。
本文中所用「個體」一詞係指有疾病診斷需要的一哺乳動物。該個體可以是人類或非人類,例如靈長類、鼠類、狗、貓、牛、馬、兔、豬等。
本文中所用「疾病」一詞係指在一個體中造成症狀或異常組織形態的任何結構上或功能上的障礙,其可藉由習知的組織學技術檢測。疾病的一個例子是腫瘤(neoplasm,亦稱tumor),其特徵是不受控制的細胞新生。腫瘤包括良性(非癌性)和惡性(癌性)腫瘤,其分別定義為腫瘤細胞具有擴散或侵襲身體其他部位的低潛力或高潛力。惡性腫瘤(亦稱癌症)的實例包括但不限於上皮癌(carcinoma)、肉瘤(sarcoma)、淋巴瘤(lymphoma)及母細胞瘤(blastoma)。更具體而言,癌症包含乳癌、肺癌、小細胞肺癌、非小細胞肺癌、胃癌、肝癌、膽囊癌、胰腺癌、結腸癌、結腸直腸癌、***癌、宮頸癌、卵巢癌、腎癌、膀胱癌、神經膠質瘤、視網膜母細胞瘤、黑色素瘤及各種類型的頭頸癌。
本文中所用「疾病的程度」一詞係指疾病的嚴重性或進程,其可以透過疾病的症狀或者細胞或組織的異常程度來判斷。腫瘤或癌症的程度即為一例。癌症的程度可以描述為癌症分期(stage)或分級(grade)。癌症分期可以基於腫瘤的大小以及腫瘤的擴散位置和擴散深度來判定。描述癌症進程的一套標準系統是美國癌症聯合委員會(America Joint Committee on Cancer,AJCC)設定的TNM分期系統,其中T表示腫瘤的大小,N指出涉及癌症的淋巴結數目,M描述癌症是否已經擴散到體內其他器官。一般而言,一癌症屬於四個分期之一(第I-IV期),而第0期表示癌症不存在。舉例而言,乳癌通常被分類為第I期,係指腫瘤的大小不超過2 cm,但在淋巴結中未發現癌細胞;第II期,係指腫瘤大小為2 cm至5 cm及/或癌症已擴散至淋巴結;第III期,係指腫瘤大小超過5 cm及/或淋巴結中有廣泛的癌擴散;第IV期,係指癌症已經擴散到體內的另一器官。另一方面,癌症分級可以藉由癌細胞的外觀異常程度以及癌症可能的生長或擴散速度來判定。
本發明用於輔助一個體中疾病診斷的方法始於自接受診斷的個體收集而得的一組織樣品或一組織標本。該個體不論是已罹患疾病者或是容易罹患疾病者,通常要進行活體組織切片(biopsy),即從一個體的身體中移除一塊組織的過程,以便隨後可以分析該標本以確定疾病是否存在及其程度。為獲取依據本發明的方法進行檢驗的組織標本,可以執行各種類型的活體組織切片。活體組織切片的例子包含皮膚活體組織切片、內視鏡活體組織切片、針頭活體組織切片、骨髓活體組織切片以及手術活體組織切片。
因此,該組織標本可以是皮膚、角膜、頭髮、視網膜、***、心臟、肺臟、支氣管、胃、肝臟、脾臟、胰腺、腸、結腸、腎臟、膀胱、***、卵巢、子宮頸、骨骼、肌肉或大腦的一部分。
如圖1所示,本發明的方法至少包括以下步驟:(a)以一水性澄清劑及用於標記細胞膜與細胞核的至少二種螢光探針處理來自一個體的一組織標本,以獲得一澄清且標記的組織標本;(b)對該澄清且標記的組織標本進行成像,以生成該組織標本的一個三維影像;(c)從該澄清且標記的組織標本製備一染色組織切片;(d)獲取該染色組織切片的一參考二維影像;(e)比對該參考二維影像與該三維影像以從該三維影像中擷取一系列二維影像切片,其中該系列二維影像切片中的一影像切片是一相應二維影像切片,並且相比該系列二維影像切片中的其他二維影像切片,該相應二維影像切片和該參考二維影像在形態上的差異最小;及(f)為該系列二維影像切片中的每一二維影像切片決定至少一個病理評分,並基於該些病理評分報告一疾病是否存在及該疾病的程度。
依據圖1,在步驟(b)的初次影像獲取之前,使用一水性澄清劑處理該組織標本以獲得一澄清的組織標本(本發明之方法的步驟(a))。一般而言,厚度大於5-10 µm的一組織標本太厚而無法藉由傳統的廣視野顯微鏡(wide-field microscope)清楚觀察,因為可得視像是聚焦區域的清晰影像及非聚焦區域的模糊影像的總和。為了得到厚標本的高解析度視圖,在初次影像獲取時運用共軛焦顯微鏡(confocal microscopy)或多光子顯微鏡(multiphoton microscopy),以避免由於大量散焦光而導致的影像模糊,從而使深度解析度(於深度方向或z方向的解析度)或軸向解析度小於2 µm。然而,即便使用共軛焦顯微鏡或多光子顯微鏡,由於此類顯微鏡在光穿透深度方面的侷限性(約100-200 µm),在檢視細胞特徵之前,仍需要將厚度大於100 µm的厚標本切成薄片。為了使對組織進行物理性切片的需求及伴隨而來的形態變形降至最低,本發明的方法納入組織澄清的步驟。水性澄清劑包含至少一種水溶性化學藥品,其折射率接近蛋白質和脂質的折射率。該水性澄清劑藉由使一組織的多種折射率均勻化而使該組織在光學上清晰或透明,因而減少了光散射並且提升了光穿透力。因此,組織澄清使得厚組織標本在初次影像獲取前,幾乎不會經歷任何物理性組織切片,故能減少由於組織的拉伸、彎曲及撕裂而可能產生的人為偏差。
在某些較佳實施例中,該水性澄清劑具有1.33-1.55之折射率,該折射率較佳為1.40-1.52,更佳為1.45-1.52。該水性澄清劑可以透過在水中或磷酸緩衝鹽溶液(PBS;例如將137 mM氯化鈉、2.7 mM氯化鉀、7.7 mM磷酸氫二鈉和1.47 mM磷酸二氫鉀溶於水,pH 7.4)中添加一成分來製備,該成分係選自由甘油、碘苯六醇、甲醯胺、三乙醇胺、泛影葡胺及其任意組合所組成的群組。該成分在水性澄清劑中的最終濃度可以在30-70wt%之間變化。使用此種水性澄清劑的組織澄清可以在室溫下進行2至12小時,較佳為2至8小時,更佳為2至4小時。
在本發明的一實施例中,待檢視的澄清的組織標本的厚度係介於50 µm至75 µm、75 µm至100 µm、100 µm至125 µm,125 µm至150 µm、150 µm至175 µm、175 µm至200 µm、200 µm至225 µm或225 µm至250 µm。較佳地,澄清的組織標本具有大於250 µm至小於300 µm的厚度。更佳地,澄清的組織標本具有大於300 µm的厚度。
除了使用水性澄清劑處理之外,組織標本亦以至少二種螢光探針處理以獲得一標記的組織標本(本發明之方法的步驟(a))。該螢光探針係為可識別一標靶分子或標靶結構並且在光照下發光的螢光分子。在一實施例中,該螢光探針是一螢光基團(fluorophore),其能專一地結合至一細胞次結構,例如細胞膜,或能專一地標記一胞器,例如細胞核及粒線體(mitochondria)。螢光基團的例子包括細胞核探針,例如碘化丙啶(propidium iodide,PI)、4’,6-二脒基-2-苯基吲哚(4’,6-diamidino-2-phenylindole,DAPI)及SYTO系列染劑(例如,購自Thermo Fisher Scientific的SYTO 11和SYTO 16);以及膜脂質探針,例如Di系列染劑(例如,購自Invitrogen的DiD和DiR)與PKH系列染劑(例如,購自Merck的PKH26和PKH67)。在另一實施例中,該螢光探針是一綴合物(conjugate),該綴合物包含與一螢光基團共價連結的一分子探針,該分子探針能專一地結合至一生物分子,該生物分子例如一具有特定胺基酸序列的蛋白質、一具有特定核苷酸序列的核酸、或細胞膜脂質。該分子探針的例子包括但不限於一抗體(antibody)、一抗體片段、一凝集素(lectin)及一核酸探針。該分子探針係商業上可購得或可依據本技術領域已知的方法而製備。
在某些實施例中,步驟(a)之實施係透過將該組織標本分別接觸該水性澄清劑及該螢光探針。組織澄清可以在組織標記之前或之後進行。在其他實施例中,該澄清處理及該標記處理可整合在一起施行,例如,使組織標本與一第一水性澄清劑接觸,然後與螢光探針接觸,最後與一第二水性澄清劑接觸。
用於澄清和標記步驟的組織標本可以是新鮮的或庫存的。在一實施例中,該組織標本係立即從一患者身體的一部分(例如固態瘤)收集而得,因此處於新鮮狀態。在另一實施例中,該組織標本係依據本技術領域中熟習技藝者已知的樣品製備方法經過處理,將其稱為一庫存標本。該樣品製備方法可以包含固定(fixing)、脫水(dehydration)、滲透(infiltration)及包埋(embedding)的步驟。固定是一種防止腐爛及維持組織形態的程序。在此程序中,一組織標本在室溫下被浸入一固定劑,例如福馬林(依質量計4%甲醛於緩衝鹽水中),浸泡時間通常為4-48小時,該時間依組織標本的大小而異。脫水是一種藉由使用濃度遞增的脫水劑處理一被固定的標本以去除該標本中水分的程序。例如,施以70%、95%及100%的醇類,例如乙醇,然後再用二甲苯(xylene)處理。滲透是允許一包埋介質(例如蠟)滲透到標本中的程序。滲透的一個例子是將一脫水的標本置入二甲苯及一熔融蠟(例如加熱至56-60o C的石蠟(paraffin wax)的一混合物中。包埋之實施係將一被滲透的標本轉移到一包埋容器中,隨後將包埋介質(例如熔融石蠟)導引至該標本周圍並使其冷卻以形成一組織硬塊(亦稱為組織塊)。經過福馬林固定及石蠟包埋處理的庫存標本被稱為經過FFPE處理。
在組織標本是新鮮的情況下,在澄清和標記步驟之前,該標本可以進一步在室溫下以例如福馬林的固定劑固定6至12小時。或者,當待檢查者係經過FFPE處理的樣品時,在澄清和標記步驟之前,可以在室溫下用二甲苯及醇類分別對其脫蠟2小時及4-6小時。不論是新鮮的標本或是經過FFPE處理並進一步脫蠟的標本皆可被包埋在一水凝膠中,該水凝膠在組織澄清和標記過程中為標本提供物理性的支持。在一實施例中,該水凝膠為一瓊脂膠,係由一溫熱的包含1-4%w/w瓊脂(agarose)的水溶液製備而得。在另一實施例中,該水凝膠係由至少一種天然或合成聚合物的水分散液製備而得,該水分散液會在溫度、pH值、鹽分或輻射發生變化時固化。該聚合物的例子包括但不限於海藻酸鹽(alginates)、透明質酸鹽(hyaluronates)及丙烯醯胺類聚合物(acrylamide-based polymers)。
此外,當用於標記的螢光探針是例如連結螢光基團之抗體的一種綴合物時,該組織標本會被施以透化處理(permeabilization)以確保該些探針能接近靶標生物分子。透化處理可以使用含有低濃度(例如0.1-2 wt%)清潔劑(detergent)的溶液在室溫下進行,該清潔劑例如Triton-X 100或Tween 20。
一旦取得具有適當厚度的澄清且標記的組織標本,便可對其成像以生成該組織標本的三維影像。在某些實施例中,該三維影像是由該澄清且標記的組織標本的複數個光學切面(optical sections)的複數個連續二維影像所產生的一個三維複合影像。「光學切面」係指透過調整一顯微鏡的焦點,通常是藉由調整被觀察的標本與該顯微鏡的物鏡之間的距離而看到的一物體(例如一組織標本)的一平面。換言之,組織標本的複數個光學切面的連續二維影像是組織標本中距離一參考表面(例如標本的頂表面或底表面)不同深度處的剖面影像。
對該澄清且標記的組織標本進行成像時,可以使用一螢光成像系統,其包含一螢光顯微鏡,連接至該螢光顯微鏡的一影像獲取裝置,以及連接至該螢光顯微鏡與該影像採集裝置的一電腦,該螢光顯微鏡與該影像獲取裝置皆可以透過該電腦操作。該螢光顯微鏡可以是一掃描式雷射共軛焦顯微鏡(laser scanning confocal microscope,LSCM),例如FLUOVIEW系列(Olympus,日本)或LSM系列(Zeiss,德國),一雙光子顯微鏡(two-photon microscope),一三光子顯微鏡(three-photon microscope),一轉盤式共軛焦顯微鏡(spinning disk confocal microscope),一線掃描共軛焦顯微鏡(line-scanning confocal microscope)或一層光顯微鏡(light-sheet microscope)。該螢光顯微鏡通常包含一光源、一透鏡組、及一機動樣品台,該機動樣品台用於固持標本並使標本在水平方向(x或y軸方向)和垂直方向(z軸方向)上移動。掃描式雷射共軛焦顯微鏡的光源是一雷射,例如氬離子雷射及氦/氖雷射,其能激發螢光探針。該透鏡組包含一系列物鏡,例如20X(放大倍率)物鏡與40X物鏡。該影像獲取裝置,例如照相機,包含一光偵測器,其能偵測入射的光子並將光子轉換為電信號,該電訊號被傳輸至電腦以生成一數位二維影像。光偵測器的例子包括一電荷耦合元件(charge-coupled device,CCD)影像感測器、光電倍增管(photomultiplier tube,PMT)偵測器、及互補金屬氧化物半導體(complementary metal-oxide semiconductor,CMOS)感測器。該電腦安裝有一應用軟體,使用者可透過該應用軟體控制該螢光顯微鏡及該影像獲取裝置的運作。
在本發明的某些實施例中,組織標本內沿著z方向的不同焦點面的二維影像係使用掃描式雷射共軛焦顯微鏡(LSCM)系統獲取。簡言之,使用聚焦光束(例如可見光)以掃描方式照射該標本。然後,發出的螢光穿過該顯微鏡的光學元件,並且只有對焦的螢光才會到達照相機的偵測器,而與一預定光學切面的每個點的光強度相對應的電信號會從該偵測器傳輸到電腦。最後,該預定光學切面的一數位化二維影像會生成,並且該二維影像的數位資料係儲存在該電腦的一記憶單元中。藉由調整顯微鏡的焦點面,得以獲取並以數位方式記錄該標本的連續光學切面的複數個二維影像。在初次影像獲取時,儲存於電腦中的數位影像可以在連接到該電腦的一顯示器上顯示,以供即時檢視。在一實施例中,當獲取了整個標本內所有光學切面的影像,才完成初次影像獲取。在另一實施例中,當取得了一部分標本的影像,該初次影像獲取即終止。
組織標本的數位二維影像被用作輸入資料以生成該組織標本的一個三維複合影像或一個三維模型,此過程被稱為三維重建(3D reconstruction)。該過程係在一電腦上使用本技術領域已知的各種三維重建演算法來執行,例如三線性內插法(trilinear interpolation),最鄰近內插法(nearest neighbor interpolation)及三立方內插法(tricubic interpolation)。在某些實施例中,例如FLUOVIEW系列(Olympus,日本)或LSM系列(Zeiss,德國)的LSCM系統所隨附的軟體可以執行三維重建。透過此一過程,連續的二維影像可彼此對齊並接合在一起,以生成組織標本的三維複合影像。在某些實施例中,可以運用數位濾波及去模糊技術,例如反卷積法(deconvolution),建立一具有增強解析度的三維複合影像。
在完成初次影像獲取後,該澄清且標記的組織標本被用於製備一染色組織切片(本發明之方法的步驟(c))。在一實施例中,該澄清且標記的組織標本可直接用於製備該染色組織切片。或者,該澄清且標記的組織標本預先以水或生理鹽水(例如磷酸緩衝鹽溶液)處理(稱為復原步驟),通常是在室溫下進行,以獲取一復原的組織標本,由此可準備染色組織切片。
該染色組織切片係依據本技術領域中熟習技藝者已知的方法而獲得。在某些實施例中,一復原的組織標本依上述說明被進一步固定、脫水、浸潤及包埋以形成一組織塊,例如一經過FFPE處理的組織塊。然後,該組織塊的全部或部分被切分成薄切片,該薄切片具有0.5-10 µm的厚度,較佳為具有0.5-5 µm的厚度。組織切片係使用一切片機,其為用以產生微米級材料薄片的具有一刀片的切割裝置。接著,各薄切片被放置在一載玻片上,並且依據本技術領域已知的染色方法對其染色,以使該組織切片的整體結構(例如,細胞與細胞外基質的分布或架構)和細胞的細微形態特徵(例如,細胞核的大小及特定蛋白質的表現)可以被清楚地觀察到。
在某些實施例中,該組織切片係以蘇木素及伊紅(H&E)染色。蘇木素及伊紅分別是能將酸性結構(例如,細胞核中的DNA及核醣體與內質網中的RNA)染成紫色或藍色,以及將鹼性結構(例如,細胞質、細胞內膜及細胞外基質中的大多數蛋白質)染成粉紅色或紅色的二種化合物。因此,H&E染色可以使組織切片中各細胞的細胞核及細胞質被染色,並定位出細胞核及圍繞在細胞質周圍的細胞膜。簡言之,H&E染色的過程始於去除一組織切片中的包埋介質(例如石蠟),以及用濃度遞減的醇類使該切片重新含水。其後,該切片以一蘇木素溶液染色,使用酸性酒精將其退染,再使用伊紅Y溶液複染。在步驟(d)的第二次影像獲取前,該經過H&E染色的組織切片進一步以濃度遞增的醇類脫水並且乾燥。
在其他實施例中,基於抗原-抗體交互作用的免疫組織化學染色法(immunohistochemistry,IHC)可用於製備染色組織切片。簡言之,使用至少一種可專一地辨識一抗原的抗體,特別是可專一地辨識一疾病的特徵蛋白質的抗體去處理每一組織切片。免疫組織化學染色法之進行通常係使用兩種類型的抗體,包含一級抗體(primary antibody)及二級抗體(secondary antibody)。一級抗體能偵測組織切片中的抗原。二級抗體對一級抗體的宿主具有專一性,並且直接或間接地與一報導酵素(reporter enzyme)結合。該報導酵素在一呈色受質存在時催化一有色化合物的生成,此類報導酵素的例子包括鹼性磷酸酶(alkaline phosphatase,AP)及山葵過氧化酶(horseradish peroxidase,HRP)。AP的呈色受質可以是牢度紅(Fast Red),或是硝基四氮唑藍(nitro blue tetrazolium,NBT)與5-溴-4-氯-3-吲哚磷酸鹽(5-bromo-4-chloro-3-indolyl phosphate,BCIP)的組合物。HRP的呈色受質可以是3,3'-二胺基聯苯胺(3,3’-diaminobenzidine,DAB)或氨乙基咔唑(aminoethyl carbazole,AEC)。因此,透過偵測位於細胞次結構中的特定抗原,免疫組織化學染色法能夠使多種細胞次結構被染色,該些細胞次結構包括細胞核、細胞質及細胞膜。
步驟(d)的第二次影像獲取係獲取該染色組織切片的一個參考二維影像。一般而言,此步驟之進行係使用一廣視野成像系統獲取複數個染色組織切片的複數個二維顯微影像,然後選擇將該些二維影像之一作為參考二維影像。此選擇可以是隨機的,也可以基於醫學專家(例如病理學家)的專業知識來進行。通常,該參考二維影像顯示一疾病的至少一種組織病理特徵(若有的話),例如異常細胞增生或腫瘤細胞侵入周圍組織。
該廣視野成像系統包含一廣視野光學顯微鏡,連接至該廣視野光學顯微鏡的一影像獲取裝置,以及連接至該光學顯微鏡及該影像獲取裝置的一電腦,該光學顯微鏡與該影像採集裝置皆可透過該電腦操作。當白光穿透染色組織切片時,吸附於標本的吸光性染劑(例如H&E)使得該標本的形態特徵得以在光學顯微鏡明視野下觀察。該廣視野成像系統的影像獲取裝置具有與前述螢光成像系統的影像獲取裝置相似的元件,因此可以生成染色組織切片的數位二維影像。該數位二維影像可儲存在該電腦的一記憶單元中。
隨後,將該參考二維影像與組織標本的三維影像進行比對(本發明之方法的步驟(e)),以便從該三維影像資料中擷取出包含一相應二維影像切片的一系列二維影像切片,該相應二維影像切片係對應於該參考二維影像。該比對步驟係在一電腦上執行,該電腦包含一處理器及一儲存媒介,該儲存媒介儲存有複數個該處理器可讀取的指令。該比對步驟主要透過一特徵檢測演算法(feature detection algorithms)來實現,例如,尺度不變特徵變換(scale-invariant feature transform,SIFT)演算法或加速強健特徵點(speeded up robust features,SURF)演算法。該特徵檢測演算法能檢測一幅影像的至少一關鍵點(keypoint),並藉由一定義的記述子(descriptor)擷取至少一個特徵向量。在一些實施例中,在尋找最佳特徵損失的過程中,透過計算向量距離的最小值,可識別該參考二維影像的特徵向量與該三維影像中每個二維影像切片的特徵向量之間的最近鄰居,由此找到一相應二維影像切片。如圖2所示,二維影像切片係在該三維影像的深度方向或z方向上將該三維影像虛擬切分為複數個虛擬切片而生成。每個影像切片可以如同一傳統二維影像呈現在一螢幕上,其顯示被獲取影像的組織標本的一剖面圖。
術語「特徵向量」係指包含了描述一影像或一虛擬影像切片的某些特徵訊息的一系列數字。因此,本文中所謂特徵向量係包括從參考二維影像擷取的一參考特徵向量,以及從一個二維影像切片擷取的一相應特徵向量。在一些實施例中,特徵向量之擷取係基於一組織標本的構造特徵,例如邊緣、拐角及斑紋樣式。因此,本文中所謂特徵向量係描述可以同時在參考二維影像及虛擬二維影像切片中識別的至少一種形態特徵。此類形態特徵的例子包括細胞的形狀或大小,細胞核的分布或大小,細胞或細胞核的數量,作為疾病特徵的一生物分子的表現量,細​​胞與細胞外基質的架構,或其組合。較佳地,該參考特徵向量或該相應特徵向量描述一總體的形態特徵,例如細胞核分布,因此可以縮短用於比對步驟的時間。
上述的比對步驟會重複進行直到獲取該相應二維影像切片,例如圖2中所示的切片X。該相應二維影像切片是複數個二維影像切片中相比其他二維影像切片在形態上與該參考二維影像最相似或差異最小的一個二維影像切片。在某些實施例中,該相應二維影像切片及該參考二維影像具有至少90%,較佳為93%,更佳為95%的形態相似性,其值可以透過計算特徵向量距離來確定。一旦獲取了該相應二維影像切片,即可收集在空間上與該相應二維影像切片相鄰的其他二維影像切片。這些相鄰的二維影像切片和該相應二維影像切片共同形成一系列二維影像切片,其可用於輔助傳統上僅基於參考二維影像的疾病診斷。在一些實施例中,該些相鄰的二維影像切片包含至少二個二維影像切片,該些二維影像切片平行於該相應二維影像切片並且分別位於該相應二維影像切片的相對側,例如圖2所示的切片X-10和切片X+10。在一些實施例中,該相應二維影像切片與該相鄰的二維影像切片在該三維影像中的距離可以在1 µm至5 µm的範圍內。
在某些實施例中,該比對步驟可以進一步拆分為以下子步驟:(e1)頻道選擇,(e2)色彩反卷積,(e3)色彩轉換,以及(e4)參考特徵向量與相應特徵向量之比對。頻道選擇是取決於製備染色組織切片所用的染色技術的種類,例如H&E染色或IHC。色彩反卷積是將多個灰階影像(即染色組織切片的二維影像)中二種或更多種顏色組合的顏色訊息區分成不同頻道,從而即使在多種染色位置重疊的區域,仍可觀察到每種染色並予以定量。色彩轉換是選擇性的,其係藉由將該參考二維影像的顏色轉換為該系列二維影像切片的顏色,可便更好地進行可視化比較。步驟(e1)至(e3)可以透過使用開放原始碼軟體來執行,例如ImageJ(美國國家衛生研究院(National Institutes of Health))。步驟(e4)可以透過前述特徵檢測演算法來執行。
在擷取該系列二維影像切片之後,為該系列二維影像切片中每一二維影像切片決定至少一個病理評分,並基於該多個病理評分,報告該疾病是否存在及該疾病的程度(本發明之方法的步驟(f))。決定病理評分及生成診斷報告的過程可以藉由使用合適的演算法在電腦上執行。該病理評分係指可以在一個二維影像切片中或該二維影像切片的一預定區域內發現的一與疾病相關異常狀況的程度的數值。在一實施例中,透過測量表徵一疾病或一待診斷個體免疫狀態的蛋白質的表現量來決定病理評分。蛋白質表現量經常用於評估疾病或療法,因為其與一疾病的發生及進展密切相關,並且受到一個體的免疫活動及治療介入(例如免疫療法)的影響。該蛋白質可以是癌症特有的標誌蛋白質,例如,表徵乳癌的***受體(estrogen receptor,ER)、黃體激素受體(progesterone receptor,PR)、及人表皮生長因子2 (human epidermal growth factor 2,HER2);表徵肺癌及甲狀腺癌的甲狀腺轉錄因子-1(thyroid transcription factor-1,TTF1);以及表徵多種癌症的核抗原Ki-67(nuclear antigen Ki-67)、泛細胞角蛋白(pan-cytokeratin,PanCK)、腫瘤蛋白63(tumor protein 63,亦稱p63)、程序性死亡配體1(programmed death-ligand 1,PD-L1)。該蛋白質亦可為免疫細胞表現的蛋白質,例如分化簇4(cluster of differentiation 4,CD4)、分化簇8(cluster of differentiation 8,CD8)及分化簇(cluster of differentiation 45,CD45)。藉由測定每個二維影像切片中一螢光探針(例如識別標誌蛋白質的一連結螢光基團之抗體)的密度,可量測蛋白質表現量。
在另一實施例中,該病理評分係藉由測量一個二維影像切片中具有異常形態的細胞相對於所有細胞的比例來決定。「異常形態」一詞係指一組織標本中複數細胞的外觀明顯不同於來自健康個體的一對照組織標本中的細胞的外觀。「異常形態」的例子包含細胞的異常形狀、細胞的異常排列(例如形成一大型細胞聚集體)以及細胞的異常核質比(N:C比)。
從該系列二維影像切片獲得的病理評分是協助產生組織病理報告的基礎。傳統上,組織病理檢查的結果僅取決於顯示異常組織形態的染色組織切片的二維影像。相對地,本發明的方法利用該病理評分來驗證組織病理檢查結果。從患病者和未患病者收集得的組織標本的病理評分差異很大。指示疾病存在或其程度的病理評分必定落在自行定義或廣泛使用的一疾病標準的範圍內。該疾病標準可以表示為一數值或一數值範圍,其係基於患病者及未患病者的組織標本而決定。在一些實施例中,當該病理評分高於或低於一數值或在一數值範圍內時,報告一疾病的存在及程度。此外,在某些實施例中,當該系列二維影像切片中的任二個二維影像切片的病理評分間的差異在一預定範圍內,並且被認為在統計學上不顯著時,報告一疾病的存在及程度。例如,當進行學生t檢驗的統計分析時,如圖2所示的切片X與切片X+10,切片X與切片X-10以及切片X+10與切片X-10的病理評分之間的差異皆在該些病理評分的平均值的90%信賴區間內,更佳為在95%信賴區間內(p> 0.05)。該統計分析可以是其他統計方法,例如變異數分析(ANOVA)。由於該些二維影像切片是從完全未被切片或經過極少次切片的完整組織標本的三維影像中擷取,從該些二維影像切片獲取的病理評分受到樣品製備過程的干擾最小以致更加可靠。因此,本發明的方法能增加組織病理診斷的準確性。實施例 1 基於***組織標本的診斷報告
自患有乳癌的一名女性患者收集一新鮮的***組織標本。該組織標本首先用4%甲醛固定,再用0.1-1%Triton X-100施以透化處理。其後,利用SYTO 16及DiD染色該組織標本以分別標記細胞核及細胞膜。各該標記係在室溫下進行8小時,然後進行Ki-67之標記,該Ki-67標記係使用兔子抗Ki-67一級抗體(VENTANA)在室溫下處理該組織標本約10小時,及使用連結Alexa Fluor 405之山羊抗兔二級抗體(Thermo Fisher Scientific)在4°C下處理該組織標本約16小時。接著,將該標記的標本在室溫下浸入折射率約為1.45的一水性澄清劑中約3小時,以便獲取一澄清且標記的標本。該水性澄清劑係在蒸餾水中混合30-50%泛影葡胺及10-30%三乙醇胺來製備。該澄清且標記的組織標本具有約200 µm的厚度,對其成像時係使用一掃描式雷射共軛焦顯微鏡系統(LSM780;Zeiss)從標本頂部表面至底部表面進行,以獲取該標本的大約100個連續二維影像,然後將該些二維影像用於生成該標本的一個三維複合影像。獲取該些二維影像時,透過分別在405 nm及435 nm的激發及放射偵測Alexa Fluor 405;分別在480 nm及525 nm的激發及放射偵測SYTO 16;以及分別在638 nm及700 nm的激發及放射偵測DiD。該些影像的橫向解析度(在x和y方向上)為小於1 µm,且軸向解析度(在z方向上)為小於2 µm。
圖3A顯示該***組織標本的一個三維影像,該圖中合併了SYTO 16(指示細胞核)及DiD(指示細胞膜)的螢光訊號。該三維影像係使用三線性內插法將前述連續二維影像接合在一起而生成,並且透過光線投射體積渲染法(ray casting volume rendering)令其可視化。由於整個標本中被標記的細胞次結構被攝像並且重建為該標本的三維模型(即三維影像),其後可對該標本進行細胞層次的病理分析。
獲取該標本的影像後,將該標本在室溫下置於蒸餾水中約10分鐘以​​獲得一復原的標本,接著移除該復原標本中的抗體及螢光染劑。隨後,將該標本脫水,包埋於石蠟中,並將其切割成複數個厚度約為3 µm的薄切片。該些切片以免疫組織化學染色法染色,包括在4°C下使用兔子抗Ki-67一級抗體(VENTANA)約12小時及在室溫下使用連結HRP之山羊抗兔IgG二級抗體(Thermo Fisher Scientific)約30分鐘以偵測Ki-67,以及隨後在室溫下使用DAB及蘇木素處理該些切片3-5分鐘,以便分別染色有Ki-67表現的區域及細胞核。使用Aperio系列的徠卡生物系統(Leica biosystem),其為一種數位化載玻片掃描系統,對該些染色切片照像。檢視所獲取的複數個二維影像以便選出用於比對步驟的一參考二維影像(圖3B),其顯示有較大的細胞聚集體形成(一種乳癌的組織學表徵)。
比對係使用一種基於Python語言的SIFT演算法及ImageJ來進行。簡言之,選定IHC頻道,並且對圖3B進行色彩反卷積及色彩轉換。圖3C係圖3B經過色彩轉換的輸出影像。藉由比對圖3C及前述三維影像(圖3A),從該三維影像中擷取出一相應二維影像切片(圖3D;標示為切片X),該相應二維影像切片中的組織的架構最類似於圖3C所顯示的組織架構。並且,從該三維影像中擷取與該切片X的兩側相鄰的另外二個二維影像切片(分別標示為切片X-10及X+10),如圖3E及圖3F所示。在三維影像中,該切片X與該切片X-10或該切片X+10之間的距離為1 µm。參考該三個影像切片可以測定Ki-67抗體密度(表1),其係Alexa Fluor 405所標記細胞的計數(即Ki-67陽性細胞數)與SYTO 16所標記細胞的計數(即細胞核數)的比值。Ki-67抗體密度是衡量乳癌標誌蛋白質Ki-67表現量的指標,因此可以用作評估乳癌的存在及程度的一種病理評分。 1
  細胞核 (計數) Ki-67 陽性細胞 (計數) Ki-67 抗體密度
切片X-10 2969 893 30.1%
切片X 3104 968 31.2%
切片X+10 2179 677 31.1%
依據表1,切片X的Ki-67抗體密度為31.2%,略高於30%的臨界值。該臨界值是乳癌診斷的重要因素,同時也被用作預測乳癌者對化學療法有良好反應的判定因子。此外,切片X-10和X+10的Ki-67抗體密度分別為30.1%及31.1%。由於該些Ki-67抗體密度數值均高於30%,且彼此間無統計上差異,故針對具有高Ki-67指數的該組織標本給出其係來自一乳癌患者的報告,並且進一步建議該患者接受化學治療。實施例 2 基於肺部組織標本的診斷報告
自患有肺癌的一患者收集一新鮮的肺部組織標本。該組織標本首先用4%甲醛固定,再用0.1-1%Triton X-100施以透化處理。其後,利用SYTO 16及DiD染色該組織標本以分別標記細胞核及細胞膜。各該標記係在室溫下進行6-8小時。接著,將該標記的標本在室溫下浸入折射率約為1.45的一水性澄清劑中約3小時,以便獲取一澄清且標記的標本。該水性澄清劑係在蒸餾水中混合30-50%泛影葡胺及10-30%三乙醇胺來製備。該澄清且標記的組織標本具有約200 µm的厚度,對其成像時係使用一掃描式雷射共軛焦顯微鏡系統(LSM780;Zeiss)從標本頂部表面至底部表面進行,以獲取該標本的大約100個連續二維影像,然後將該些二維影像用於生成該標本的一個三維複合影像。獲取該些二維影像時,透過分別在480 nm及525 nm的激發及放射偵測SYTO 16;以及在638 nm及700 nm的激發及放射偵測DiD。該些影像的橫向解析度(在x和y方向上)為小於1 µm,且軸向解析度(在z方向上)為小於2 µm。
圖4A顯示該肺部組織標本的一個三維影像,該圖中合併了SYTO 16及DiD的螢光訊號。該三維影像係使用三線性內插法將前述連續二維影像接合在一起而生成,並透過光線投射體積渲染法令其可視化。
獲取該標本的影像後,將該標本在室溫下置於蒸餾水中約10分鐘以​​獲得一復原的標本,接著移除該復原標本中螢光染劑。隨後,將該標本脫水,包埋於石蠟中,並將其切割成複數個厚度約3 µm的薄切片。該些切片在室溫下用蘇木素及伊紅染色3-5分鐘,以便分別染色細胞核及細胞質。使用Aperio系列的徠卡生物系統對該些染色切片照像。檢視所獲取的複數個二維影像,以便選出用於比對步驟的一參考二維影像(圖4B),其顯示有較大的細胞聚集體形成(一種肺癌的組織學表徵)。
比對係使用一種基於Python語言的SIFT演算法及ImageJ來進行。簡言之,選定H&E頻道,並且對圖4B進行色彩反卷積及色彩轉換。圖4C係圖4B經過色彩轉換的輸出影像。藉由比對圖4C及前述三維影像(圖4A),從該三維影像中擷取出一相應二維影像切片(圖4D;標示為切片X),該相應二維影像切片的組織的架構最類似於圖4C所顯示的組織架構。並且,從該三維影像中擷取與該切片X的兩側相鄰的另外二個二維影像切片(分別標示為切片X-10及X+10),如圖4E及圖4F所示。在三維影像中,該切片X與該切片X-10或該切片X+10之間的距離為3 µm。參考該三個影像切片可以測定腫瘤區域百分比(表2),其係以深度學習演算法偵測到的腫瘤區域面積與影像切片面積的比值。腫瘤區域百分比是衡量腫瘤發展的指標,並且是TNM癌症分期系統中的關鍵因素,因此,可將其用作評估肺癌的存在及程度的一種病理評分。 2
  腫瘤區域百分比
切片 X-10 27%
切片 X 16%
切片 X+10 52%
依據表2,切片X-10或切片X+10中的腫瘤區域分別佔27%或52%,該二者皆遠高於切片X中的腫瘤區域(16%)。此結果顯示,僅依據參考二維影像所判定的腫瘤分期有可能被低估,而透過從完整組織標本的三維影像擷取出適當二維影像切片,並從其中獲取額外的病理訊息,將能防止這類低估。換言之,本發明公開的方法能協助及早檢測腫瘤的發展以及癌症的早期治療。
本發明的方法藉由生成完整組織標本的三維影像,及從該三維影像中擷取一系列二維影像切片以獲得可靠的病理評分,從而使用該些病理評分於驗證組織病理結果,最終幫助病理學家做出更準確的診斷結論。因此,該方法可用於確定疾病(例如癌症)的存在及程度,以及辨別患者的疾病亞型。此外,該方法可以應用於預測疾病的發展,選擇適當的治療方法,以及評估例如放射療法、化學療法、免疫療法及手術等療法的功效。
無。
本技術領域之熟習技藝者憑藉以下對最佳實施方式的詳細說明並配合所附圖式將清楚理解本發明,在該圖式中:
圖1係描述本發明方法之步驟的流程圖;
圖2係描述對一組織標本的三維影像進行虛擬切片以生成一系列二維影像切片,其包含一相應二維影像切片(標示為切片X)以及至少二個相鄰的二維影像切片(分別標示為切片X-10及X+10);
圖3A係收集自一乳癌患者的一***組織標本的三維影像;該標本被三種螢光探針標記;
圖3B係由圖3A說明中所述***組織標本製備的一染色組織切片的參考二維影像;圖3B中的比例尺表示100 µm;
圖3C係圖3B所示參考二維影像經過色彩轉換後的輸出影像;圖 3C中的比例尺表示100 µm;
圖3D係擷取自圖3A所示三維影像的一相應二維影像切片(標示為切片X),其與圖3C相匹配;圖3D中的比例尺表示100 µm;
圖3E係擷取自圖3A所示三維影像的一個二維影像切片(標示為切片X-10);在該三維影像中,該切片X-10與切片X(圖3D)相鄰並且位在該切片X的一側;圖3E中的比例尺表示100 µm;
圖3F係擷取自圖3A所示三維影像的另一個二維影像切片(標示為切片X+10);在該三維影像中,該切片X+10與切片X(圖3D)相鄰並且位在該切片X的另一側,該另一側係與切片X-10(圖3E)所處的一側相反;圖3F中的比例尺表示100 µm;
圖4A係收集自一肺癌患者的一肺部組織標本的三維影像;該標本被二種螢光探針標記;
圖4B係由圖4A說明中所述肺部組織標本製備的一染色組織切片的參考二維影像;圖4B中的比例尺表示100 µm;
圖4C係圖4B所示參考二維影像經過色彩轉換後的輸出影像;圖 4C中的比例尺表示100 µm;
圖4D係擷取自圖4A所示三維影像的一相應二維影像切片(標示為切片X),其與圖4C相匹配;圖4D中的比例尺表示100 µm;
圖4E係擷取自圖4A所示三維影像的一個二維影像切片(標示為切片X-10);在該三維影像中,該切片X-10與切片X(圖4D)相鄰並且位在該切片X的一側;圖4E中的比例尺表示100 µm;及
圖4F係擷取自圖4A所示三維影像的另一個二維影像切片(標示為切片X+10);在該三維影像中,該切片X+10與切片X(圖4D)相鄰並且位在該切片X的另一側,該另一側係與切片X-10(圖4E)所處的一側相反;圖4F中的比例尺表示100 µm。
無。

Claims (19)

  1. 一種分析組織標本的方法,包含以下步驟:(a)以一水性澄清劑及用於標記細胞膜與細胞核的至少二種螢光探針處理來自一個體的一組織標本,以獲得一澄清且標記的組織標本;(b)對該澄清且標記的組織標本進行成像,以生成該組織標本的一個三維影像;(c)從該澄清且標記的組織標本製備一染色組織切片;(d)獲取該染色組織切片的一參考二維影像;(e)比對該參考二維影像與該三維影像以從該三維影像中擷取一系列二維影像切片,其中該系列二維影像切片中的一影像切片是一相應二維影像切片,並且相比該系列二維影像切片中的其他二維影像切片,該相應二維影像切片和該參考二維影像在形態上的差異最小;及(f)為該系列二維影像切片中每一二維影像切片決定至少一病理評分,並基於該些病理評分報告一疾病是否存在及該疾病的程度,其中該水性澄清劑包含一成分,該成分係選自由甘油、碘苯六醇、甲醯胺、三乙醇胺、泛影葡胺及其任意組合所組成的群組。
  2. 如請求項1所述之方法,其中該水性澄清劑具有1.33-1.55之折射率。
  3. 如請求項1所述之方法,其中步驟(a)的該組織標本具有至少200μm之厚度。
  4. 如請求項1所述之方法,其中該三維影像係從該澄清且標記的組織標本的複數個連續二維影像所生成的一個三維複合影像。
  5. 如請求項4所述之方法,其中該複數個連續二維影像係使用包含一掃描式雷射共軛焦顯微鏡的一螢光成像系統獲取。
  6. 如請求項1所述之方法,其中在步驟(a)中進一步使用另一螢光探針處理該組織標本以標記至少一生物分子或至少一胞器。
  7. 如請求項6所述之方法,其中該生物分子係為該疾病的一特徵蛋白質。
  8. 如請求項6所述之方法,其中該生物分子係選自由***受體(ER)、黃體激素受體(PR)、人表皮生長因子2(HER2)、甲狀腺轉錄因子-1(TTF1)的蛋白質、Ki-67、泛細胞角蛋白(PanCK)、腫瘤蛋白63(p63)、程序性死亡配體1(PD-L1)、分化簇4(CD4)、分化簇8(CD8)、分化簇45(CD45)及其任意組合所組成群組的一蛋白質。
  9. 如請求項1所述之方法,其中步驟(a)的該組織標本係為新鮮的或被進一步固定。
  10. 如請求項1所述之方法,其中在步驟(c)中使用水或生理鹽水處理該澄清且標記的組織標本,由此獲得一復原的組織標本以用於製備該染色組織切片。
  11. 如請求項1所述之方法,其中步驟(c)的該染色組織切片係對取自該澄清且標記的組織標本的一組織切片進行染色而製備。
  12. 如請求項11所述之方法,其中該染色係藉由蘇木素及伊紅染色法或免疫組織化學法達成。
  13. 如請求項1所述之方法,其中步驟(e)之比對係藉由比較該參考二維影像的一參考特徵向量與該系列二維影像切片中每一二維影像切片的一相應特徵向量而達成。
  14. 如請求項13所述之方法,其中該參考特徵向量或該相應特徵向量係描述細胞形狀、細胞核分布、或其組合。
  15. 如請求項1所述之方法,其中該病理評分係藉由測量一個二維影像切片中具有異常形態的細胞相對於所有細胞的比例來決定。
  16. 如請求項1所述之方法,其中該病理評分係藉由測量該疾病的一特徵蛋白質的表現量來決定。
  17. 如請求項1所述之方法,其中當該系列二維影像切片中任二個二維影像切片的病理評分間的差異在一預定範圍內時,報告該疾病存在。
  18. 如請求項1所述之方法,其中該疾病係為腫瘤。
  19. 如請求項18所述之方法,其中該腫瘤係選自由乳癌、肺癌、胃癌、肝癌、膽囊癌、胰腺癌、結腸癌、結腸直腸癌、***癌、子宮頸癌、卵巢癌、腎癌、膀胱癌、神經膠質瘤、視網膜母細胞瘤、黑色素瘤、及頭頸癌所組成的群組。
TW109118737A 2019-06-04 2020-06-04 分析組織標本的方法 TWI753448B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962856742P 2019-06-04 2019-06-04
US62/856,742 2019-06-04

Publications (2)

Publication Number Publication Date
TW202102832A TW202102832A (zh) 2021-01-16
TWI753448B true TWI753448B (zh) 2022-01-21

Family

ID=73650654

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109118737A TWI753448B (zh) 2019-06-04 2020-06-04 分析組織標本的方法

Country Status (2)

Country Link
US (1) US11521317B2 (zh)
TW (1) TWI753448B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI761016B (zh) * 2020-01-05 2022-04-11 捷絡生物科技股份有限公司 組織切片的製備方法
US11333588B1 (en) 2020-12-07 2022-05-17 Nebulum Technologies Co., Ltd. Matrix-assisted methods and compositions to prepare biological samples for super-resolution imaging
CN115100255B (zh) * 2022-06-16 2023-05-26 赛维森(广州)医疗科技服务有限公司 图像对齐方法、装置、计算机设备和存储介质
CN115619634B (zh) * 2022-09-06 2023-06-20 广州医科大学附属第一医院(广州呼吸中心) 基于病理切片关联的病理图像拼接方法及装置
CN116246019B (zh) * 2023-02-27 2024-01-05 上海迪派生物科技有限公司 一种病理切片的3d重建方法、装置、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW412637B (en) * 1996-10-10 2000-11-21 Univ British Columbia Optical quantification of analytes in membranes
TWI291630B (en) * 2005-04-26 2007-12-21 Univ Tsinghua Bio-expression system and the method of the same
US20100144002A1 (en) * 2008-12-09 2010-06-10 Donndelinger Thomas M Methods for accelerating tissue processing
US20130023008A1 (en) * 2010-03-30 2013-01-24 Technische Universität Wien Histological method
CN108796041A (zh) * 2018-06-27 2018-11-13 中南民族大学 一种基于生物发光共振能量转移的信号扩增***及其检测方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8867803B2 (en) * 2010-04-20 2014-10-21 Eric J. Seibel Optical projection tomography microscopy (OPTM) for large specimen sizes
US10591392B2 (en) * 2014-07-03 2020-03-17 Applikate Technologies Llc Simultaneous dehydration and staining of tissue for deep imaging
WO2018113723A1 (en) * 2016-12-22 2018-06-28 The University Of Hong Kong Compositions and methods for clearing tissue

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW412637B (en) * 1996-10-10 2000-11-21 Univ British Columbia Optical quantification of analytes in membranes
TWI291630B (en) * 2005-04-26 2007-12-21 Univ Tsinghua Bio-expression system and the method of the same
US20100144002A1 (en) * 2008-12-09 2010-06-10 Donndelinger Thomas M Methods for accelerating tissue processing
US20130023008A1 (en) * 2010-03-30 2013-01-24 Technische Universität Wien Histological method
CN108796041A (zh) * 2018-06-27 2018-11-13 中南民族大学 一种基于生物发光共振能量转移的信号扩增***及其检测方法

Also Published As

Publication number Publication date
US11521317B2 (en) 2022-12-06
US20200388031A1 (en) 2020-12-10
TW202102832A (zh) 2021-01-16

Similar Documents

Publication Publication Date Title
TWI753448B (zh) 分析組織標本的方法
Pawlina et al. Histology: a text and atlas: with correlated cell and molecular biology
Almagro et al. Tissue clearing to examine tumour complexity in three dimensions
US9964489B2 (en) System and method for controlling depth of imaging in tissues using fluorescence microscopy under ultraviolet excitation following staining with fluorescing agents
Assayag et al. Large field, high resolution full-field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment
JP6074427B2 (ja) 蛍光画像を用いて明視野画像を生成するためのシステム及び方法
Kang et al. Deep learning enables ultraviolet photoacoustic microscopy based histological imaging with near real-time virtual staining
WO2016043991A1 (en) System and method for controlling depth of imaging in tissues using fluorescence microscopy under ultraviolet excitation following staining with fluorescing agents
Jain et al. Full-field optical coherence tomography for the analysis of fresh unstained human lobectomy specimens
US20090326359A1 (en) Method of in vivo detection and/or diagnosis of cancer using fluorescence based dna image cytometry
Kellner et al. Imaging of the mouse lung with scanning laser optical tomography (SLOT)
TWI750686B (zh) 三維組織病理學成像方法及系統
WO2018175565A1 (en) System and method for controlling depth of imaging in tissues using fluorescence microscopy under ultraviolet excitation following staining with fluorescing agents
US20240177302A1 (en) Cellular diagnostic and analysis methods
Grieve et al. A feasibility study of full-field optical coherence tomography for rapid evaluation of EUS-guided microbiopsy specimens
Matsui et al. Nonlinear optics with near-infrared excitation enable real-time quantitative diagnosis of human cervical cancers
Li et al. Label-free multiphoton imaging to assess neoadjuvant therapy responses in breast carcinoma
Matsui et al. Label‐free multiphoton excitation imaging as a promising diagnostic tool for breast cancer
Schiffhauer et al. Confocal microscopy of unfixed breast needle core biopsies: a comparison to fixed and stained sections
Mannas et al. Stimulated Raman histology, a novel method to allow for rapid pathologic examination of unprocessed, fresh prostate biopsies
Tweel et al. Automated Whole Slide Imaging for Label-Free Histology using Photon Absorption Remote Sensing Microscopy
US20210231540A1 (en) Method for preparation of tissue sections
TWI838687B (zh) 評估腫瘤標本免疫狀態的方法
TWI761016B (zh) 組織切片的製備方法
Zhang et al. Label-free and non-destructive histology of unprocessed biological tissues with ultraviolet single-plane illumination microscopy