TWI748811B - Method for manufacturing display device - Google Patents

Method for manufacturing display device Download PDF

Info

Publication number
TWI748811B
TWI748811B TW109145145A TW109145145A TWI748811B TW I748811 B TWI748811 B TW I748811B TW 109145145 A TW109145145 A TW 109145145A TW 109145145 A TW109145145 A TW 109145145A TW I748811 B TWI748811 B TW I748811B
Authority
TW
Taiwan
Prior art keywords
light
sub
pixel
emitting
pixels
Prior art date
Application number
TW109145145A
Other languages
Chinese (zh)
Other versions
TW202226569A (en
Inventor
曾德恩
簡采毅
Original Assignee
鴻海精密工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鴻海精密工業股份有限公司 filed Critical 鴻海精密工業股份有限公司
Priority to TW109145145A priority Critical patent/TWI748811B/en
Application granted granted Critical
Publication of TWI748811B publication Critical patent/TWI748811B/en
Publication of TW202226569A publication Critical patent/TW202226569A/en

Links

Images

Abstract

A method for manufacturing display device includes: forming a light-emitting element array including a plurality of light-emitting elements on a substrate defining a plurality of sub-pixels, each sub-pixel including one light-emitting element, every four sub-pixels constituting a large sub-pixel, the four sub-pixels of each large sub-pixel being located in two adjacent rows and two adjacent columns, and the light-emitting colors of the four light-emitting elements of the same large sub-pixel being the same; and, detecting whether each light-emitting element in the light-emitting element array is damaged and recording the position of each damaged light-emitting element on the light-emitting element array; and, configuring the resolution of the display device to be a maximum resolution when it is detected that there is no damaged light-emitting element in the light-emitting element array, and configuring the resolution of the display device to be an adjustment resolution when it is detected that there is a damaged light-emitting element in the light-emitting element array.

Description

顯示裝置的製造方法 Manufacturing method of display device

本發明涉及一種顯示裝置的製造方法。 The present invention relates to a manufacturing method of a display device.

微發光二極體(Micro light emitting diode,Micro LED)顯示裝置的製造過程包含製作由複數Micro LED組成的發光元件陣列,由於製程的不完善,使得所述發光元件陣列中會存在殘次的Micro LED。 The manufacturing process of a micro light emitting diode (Micro LED) display device includes the production of a light emitting element array composed of a plurality of Micro LEDs. Due to the imperfect manufacturing process, there may be defective Micro LEDs in the light emitting element array. LED.

在將上百萬顆Micro LED轉移至指定的背板位置進行定位和接合(LED die to digital wafer,亦稱為巨量移轉)之後,如何對殘次的Micro LED顆粒進行維修是一個急需解決的問題。為了使存在損壞的Micro LED的發光元件陣列能夠正常的顯示,目前,通常採用紫外光照射維修技術、雷射熔斷維修技術或選擇性雷射維修技術等方法對發光元件陣列中損壞的Micro LED顆粒進行維修;或者採用備援電路設計的方式對Micro LED陣列中每個Micro LED顆粒皆設計一個額外備用的Micro LED。但是,Micro LED顆粒尺寸非常小,且Micro LED顆粒之間的間隙也非常小,間隙往往達到微米級,因而對於Micro LED顆粒損壞的位置修復難度高且複雜;且備援電路設計的成本也高。 After transferring millions of Micro LEDs to the designated backplane position for positioning and bonding (LED die to digital wafer, also known as mass transfer), how to repair the defective Micro LED particles is an urgent need to solve The problem. In order to make the light-emitting element array of the damaged Micro LED display normally, currently, methods such as ultraviolet light irradiation repair technology, laser fuse repair technology or selective laser repair technology are usually used to treat the damaged Micro LED particles in the light-emitting element array. Carry out maintenance; or design an extra spare Micro LED for each Micro LED particle in the Micro LED array by using a backup circuit design method. However, the size of the Micro LED particles is very small, and the gap between the Micro LED particles is also very small, and the gap often reaches the micron level. Therefore, it is difficult and complicated to repair the damaged position of the Micro LED particles; and the cost of the backup circuit design is also high. .

鑒於此,有必要提供一種顯示裝置的製造方法,當顯示裝置中的發光元件陣列存在損壞的發光元件時,在無需對損壞的發光元件進行修復和啟用備用發光元件情況下也能進行正常的顯示。 In view of this, it is necessary to provide a method for manufacturing a display device. When there are damaged light-emitting elements in the light-emitting element array in the display device, normal display can be performed without repairing the damaged light-emitting element and enabling the spare light-emitting element. .

一種顯示裝置的製造方法,其包括:在定義有複數子畫素的基板上形成包括複數發光元件的發光元件陣列,每一個子畫素中包括一個所述發光元件,每四個子畫素構成一個大子畫素,每一個大子畫素的四個子畫素位於相鄰兩行和相鄰兩列,設置同一大子畫素的四個發光元件的發光顏色相同;檢測所述發光元件陣列中每一個發光元件是否損壞並記載損壞的發光元件在所述發光元件陣列上的位置;以及,當檢測到所述發光元件陣列中不存在損壞的發光元件時,配置所述顯示裝置的解析度為最大解析度;當檢測到所述發光元件陣列中存在損壞的發光元件時,配置所述顯示裝置的解析度為調整解析度,所述調整解析度小於所述最大解析度。 A method for manufacturing a display device, comprising: forming a light-emitting element array including a plurality of light-emitting elements on a substrate defined with a plurality of sub-pixels, each sub-pixel includes one light-emitting element, and every four sub-pixels constitute one Large sub-pixels, the four sub-pixels of each large sub-pixel are located in two adjacent rows and two adjacent columns, and the four light-emitting elements of the same large sub-pixel have the same light-emitting color; detecting the light-emitting element array Whether each light-emitting element is damaged and record the position of the damaged light-emitting element on the light-emitting element array; and, when it is detected that there is no damaged light-emitting element in the light-emitting element array, the resolution of configuring the display device is Maximum resolution; when it is detected that there is a damaged light-emitting element in the light-emitting element array, the resolution of the display device is configured as an adjustment resolution, and the adjustment resolution is less than the maximum resolution.

相對於習知技術,當顯示裝置中的發光元件陣列存在損壞的發光元件時,在無需對損壞的發光元件進行修復和啟用備用發光元件情況下也能進行正常的顯示。當所述發光元件陣列中存在損壞的發光元件時,配置包含所述發光元件陣列的顯示裝置的解析度為調整解析度,雖然此時所述顯示裝置的解析度小於最大解析度,但是可以使得包含損壞的發光元件的顯示裝置以降規格形式進行銷售,借此提升了整體製造良率。 Compared with the prior art, when there are damaged light-emitting elements in the light-emitting element array in the display device, normal display can be performed without repairing the damaged light-emitting elements and activating the spare light-emitting elements. When there is a damaged light-emitting element in the light-emitting element array, the resolution of the display device that includes the light-emitting element array is the adjustment resolution. Although the resolution of the display device is less than the maximum resolution at this time, it can make Display devices containing damaged light-emitting elements are sold in reduced specifications, thereby increasing the overall manufacturing yield.

10:發光元件 10: Light-emitting element

11:發光元件陣列 11: Light-emitting element array

12、12G、12B、12R:子畫素 12, 12G, 12B, 12R: sub-pixel

13、13G、13B、13R:大子畫素 13, 13G, 13B, 13R: Big picture pixels

I1:第一對角線 I1: The first diagonal

I2:第二對角線 I2: second diagonal

I3:第三對角線 I3: third diagonal

C1:第一小單元 C1: The first small unit

C2:第二小單元 C2: The second small unit

C3:大單元 C3: Large unit

14:畫素單元 14: Pixel unit

100:顯示裝置 100: display device

101:基板 101: substrate

S1、S2、S3、S4:步驟 S1, S2, S3, S4: steps

圖1為本發明實施例一的顯示裝置製造方法的流程圖。 FIG. 1 is a flowchart of a manufacturing method of a display device according to the first embodiment of the present invention.

圖2為本發明實施例一的發光元件組成的發光元件陣列示意圖。 2 is a schematic diagram of a light-emitting element array composed of light-emitting elements according to the first embodiment of the present invention.

圖3為本發明實施例一的所有大子畫素與所有子畫素均以Bayer格式排列的發光元件陣列示意圖。 3 is a schematic diagram of a light-emitting element array in which all the large sub-pixels and all the sub-pixels are arranged in a Bayer format according to the first embodiment of the present invention.

圖4為本發明實施例一的所有大子畫素發光顏色相同且發光元件陣列中無損壞的發光元件時的顯示示意圖。 4 is a schematic diagram of the display when all the large sub-pixels emit light with the same color and the light-emitting elements in the light-emitting element array are not damaged in the first embodiment of the present invention.

圖5為當發光元件陣列以圖4形式排列且發光元件陣列無損壞的發光元件時的顯示示意圖。 FIG. 5 is a schematic diagram of the display when the light-emitting element array is arranged in the form of FIG. 4 and the light-emitting element array is not damaged.

圖6為本發明實施例一的所有大子畫素發光顏色相同且發光元件陣列中有損壞的發光元件時的顯示示意圖。 6 is a schematic diagram of the display when all the large sub-pixels emit light in the same color and there are damaged light-emitting elements in the light-emitting element array according to the first embodiment of the present invention.

圖7為當發光元件陣列以圖4形式排列且發光元件陣列中有損壞的發光元件時的顯示示意圖。 FIG. 7 is a schematic diagram of the display when the light-emitting element array is arranged in the form of FIG. 4 and there are damaged light-emitting elements in the light-emitting element array.

附圖中示出了本發明的實施例,本發明可藉由多種不同形式實現,而並不應解釋為僅局限於這裡所闡述的實施例。相反,提供這些實施例是為了使本發明更為全面和完整的公開,並使本領域的技術人員更充分地瞭解本發明的範圍。 The accompanying drawings show embodiments of the present invention. The present invention can be implemented in many different forms and should not be interpreted as being limited to the embodiments set forth herein. On the contrary, these embodiments are provided for a more comprehensive and complete disclosure of the present invention, and for those skilled in the art to fully understand the scope of the present invention.

本文所述的“拜耳(Bayer)格式”,是指由伊士曼.柯達公司科學家Bryce Bayer發明的一種數位圖像中子畫素的排列格式,也稱Bayer陣列。人眼對綠色比較敏感,所以在所述Bayer格式中發光顏色為綠色(G)的子畫素是發光顏色為紅色(R)的子畫素和發光顏色為藍色(B)的子畫素之和,且在所述Bayer陣列中,由數量占1/2的綠色子畫素,數量占1/4的紅色子畫素,數量占1/4的藍色子畫素組成。在所述Bayer陣列中,相鄰兩行與相鄰兩列的四個子畫素為兩個綠色的子畫素、一個紅色子畫素以及一個 藍色子畫素,這複數這樣的四個子畫素形成多行多列的矩陣從而構成所述Bayer陣列。 The "Bayer (Bayer) format" mentioned in this article refers to Eastman. Kodak scientist Bryce Bayer invented an array of sub-pixels in digital images, also known as Bayer arrays. The human eye is more sensitive to green, so in the Bayer format, the sub-pixels whose emission color is green (G) are sub-pixels whose emission color is red (R) and sub-pixels whose emission color is blue (B). In the Bayer array, it is composed of green sub-pixels with a quantity of 1/2, red sub-pixels with a quantity of 1/4, and blue sub-pixels with a quantity of 1/4. In the Bayer array, the four sub-pixels in two adjacent rows and two adjacent columns are two green sub-pixels, one red sub-pixel, and one Blue sub-pixels, these four such sub-pixels form a matrix with multiple rows and multiple columns to form the Bayer array.

本文所述的“解析度”,是指顯示裝置所能顯示的畫素有多少,顯示裝置的顯示幕大小固定時,顯示解析度越高圖像越清晰。 The “resolution” mentioned herein refers to the number of pixels that the display device can display. When the size of the display screen of the display device is fixed, the higher the display resolution, the clearer the image.

參閱圖1,本發明實施例提供的顯示裝置的製造方法,其包括如下步驟:步驟S1:在定義有複數子畫素的基板上形成包括複數發光元件的發光元件陣列,每一個子畫素中包括一個所述發光元件,每四個子畫素構成一個大子畫素,每一個大子畫素的四個子畫素位於相鄰兩行和相鄰兩列,設置同一大子畫素的四個發光元件的發光顏色相同;步驟S2:檢測所述發光元件陣列中每一個發光元件是否損壞並記載損壞的發光元件在所述發光元件陣列上的位置;當檢測到所述發光元件陣列中不存在損壞的發光元件時,執行步驟S3:配置包含所述發光元件陣列所述顯示裝置的解析度為最大解析度;當檢測到所述發光元件陣列中存在損壞的發光元件時,執行步驟S4:配置包含所述發光元件陣列所述顯示裝置的解析度為調整解析度,所述調整解析度小於所述最大解析度。 Referring to FIG. 1, the method for manufacturing a display device according to an embodiment of the present invention includes the following steps: Step S1: forming a light-emitting element array including a plurality of light-emitting elements on a substrate defined with a plurality of sub-pixels, in each sub-pixel It includes one light-emitting element, every four sub-pixels constitute a large sub-pixel, the four sub-pixels of each large sub-pixel are located in two adjacent rows and two adjacent columns, and four sub-pixels of the same large sub-pixel are arranged The light-emitting elements have the same light-emitting color; step S2: detect whether each light-emitting element in the light-emitting element array is damaged and record the position of the damaged light-emitting element on the light-emitting element array; when it is detected that there is no light-emitting element in the light-emitting element array When the light-emitting element is damaged, perform step S3: configure the resolution of the display device including the light-emitting element array to the maximum resolution; when it is detected that there is a damaged light-emitting element in the light-emitting element array, perform step S4: configure The resolution of the display device including the array of light-emitting elements is an adjustment resolution, and the adjustment resolution is less than the maximum resolution.

上述顯示裝置的製造方法適用於主動發光顯示裝置的製造,例如,Micro LED顯示裝置和有機發光二極體(Organic Light-Emitting Diode,OLED)顯示裝置。所述發光元件可為Micro LED或者OLED。 The manufacturing method of the above-mentioned display device is suitable for the manufacture of active light-emitting display devices, for example, Micro LED display devices and Organic Light-Emitting Diode (OLED) display devices. The light-emitting element may be Micro LED or OLED.

請參圖2,在本實施例中,所述複數發光元件10用以發光顯示圖像,即,用於根據圖像資料信號發出圖像光。假設所有的發光元件10均能參與顯示圖像時,所述顯示裝置對應具有一最大解析度(即,所述顯示裝置能夠顯示的最多的畫素)。 Please refer to FIG. 2. In this embodiment, the plurality of light-emitting elements 10 are used to emit light and display images, that is, to emit image light according to image data signals. Assuming that all the light-emitting elements 10 can participate in displaying images, the display device correspondingly has a maximum resolution (that is, the maximum number of pixels that the display device can display).

在步驟S1中,基板101上可形成有用於驅動所述發光元件10發光的驅動電路(圖未示),且定義有複數子畫素12,每一個子畫素12中包含一個發光元件10。每四個子畫素12構成一個大子畫素13,基板101上包括複數互不交疊的大子畫素13,每一個大子畫素13的四個子畫素12位於相鄰兩行和相鄰兩列。設置同一個大子畫素13的四個發光元件10的發光顏色相同,位於同一個大子畫素13中的四個發光元件10發射紅綠藍(RGB)三基色中的同一種顏色光,即每一個大子畫素13發單一顏色的光。如圖2所示,一個小方格代表一個子畫素12,大子畫素13如圖2中的虛框所示。在圖2所示的實施例中,每個子畫素12大致面積相等,每個大子畫素13中的四個子畫素12的排列呈矩形。在一實施例中,所述複數發光元件10為Micro LED,所述複數發光元件10在基板101上形成所述發光元件陣列11的步驟包括將複數發光元件10轉移至基板101指定的位置進行定位和接合,使得每個發光元件10與所述驅動電路電性連接,並可被單獨驅動發光。在本實施例中,所有大子畫素13中的發光元件10的發光顏色均設置為相同,亦即,所述發光元件陣列11的每一個發光元件10的發光顏色均相同,即所述發光元件陣列11發射單色光。在此實施例中,所有的發光元件10發射紅綠藍(RGB)三基色中的同一種顏色光,即,所述顯示裝置100可為一單色顯示裝置。 In step S1, a driving circuit (not shown) for driving the light-emitting element 10 to emit light may be formed on the substrate 101, and a plurality of sub-pixels 12 may be defined, and each sub-pixel 12 includes a light-emitting element 10. Every four sub-pixels 12 constitute a large sub-pixel 13. The substrate 101 includes a plurality of large sub-pixels 13 that do not overlap each other. The four sub-pixels 12 of each large sub-pixel 13 are located in two adjacent rows and phases. Two adjacent columns. The four light-emitting elements 10 provided with the same large sub-pixel 13 emit light of the same color, and the four light-emitting elements 10 located in the same large sub-pixel 13 emit light of the same color among the three primary colors of red, green and blue (RGB), That is, each large sub-pixel 13 emits a single color of light. As shown in Figure 2, a small square represents a sub-pixel 12, and a large sub-pixel 13 is shown as a dotted box in Figure 2. In the embodiment shown in FIG. 2, each sub-pixel 12 has approximately the same area, and the four sub-pixels 12 in each large sub-pixel 13 are arranged in a rectangular shape. In an embodiment, the plurality of light-emitting elements 10 are Micro LEDs, and the step of forming the light-emitting element array 11 on the substrate 101 by the plurality of light-emitting elements 10 includes transferring the plurality of light-emitting elements 10 to a designated position on the substrate 101 for positioning. And bonding, so that each light-emitting element 10 is electrically connected to the driving circuit, and can be driven to emit light individually. In this embodiment, the light-emitting color of the light-emitting elements 10 in all the large sub-pixels 13 is set to be the same, that is, the light-emitting color of each light-emitting element 10 of the light-emitting element array 11 is the same, that is, the light-emitting element 10 The element array 11 emits monochromatic light. In this embodiment, all the light-emitting elements 10 emit light of the same color among the three primary colors of red, green and blue (RGB), that is, the display device 100 may be a monochrome display device.

參照圖3。在本實施例中,所述發光元件陣列11的發光元件10可以發不同顏色的光,即,所述顯示裝置100可為多色顯示裝置(全彩陣列顯示裝置)。 Refer to Figure 3. In this embodiment, the light-emitting elements 10 of the light-emitting element array 11 can emit light of different colors, that is, the display device 100 can be a multi-color display device (a full-color array display device).

在一實施例中,每一個發光元件10發射紅綠藍(RGB)三基色中的一種顏色光且所有的大子畫素13與所有的子畫素12均設置為所述Bayer陣列格式。所述Bayer陣列格式是全彩陣列的一種。具體地,在由所有子畫 素12形成的Bayer陣列格式中,由位於相鄰兩行和相鄰兩列中的兩個成第一對角線I1分佈的發射綠光的子畫素12G、一個發射紅光的子畫素12R以及一個發射藍光的子畫素12B形成一個第一小單元C1,由位於相鄰兩行和相鄰兩列中的兩個成第二對角線I2分佈的發射綠光的子畫素12G、一個發射紅光的子畫素12R以及一個發射藍光的子畫素12B形成一個第二小單元C2,且所述第一對角線I1與所述第二對角線I2相互垂直,該第一小單元C1與該第二小單元C2迴圈交替分佈於X方向與Y方向上以形成由所有子畫素12構成的所述Bayer陣列格式;在由所有大子畫素13形成的Bayer陣列格式中,由位於相鄰兩行和相鄰兩列中的兩個成第三對角線I3分佈的發射綠光的大子畫素13G、一個發射紅光的大子畫素13R以及一個發射藍光的大子畫素13B形成一個大單元C3,所述大單元C3重複地分佈於在X方向與Y方向以形成由所有大子畫素13構成的所述Bayer陣列格式。在此實施例中,所述第三對角線I3與所述第一對角線I1平行。所述第一小單元C1與所述第二小單元C2在X方向與Y方向上迴圈交替分佈的順序與所述發射綠光的大子畫素13G成對角分佈的情況是相互影響的。可以理解地,當所述發射綠光的大子畫素13G沿平行於所述第一對角線I1的所述第三對角線I3分佈時,所述第一小單元C1與所述第二小單元C2在X方向與Y方向上交替分佈的順序也是確定的,才能保證所述發光元件陣列11的所有大子畫素13與所有小子畫素12同時形成所述Bayer格式排列。在其他實施例中,涉及所述兩個發射綠光的兩個大子畫素13G的第三對角線I3可與所述第二對角線I2平行,此時沿所述第三對角線I3分佈的所述發射綠光的大子畫素13G的情況與圖3中的不同,可以理解地,所述第一小單元C1與所述第二小單元C2在X方向與Y方向上分佈時的迴圈交替順序也剛好與圖3相反。X方向與Y方向如圖3所示,X方向與Y方向交叉並相互垂直。所 述迴圈交替的含義是在X方向上和在Y方向上所述第一小單元C1被所述第二小單元C2間隔開,以及在X方向上和在Y方向上所述第二小單元C2被所述第一小單元C1間隔開。在其他實施例中,在由所有子畫素12形成的Bayer陣列格式中,在由位於相鄰兩行和相鄰兩列的兩個發射綠光的子畫素12G、一個發射紅光的子畫素12R以及一個發射藍光的子畫素12B形成一個第一小單元C1,且在所述第一小單元C1,發射綠光的子畫素12G位於同一行,發射紅光的子畫素12R與發射藍光的子畫素12B位於同一行;在由所有大子畫素13形成的Bayer陣列格式中,由位於相鄰兩行和相鄰兩列中的兩個發射綠光的大子畫素13G、一個發射紅光的大子畫素13R以及一個發射藍光的大子畫素13B形成一個大單元C3,且在所述大單元C3中,發射綠光的大子畫素13G位於同一行,發射紅光的大子畫素13R與發射藍光的大子畫素13B位於同一行。 In an embodiment, each light-emitting element 10 emits light of one of the three primary colors of red, green and blue (RGB), and all the large sub-pixels 13 and all the sub-pixels 12 are set in the Bayer array format. The Bayer array format is a kind of full-color array. Specifically, in the drawing by all the sub-drawings In the Bayer array format formed by pixel 12, two sub-pixels 12G that emit green light and one sub-pixel that emits red light are distributed in the first diagonal I1 in two adjacent rows and two adjacent columns. 12R and a blue-emitting sub-pixel 12B form a first small unit C1, which is composed of two green-emitting sub-pixels 12G located in two adjacent rows and two adjacent columns that form a second diagonal line I2. , A sub-pixel 12R emitting red light and a sub-pixel 12B emitting blue light form a second small cell C2, and the first diagonal line I1 and the second diagonal line I2 are perpendicular to each other, the first A small cell C1 and the second small cell C2 are alternately distributed in the X direction and the Y direction to form the Bayer array format composed of all the sub-pixels 12; in the Bayer array formed by all the large sub-pixels 13 In the format, there are two large sub-pixels 13G emitting green light, one large sub-pixel 13R emitting red light, and one emitting sub-pixel 13G, one large sub-pixel 13R emitting red light, and a third diagonal I3 located in two adjacent rows and two adjacent columns The large sub-pixels 13B of the blue light form a large cell C3, and the large cells C3 are repeatedly distributed in the X direction and the Y direction to form the Bayer array format composed of all the large sub-pixels 13. In this embodiment, the third diagonal line I3 is parallel to the first diagonal line I1. The order in which the first small cell C1 and the second small cell C2 circulate alternately in the X direction and the Y direction and the diagonal distribution of the green-emitting large sub-pixels 13G are mutually influential . Understandably, when the large green light-emitting sub-pixels 13G are distributed along the third diagonal line I3 parallel to the first diagonal line I1, the first small cell C1 and the first The order in which the two small cells C2 are alternately distributed in the X direction and the Y direction is also determined, so as to ensure that all the large sub-pixels 13 and all the small sub-pixels 12 of the light-emitting element array 11 simultaneously form the Bayer format arrangement. In other embodiments, the third diagonal line I3 of the two large sub-pixels 13G that emit green light may be parallel to the second diagonal line I2, and in this case, it is along the third diagonal line. The situation of the large green-emitting sub-pixel 13G distributed on the line I3 is different from that in FIG. 3. It is understandable that the first small cell C1 and the second small cell C2 are in the X direction and the Y direction The alternating sequence of loops during distribution is also just the opposite of Figure 3. The X direction and the Y direction are shown in Fig. 3, and the X direction and the Y direction cross and are perpendicular to each other. Place The alternation of the circles means that the first small cell C1 is separated by the second small cell C2 in the X direction and in the Y direction, and the second small cell is in the X direction and in the Y direction. C2 is separated by the first small cell C1. In other embodiments, in the Bayer array format formed by all the sub-pixels 12, two sub-pixels 12G that emit green light and one sub-pixel 12G that emits red light are located in two adjacent rows and two adjacent columns. The pixel 12R and a blue-emitting sub-pixel 12B form a first small cell C1, and in the first small cell C1, the green-emitting sub-pixel 12G is located in the same row, and the red-emitting sub-pixel 12R Located in the same row as the blue-emitting sub-pixel 12B; in the Bayer array format formed by all the large sub-pixels 13, there are two large green-emitting sub-pixels located in two adjacent rows and two adjacent columns 13G, a large sub-pixel 13R emitting red light, and a large sub-pixel 13B emitting blue light form a large cell C3, and in the large cell C3, the large sub-pixel 13G emitting green light is located in the same row, The large sub-pixel 13R emitting red light and the large sub-pixel 13B emitting blue light are located in the same row.

在一變更實施例中,所有的大子畫素13與所有的子畫素12均設置為全彩陣列,即所述發光元件陣列11涉及RGB三種發光顏色的子畫素12或者三種以上不同發光顏色的子畫素。具體地,在由所有子畫素12形成的全彩陣列中,由位於相鄰兩行和相鄰兩列的兩個成第一對角線I1分佈的發射紅光的子畫素12R、一個發射綠光的子畫素12G以及一個發射藍光的子畫素12B形成一個第一小單元C1,由位於相鄰兩行和相鄰兩列中的兩個成第二對角線I2分佈的發射紅光的子畫素12R、一個發射綠光的子畫素12G以及一個發射藍光的子畫素12B形成一個第二小單元C2。在由所有大子畫素13形成的全彩陣列中,可由位於相鄰兩行和相鄰兩列的兩個成第三對角線I3分佈的發射紅光的大子畫素13R、一個發射綠光的大子畫素13G以及一個發射藍光的大子畫素13B形成一個大單元C3。 In a modified embodiment, all the large sub-pixels 13 and all the sub-pixels 12 are arranged in a full-color array, that is, the light-emitting element array 11 involves sub-pixels 12 of three luminous colors of RGB or more than three different luminescence. The sub-pixels of the color. Specifically, in the full-color array formed by all the sub-pixels 12, two red-emitting sub-pixels 12R and one red light emitting sub-pixels 12R located in two adjacent rows and two adjacent columns form a first diagonal line I1. The sub-pixel 12G that emits green light and the sub-pixel 12B that emits blue light form a first small unit C1, which is distributed in a second diagonal I2 by two adjacent rows and two adjacent columns. A sub-pixel 12R of red light, a sub-pixel 12G that emits green light, and a sub-pixel 12B that emits blue light form a second small cell C2. In the full-color array formed by all the large sub-pixels 13, two large sub-pixels 13R and one emitting red light distributed in the third diagonal I3 are located in two adjacent rows and two adjacent columns. A large sub-pixel 13G of green light and a large sub-pixel 13B that emits blue light form a large unit C3.

在又一變更實施例中,所有的大子畫素13與所有的子畫素12均設置為全彩陣列,即所述發光元件陣列11涉及RGB三種發光顏色的子畫素12或者三種以上不同發光顏色的子畫素12。具體地,由所有子畫素12形成的全彩陣列,由位於相鄰兩行和相鄰兩列中的兩個成第一對角線I1分佈的發射藍光的子畫素12B、一個發射紅光的子畫素12R以及一個發射綠光的子畫素12G形成一個第一小單元C1,由位於相鄰兩行和相鄰兩列中的兩個成第二對角線I2分佈的發射藍光的子畫素12B、一個發射紅光的子畫素12R以及一個發射綠光的子畫素12G形成一個第二小單元C2。在由所有大子畫素13形成的全彩陣列中,可由位於相鄰兩行和相鄰兩列中的兩個成第三對角線I3分佈的發射藍光的大子畫素13B、一個發射紅光的大子畫素13R以及一個發射綠光的大子畫素13G形成一個大單元C3。 In another modified embodiment, all the large sub-pixels 13 and all the sub-pixels 12 are arranged as a full-color array, that is, the light-emitting element array 11 involves sub-pixels 12 of three RGB light-emitting colors or three or more different sub-pixels. Sub-pixel 12 of luminous color. Specifically, the full-color array formed by all the sub-pixels 12 is composed of two blue-emitting sub-pixels 12B that are located in two adjacent rows and two adjacent columns and form a first diagonal line I1, and one emits red. The light sub-pixel 12R and a green light-emitting sub-pixel 12G form a first small unit C1, which emits blue light distributed in a second diagonal line I2 from two adjacent rows and two adjacent columns. The sub-pixel 12B, a sub-pixel 12R that emits red light, and a sub-pixel 12G that emits green light form a second small cell C2. In the full-color array formed by all the large sub-pixels 13, two large sub-pixels 13B and one emitting blue light distributed in the third diagonal line I3 are located in two adjacent rows and two adjacent columns. A large sub-pixel 13R of red light and a large sub-pixel 13G that emits green light form a large unit C3.

在又一變更實施例中,所有的大子畫素13與所有的子畫素12均設置為全彩陣列,即所述發光元件陣列11涉及RGB三種發光顏色的子畫素12或者三種以上不同發光顏色的子畫素12。所述發光元件10還可以發紅、綠、藍和白中的任意一種,所述第一小單元C1和所述第二小單元C2均可由位於相鄰兩行和相鄰兩列中一個發射藍光的子畫素12B、一個發射紅光的子畫素12R、一個發射綠光的子畫素12G和一個發射白光的子畫素(圖未示)組成;所述大單元C3可由位於相鄰兩行和相鄰兩列中的發射藍光的大子畫素13B、一個發射紅光的大子畫素13R、一個發射綠光的大子畫素13G以及一個發射白光的大子畫素(圖未示)。在其他變更實施例中,組成所所述第一小單元C1和所述第二小單元C2的子畫素12的發光顏色還可以為黃色或者其他顏色。 In another modified embodiment, all the large sub-pixels 13 and all the sub-pixels 12 are arranged as a full-color array, that is, the light-emitting element array 11 involves sub-pixels 12 of three RGB light-emitting colors or three or more different sub-pixels. Sub-pixel 12 of luminous color. The light-emitting element 10 can also emit any one of red, green, blue, and white. Both the first small cell C1 and the second small cell C2 can emit light from one of two adjacent rows and two adjacent columns. The blue sub-pixel 12B, a red-emitting sub-pixel 12R, a green-emitting sub-pixel 12G, and a white-emitting sub-pixel (not shown) are composed of; the large unit C3 may be located adjacent to In two rows and two adjacent columns, the large sub-pixel 13B that emits blue light, the large sub-pixel 13R that emits red light, the large sub-pixel 13G that emits green light, and the large sub-pixel that emits white light (Figure Not shown). In other modified embodiments, the light-emitting color of the sub-pixels 12 constituting the first small cell C1 and the second small cell C2 may also be yellow or other colors.

在步驟S2中,所述發光元件10在所述發光元件陣列11中位置具體為在所述發光元件陣列11的X方向與Y方向上的位置,X方向與Y方向 如圖2與圖3所示,X方向與Y方向交叉並相互垂直。在本實施例中,在步驟S2中採用電路檢測方法檢測發光元件陣列11中是否存在損壞的發光元件10,即藉由電路驅動每一個發光元件10發光,檢測每一個發光元件10是否發光,以及發光亮度是否正常。當所述發光元件10不發光,則判定為損壞的發光元件;或者當所述發光元件10發亮度低於預定亮度時,則判定為損壞的發光元件。 In step S2, the position of the light-emitting element 10 in the light-emitting element array 11 is specifically the position in the X direction and the Y direction of the light-emitting element array 11, and the X direction and the Y direction As shown in Fig. 2 and Fig. 3, the X direction and the Y direction cross and are perpendicular to each other. In this embodiment, in step S2, a circuit detection method is used to detect whether there is a damaged light-emitting element 10 in the light-emitting element array 11, that is, each light-emitting element 10 is driven to emit light by a circuit, and it is detected whether each light-emitting element 10 emits light, and Whether the luminous brightness is normal. When the light-emitting element 10 does not emit light, it is determined as a damaged light-emitting element; or when the light-emitting element 10 emits less than a predetermined brightness, it is determined as a damaged light-emitting element.

在步驟S3中,當且檢測到所述發光元件陣列11中不存在損壞的發光元件10且所有大子畫素13的發光元件10的發光顏色均相同(即所述顯示裝置100為單色顯示時)時,設置所述發光元件陣列11的每一個發光元件10均參與顯示圖像且一個子畫素12為所述發光元件陣列11進行發光顯示時的一個畫素單元14,如圖4所示。即,配置所述顯示裝置100解析度為最大解析度。一個畫素單元14為在進行圖像顯示時的一個圖像畫素點,即為圖像顯示的時候的最小顯示單元。 In step S3, when it is detected that there is no damaged light-emitting element 10 in the light-emitting element array 11 and the light-emitting colors of the light-emitting elements 10 of all the large sub-pixels 13 are the same (that is, the display device 100 is a monochrome display When), each light-emitting element 10 of the light-emitting element array 11 is arranged to participate in displaying an image, and a sub-pixel 12 is a pixel unit 14 when the light-emitting element array 11 performs light-emitting display, as shown in FIG. 4 Show. That is, the resolution of the display device 100 is configured to be the maximum resolution. A pixel unit 14 is an image pixel point during image display, that is, the smallest display unit during image display.

在步驟S3中,當所有的大子畫素13與所有的子畫素12均設置為全彩陣列且檢測到所述發光元件陣列11中不存在損壞的發光元件10時,將分佈在相鄰兩行和兩列的四個子畫素12為所述顯示裝置100進行發光顯示時的一個畫素單元14。 In step S3, when all the large sub-pixels 13 and all the sub-pixels 12 are set as a full-color array and it is detected that there are no damaged light-emitting elements 10 in the light-emitting element array 11, they will be distributed in adjacent areas. The four sub-pixels 12 in two rows and two columns are one pixel unit 14 when the display device 100 performs light-emitting display.

在一實施例中,當檢測到所述發光元件陣列11中不存在損壞的發光元件10且所述發光元件陣列11的所有的大子畫素13與所有的子畫素12均設置為Bayer陣列格式時,設置所述發光元件陣列11的每一個發光元件10均參與顯示圖像,且將位於相鄰兩行與相鄰兩列的四個子畫素12設置為所述顯示裝置100進行發光顯示的一個畫素單元14,該畫素單元14由兩個發射綠光的子畫素12G、一個發射藍光的子畫素12B與一個發射紅光的子畫素12R;如圖5所示。在此實施例中,由上述第一小單元C1或上述第二 小單元C2為所述顯示裝置100進行發光顯示的一個畫素單元14,即所述顯示裝置100由上述第一小單元C1和上述第二小單元C2組成的Bayer陣列格式進行全彩顯示。在此實施例中,在該畫素單元14中,兩個發射綠光的子畫素12G成對角分佈或不成對角分佈。 In an embodiment, when it is detected that there is no damaged light-emitting element 10 in the light-emitting element array 11 and all the large sub-pixels 13 and all the sub-pixels 12 of the light-emitting element array 11 are set as a Bayer array In the format, each light-emitting element 10 of the light-emitting element array 11 is set to participate in displaying an image, and four sub-pixels 12 located in two adjacent rows and two adjacent columns are set as the display device 100 for light-emitting display A pixel unit 14 of the pixel unit 14 consists of two sub-pixels 12G that emit green light, one sub-pixel 12B that emits blue light, and one sub-pixel 12R that emits red light; as shown in FIG. 5. In this embodiment, the above-mentioned first small cell C1 or the above-mentioned second The small cell C2 is a pixel unit 14 for the display device 100 to perform luminous display, that is, the display device 100 performs full-color display in a Bayer array format composed of the first small cell C1 and the second small cell C2. In this embodiment, in the pixel unit 14, two sub-pixels 12G emitting green light are distributed diagonally or not.

在其他實施例中,當所有的大子畫素13與所有的子畫素12均設置為非Bayer陣列的全彩陣列且檢測到所述發光元件陣列11中不存在損壞的發光元件10時,將分佈在相鄰兩行和兩列的四個子畫素12為所述顯示裝置進行發光顯示時的一個畫素單元14。在此些實施例中,該畫素單元14由兩個發射紅光的子畫素12R、一個發射綠光的子畫素12G與一個發射藍光的子畫素12B形成;或者由兩個發射藍光的子畫素12B、一個發射綠光的子畫素12G與一個發射紅光的子畫素12R形成;或者由發光顏色均不相同的四個子畫素12形成。 In other embodiments, when all the large sub-pixels 13 and all the sub-pixels 12 are set as full-color arrays other than the Bayer array and it is detected that there is no damaged light-emitting element 10 in the light-emitting element array 11, The four sub-pixels 12 distributed in two adjacent rows and two columns are one pixel unit 14 when the display device performs light-emitting display. In these embodiments, the pixel unit 14 is formed by two sub-pixels 12R that emit red light, one sub-pixel 12G that emits green light, and one sub-pixel 12B that emits blue light; or two sub-pixels 12B that emit blue light. A sub-pixel 12B that emits green light, a sub-pixel 12G that emits green light, and a sub-pixel 12R that emits red light are formed of four sub-pixels 12 that all emit different colors.

在步驟S4中,當檢測到所述發光元件陣列11存在損壞的發光元件10時,配置所述顯示裝置100的解析度為所述調整解析度的步驟包括:統計每一個大子畫素13中損壞的發光元件的個數,將所有大子畫素13中損壞的發光元件10的個數的最大值記為M,且所述調整解析度為最大解析度的1/4,所述M大於0且小於4。因為每一個大子畫素13中的子畫素12的個數為4,為每一個大子畫素13均能夠正常的顯示,則每一個大子畫素13能容忍損壞的最多的壞點個數為3,所以M小於4。在本實施例中,當檢測到所述發光元件陣列11中存在損壞的發光元件10且所有大子畫素的發光元件的發光顏色均設置為相同(即所述顯示裝置100為單色顯示時)時,設置一個大子畫素13為所述顯示裝置進行發光顯示時的一個畫素單元14,如圖6所示。在本實施例中,當檢測到所述發光元件陣列11中存在損壞的發光元件10且所有的大子畫素13與所有的子畫素12均設置為全彩陣列時, 將分佈在相鄰兩行和兩列的四個大子畫素13為所述顯示裝置100進行發光顯示時的一個畫素單元14。 In step S4, when it is detected that there is a damaged light-emitting element 10 in the light-emitting element array 11, the step of configuring the resolution of the display device 100 as the adjusting resolution includes: counting each large sub-pixel 13 The number of damaged light-emitting elements, the maximum value of the number of damaged light-emitting elements 10 in all large sub-pixels 13 is recorded as M, and the adjustment resolution is 1/4 of the maximum resolution, and the M is greater than 0 and less than 4. Because the number of sub-pixels 12 in each large sub-pixel 13 is 4, each large sub-pixel 13 can be displayed normally, then each large sub-pixel 13 can tolerate the most damaged pixels. The number is 3, so M is less than 4. In this embodiment, when it is detected that there is a damaged light-emitting element 10 in the light-emitting element array 11 and the light-emitting colors of the light-emitting elements of all large sub-pixels are set to be the same (that is, when the display device 100 has a monochrome display, ), a large sub-pixel 13 is set as a pixel unit 14 when the display device performs light-emitting display, as shown in FIG. 6. In this embodiment, when it is detected that there is a damaged light-emitting element 10 in the light-emitting element array 11 and all the large sub-pixels 13 and all the sub-pixels 12 are set as a full-color array, Four large sub-pixels 13 distributed in two adjacent rows and two columns are one pixel unit 14 when the display device 100 performs light-emitting display.

在本實施例中,當檢測到所述發光元件陣列11中存在損壞的發光元件10時,每一個大子畫素13均以組成該大子畫素13的四個發光元件中的N個沒有損壞的發光元件進行發光顯示,其中N=4-M。即在所述發光元件陣列11存在損壞的發光元件時,所有的大子畫素13中進行發光的發光元件10的個數相同,如此,所有畫素單元14均以相同個數的發光元件10進行發光顯示,從而保證所述發光元件陣列11的發光顯示時的整體的發光的均勻性。 In this embodiment, when it is detected that there is a damaged light-emitting element 10 in the light-emitting element array 11, each large sub-pixel 13 has N of the four light-emitting elements that make up the large sub-pixel 13. The damaged light-emitting element performs light-emitting display, where N=4-M. That is, when there are damaged light-emitting elements in the light-emitting element array 11, the number of light-emitting elements 10 that emit light in all the large sub-pixels 13 is the same. Thus, all the pixel units 14 have the same number of light-emitting elements 10 The light-emitting display is performed to ensure the uniformity of the overall light emission during the light-emitting display of the light-emitting element array 11.

在一實施例中,當檢測到所述發光元件陣列11中存在損壞的發光元件10時且所有的大子畫素13與所有的子畫素12均設置為Bayer陣列格式時,將分佈在相鄰兩行和兩列中的四個大子畫素13設置為所述顯示裝置100在進行發光顯示時的一個畫素單元14,如圖7所示。在此實施例中,該畫素單元14由兩個發射綠光的大子畫素13G、一個發射紅光的大子畫素13R以及一個發射藍光的大子畫素13B形成,所述顯示裝置100以該畫素單元14組成的Bayer陣列格式進行全彩顯示,即所述顯示裝置100以所述大單元C3組成的Bayer陣列格式進行全彩顯示。在該畫素單元14中,兩個發射綠光的大子畫素13G成對角分佈或不成對角分佈。在其他實施例中,當檢測到所述發光元件陣列11中存在損壞的發光元件10時且所有的大子畫素13與所有的子畫素12均設置為非Bayer陣列的全彩陣列時,作為顯示裝置100的一個畫素單元14可由兩個發射紅光的大子畫素13R、一個發射綠光的大子畫素13G以及一個發射藍光的大子畫素13B形成;或者由兩個發射藍光的大子畫素13B、一個發射綠光的大子畫素13G以及一個發射紅光的大子畫素13R形成;或者由四個發光顏色均不相同的大子畫素13形成。 In an embodiment, when it is detected that there is a damaged light-emitting element 10 in the light-emitting element array 11 and all the large sub-pixels 13 and all the sub-pixels 12 are set to the Bayer array format, the distribution will be The four large sub-pixels 13 in two adjacent rows and two columns are set as a pixel unit 14 when the display device 100 performs light-emitting display, as shown in FIG. 7. In this embodiment, the pixel unit 14 is formed by two large sub-pixels 13G that emit green light, one large sub-pixel 13R that emits red light, and one large sub-pixel 13B that emits blue light. The display device 100 performs full-color display in the Bayer array format formed by the pixel units 14, that is, the display device 100 performs full-color display in the Bayer array format formed by the large unit C3. In the pixel unit 14, two large sub-pixels 13G emitting green light are distributed diagonally or not. In other embodiments, when it is detected that there is a damaged light-emitting element 10 in the light-emitting element array 11 and all the large sub-pixels 13 and all the sub-pixels 12 are set as full-color arrays other than the Bayer array, One pixel unit 14 as the display device 100 can be formed by two large sub-pixels 13R that emit red light, one large sub-pixel 13G that emits green light, and one large sub-pixel 13B that emits blue light; or two large sub-pixels 13B that emit blue light. A large sub-pixel 13B of blue light, a large sub-pixel 13G that emits green light, and a large sub-pixel 13R that emits red light are formed; or it is formed of four large sub-pixels 13 that all emit different colors.

綜上所述,本發明實施例中顯示裝置製造方法以最大解析度形式和調整解析度的形式進行發光顯示,從而可以提供具有不同解析度的產品。當所述發光元件陣列11中存在損壞的發光元件10時,配置包含所述發光元件陣列11的顯示裝置100的解析度為調整解析度,雖然此時所述顯示裝置100的解析度小於最大解析度,但是可以使得包含損壞的發光元件10的顯示裝置100以降規格形式進行銷售,借此提升了整體製造良率。並且,相對習知技術,當所述顯示裝置100中的發光元件陣列11存在損壞的發光元件10,所述發光元件陣列11在無需對損壞的發光元件10進行修復和啟用備用發光元件情況下也能進行正常的顯示,從而本發明的顯示裝置的製造方法減少了發光元件10修復過程的時耗和節省採用備用發光元件時的成本。 In summary, the manufacturing method of the display device in the embodiment of the present invention performs luminous display in the form of maximum resolution and the form of adjusting the resolution, so that products with different resolutions can be provided. When there is a damaged light-emitting element 10 in the light-emitting element array 11, the resolution of the display device 100 configured to include the light-emitting element array 11 is the adjustment resolution, although the resolution of the display device 100 at this time is less than the maximum resolution. However, the display device 100 containing the damaged light-emitting element 10 can be sold in a reduced specification form, thereby increasing the overall manufacturing yield. Moreover, compared with the prior art, when the light-emitting element array 11 in the display device 100 has a damaged light-emitting element 10, the light-emitting element array 11 does not need to repair the damaged light-emitting element 10 and activate the spare light-emitting element. Normal display can be performed, so that the manufacturing method of the display device of the present invention reduces the time consumption of the repair process of the light-emitting element 10 and saves the cost when using spare light-emitting elements.

以上實施例僅用以說明本發明的技術方案而非限制,圖示中出現的上、下、左及右方向僅為了方便理解,儘管參照較佳實施例對本發明進行了詳細說明,本領域的普通技術人員應當理解,可以對本發明的技術方案進行修改或等同替換,而不脫離本發明技術方案的精神和範圍。 The above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. The up, down, left, and right directions shown in the figures are only for ease of understanding. Although the present invention has been described in detail with reference to the preferred embodiments, those in the art A person of ordinary skill should understand that the technical solution of the present invention can be modified or equivalently replaced without departing from the spirit and scope of the technical solution of the present invention.

Claims (10)

一種顯示裝置的製造方法,包括:在定義有複數子畫素的基板上形成包括複數發光元件的發光元件陣列,每一個子畫素中包括一個所述發光元件,每四個子畫素構成一個大子畫素,每一個大子畫素的四個子畫素位於相鄰兩行和相鄰兩列,設置同一大子畫素的四個發光元件的發光顏色相同;檢測所述發光元件陣列中每一個發光元件是否損壞並記載損壞的發光元件在所述發光元件陣列上的位置;以及當檢測到所述發光元件陣列中不存在損壞的發光元件時,配置所述顯示裝置的解析度為最大解析度;當檢測到所述發光元件陣列中存在損壞的發光元件時,配置所述顯示裝置的解析度為調整解析度,所述調整解析度小於所述最大解析度。 A method for manufacturing a display device includes: forming a light-emitting element array including a plurality of light-emitting elements on a substrate defined with a plurality of sub-pixels, each sub-pixel includes one light-emitting element, and every four sub-pixels constitute a large Sub-pixels, the four sub-pixels of each large sub-pixel are located in two adjacent rows and two adjacent columns, and the four light-emitting elements of the same large sub-pixel have the same light-emitting color; detecting each of the light-emitting element arrays Whether a light-emitting element is damaged and record the position of the damaged light-emitting element on the light-emitting element array; and when it is detected that there is no damaged light-emitting element in the light-emitting element array, the resolution of configuring the display device is the maximum resolution Degree; when it is detected that there is a damaged light-emitting element in the light-emitting element array, the resolution of the display device is configured as an adjustment resolution, and the adjustment resolution is less than the maximum resolution. 如請求項1所述的顯示裝置的製造方法,其中,當檢測到所述發光元件陣列中不存在損壞的發光元件且所有大子畫素的發光元件的發光顏色均設置為相同時,設置所述發光元件陣列的每一個發光元件均參與顯示圖像且以一個子畫素為所述顯示裝置進行發光顯示時的一個畫素單元。 The method for manufacturing a display device according to claim 1, wherein when it is detected that there is no damaged light-emitting element in the light-emitting element array and the light-emitting colors of the light-emitting elements of all large sub-pixels are set to be the same, the set Each light-emitting element of the light-emitting element array participates in displaying an image, and a sub-pixel is used as a pixel unit when the display device performs light-emitting display. 如請求項1所述的顯示裝置的製造方法,其中,當檢測到所述發光元件陣列中不存在損壞的發光元件且所述發光元件陣列的所有的大子畫素和所有的子畫素均設置為全彩陣列時,設置所述發光元件陣列的每一個發光元件均參與顯示圖像,且將位於相鄰兩行與相鄰兩列中四個子畫素設置為所述顯示裝置進行發光顯示的一個畫素單元。 The method for manufacturing a display device according to claim 1, wherein when it is detected that there is no damaged light-emitting element in the light-emitting element array and all the large sub-pixels and all the sub-pixels of the light-emitting element array are When it is set as a full-color array, each light-emitting element of the light-emitting element array is arranged to participate in displaying an image, and four sub-pixels located in two adjacent rows and two adjacent columns are set as the display device for light-emitting display One pixel unit of. 如請求項3所述的顯示裝置的製造方法,其中,所述畫素單元由兩個發射綠光的子畫素、一個發射藍光的子畫素與一個發射紅光的子畫素形成;或者由兩個發射紅光的子畫素、一個發射綠光的子畫素與一個發射藍光的子畫 素形成;或者由兩個發射藍光的子畫素、一個發射綠光的子畫素與一個發射紅光的子畫素形成;或者由發光顏色均不相同的四個子畫素形成。 The method for manufacturing a display device according to claim 3, wherein the pixel unit is formed by two sub-pixels emitting green light, one sub-pixel emitting blue light, and one sub-pixel emitting red light; or It consists of two sub-pixels emitting red light, one sub-pixel emitting green light, and one sub-pixel emitting blue light. It is formed by two sub-pixels that emit blue light, one sub-pixel that emits green light, and one sub-pixel that emits red light; or it is formed by four sub-pixels that emit different colors. 如請求項1所述的顯示裝置的製造方法,其中,當檢測到所述發光元件陣列存在損壞的發光元件時,配置所述顯示裝置的解析度為所述調整解析度的步驟包括:統計每一個所述大子畫素中損壞的發光元件的個數,將所有大子畫素中損壞的發光元件的個數的最大值記為M,且所述調整解析度為最大解析度的1/4,所述M大於0且小於4。 The method for manufacturing a display device according to claim 1, wherein when a damaged light-emitting element is detected in the light-emitting element array, the step of configuring the resolution of the display device as the adjusting resolution includes: counting For the number of damaged light-emitting elements in one large sub-pixel, the maximum value of the number of damaged light-emitting elements in all large sub-pixels is recorded as M, and the adjustment resolution is 1/of the maximum resolution. 4. The M is greater than 0 and less than 4. 如請求項5所述的顯示裝置的製造方法,其中,每一個大子畫素均以組成該大子畫素的四個發光元件中的N個沒有損壞的發光元件進行發光顯示,其中N=4-M。 The method of manufacturing a display device according to claim 5, wherein each large sub-pixel uses N undamaged light-emitting elements among the four light-emitting elements constituting the large sub-pixel to perform light-emitting display, where N= 4-M. 如請求項5所述的顯示裝置的製造方法,其中,當檢測到所述發光元件陣列中存在損壞的發光元件且所述發光元件陣列的所有大子畫素的發光元件的發光顏色均設置為相同時,設置一個大子畫素為所述顯示裝置進行發光顯示時的一個畫素單元。 The method for manufacturing a display device according to claim 5, wherein when it is detected that there is a damaged light-emitting element in the light-emitting element array and the light-emitting colors of all the light-emitting elements of the large sub-pixels of the light-emitting element array are set to At the same time, one large sub-pixel is set as a pixel unit when the display device performs light-emitting display. 如請求項5所述的顯示裝置的製造方法,其中,當所有的大子畫素與所有的子畫素均設置為全彩陣列且檢測到所述發光元件陣列中存在損壞的發光元件時,將分佈在相鄰兩行和兩列的四個大子畫素為所述顯示裝置進行發光顯示時的一個畫素單元。 The method for manufacturing a display device according to claim 5, wherein when all the large sub-pixels and all the sub-pixels are set in a full-color array and it is detected that there is a damaged light-emitting element in the light-emitting element array, Four large sub-pixels distributed in two adjacent rows and two columns are used as a pixel unit when the display device performs light-emitting display. 如請求項5所述的顯示裝置的製造方法,其中,所述畫素單元為由兩個發射綠光的大子畫素、一個發射藍光的大子畫素與一個發射紅光的大子畫素形成;或者由兩個發射紅光的子畫素、一個發射綠光的子畫素與一個發射藍光的子畫素形成;或者由兩個發射藍光的子畫素、一個發射綠光的子畫素與一個發射紅光的子畫素形成;或者由發光顏色均不相同的四個大子畫素形成。 The method for manufacturing a display device according to claim 5, wherein the pixel unit is composed of two large sub-pixels that emit green light, one large sub-pixel that emits blue light, and one large sub-pixel that emits red light. It is formed by two sub-pixels emitting red light, one sub-pixel emitting green light, and one sub-pixel emitting blue light; or two sub-pixels emitting blue light and one sub-pixel emitting green light. The pixel is formed by one sub-pixel that emits red light; or is formed by four large sub-pixels that all emit different colors. 如請求項3或8所述的顯示裝置的製造方法,其中,由位於相鄰兩行和相鄰兩列中的兩個成第一對角線分佈的發射綠光的子畫素、一個發射紅光的子畫素以及一個發射藍光的子畫素形成一個第一小單元,由位於相鄰兩行和相鄰兩列中的兩個成第二對角線分佈的發射綠光的子畫素、一個發射紅光的子畫素以及一個發射藍光的子畫素形成一個第二小單元,所述第一對角線與所述第二對角線相交,該第一小單元與該第二小單元迴圈交替地分佈於X方向與Y方向上;由位於相鄰兩行和相鄰兩列中的兩個成第三對角線分佈的發射綠光的大子畫素、一個發射紅光的大子畫素以及一個發射藍光的大子畫素形成一個大單元,所述第三對角線與所述第一對角線平行;所述大單元重複地分佈於在X方向與Y方向;從而所有子畫素與所有大子畫素同時形成Bayer陣列格式。 The method for manufacturing a display device according to claim 3 or 8, wherein two sub-pixels that emit green light in a first diagonal distribution are formed in two adjacent rows and two adjacent columns, and one emits The sub-pixel of red light and a sub-pixel that emits blue light form a first small unit, and two sub-pixels that emit green light in a second diagonal distribution are located in two adjacent rows and two adjacent columns. Pixel, a sub-pixel emitting red light, and a sub-pixel emitting blue light form a second small unit, the first diagonal intersects the second diagonal, the first small unit and the second The two small unit loops are alternately distributed in the X direction and the Y direction; two large sub-pixels that emit green light and one emits green light in the third diagonal distribution in two adjacent rows and two adjacent columns. A large sub-pixel of red light and a large sub-pixel that emits blue light form a large unit, and the third diagonal is parallel to the first diagonal; the large units are repeatedly distributed in the X direction and Y direction; thus all sub-pixels and all large sub-pixels form a Bayer array format at the same time.
TW109145145A 2020-12-18 2020-12-18 Method for manufacturing display device TWI748811B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109145145A TWI748811B (en) 2020-12-18 2020-12-18 Method for manufacturing display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109145145A TWI748811B (en) 2020-12-18 2020-12-18 Method for manufacturing display device

Publications (2)

Publication Number Publication Date
TWI748811B true TWI748811B (en) 2021-12-01
TW202226569A TW202226569A (en) 2022-07-01

Family

ID=80681028

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109145145A TWI748811B (en) 2020-12-18 2020-12-18 Method for manufacturing display device

Country Status (1)

Country Link
TW (1) TWI748811B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7592970B2 (en) * 1998-02-17 2009-09-22 Dennis Lee Matthies Tiled electronic display structure
TW201721618A (en) * 2015-12-04 2017-06-16 財團法人工業技術研究院 Display pixel and display panel
US10038171B2 (en) * 2014-02-28 2018-07-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device and method for manufacturing electronic device
TW202006660A (en) * 2009-04-08 2020-02-01 日商半導體能源研究所股份有限公司 Method for driving semiconductor device
TW202044537A (en) * 2019-05-28 2020-12-01 友達光電股份有限公司 Self-emissive element and manufacturing method of light emitting apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7592970B2 (en) * 1998-02-17 2009-09-22 Dennis Lee Matthies Tiled electronic display structure
TW202006660A (en) * 2009-04-08 2020-02-01 日商半導體能源研究所股份有限公司 Method for driving semiconductor device
US10038171B2 (en) * 2014-02-28 2018-07-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device and method for manufacturing electronic device
TW201721618A (en) * 2015-12-04 2017-06-16 財團法人工業技術研究院 Display pixel and display panel
TW202044537A (en) * 2019-05-28 2020-12-01 友達光電股份有限公司 Self-emissive element and manufacturing method of light emitting apparatus

Also Published As

Publication number Publication date
TW202226569A (en) 2022-07-01

Similar Documents

Publication Publication Date Title
CN107452778B (en) Display substrate, display device, display method of display device and mask plate
JP5346060B2 (en) Pixel array structure of organic light emitting display
TWI616116B (en) Display and repair method thereof
WO2016050018A1 (en) Pixel structure and display method therefor, and display apparatus
WO2021057095A1 (en) Transparent display substrate, transparent display panel, and display device
US20220367757A1 (en) Display device using micro-leds and method for manufacturing same
KR20160148686A (en) Pixel structure and displaying method thereof, and related display apparatus
JP2003248461A (en) Image display device and method of manufacturing the same
US11711958B2 (en) Display panel and display device
TW201505170A (en) Display device
WO2022111116A1 (en) Display substrate and display device
KR20120062743A (en) Optically testing chiplets in display device
TWI709126B (en) Display apparatus
JP7138286B2 (en) Image display device and image display device manufacturing method
WO2019153939A1 (en) Pixel arrangement structure, display substrate, display apparatus, and mask plate
WO2022111115A1 (en) Display substrate and display device
CN109148545B (en) Display panel and display device
CN115548199A (en) Chip mass transfer method and display device
TWI667780B (en) Display panel
WO2020001214A1 (en) Pixel display module and mask plate for making same
TWI748811B (en) Method for manufacturing display device
US20240063330A1 (en) Micro led display device
US20240040829A1 (en) Display panel and display apparatus
US20220344312A1 (en) Led module, led source substrate, display panel, and display apparatus
US20220198972A1 (en) Method of making display device