TWI747161B - 尋呼指示和無線電資源管理測量之增強方法 - Google Patents

尋呼指示和無線電資源管理測量之增強方法 Download PDF

Info

Publication number
TWI747161B
TWI747161B TW109104478A TW109104478A TWI747161B TW I747161 B TWI747161 B TW I747161B TW 109104478 A TW109104478 A TW 109104478A TW 109104478 A TW109104478 A TW 109104478A TW I747161 B TWI747161 B TW I747161B
Authority
TW
Taiwan
Prior art keywords
radio resource
resource management
cycle period
ssb
management measurement
Prior art date
Application number
TW109104478A
Other languages
English (en)
Other versions
TW202033013A (zh
Inventor
謝其軒
吳威德
劉用翔
Original Assignee
聯發科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯發科技股份有限公司 filed Critical 聯發科技股份有限公司
Publication of TW202033013A publication Critical patent/TW202033013A/zh
Application granted granted Critical
Publication of TWI747161B publication Critical patent/TWI747161B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

在一個方面,使用者設備(UE)以等於UE之不連續接收(DRX)循環週期之第一循環週期對下行鏈路訊號執行無線電資源管理(RRM)測量。當UE檢測到主小區之訊號品質測量結果大於在UE之所有相鄰小區當中具有最佳訊號品質之相鄰小區之訊號品質測量結果和正偏移之總和時,延長RRM測量循環週期。在另一方面,UE對尋呼指示進行解多工,該尋呼指示在時間上先於同步訊號塊(SSB),並且是使用與用於生成SSB中之輔同步訊號(SSS)相同之序列生成公式來生成的。UE從經解多工之尋呼指示檢測到該UE被尋呼用於消息接收,並在UE之DRX循環之下一資料接收週期中喚醒以接收該消息。

Description

尋呼指示和無線電資源管理測量之增強方法
本發明之實施方式係有關於無線通訊;更具體地,涉及使用者設備(User Equipment,UE)用於接收尋呼指示並執行無線電資源管理(Radio Resource Management,RRM)測量之節能(power saving)方案。
第五代新無線電(the Fifth Generation New Radio,5G NR)是行動寬頻通訊之電信標準。第三代合作夥伴計劃(the 3rd Generation Partnership Project,3GPP)頒佈了5G NR,以顯著改進性能指標(諸如,時延、可靠性、吞吐量等)。
5G NR網路中之UE週期性地測量接收訊號之品質(諸如,參考訊號接收功率(Reference Signal Received Power,RSRP)或參考訊號接收品質(Reference Signal Received Quality。RSRQ))。被稱為無線電資源管理(RRM)測量之這些測量可以被報告回基地台以用於資源管理。RRM使得無線網路能夠有效地利用其有限的射頻資源。RRM測量可以用於管理有限的射頻資源,以增強無線連接和行動操作(諸如,切換)之性能。基於RRM測量,基地台配置諸如發送功率、使用者分配、波束成形、資料速率、切換標準、調製方案、錯誤 編碼方案等參數。然而,執行RRM測量會消耗UE電能。
此外,UE監測下行鏈路通道之尋呼訊號。尋呼訊號向UE指示去往該UE之消息在網路上待處理(pending)。空閒模式之UE可以週期性地喚醒以接收尋呼訊號。監測尋呼訊號也消耗UE電能。
運營無線網路之共同目標是實現高效節能之通訊性能。對於需要節約電池電量之電池供電之UE,能源效率特別值得關注。因此,需要降低UE之功耗(power consumption)。
在一個實施方式中,無線網路中之UE執行之用於RRM測量之方法。依據該方法,UE以等於該UE之不連續接收(Discontinuous Reception,DRX)循環週期之第一循環週期來對下行鏈路訊號執行RRM測量。從基地台週期性地廣播下行鏈路訊號。UE檢測一個指示,該指示表示主小區之訊號品質測量結果大於UE之所有相鄰小區當中具有最佳訊號品質之最佳相鄰小區之訊號品質測量結果和正偏移之總和。響應於該指示,UE以比第一循環週期長之第二循環週期來執行RRM測量。
在另一實施方式中,無線網路中之UE執行一種方法。依據該方法,UE對從基地台廣播到該UE之主小區之尋呼指示進行解多工。該尋呼指示在時間上先於同步訊號塊(Synchronization Signal Block,SSB),並且是使用與用於生成SSB中之輔同步訊號(Secondary Synchronization Signal,SSS)相同之序列生成公式來生成的。UE從經解多工之尋呼指示檢測到UE被尋呼用於消息接收。響應於該檢測,UE在該UE之DRX循環之下一資料接收週期中從睡眠狀態喚醒以從基地台接收該消息。
透過結合附圖閱讀以下特定實施方式之描述後,本發明之其他方 面和特徵對於本技術領域之習知技藝者將變得顯而易見。
100:網路
110:網路控制器
120、120a、120b、120c:BS
130a、130b、130c:小區
150、150a、150b、150c、150d、900:UE
180:回程
240:SSB
250:PSS
260:SSS
270:PBCH
280:尋呼指示
400、500、700、800:方法
410、420、430、440、450、460、470、480、510、520、530、535、540、550、560、570、580、710、720、730、810、820、830:步驟
610:多工尋呼指示
910:天線
920:收發器
930:處理器
940:記憶體
本發明透過示例之方式進行描述,但示例並非限制,在附圖之圖式中,相同參考指示相似之元件。應當注意的是,對於本發明中之「一」或者「一個」實施方式之不同參考對於同一實施方式並不是必要的,並且該等參考意味著至少一個。此外,當描述與實施方式相關之特定特徵、結構或者特性時,應當主張的是,無論是否明確描述,結合其他實施方式實現這些特徵、結構或者特性,係在本技術領域之習知技藝者之認知範圍內的。
第1圖係例示了可以實踐本發明之實施方式之網路之圖。
第2圖係例示了依據一個實施方式之UE與基地台之間之資訊交換之示意圖。
第3圖係例示了依據一個實施方式之用於RRM測量之節能方案之圖。
第4圖係例示了依據一個實施方式之用於確定RRM測量循環週期之方法流程圖。
第5圖係例示了依據另一實施方式之用於確定RRM測量循環週期之方法流程圖。
第6圖係例示了依據另一實施方式之用於確定RRM測量循環週期之方法流程圖。
第7圖例示了依據一個實施方式之由無線網路中之UE執行之RRM測量之方法。
第8圖例示了依據一個實施方式之由無線網路中之UE執行之用於接收尋呼指示之方法。
第9圖係例示了依據一個實施方式之UE之元件之框圖。
在下文描述中,闡述了許多具體細節。然而,應當理解的是,可以在沒有這些具體細節之情況下實施本發明之實施方式。在其他情況下,沒有詳細地示出公知電路、結構和技術,以免模糊對本說明書之理解。然而,本技術領域之習知技藝者應當理解,可以在沒有這些具體細節之情況下實施本發明。透過所包含之描述,本技術領域之習知技藝者不需要過多實驗就能夠實施合適之功能。
本文公開了UE基於同步訊號塊(SSB)執行RRM測量之節能方案。UE週期性地執行RRM測量以確定接收訊號功率和/或接收訊號品質。當滿足預定條件時,可以放寬RRM測量循環週期以節電。具體地,當滿足預定條件時,RRM測量之循環週期延長。延長循環週期可以減少由RRM測量引起之開銷,從而節省UE電能。當不再滿足預定條件時,可以將RRM測量之循環週期恢復到原始值。RRM測量可能包括以下中之一個或更多個之測量:參考訊號接收功率(RSRP)、參考訊號接收品質(RSRQ)以及訊號干擾雜訊比(Signal to interference and noise ratio,SINR)。
本文進一步公開了使用多工控制訊號來尋呼複數個UE之尋呼方案。這些控制訊號在下文中被稱為尋呼指示訊號或尋呼指示。基地台可以使用與用於生成SSB中之輔同步訊號(SSS)相同之序列生成公式來生成尋呼指示訊號,並且指定用於尋呼各尋呼組之各個尋呼指示訊號。尋呼組包括一個或更多個UE。基地台可以向複數個尋呼組廣播多工尋呼指示訊號。網路配置UE在預定之時刻和頻率處接收它們相應之尋呼指示訊號。當UE接收到指示網路具有針對UE待處理消息之尋呼指示訊號時,該尋呼指示訊號向該UE指示其基地台將在UE之下一排程接收時機中發送該消息。
依據本文描述之實施方式,UE依據基於5G NR、與5G NR兼容或5G NR之擴展之標準在無線網路中工作。UE可以對來自基地台(在5G網路 中稱為gNodeB或gNB)之下行鏈路傳輸執行所公開之RRM測量。此外,所公開之尋呼指示訊號可以由UE在下行鏈路傳輸上接收。在一些示例中,下行鏈路傳輸可以包括下行鏈路控制資訊、參考訊號、同步訊號等傳輸。下行鏈路訊號可以透過複數個子載波(例如,不同頻率之波形訊號)依據多種無線電技術進行調製。
第1圖係例示了可以實踐本發明之實施方式之網路100之圖。網路100是可以為5G NR網路之無線網路。為了簡化討論,在5G NR網路之背景內描述該方法和裝置。然而,本技術領域之習知技藝者將理解,本文所描述之方法和裝置適用於多種其它多重存取技術和採用這些技術之電信標準。
第1圖中所示之元件之數量和佈置僅作為示例提供。實際上,網路100可以包括與第1圖中示出之那些設備相比附加之設備、更少之設備、不同之設備或者以不同方式佈置之設備。
參照第1圖,網路100可以包括複數個基地台(base station,BS),諸如,統稱為BS 120之BS 120a、BS 120b和BS 120c。在諸如5G NR網路之一些網路環境中,BS可以被稱為gNodeB、gNB等。在另選之網路環境中,BS可以被稱為其它名稱。各個BS 120為稱為小區(諸如,統稱為小區130之小區130a、小區130b或小區130c)之特定地理區域服務(即,提供通訊覆蓋)。小區大小之半徑範圍可以從幾公里到幾米變化。向UE提供無線服務之小區是UE之主小區(primary cell,PCell)。例如,小區130a是UE 150a之PCell。
BS可以經由回程180直接或間接地與一個或更多個其它BS或網路實體進行通訊,回程180可以是無線的或有線的。網路控制器110可以聯接到一組BS,諸如BS 120,以協調、配置和控制這些BS 120。網路控制器110可以經由回程(例如,回程180)與BS 120進行通訊。
網路100還包括複數個使用者設備(UE)終端,諸如,統稱為 UE 150之UE 150a、UE 150b、UE 150c和UE 150d。UE 150可以在網路100中之任何地方,並且各個UE 150可以是固定的或行動的。UE 150還可以被稱為其它名稱,諸如,行動站、訂戶單元等。UE 150中之一些可以被實現成車輛之一部分。UE 150之示例可以包括蜂巢電話(例如,智慧手機)、無線通訊設備、手持設備、筆記型電腦、無繩電話、平板電腦、遊戲設備、可穿戴設備、娛樂設備、傳感器、資訊娛樂設備、物聯網(Internet-of-Things,IoT)設備或可以經由無線介質進行通訊之任何設備。
在一個實施方式中,UE 150可以在它們相應之小區130中與它們相應之BS 120通訊。從UE到BS之傳輸稱為上行鏈路傳輸,而從BS到UE之傳輸稱為下行鏈路傳輸。
第2圖係例示了依據一個實施方式之UE 150與BS 120之間之資訊交換之示意圖。UE 150和BS 120可以分別是結合第1圖描述之UE和BS中之任何一者。UE 150被配置成週期性地執行RRM測量。UE 150還被配置成週期性地監測尋呼通道。在一個實施方式中,UE 150可以使用來自BS 120之SSB 240之序列和尋呼指示280之序列來執行RRM測量。BS 120週期性地向BS 120服務之小區廣播SSB 240;也就是說,SSB 240是小區特定的。各個SSB 240將系統資訊承載到由小區ID標識之小區中之UE。UE可以透過對接收到之SSB 240中之小區ID進行解碼來找出它們位於哪個小區中。在另選之實施方式中,UE 150可以基於從BS 120發送之其它訊號來執行RRM測量。
當網路具有等待一個或複數個UE接收之消息時,可以發送尋呼指示280。當網路沒有UE之待處理消息時,UE可以使用尋呼指示280來輔助RRM測量;例如,透過在各個RRM測量之前使用尋呼指示280進行自動增益控制(Automatic Gain Control,AGC)調諧。
第2圖進一步例示了各個SSB 240由主同步訊號(PSS)250、 輔同步訊號(SSS)260和實體廣播通道(Physical Broadcast Channel,PBCH)270組成。利用正交分頻多工(Orthogonal Frequency-Division Multiplexing,OFDM),PSS 250佔用符號0,PBCH 270在符號1、2、3處,以及SSS 260在符號2處。BS 120週期性地向其小區中之UE廣播SSB 240。SSB 240之週期性(即,循環週期)可以由BS配置;例如,20毫秒(ms)、40ms等。BS 120可以經由無線電資源控制(Radio Resource Control,RRC)信令向UE 120通知SSB 240之配置參數。
UE 150從PSS 250和SSS 260識別小區ID,並且從PBCH 270解碼基本系統資訊,諸如,訊框、時槽和符號定時。依據這些系統資訊,UE 150可以執行對射頻(radio frequency,RF)資源之隨機存取。時間同步(就符號級別和時槽級別而言)和頻率同步也可以經由PSS 250和SSS 260實現。在一個實施方式中,UE 150可以在SSB 240之子集上週期性地執行RRM測量,例如,依據所配置之RRM測量定時(例如,RRM測量窗口和循環週期)。
在一個實施方式中,各個RRM測量包括小區搜索處理、SSB索引(SSB index,SBI)獲取處理和RSRP測量週期。在各個RRM測量使用SSB 240之實施方式中,小區搜索處理從PSS 250和SSS 260識別小區ID,SBI可以由PBCH 270承載,並且可以從SSS 260測量RSRP(和/或RSRQ、SINR)。
在5G NR網路中,連接模式UE是與BS進行活躍資料通訊之UE。當沒有去往/來自UE之資料通訊時,UE可以進入空閒模式以節省電能。連接模式UE和空閒模式UE二者都執行週期性之RRM測量,但只有連接模式UE將測量結果報告回其對應之BS。所報告之RRM測量可以是複數個測量結果之平均值。空閒模式UE可以監測用於尋呼訊號之指定通道以接收傳入之消息。可以從BS向UE發送尋呼訊號,以指示針對UE之消息在網路上待處理。
為了進一步節電,可以在連接模式和空閒模式二者下為UE激活 不連續接收(DRX)機制。在激活DRX機制之情況下,UE可以保持在睡眠狀態(例如,透過關閉大部分電路),並且在週期性之DRX開啟(ON)持續時間中喚醒以從下行鏈路通道接收訊號。來自下行鏈路通道之訊號可以是控制和/或資料訊號。因此,在激活DRX機制之情況下,UE處之下行鏈路訊號接收是非連續之(即,以預定之時間間隔)。DRX ON持續時間之循環週期(也稱為DRX循環週期)和DRX ON持續時間窗口之長度是由網路控制之可配置參數。連接模式UE可能具有較短之DRX循環週期,而空閒模式UE可能具有較長之DRX循環週期;也就是說,空閒模式UE可以比連接模式UE保持睡眠更長時間。為了進一步降低功耗,可以將某些UE(例如,諸如IoT傳感器之低端NR設備)之空閒模式DRX循環週期配置成擴展之長度(例如,幾分鐘),使得這些UE可以在保持在網路註冊之同時進入深度睡眠。
第3圖係例示了依據一個實施方式之用於RRM測量之節能方案之圖。在該實施方式中,UE在各個測量循環週期中使用SSB叢發執行RRM測量。第3圖示出了如第2圖中之SSB 240之序列。更具體地說,SSB 240序列中之各個SSB是SSB叢發。SSB叢發包含複數個波束特定之SSB,並且各個波束特定之SSB經由一個對應之天線波束被廣播給UE。處於兩個不同波束覆蓋範圍中之兩個UE可以在同一SSB叢發中接收並測量兩個不同之波束特定之SSB。除非另外特別指出,否則下文中之術語「SSB」和「SSB叢發」是可互換的。因此,術語「SSB循環」和「SSB循環週期」分別是指SSB叢發之循環和循環週期。從第3圖中注意到,DRX循環可能不與SSB循環對準。在一些實施方式中,DRX循環週期長於SSB循環週期。即,即使在UE處於DRX ON持續時間之外時,UE也可能需要週期性地接收和解碼SSB。因此,空閒模式UE不僅需要在DRX ON持續時間中為其電路上電,而且還需要接收用於RRM測量之SSB。因此,增加用於RRM測量之循環週期可以降低UE功耗。
第3圖示出了DRX循環週期為M1(毫秒)。在一個實施方式中,預設地,UE可以以等於M1之循環週期執行RRM測量。當滿足預定義之條件時,UE可以以放寬之循環週期執行RRM測量;例如,DRX循環週期之兩倍(M2)或四倍(M4)。例如,當RRM測量循環週期被設置成M1時,UE可以每M1時間段使用SSB叢發來執行RRM測量。當RRM測量循環週期被設置成M2時,UE可以每M2時間段使用SSB叢發來執行RRM測量。當RRM測量循環週期被設置成M4時,UE可以每M4時間段使用SSB叢發來執行RRM測量。依據所設置之RRM測量循環週期,UE可以每Mx時間段使用在時間上先於DRX ON持續時間並且最接近DRX ON持續時間之SSB,其中,Mx=M1、M2、M4等。在一些實施方式中,依據所設置之RRM測量循環週期,UE可以每Mx時間段使用兩個或更多個連續之SSB叢發,或者每Mx時間段使用至少一個SSB叢發和至少一個附加之訊號塊之組合來改進RRM測量,其中,Mx=M1、M2、M4等。
在一個實施方式中,UE可以評估預定之條件,然後相應地設置其RRM測量循環週期。例如,如果UE之接收訊號品質高於低門檻值,則RRM測量循環週期可以設置成DRX循環週期之兩倍。如果UE之接收訊號品質高於高門檻值,則RRM測量循環週期可以設置成DRX循環週期之四倍。透過較少地執行RRM測量,UE可以在睡眠模式中保持更長時間並且可以節能。
儘管UE可以使用SSB 240執行RRM測量,但是應當理解,UE可以使用其它下行鏈路訊號進行RRM測量。在下面參照第4圖和第5圖描述之方法中,UE可以使用不限於SSB 240之任何下行鏈路訊號來執行RRM測量。
第4圖係例示了依據一個實施方式之用於確定RRM測量循環週期之方法400之流程圖。當UE在步驟410處測量其主小區(PCell)及其各個相鄰小區(例如,NCell_1、NCell_2、…、NCell_k)之接收訊號品質時,方法 400開始。以第1圖中之UE 150a為例,UE 150a之PCell是小區130a,並且相鄰小區至少包括小區130b和130c。在步驟420處,依據在UE處接收之相應訊號品質,UE識別所有相鄰小區NCell_1、NCell_2、…、NCell_k中之最佳小區(best cell,BCell)。UE在步驟430處計算偏移,該偏移等於PCell之接收訊號品質減去BCell之接收訊號品質。在步驟440處,如果計算出之偏移大於第一偏移值(例如,Y db),則可以在步驟450處將UE之RRM測量循環週期設置成第一值(例如,M4)。在步驟460處,如果所計算出之偏移大於第二偏移值(例如,X db,其中,X<Y)並且不大於第一偏移值Y db,則可以在步驟470處將UE之RRM測量循環週期設置成第二值(例如,M2)。
作為示例,X之值可以被設置成2,並且Y之值可以被設置成4。在另選之實施方式中,可以使用X和Y之不同值,只要Y>X即可。此外,在另選之實施方式中,RRM測量循環週期可以被設置成與前述M4和M2不同之值(M4和M2分別是預設DRX循環週期M1之四倍和二倍),只要第一值(M4)大於第二值(M2),並且第二值大於M1即可。
在步驟460處,所計算出之偏移不大於第二偏移值X dB並且不大於第一偏移值Y dB,UE之RRM測量循環週期可以維持在預設值M1處,或者在步驟480處被設置成預設值M1。因此,如果在下一RRM測量循環中計算出之偏移從高於Y dB降至X dB以下,則RRM測量循環週期將從M4重置成其預設值M1。在各個隨後之RRM測量週期中重複步驟410至步驟480。
在另一實施方式中,僅在接收訊號品質在PCell之N次連續測量中一致之後,UE才可以延長DRX循環週期。當測量之變化小於K dB(例如K=0.3或其它值)時,接收訊號品質是一致的。UE可以計算PCell之N次連續測量之訊號品質之間之差值,以確定接收訊號品質在測量中是否一致。例如,如果N=2,則UE可以計算PCell之兩次連續測量之訊號品質之間之差值。因此, 依據該實施方式之一個示例,可以在PCell與BCell之間之門檻值(例如,上述X dB和Y dB)之上使用RSRP變化門檻值(例如,K dB),以保證當PCell之RSRP變化較大(例如,大於K dB)時,UE不會擴展其RRM測量循環。
第5圖係例示了依據另一實施方式之用於確定RRM測量循環週期之方法500之流程圖。方法500具有與方法400相同之步驟以及附加之步驟535。本文不再重複與方法400中之步驟相同之步驟之描述。UE在步驟530處計算出偏移(該偏移等於PCell之接收訊號品質減去BCell之接收訊號品質)之後,UE在步驟535處確定PCell之連續測量之訊號品質之間之變化(即,差值之絕對值)是否大於預定之K dB。例如,UE可以將當前循環中PCell之測量之訊號品質與緊接前一週期中PCell之測量之訊號品質進行比較。如果變化大於K dB,則UE將RRM測量循環週期重置成預設值M1,或者如果當前RRM測量循環週期為M1,則維持M1值。
UE節能之另一方法是,當網路上沒有UE待處理之消息時,在DRX ON持續時間中將UE保持在睡眠狀態。第6圖係例示了依據一個實施方式之尋呼指示之圖。使用尋呼指示用於喚醒UE在下一DRX ON持續時間接收消息。在該示例中,尋呼指示是緊接在SSB 240之序列中之SSB之前(時間上)之多工(multiplexed)尋呼指示610。BS可以使用多工尋呼指示610來同時尋呼同一小區中之複數個UE。
在一個實施方式中,BS可以緊接在SSB 240之序列中之各個SSB之前發送各個多工尋呼指示610。即,多工尋呼指示610可以由BS以與用於SSB叢發傳輸之時間間隔相等之固定時間間隔來廣播。在另選之實施方式中,BS可以以大於用於SSB叢發傳輸之時間間隔之固定時間間隔來廣播尋呼指示。例如,BS可以緊接在SSB 240之子集中之各個SSB之前發送各個多工尋呼指示610;例如,在每DRX循環週期(其中,DRX循環週期大於SSB循環週期)中 一個SSB。
在一個實施方式中,可以透過分碼多工(code-division multiplexing,CDM)同時透過多工尋呼指示610來尋呼複數個UE。例如,可以透過將SSS塊與標識符(例如,唯一地標識包括被尋呼之UE之尋呼組之代碼或擴展代碼)相乘來生成多工尋呼指示610。乘法之結果是可以用於標識尋呼組之經編碼之SSS塊。尋呼組可以包括一個或更多個UE。標識不同尋呼組之代碼彼此正交。因此,UE可以將其唯一代碼與接收到之多工尋呼指示610相乘以確定它是否被尋呼。如果UE被尋呼,則乘法結果包含SSS塊。如果UE沒有被尋呼,則乘法結果是類似雜訊之訊號,並且不能被UE解碼。
第6圖示出了多工尋呼指示610之序列,各個多工尋呼指示610由對應之SSB 240之前之陰影塊表示。多工尋呼指示610和SSB 240可以不按時間長度和頻率範圍按比例繪製。在使用CDM之實施方式中,透過多工使用相應尋呼組標識符編碼之SSS塊來生成多工尋呼指示610。如本文所使用的,SSS塊是位於為SSB排程之頻率和時間資源之外之「獨立」SSS。即,SSS塊不佔用為SSB排程之相同之頻率和時間資源。使用與用於生成SSB內部之SSS 260(第2圖)相同之序列生成公式來生成SSS塊。用於生成127個值之SSS序列(其中,各個值是1或-1)之序列生成公式在本領域中是已知的。序列生成公式使用cell_ID作為輸入變量,以生成SSS序列中1和-1之不同組合。SSS塊之cell_ID和SSB內之SSS 260可以是或可以不是相同的。在一個實施方式中,各個SSS塊對應於時域中之一個OFDM符號和頻域中之127個子載波。各個子載波可以承載1或-1之值。利用CDM,可以透過不同之擴展代碼來區分不同之尋呼組。各個擴展代碼可以包括127個1或-1之值之一個組合。透過對所接收之尋呼指示(即,將所接收之尋呼指示與擴展代碼相乘)進行解擴(dispread),UE可以獲得127個值之另一序列,UE可以從該另一序列確定其尋呼組是否被尋呼。
儘管第6圖示出了多工尋呼指示610位於與SSB 240相同之頻率中,但是在一些實施方式中,多工尋呼指示610可以位於SSB 240之頻率範圍之外。此外,儘管第6圖示出了各個多工尋呼指示610佔用緊接在對應之SSB之前之符號時間,但是在一些實施方式中,各個多工尋呼指示610可以佔用在對應之SSB 240之前但不緊接在其之前之符號時間。
在另選之實施方式中,可以透過分頻多工(frequency-division multiplexing,FDM)來多工尋呼指示。因此,BS可以在複數個不同之頻率位置發送複數個SSS塊以尋呼UE之複數個尋呼組,其中,各個頻率位置對應於一個尋呼組。在又一另選之實施方式中,可以透過分時多工(time-division multiplexing,TDM)來對尋呼指示進行多工。因此,BS可以在複數個不同之時間位置發送複數個SSS塊以尋呼UE之複數個尋呼組,其中,各個時間位置對應於一個尋呼組。
在第6圖之實施方式中,BS向其小區中之UE發送多工尋呼指示610之序列,以通知一個或更多個UE其在網路上具有待處理消息。多工尋呼指示610可以被週期性地發送到UE(例如,每SSB循環一次,或每空閒模式UE DRX循環一次)。在一個實施方式中,可以比SSB 240更低之頻率發送多工尋呼指示610以使資源開銷最小化。
當UE被尋呼以接收待處理消息時,UE在下一DRX ON持續時間中喚醒以接收消息。如果UE未被尋呼,則UE可以在下一DRX ON持續時間中保持在睡眠狀態。UE(未被尋呼的)可以使用多工尋呼指示610進行AGC調諧,並且緊接在多工尋呼指示610之後之SSB 240用於RRM測量。UE可以在預配置之時刻處監測尋呼通道。
第6圖之示例示出了透過CDM多工之多工尋呼指示610。UE1和UE2二者都監測在預定時刻發送多工尋呼指示610和SSB 240之頻率位置。 各個UE在未接收或發送訊號時可能進入睡眠狀態。UE1和UE2二者都將多工尋呼指示610與它們相應之代碼相乘以確定其是否被尋呼。例如,緊接在SSB3之前之多工尋呼指示610可以指示UE1被尋呼而UE2未被尋呼。因此,在下一DRX ON持續時間(以時間D1為中心),UE1喚醒以接收消息,而UE2可以保持在睡眠狀態。緊接在SSB10之前之多工尋呼指示610可以指示UE1和UE2二者都被尋呼。因此,在下一DRX ON持續時間(以時間D4為中心),UE1和UE2二者都喚醒以接收它們之相應消息。
多工尋呼指示610可以應用於DRX ON持續時間在時間上沒有對準之UE。多工尋呼指示610可以應用於被排程以共享用於訊號發送和/或接收之相同頻率資源之UE。
第7圖例示了依據一個實施方式之由無線網路中之UE執行之用於RRM測量之方法700。在一個實施方式中,無線網路是5G NR網路。在一個實施方式中,無線網路之示例可以是第1圖之網路100。
當UE以等於UE之DRX循環週期之第一循環週期來對下行鏈路訊號執行RRM測量時,方法700在步驟710處開始。下行鏈路訊號是從基地台週期性地廣播的。在步驟720處,UE檢測一個指示,該指示表示主小區(PCell)之訊號品質測量結果大於UE之所有相鄰小區當中具有最佳訊號品質之最佳相鄰小區(BCell)之訊號品質測量結果和正偏移之總和。響應於該指示,在步驟730處,UE以比第一循環週期更長之第二循環週期來執行RRM測量。
第8圖例示了依據一個實施方式之由無線網路中之UE執行之用於接收尋呼指示之方法800。在一個實施方式中,無線網路是5G NR網路。在一個實施方式中,無線網路之示例可以是第1圖之網路100。
當UE對從基地台廣播到該UE之主小區之尋呼指示進行解多工時,方法800在步驟810處開始。尋呼指示在時間上先於SSB。可以使用相同 之序列生成公式來生成尋呼指示和SSB中之SSS。在步驟820處,UE從經解多工之尋呼指示檢測到UE被尋呼用於消息接收。響應於該檢測,在步驟830處,UE在UE之DRX循環之下一資料接收週期中從睡眠狀態喚醒以從基地台接收消息。
第9圖係例示了依據一個實施方式之被配置成提供上行鏈路傳輸之UE 900(也稱為無線設備、無線通訊設備、無線終端等)之元件之框圖。如圖所示,UE 900可以包括天線910以及收發器電路(也稱為收發器920),該收發器電路包括被配置成提供與無線電存取網路之基地台之至少上行鏈路無線電通訊和下行鏈路無線電通訊之發送器和接收器。UE 900還可以包括聯接到收發器920之處理器電路(示為處理器930,並且可以包括一個或更多個處理器)。處理器930可以包括一個或更多個處理器核心。UE 900還可以包括聯接到處理器930之記憶體電路(也稱為記憶體940)。該記憶體940可以包括電腦可讀程序代碼,該電腦可讀程序代碼在由處理器930執行時,使處理器930執行依據本文所公開之實施方式之操作,諸如,第7圖中之方法700和第8圖中之方法800。UE 900還可以包括介面(諸如,使用者介面)。應當理解,出於說明之目的,簡化了第9圖之實施方式。可能包括附加之硬體元件。
儘管在本公開中將UE 900用作示例,但是應當理解,本文描述之方法適用於能夠向基地台發送上行鏈路訊號之任何計算和/或通訊設備。
已經參照第1圖和第9圖之示例實施方式描述了第7圖和第8圖之流程圖之操作。然而,應當理解的是,除參照第1圖和第9圖討論之實施方式外,還可以透過本發明之實施方式執行第7圖和第8圖之流程圖之操作,並且參照第1圖和第9圖討論之實施方式可以執行不同於參照流程圖討論之操作。雖然第7圖和第8圖之流程圖示出了由本發明某些特定實施方式執行之特定操作順序,但應當理解,該順序僅是示例(例如,可選實施方式可以以不同 順序、組合某些操作、重疊某些操作等執行操作)。
雖然已經依據一定数目示例描述了本發明,但是本技術領域之習知技藝者將認識到,本發明不限於所述實施方式,在不脫離所附申請專利範圍之精神和範圍情況下,可以透過修改和變更來實踐。因此,本說明書應當認為是說明性的而非限制性的。
700:方法
710、720、730:步驟

Claims (8)

  1. 一種由一無線網路中之一使用者設備執行之無線電資源管理測量方法,所述方法包括以下步驟:以等於所述使用者設備之一不連續接收循環週期之一第一循環週期對一下行鏈路訊號執行一無線電資源管理測量,其中,所述下行鏈路訊號是從一基地台週期性地廣播的;檢測到一主小區之一訊號品質測量結果大於所述使用者設備之所有相鄰小區當中具有最佳訊號品質之一最佳相鄰小區之一訊號品質測量結果和一正偏移之總和之一指示;響應於所述指示,以比所述第一循環週期長之一第二循環週期來執行所述無線電資源管理測量;以及響應於所述主小區之所述訊號品質下降到所述總和以下之另一指示,以所述第一循環週期執行所述無線電資源管理測量。
  2. 如申請專利範圍第1項所述之無線電資源管理測量方法,其中,Y值之正偏移對應於較長之第二循環週期,並且X值之正偏移對應於較短之第二循環週期,並且其中,Y>X。
  3. 如申請專利範圍第2項所述之無線電資源管理測量方法,其中,所述較長之第二循環週期是所述不連續接收循環週期之四倍。
  4. 如申請專利範圍第2項所述之無線電資源管理測量方法,其中,所述較長之第二循環週期是所述不連續接收循環週期之兩倍。
  5. 如申請專利範圍第1項所述之無線電資源管理測量方法,其中,所述方法還包括以下步驟:計算所述主小區之兩個連續訊號品質測量之間之差值;以及 當所述差值低於一預定門檻值時,響應於所述檢測執行所述無線電資源管理測量。
  6. 如申請專利範圍第1項所述之無線電資源管理測量方法,其中,所述下行鏈路訊號是同步訊號塊。
  7. 如申請專利範圍第1項所述之無線電資源管理測量方法,其中,所述無線電資源管理測量包括以下中之一個或更多個之測量:參考訊號接收功率、參考訊號接收品質以及訊號干擾雜訊比。
  8. 如申請專利範圍第1項所述之無線電資源管理測量方法,其中,所述無線網路是一第五代新無線電網路。
TW109104478A 2019-02-15 2020-02-13 尋呼指示和無線電資源管理測量之增強方法 TWI747161B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962806061P 2019-02-15 2019-02-15
US62/806,061 2019-02-15
US16/787,522 US11102756B2 (en) 2019-02-15 2020-02-11 Enhancement for paging indication and radio resource management (RRM) measurements for UE power saving in a wireless network
US16/787,522 2020-02-11

Publications (2)

Publication Number Publication Date
TW202033013A TW202033013A (zh) 2020-09-01
TWI747161B true TWI747161B (zh) 2021-11-21

Family

ID=72040703

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109104478A TWI747161B (zh) 2019-02-15 2020-02-13 尋呼指示和無線電資源管理測量之增強方法

Country Status (4)

Country Link
US (2) US11102756B2 (zh)
CN (1) CN111837417A (zh)
TW (1) TWI747161B (zh)
WO (1) WO2020164571A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11102756B2 (en) * 2019-02-15 2021-08-24 Mediatek Inc. Enhancement for paging indication and radio resource management (RRM) measurements for UE power saving in a wireless network
US12022556B2 (en) * 2020-02-28 2024-06-25 Qualcomm Incorporated Maintaining sidelink (SL) connectivity for SL configured with discontinuous reception (DRX)
US11924759B2 (en) * 2020-03-18 2024-03-05 Telefonaktiebolaget Lm Ericsson (Publ) Determination of operational state
EP4280723A1 (en) * 2021-01-14 2023-11-22 Beijing Xiaomi Mobile Software Co., Ltd. Method for sending paging early indication and method for receiving paging early indication
WO2022151365A1 (en) * 2021-01-15 2022-07-21 Lenovo (Beijing) Limited Methods and apparatuses for paging
WO2022151423A1 (zh) * 2021-01-15 2022-07-21 华为技术有限公司 一种寻呼指示方法及装置
WO2022205376A1 (en) * 2021-04-01 2022-10-06 Apple Inc. Dynamic measurement period for wireless communications in a high-speed mode
WO2023070278A1 (zh) * 2021-10-25 2023-05-04 北京小米移动软件有限公司 一种调度方法、装置及可读存储介质
WO2023173338A1 (zh) * 2022-03-16 2023-09-21 北京小米移动软件有限公司 一种测量指示方法及设备/存储介质/装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170026861A1 (en) * 2015-07-20 2017-01-26 Mediatek Inc. Measurement Enhancements for LTE Systems
TW201807990A (zh) * 2016-08-09 2018-03-01 日商索尼股份有限公司 通訊裝置、通訊方法、及程式
WO2018144873A1 (en) * 2017-02-02 2018-08-09 Convida Wireless, Llc Apparatuses for transmission of paging blocks in swept downlink beams
CN109041098A (zh) * 2017-06-12 2018-12-18 维沃移动通信有限公司 一种终端测量配置方法、终端及基站

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11310740B2 (en) 2014-11-04 2022-04-19 Qualcomm Incorporated Discontinuous reception mode with two-stage wake-up
CN114900797A (zh) * 2016-12-30 2022-08-12 英特尔公司 用于无线电通信的方法和设备
US11102756B2 (en) * 2019-02-15 2021-08-24 Mediatek Inc. Enhancement for paging indication and radio resource management (RRM) measurements for UE power saving in a wireless network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170026861A1 (en) * 2015-07-20 2017-01-26 Mediatek Inc. Measurement Enhancements for LTE Systems
CN107852631A (zh) * 2015-07-20 2018-03-27 联发科技股份有限公司 Lte***的测量增强
TW201807990A (zh) * 2016-08-09 2018-03-01 日商索尼股份有限公司 通訊裝置、通訊方法、及程式
WO2018144873A1 (en) * 2017-02-02 2018-08-09 Convida Wireless, Llc Apparatuses for transmission of paging blocks in swept downlink beams
CN109041098A (zh) * 2017-06-12 2018-12-18 维沃移动通信有限公司 一种终端测量配置方法、终端及基站

Also Published As

Publication number Publication date
TW202033013A (zh) 2020-09-01
US20210345294A1 (en) 2021-11-04
US11102756B2 (en) 2021-08-24
CN111837417A (zh) 2020-10-27
WO2020164571A1 (en) 2020-08-20
US20200267690A1 (en) 2020-08-20

Similar Documents

Publication Publication Date Title
TWI747161B (zh) 尋呼指示和無線電資源管理測量之增強方法
TWI753824B (zh) Rrm測量方法及使用者設備
US20230108646A1 (en) Power efficient paging mechanism with paging early indicator
CN112187428B (zh) 无线电信网络中的网络节点和方法
US11363587B2 (en) Information transmission method and device
US10057922B2 (en) Method for controlling network access points
US20220232514A1 (en) Ue grouping for paging enhancement
US9998986B2 (en) Method for transmitting communication signals in a wireless communication system
US10694474B2 (en) Network node and method for managing transmit power
US20160365964A1 (en) Communication device, communication method, communication system, and base station
US20220400437A1 (en) Wakeup signal based beam management
US10966153B2 (en) User node, network node and methods for allocating and using resources for control signals
Rostami et al. Wake-up radio-based 5G mobile access: Methods, benefits, and challenges
CN115622668A (zh) 由用户设备执行的方法以及用户设备
CN117528722A (zh) 发送节能信号的方法、配置方法、装置及设备
EP4014662A1 (en) Interferrence detection for random access false alarm reduction
CN112601274A (zh) 一种指示信息的检测方法和设备