TWI743171B - Space transformers for probe cards, and associated systems and methods - Google Patents

Space transformers for probe cards, and associated systems and methods Download PDF

Info

Publication number
TWI743171B
TWI743171B TW106127844A TW106127844A TWI743171B TW I743171 B TWI743171 B TW I743171B TW 106127844 A TW106127844 A TW 106127844A TW 106127844 A TW106127844 A TW 106127844A TW I743171 B TWI743171 B TW I743171B
Authority
TW
Taiwan
Prior art keywords
space transformer
space
transformer
converter
wafer
Prior art date
Application number
TW106127844A
Other languages
Chinese (zh)
Other versions
TW201820575A (en
Inventor
艾莉絲坦爾 尼可拉斯 史柏克
Original Assignee
美商川斯萊緹公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商川斯萊緹公司 filed Critical 美商川斯萊緹公司
Publication of TW201820575A publication Critical patent/TW201820575A/en
Application granted granted Critical
Publication of TWI743171B publication Critical patent/TWI743171B/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2889Interfaces, e.g. between probe and tester
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07364Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch
    • G01R1/07378Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch using an intermediate adapter, e.g. space transformers

Abstract

Systems and methods for testing semiconductor wafers are disclosed herein. In one embodiment, an apparatus for testing dies of a semiconductor wafer includes a composite space transformer for contacting the dies. The composite space transformer has a first space transformer having a first side configured to face the wafer, and a second side facing away from the wafer. The first space transformer has a substrate made of ceramic. The composite space transformer also has a second space transformer having a first side configured to face the wafer, and a second side facing the first side of the first space transformer. The second space transformer has a substrate made of glass. The composite space transformer has a space transformer interconnect to electrically connect the first space transformer and the second space transformer.

Description

用於探針卡之空間轉換器及相關之系統及方法Space converter for probe card and related system and method

在大範圍之產品中使用積體電路。積體電路在價格上不斷減小及在效能上不斷增大,其等在現代電子器件中變得無處不在。效能/成本比率之此等改良(至少部分)基於小型化,其等使更多半導體晶粒能夠使用每個新一代積體電路製造技術自一晶圓產生。此外,一半導體晶粒上之信號及電源/接地接點之總數目通常隨著新、更複雜晶粒之設計而增加。 在將半導體晶粒運送至客戶之前,基於一統計樣品或藉由測試各晶粒而測試積體電路之效能。半導體晶粒之一電氣測試通常包含通過電源/接地接點對晶粒供電,將信號傳輸至晶粒之輸入接點,且量測晶粒之輸出接點處之結果信號。因此,在電氣測試期間,晶粒上之至少一些接點必須經接觸以將晶粒連接至電源及測試信號之源。 圖1A係根據先前技術之用於測試半導體晶圓之一探針卡10之截面圖。在操作中,探針卡10接觸一晶圓40使得探針引腳16之一陣列與晶圓之晶粒45 (亦稱為「受測試裝置」或「DUT」)上之晶粒接點48 (例如,墊或焊球)之對應陣列電接觸。接著,一測定器(未展示)通過電纜30及探針卡10將電氣測試序列(例如,測試向量)發送至晶圓40之一或多個晶粒45之晶粒接點48。回應於此等測試序列,經測試晶粒之積體電路產生通過探針卡10路由回至晶圓測定器之輸出信號以分析及判定是否一特定晶粒通過測試。接著,測試接觸器跨置於經平行測試之另一晶粒或晶粒45之組上,且測試繼續直至經測試全部晶圓。一旦經測試全部晶圓40,沿著晶圓道46單粒化晶圓上之晶粒,捨棄未通過測試之晶粒,及封裝通過測試之晶粒並運送至客戶。 探針卡10提供用於晶圓40之測定器與DUT 45之間之信號/電源之一路徑。信號/電源通過一印刷電路板(PCB) 14,通過連接具有一空間轉換器12之PCB 14之一接點結構20,通過空間轉換器12之繞線層13,且進一步至探針卡10之探針引腳16 (其在操作中接觸DUT)。在一些應用中,電子組件18 (例如,電容器、電阻器、主動組件)經定位於空間轉換器12上及/或PCB 18上以改良測定器與DUT之間之信號及電源之流。 藉由一固持器26將空間轉換器12固持在適當位置中。螺釘28可相對於PCB 14調整空間轉換器12之一相對位置。例如,螺釘28可改良空間轉換器12與PCB 14之間之平行性而改良探針引腳16與DUT 45之間之接觸。 在一些應用中,探針卡10與晶圓40之晶粒之間之一可靠的接點需要晶圓與探針卡之間之一相對高接觸力。繼而,此接觸力可彎曲探針卡10。通常,因為空間轉換器小於PCB,且其亦由一硬於PCB 14之材料(例如,具有一環氧樹脂黏結劑之編織玻璃纖維布)之材料(例如,陶瓷)製成,所以習知空間轉換器10較PCB 14不易於彎曲。因此,習知探針卡包含加強條22a/22b及螺釘24以限制PCB 14之彎曲。 陶瓷空間轉換器10可具有有導電跡線13之一密集繞線之數個繞線層。繼而,相對薄導電跡線13之此相對密集繞線實現探針引腳16之一細間距。因此,習知陶瓷空間轉換器12可支持用於接觸接點48之探針引腳16之相對細間距/尺寸。因此,習知陶瓷空間轉換器可支持具有分佈於晶粒(即,具有細間距接點48之密集陣列之晶粒)之一減小面積上方之接點之一經增加數目之較新晶圓設計。 然而,陶瓷空間轉換器12係非常昂貴的(例如,成千上萬美元或更多),且其通常需要長時間來製造。空間轉換器12之成本及前置時間隨著繞線層13之數目成比例增加。此外,隨著較新晶圓設計上接點48之間距/尺寸減小,空間轉換器12之繞線層13之數目增加。因此,習知空間轉換器之成本/前置時間隨著晶粒45之每個新一代而變得更高。 相應地,對於有效成本及具有短前置時間且同時適合探測小尺寸/間距接點之晶粒之空間轉換器仍存在一需求。Use integrated circuits in a wide range of products. Integrated circuits continue to decrease in price and increase in efficiency, and they have become ubiquitous in modern electronic devices. These improvements in performance/cost ratio are based (at least in part) on miniaturization, which enables more semiconductor dies to be produced from one wafer using each new generation of integrated circuit manufacturing technology. In addition, the total number of signal and power/ground contacts on a semiconductor die usually increases with the design of new and more complex die. Before shipping the semiconductor die to the customer, the performance of the integrated circuit is tested based on a statistical sample or by testing each die. An electrical test of a semiconductor die usually involves supplying power to the die through a power/ground connection, transmitting a signal to the input contact of the die, and measuring the resulting signal at the output contact of the die. Therefore, during electrical testing, at least some of the contacts on the die must be contacted to connect the die to the power source and the source of the test signal. FIG. 1A is a cross-sectional view of a probe card 10 for testing semiconductor wafers according to the prior art. In operation, the probe card 10 contacts a wafer 40 so that an array of probe pins 16 and die 45 (also referred to as the "device under test" or "DUT") on the die contact 48 on the wafer 40 (For example, pads or solder balls) corresponding array electrical contacts. Then, a tester (not shown) sends an electrical test sequence (for example, a test vector) to the die contact 48 of one or more dies 45 of the wafer 40 through the cable 30 and the probe card 10. In response to these test sequences, the integrated circuit of the tested die generates an output signal that is routed back to the wafer tester through the probe card 10 to analyze and determine whether a specific die passes the test. Then, the test contactor straddles another die or group of die 45 that has been tested in parallel, and the test continues until all wafers have been tested. Once all the wafers 40 are tested, the dies on the wafer are singulated along the wafer lane 46, the dies that fail the test are discarded, and the dies that pass the test are packaged and shipped to the customer. The probe card 10 provides a signal/power path between the detector of the wafer 40 and the DUT 45. The signal/power goes through a printed circuit board (PCB) 14, through a contact structure 20 connected to the PCB 14 with a space transformer 12, through the winding layer 13 of the space transformer 12, and further to the probe card 10 Probe pin 16 (which contacts the DUT in operation). In some applications, electronic components 18 (eg, capacitors, resistors, active components) are positioned on the space converter 12 and/or on the PCB 18 to improve the flow of signals and power between the detector and the DUT. The space converter 12 is held in place by a holder 26. The screw 28 can adjust the relative position of one of the space converters 12 with respect to the PCB 14. For example, the screw 28 can improve the parallelism between the space converter 12 and the PCB 14 and improve the contact between the probe pin 16 and the DUT 45. In some applications, a reliable contact between the probe card 10 and the die of the wafer 40 requires a relatively high contact force between the wafer and the probe card. In turn, this contact force can bend the probe card 10. Generally, because the space converter is smaller than the PCB, and it is also made of a material (for example, ceramic) that is harder than the material of the PCB 14 (for example, a woven glass fiber cloth with an epoxy resin adhesive), the conventional space The converter 10 is less susceptible to bending than the PCB 14. Therefore, the conventional probe card includes reinforcing bars 22a/22b and screws 24 to limit the bending of the PCB 14. The ceramic space transformer 10 may have several winding layers with one of the conductive traces 13 densely wound. Then, this relatively dense winding of the relatively thin conductive traces 13 achieves a fine pitch of the probe pins 16. Therefore, the conventional ceramic space converter 12 can support the relatively fine pitch/size of the probe pins 16 used for the contact contacts 48. Therefore, the conventional ceramic space converter can support newer wafer designs with an increased number of contacts distributed over one of the dice (ie, dice with a dense array of fine-pitch contacts 48) with a reduced area . However, the ceramic space converter 12 is very expensive (for example, thousands of dollars or more), and it usually takes a long time to manufacture. The cost and lead time of the space converter 12 increase proportionally with the number of winding layers 13. In addition, as the spacing/size of the contacts 48 decreases on newer wafer designs, the number of winding layers 13 of the space converter 12 increases. Therefore, the cost/lead time of the conventional space converter becomes higher with each new generation of die 45. Correspondingly, there is still a need for a space converter that is cost effective and has a short lead time and is suitable for detecting dies with small size/pitch contacts.

相關申請案之交叉參考 本申請案主張2016年8月16日所申請之美國臨時申請案第62/375552號之權利,該案之內容係以引用方式併入本文中。 在下文中描述用於使用及製造之代表空間轉換器之數個實施例之特定細節及相關聯方法。熟悉相關技術者亦將理解本技術可具有額外實施例,且可在參考圖2A至圖8無下文所描述之實施例之若干細節之情況下實踐本技術。 簡要地,本發明技術係針對測試半導體晶圓上之晶粒。可產生不同直徑(例如,150mm、200mm、300mm、450mm等)之半導體晶圓,所揭示方法及系統能夠測試具有有小尺寸及/或間距之接點之晶粒(受測試裝置或DUT)。晶圓之晶粒上之此接點之實例係DUT上之金屬墊、焊球及/或其他適合的接觸元件。可藉由包含一空間轉換器及一印刷電路板(PCB)用於轉換測定器及DUT之間之信號及電源之一分類卡測試(「探測」)晶圓。空間轉換器承載在DUT上接觸對應接觸元件之探針引腳。 在本發明技術之一些實施例中,一複合空間轉換器包含一陶瓷空間轉換器及一玻璃空間轉換器。通常,陶瓷空間轉換器可耐受重要機械負載,及可包含數個層中之經密集繞線的金屬跡線。然而,陶瓷空間轉換器相對昂貴(例如,成千上萬美元),且花費長時間來製造。玻璃空間轉換器可能明顯更便宜(有時便宜若干數量級),且可相對快製造玻璃空間轉換器。當在一複合空間轉換器中一起使用陶瓷空間轉換器及玻璃空間轉換器時,因為可將繞線層之一部分傳輸至玻璃空間轉換器,所以可減少陶瓷空間轉換器之繞線層的數目。因此,可減少複合空間轉換器之總成本及前置時間。此外,在至少一些實施例中,歸因於補償玻璃空間轉換器之相對低載荷能力之陶瓷空間轉換器的相對高載荷能力,複合空間轉換器可耐受相對高機械負載。 在一些實施例中,陶瓷空間轉換器及玻璃空間轉換器係與接線、焊球、銅柱及/或其他連接結構電連接。在一些實施例中,複合空間轉換器可包含電子組件(例如,電容器、電阻器及/或主動組件)。在一些實施例中,藉由一底膠聚合物材料或藉由其他承載介面,陶瓷空間轉換器及玻璃空間轉換器係通過一負載介面(例如,可剝離的一黏著層)機械連接。 在一些實施例中,可客製化複合空間轉換器。例如,若改變晶粒上之接點的佈局,則其可足夠替代複合空間轉換器之玻璃空間轉換器,而重複使用更昂貴的陶瓷空間轉換器。在一些實施例中,玻璃空間轉換器可藉由移除將玻璃空間轉換器與陶瓷空間轉換器連接的電接點及可剝離的負載介面而自陶瓷空間轉換器分離。 圖2A係根據目前所揭示技術之實施例之一空間轉換器2000之一截面圖。在操作中,複合空間轉換器2000之下側面向一晶圓,且上側面向探針卡之PCB 14,其進一步經連接至測定器。 複合空間轉換器2000包含一陶瓷空間轉換器220及一玻璃空間轉換器230。在一些實施例中,陶瓷空間轉換器220具有由陶瓷(例如,Al2 O3 或其他陶瓷材料)製成之一基板221。在一些實施例中,陶瓷空間轉換器220包含用於將陶瓷空間轉換器220之一個側上之接觸墊222之間的信號/電源傳輸至相對側上之接觸墊224的導電跡線223 (亦稱為「繞線跡線」)。可在陶瓷空間轉換器220之多個繞線層上方分佈導電跡線223。 玻璃空間轉換器230可具有由玻璃(例如,SiO2 或其他玻璃材料)製成之一基板231。在一些實施例中,玻璃空間轉換器230可承載用於接觸晶圓上之DUT的探針引腳236。在一些實施例中,探針引腳236可藉由經附接至玻璃空間轉換器230之一分離總成而承載。 在一些實施例中,一負載介面240將陶瓷空間轉換器220與玻璃空間轉換器230附接。負載介面240可為一聚合物(例如在電子封裝中使用之一底膠材料)。在一些實施例中,可自陶瓷/玻璃空間轉換器220/230剝離負載介面240,且可重複使用陶瓷空間轉換器220及/或玻璃空間轉換器230。例如,適合於一新晶圓設計的複合空間轉換器可藉由(例如)使用另一玻璃空間轉換器替代玻璃空間轉換器230,而重複使用陶瓷空間轉換器220來裝配。另外,亦可替代接線250以將信號/電源路由至新晶圓設計之晶粒接點。 圖2B係圖2A中展示之空間轉換器之一部分示意之仰視圖。玻璃空間轉換器之探針引腳236可通過跡線233及接觸墊234電連接至接線250,且進一步至陶瓷空間轉換器之接觸墊224。在一些實施例中,陶瓷空間轉換器上之額外接觸墊224及玻璃空間轉換器上之額外接觸墊234促進重複使用另一複合空間轉換器中之陶瓷空間轉換器。因此,複合空間轉換器2000可為模組化的。 在至少一些實施例中,陶瓷空間轉換器220之一相對高機械承載能力補償玻璃空間轉換器230之一相對低機械承載能力。此外,因為玻璃空間轉換器230之繞線能力,所以可減小陶瓷空間轉換器220之繞線層之數目,因此減小陶瓷空間轉換器230之相對高成本及長前置時間。 圖3係根據目前所揭示技術之實施例之一複合空間轉換器3000之一截面圖。在一些實施例中,陶瓷空間轉換器220包含貫穿陶瓷通路(TCV) 228及玻璃空間轉換器230可包含貫穿玻璃通路(TGV) 238。在一些實施例中,藉由首先使用(例如)機械鑽孔、雷射光束或方向蝕刻製造基板221/231中之導通孔,接著鍍覆具有電導體(例如,銅或鋁)之孔而製造TCV 228及TGV 238。在一些實施例中,焊球242將TCV 228與TGV 238電連接。此外,在至少一些實施例中,焊球242對複合空間轉換器3000提供一承載功能而非負載介面240或除了負載介面240以外之承載功能。在一些實施例中,可再加熱焊球232至其等熔點以自玻璃空間轉換器230分離陶瓷空間轉換器220。 圖4係根據目前所揭示技術之實施例之一複合空間轉換器4000之一截面圖。在一些實施例中,銅柱244將陶瓷空間轉換器220與玻璃空間轉換器230電及機械連接。在一些應用中,銅柱244可小於焊球242,因此實現空間轉換器之接點之更小間距/墊尺寸。 圖5係根據目前所揭示技術之實施例之一複合空間轉換器5000之一截面圖。在一些實施例中,接線250將陶瓷空間轉換器220之周邊與玻璃空間轉換器230之周邊連接,而焊球242將玻璃與陶瓷空間轉換器之中心區域連接。在一些實施例中,接線250及焊球242 (及/或銅柱244)之組合增加信號/電源繞線。例如,在一些實施例中,因為接線250及焊球242兩者將玻璃空間轉換器230與陶瓷空間轉換器220電連接,所以可減小陶瓷空間轉換器220中之繞線層之數目。 圖6A係根據目前所揭示技術之實施例之一複合空間轉換器6000之一截面圖。在一些實施例中,複合空間轉換器6000包含放置於陶瓷空間轉換器220中之一開口中之電子組件260。電子組件260可為被動組件(例如,電容器、電阻器)、主動組件(例如,可操作的放大器、具有記憶體庫之處理器等)或被動及主動組件之一組合。在一些實施例中,電子組件260可由玻璃空間轉換器230之任一側承載。 圖6B係圖6A中展示之空間轉換器之一部分示意之仰視圖。在所繪示圖中,電子組件260定位於陶瓷空間轉換器220中之開口內。在至少一些實施例中,複合空間轉換器之承載能力保持當陶瓷空間轉換器包含一開口時足夠以探測晶圓。 圖7係根據目前所揭示技術之實施例之一空間轉換器7000之一截面圖。在一些實施例中,複合空間轉換器7000可包含多個陶瓷空間轉換器(例如,一下陶瓷空間轉換器220b及一上陶瓷空間轉換器220a)。在一些實施例中,藉由對應於下陶瓷空間轉換器220b中之開口之一區域中之玻璃空間轉換器230承載電子組件260。多個陶瓷空間轉換器之存在可改良複合空間轉換器7000之承載能力及/或繞線能力。此外,在一些實施例中,兩個陶瓷空間轉換器(各具有一相對小數量之繞線層)之前置時間及產品成本可低於具有一相對大數量之繞線層之一單一陶瓷空間轉換器之前置時間及/或成本。 圖8係根據目前所揭示技術之實施例用於製造空間轉換器之一方法8000之一流程圖。在一些實施例中,方法8000係針對(例如)包含當晶圓設計改變時,替代玻璃空間轉換器之一複合空間轉換器之一模組化設計。在一些實施例中,方法可包含額外步驟,或可在不進行流程圖中所繪示之所有步驟之情況下實踐方法。 在步驟810中開始方法,且繼續至步驟815。在步驟815中,基於(例如)晶圓之晶粒上之晶粒接點之一佈局、複合空間轉換器之一承載能力、要平行探測之晶粒之數目等來選擇陶瓷空間轉換器及玻璃空間轉換器。 在步驟820中,於陶瓷空間轉換器與玻璃空間轉換器之間應用一負載介面。在一些實施例中,負載介面可為一黏著性聚合物。在一些實施例中,負載介面可為可剝離的,因此促進複合空間轉換器之玻璃空間轉換器之替代。在一些實施例中,負載介面可為經應用為隨後固化之一液相之一底膠材料。 在步驟825中,使用(例如)焊球242、銅柱244、接線250或其等組合,將陶瓷空間轉換器與玻璃空間轉換器電連接。 在步驟830中,複合空間轉換器探測晶圓上之晶粒。在操作中,於具有PCB、加強條、用於連接至測定器之電纜等之一探針卡中可包含複合空間轉換器。 在步驟835中,作出探針卡是否需要測試具有晶粒接點之新佈局之晶圓之一判定。在步驟830中,若不改變晶圓佈局,則探針卡可繼續測試晶圓。, 若已改變晶粒接點之佈局(或晶粒設計之其他屬性),則方法行進至分離陶瓷空間轉換器及玻璃空間轉換器之步驟840。在一些實施例中,負載介面240可藉由(例如)將其剝離而移除。此外,(例如)藉由切割接線250或藉由再加熱焊球242或銅柱244來移除陶瓷空間轉換器與玻璃空間轉換器之間的電接點。 在步驟845中,選擇另一玻璃空間轉換器用於與陶瓷空間轉換器之附接。基於(例如)承載需求、信號/電源繞線需求、晶粒接觸之佈局等,可選擇新複合空間轉換器。 在步驟850中,可將陶瓷空間轉換器及玻璃空間轉換器機械及電連接至一經更新複合探針卡中。在步驟855中,藉由包含經更新複合空間轉換器之探針卡來探測晶圓。可在步驟860中結束方法。 上文所描述之技術的許多實施例可採取電腦可執行或控制器可執行指令的形式,其包含有一可程式化電腦或控制器執行的常式。熟習相關技術者應瞭解,可在電腦/控制器系統上而非在該等上文所展示及所描述中實踐該技術。在一專用電腦、專用積體電路(ASIC)、經特定程式化、經組態或經構建之控制器或資料處理器中,可體現該技術,以執行上文所描述之一或多個電腦可執行指令。當然,可在軟體或硬體或軟體及硬體之一組合中,實施本文中所描述之任何邏輯或演算法。 自前文,將瞭解為了圖解目的本文中已描述該技術之特定實施例,但是可在不偏離本發明之情況下作出各種修改。此外,儘管已在該等實施例之上文中描述與特定實施例相關聯之各種優點及特徵,但其他實施例亦可展現此等優點及/或特徵,且並非所有實施例必須展現在本技術之範疇內之此等優點及/或特徵。因此,本發明可涵蓋本文中未明確展示或描述之其他實施例。CROSS REFERENCE TO RELATED APPLICATIONS This application claims the rights of U.S. Provisional Application No. 62/375552 filed on August 16, 2016, the content of which is incorporated herein by reference. Specific details and associated methods of several embodiments of representative space converters for use and manufacture are described below. Those familiar with the related art will also understand that the technology can have additional embodiments, and can be practiced without some details of the embodiments described below with reference to FIGS. 2A to 8. Briefly, the technology of the present invention is directed to testing the die on a semiconductor wafer. Semiconductor wafers with different diameters (for example, 150mm, 200mm, 300mm, 450mm, etc.) can be produced. The disclosed method and system can test dies (device under test or DUT) with small size and/or pitch contacts. Examples of this contact on the die of the wafer are metal pads, solder balls and/or other suitable contact elements on the DUT. The wafer can be tested ("probing") by a sorting card including a space converter and a printed circuit board (PCB) for converting the signal and power between the tester and the DUT. The space converter is carried on the DUT to contact the probe pins of the corresponding contact elements. In some embodiments of the present technology, a composite space transformer includes a ceramic space transformer and a glass space transformer. In general, ceramic space transformers can withstand important mechanical loads and can include densely wound metal traces in several layers. However, ceramic space converters are relatively expensive (for example, thousands of dollars) and take a long time to manufacture. Glass space converters can be significantly cheaper (sometimes orders of magnitude cheaper), and glass space converters can be manufactured relatively quickly. When a ceramic space transformer and a glass space transformer are used together in a composite space transformer, since a part of the winding layer can be transferred to the glass space transformer, the number of winding layers of the ceramic space transformer can be reduced. Therefore, the total cost and lead time of the composite spatial converter can be reduced. In addition, in at least some embodiments, the composite space transformer can withstand relatively high mechanical loads due to the relatively high load capacity of the ceramic space transformer that compensates for the relatively low load capacity of the glass space transformer. In some embodiments, the ceramic space converter and the glass space converter are electrically connected to wires, solder balls, copper pillars, and/or other connection structures. In some embodiments, the composite spatial converter may include electronic components (eg, capacitors, resistors, and/or active components). In some embodiments, the ceramic space transformer and the glass space transformer are mechanically connected through a load interface (for example, a peelable adhesive layer) by a primer polymer material or by other bearing interfaces. In some embodiments, the composite spatial converter can be customized. For example, if the layout of the contacts on the die is changed, it can sufficiently replace the glass space converter of the composite space converter and reuse the more expensive ceramic space converter. In some embodiments, the glass space transformer can be separated from the ceramic space transformer by removing the electrical contacts and the peelable load interface connecting the glass space transformer and the ceramic space transformer. FIG. 2A is a cross-sectional view of a space converter 2000 according to an embodiment of the currently disclosed technology. In operation, the lower side of the composite space converter 2000 faces a wafer, and the upper side faces the PCB 14 of the probe card, which is further connected to the measuring device. The composite space transformer 2000 includes a ceramic space transformer 220 and a glass space transformer 230. In some embodiments, the ceramic space converter 220 has a substrate 221 made of ceramic (for example, Al 2 O 3 or other ceramic materials). In some embodiments, the ceramic space converter 220 includes conductive traces 223 (also Called "winding trace"). The conductive traces 223 can be distributed over the multiple winding layers of the ceramic space converter 220. The glass space converter 230 may have a substrate 231 made of glass (for example, SiO 2 or other glass materials). In some embodiments, the glass space converter 230 may carry probe pins 236 for contacting DUTs on the wafer. In some embodiments, the probe pin 236 may be carried by a separate assembly attached to the glass space converter 230. In some embodiments, a load interface 240 attaches the ceramic space converter 220 to the glass space converter 230. The load interface 240 may be a polymer (for example, a primer material is used in electronic packaging). In some embodiments, the load interface 240 can be stripped from the ceramic/glass space converter 220/230, and the ceramic space converter 220 and/or the glass space converter 230 can be reused. For example, a composite space transformer suitable for a new wafer design can be assembled by, for example, replacing the glass space transformer 230 with another glass space transformer and reuse the ceramic space transformer 220 for assembly. In addition, the wiring 250 can be replaced to route the signal/power to the die contacts of the new wafer design. Fig. 2B is a schematic bottom view of a part of the space converter shown in Fig. 2A. The probe pin 236 of the glass space transformer can be electrically connected to the wiring 250 through the trace 233 and the contact pad 234, and further to the contact pad 224 of the ceramic space transformer. In some embodiments, the additional contact pads 224 on the ceramic space transformer and the additional contact pads 234 on the glass space transformer facilitate reuse of the ceramic space transformer in another composite space transformer. Therefore, the composite space converter 2000 can be modular. In at least some embodiments, the relatively high mechanical load capacity of one of the ceramic space transformers 220 compensates for the relatively low mechanical load capacity of one of the glass space transformers 230. In addition, because of the winding capability of the glass space converter 230, the number of winding layers of the ceramic space converter 220 can be reduced, thereby reducing the relatively high cost and long lead time of the ceramic space converter 230. FIG. 3 is a cross-sectional view of a composite space converter 3000 according to an embodiment of the currently disclosed technology. In some embodiments, the ceramic space transformer 220 includes a through ceramic via (TCV) 228 and the glass space transformer 230 may include a through glass via (TGV) 238. In some embodiments, it is manufactured by first using, for example, mechanical drilling, laser beam, or directional etching to make the via holes in the substrate 221/231, and then plating the holes with electrical conductors (for example, copper or aluminum). TCV 228 and TGV 238. In some embodiments, solder balls 242 electrically connect TCV 228 and TGV 238. In addition, in at least some embodiments, the solder ball 242 provides a load bearing function to the composite space converter 3000 instead of the load interface 240 or a load bearing function other than the load interface 240. In some embodiments, the solder ball 232 may be reheated to its equivalent melting point to separate the ceramic space transformer 220 from the glass space transformer 230. FIG. 4 is a cross-sectional view of a composite space converter 4000 according to an embodiment of the currently disclosed technology. In some embodiments, the copper pillar 244 electrically and mechanically connects the ceramic space transformer 220 and the glass space transformer 230. In some applications, the copper pillars 244 can be smaller than the solder balls 242, thus achieving a smaller pitch/pad size of the contacts of the space converter. FIG. 5 is a cross-sectional view of a composite space converter 5000 according to an embodiment of the currently disclosed technology. In some embodiments, the wiring 250 connects the periphery of the ceramic space transformer 220 with the periphery of the glass space transformer 230, and the solder ball 242 connects the glass and the center area of the ceramic space transformer. In some embodiments, the combination of wires 250 and solder balls 242 (and/or copper pillars 244) adds signal/power wiring. For example, in some embodiments, because both the wires 250 and the solder balls 242 electrically connect the glass space transformer 230 and the ceramic space transformer 220, the number of winding layers in the ceramic space transformer 220 can be reduced. FIG. 6A is a cross-sectional view of a composite space converter 6000 according to an embodiment of the currently disclosed technology. In some embodiments, the composite space transformer 6000 includes an electronic component 260 placed in one of the openings in the ceramic space transformer 220. The electronic component 260 may be a passive component (for example, a capacitor, a resistor), an active component (for example, an operable amplifier, a processor with a memory bank, etc.), or a combination of passive and active components. In some embodiments, the electronic component 260 can be carried by either side of the glass space converter 230. Fig. 6B is a schematic bottom view of a part of the space converter shown in Fig. 6A. In the drawing, the electronic component 260 is positioned in the opening in the ceramic space converter 220. In at least some embodiments, the load carrying capacity of the composite space transformer remains sufficient to detect the wafer when the ceramic space transformer includes an opening. FIG. 7 is a cross-sectional view of a space converter 7000 according to an embodiment of the currently disclosed technology. In some embodiments, the composite space transformer 7000 may include a plurality of ceramic space transformers (for example, a lower ceramic space transformer 220b and an upper ceramic space transformer 220a). In some embodiments, the electronic component 260 is carried by the glass space transformer 230 in an area corresponding to the opening in the lower ceramic space transformer 220b. The existence of multiple ceramic space transformers can improve the carrying capacity and/or winding capacity of the composite space transformer 7000. In addition, in some embodiments, the lead time and product cost of two ceramic space converters (each with a relatively small number of winding layers) can be lower than a single ceramic space with a relatively large number of winding layers The pre-installation time and/or cost of the converter. FIG. 8 is a flowchart of a method 8000 for manufacturing a space converter according to an embodiment of the currently disclosed technology. In some embodiments, the method 8000 is directed to, for example, replacing a modular design of a composite space transformer of a glass space transformer when the wafer design changes. In some embodiments, the method may include additional steps, or the method may be practiced without performing all the steps shown in the flowchart. The method starts in step 810 and continues to step 815. In step 815, the ceramic space converter and glass are selected based on, for example, the layout of the die contacts on the die of the wafer, the carrying capacity of one of the composite space converters, the number of dies to be probed in parallel, etc. Space converter. In step 820, a load interface is applied between the ceramic space transformer and the glass space transformer. In some embodiments, the load interface may be an adhesive polymer. In some embodiments, the load interface may be peelable, thus facilitating the replacement of the glass space converter of the composite space converter. In some embodiments, the loading interface may be a primer material that is applied as a liquid phase for subsequent curing. In step 825, the ceramic space transformer and the glass space transformer are electrically connected using, for example, solder balls 242, copper pillars 244, wiring 250, or a combination thereof. In step 830, the composite space transformer detects the dies on the wafer. In operation, a composite space converter can be included in a probe card having a PCB, a reinforcing bar, a cable for connecting to a measuring device, etc. In step 835, it is determined whether the probe card needs to test one of the wafers with the new layout of die contacts. In step 830, if the wafer layout is not changed, the probe card can continue to test the wafer. If the layout of the die contact (or other attributes of the die design) has been changed, the method proceeds to step 840 of separating the ceramic space converter and the glass space converter. In some embodiments, the load interface 240 can be removed by, for example, peeling it off. In addition, the electrical contact between the ceramic space transformer and the glass space transformer is removed, for example, by cutting the wire 250 or by reheating the solder ball 242 or the copper post 244. In step 845, another glass space transformer is selected for attachment to the ceramic space transformer. Based on (for example) carrying requirements, signal/power wiring requirements, die contact layout, etc., a new composite space converter can be selected. In step 850, the ceramic space converter and the glass space converter can be mechanically and electrically connected to an updated composite probe card. In step 855, the wafer is probed by the probe card including the updated composite space converter. The method may end in step 860. Many embodiments of the technology described above can take the form of computer-executable or controller-executable instructions, which include a routine that can be programmed to be executed by a computer or controller. Those who are familiar with the relevant technology should understand that the technology can be practiced on a computer/controller system instead of the ones shown and described above. The technology can be embodied in a dedicated computer, dedicated integrated circuit (ASIC), specifically programmed, configured, or constructed controller or data processor to execute one or more of the computers described above Executable instructions. Of course, any logic or algorithm described in this article can be implemented in software or hardware or a combination of software and hardware. From the foregoing, it will be understood that specific embodiments of the technology have been described herein for illustrative purposes, but various modifications can be made without departing from the invention. In addition, although various advantages and features associated with specific embodiments have been described above in these embodiments, other embodiments can also exhibit these advantages and/or features, and not all embodiments must be demonstrated in the present technology. These advantages and/or features within the category. Therefore, the present invention may cover other embodiments that are not explicitly shown or described herein.

10‧‧‧探針卡12‧‧‧空間轉換器13‧‧‧跡線(繞線)14‧‧‧印刷電路板(PCB)16‧‧‧探針引腳18‧‧‧電子組件20‧‧‧接點結構(PCB至空間轉換器)22a、22b‧‧‧加強條24‧‧‧緊固件26‧‧‧用於空間轉換器之固持器28‧‧‧調平螺釘30‧‧‧測定器電纜40‧‧‧晶圓45‧‧‧晶粒46‧‧‧晶圓道48‧‧‧晶粒接點50‧‧‧測定器220‧‧‧陶瓷空間轉換器222‧‧‧接觸墊(例如,用於接觸器20)223‧‧‧繞線層/跡線224‧‧‧接觸墊228‧‧‧TCV通路230‧‧‧玻璃空間轉換器233‧‧‧繞線跡線234‧‧‧接觸墊236‧‧‧探針引腳238‧‧‧TGV通路240‧‧‧負載介面(例如,黏著層、可剝離層、底膠材料)共同地,將與空間轉換器互連242‧‧‧焊球244‧‧‧銅柱250‧‧‧接線260‧‧‧電子組件(電容器、電阻器、主動組件)10‧‧‧Probe card 12‧‧‧Space converter 13‧‧‧Trace (winding)14‧‧‧Printed circuit board (PCB)16‧‧‧Probe pin 18‧‧‧Electronic component 20‧ ‧‧Contact structure (PCB to space converter) 22a, 22b‧‧‧Strengthening strip 24‧‧‧Fastener 26‧‧‧Retainer 28‧‧‧Leveling screw 30‧‧‧Measurement Device cable 40‧‧‧wafer 45‧‧‧die 46‧‧‧wafer path 48‧‧‧die contact 50‧‧‧measurer 220‧‧‧ceramic space converter 222‧‧‧contact pad ( For example, for contactor 20) 223‧‧‧Wound layer/trace 224‧‧‧Contact pad 228‧‧‧TCV path 230‧‧‧Glass space converter 233‧‧‧Wound trace 234‧‧‧ Contact pad 236‧‧‧Probe pin 238‧‧‧TGV path 240‧‧‧Load interface (for example, adhesive layer, peelable layer, primer material) together, will interconnect with the space converter 242‧‧‧ Solder ball 244‧‧‧Copper pillar 250‧‧‧Wiring 260‧‧‧Electronic components (capacitors, resistors, active components)

本發明技術之上述態樣及許多隨附優點將變得更易於瞭解且當結合隨附圖式參考下列詳細描述時更好理解本發明技術之上述態樣及許多隨附優點,其中: 圖1A係根據先前技術之用於測試半導體晶圓之一探針卡之截面圖; 圖1B係圖1A中展示之探針卡之一部分示意之仰視圖; 圖2A係根據目前所揭示技術之實施例之一空間轉換器之一截面圖; 圖2B係圖2A中展示之空間轉換器之一部分示意之仰視圖; 圖3係根據目前所揭示技術之實施例之一空間轉換器之一截面圖; 圖4係根據目前所揭示技術之實施例之一空間轉換器之一截面圖; 圖5係根據目前所揭示技術之實施例之一空間轉換器之一截面圖; 圖6A係根據目前所揭示技術之實施例之一空間轉換器之一截面圖; 圖6B係圖6A中展示之空間轉換器之一部分示意之仰視圖; 圖7係根據目前所揭示技術之實施例之一空間轉換器之一截面圖;及 圖8係根據目前所揭示技術之實施例之用於製造空間轉換器之一方法之一流程圖。The above aspects and many accompanying advantages of the technology of the present invention will become easier to understand, and the above aspects and many accompanying advantages of the technology of the present invention will be better understood when referring to the following detailed description in conjunction with the accompanying drawings, in which: Figure 1A A cross-sectional view of a probe card used for testing semiconductor wafers according to the prior art; Fig. 1B is a schematic bottom view of a part of the probe card shown in Fig. 1A; Fig. 2A is an embodiment according to the currently disclosed technology A cross-sectional view of a space converter; Fig. 2B is a schematic bottom view of a part of the space converter shown in Fig. 2A; Fig. 3 is a cross-sectional view of a space converter according to an embodiment of the currently disclosed technology; Fig. 4 A cross-sectional view of a space converter according to an embodiment of the currently disclosed technology; FIG. 5 is a cross-sectional view of a space converter according to an embodiment of the currently disclosed technology; FIG. 6A is an implementation according to the currently disclosed technology A cross-sectional view of a space converter; Fig. 6B is a schematic bottom view of a part of the space converter shown in Fig. 6A; Fig. 7 is a cross-sectional view of a space converter according to an embodiment of the currently disclosed technology; And FIG. 8 is a flowchart of a method for manufacturing a space converter according to an embodiment of the currently disclosed technology.

230‧‧‧玻璃空間轉換器 230‧‧‧Glass Space Converter

236‧‧‧探針引腳 236‧‧‧Probe pin

238‧‧‧TGV通路 238‧‧‧TGV channel

242‧‧‧焊球 242‧‧‧Solder Ball

250‧‧‧接線 250‧‧‧Wiring

260‧‧‧電子組件(電容器、電阻器、主動組件) 260‧‧‧Electronic components (capacitors, resistors, active components)

Claims (24)

一種用於測試一半導體晶圓之晶粒之裝置,其包括:一複合空間轉換器,用於接觸該等晶粒,其包括:一第一空間轉換器,其具有經組態以面向該晶圓之一第一側,及背向該晶圓之一第二側,其中該第一空間轉換器係一第一下空間轉換器,其具有由陶瓷製成之一基板;一第二空間轉換器,其具有經組態以面向該晶圓之一第一側,及面向該第一空間轉換器之該第一側之一第二側,其中該第二空間轉換器具有由玻璃製成之一基板;一空間轉換器互連,其經組態以電連接該第一空間轉換器及該第二空間轉換器及;一第一上空間轉換器,其具有由陶瓷製成之一基板,其中該第一上空間轉換器接觸該第一下空間轉換器之該第二側。 A device for testing the dies of a semiconductor wafer, which includes: a composite space converter for contacting the dies, and includes: a first space converter that is configured to face the crystal A first side of the circle and a second side facing away from the wafer, wherein the first space transformer is a first lower space transformer having a substrate made of ceramic; a second space transformer Device having a first side configured to face the wafer, and a second side facing the first side of the first space transformer, wherein the second space transformer has a glass made of glass A substrate; a space transformer interconnect, which is configured to electrically connect the first space transformer and the second space transformer and; a first upper space transformer having a substrate made of ceramic, The first upper space transformer contacts the second side of the first lower space transformer. 如請求項1之裝置,進一步包括該第一空間轉換器與該第二空間轉換器之間之一負載介面。 Such as the device of claim 1, further comprising a load interface between the first space transformer and the second space transformer. 如請求項2之裝置,其中該負載介面係具有經附接至該第一空間轉換器之該第一側之一第一黏著性表面之一黏著性材料,及經附接至該第二空間轉換器之該第二側之一第二黏著性表面。 The device of claim 2, wherein the load interface has an adhesive material attached to a first adhesive surface of the first side of the first space converter, and is attached to the second space A second adhesive surface on the second side of the converter. 如請求項2之裝置,其中該負載介面係與該第一空間轉換器之該第一側及該第二空間轉換器之該第二側接觸之一底膠材料。 The device of claim 2, wherein the load interface is in contact with the first side of the first space transformer and the second side of the second space transformer with a primer material. 如請求項2之裝置,其中該負載介面係可剝離的。 Such as the device of claim 2, wherein the load interface is detachable. 如請求項1之裝置,其中該空間轉換器互連包括連接該第一空間轉換器之該第一側及該第二空間轉換器之該第一側之接線。 The device of claim 1, wherein the space transformer interconnection includes a wire connecting the first side of the first space transformer and the first side of the second space transformer. 如請求項6之裝置,其中該空間轉換器互連進一步包括連接該第一空間轉換器之該第一側及該第二空間轉換器之該第二側之焊球。 The device of claim 6, wherein the space transformer interconnection further includes a solder ball connecting the first side of the first space transformer and the second side of the second space transformer. 如請求項1之裝置,其中該空間轉換器互連包括連接該第一空間轉換器之該第一側及該第二空間轉換器之該第二側之焊球或銅柱。 The device of claim 1, wherein the space transformer interconnection includes solder balls or copper pillars connecting the first side of the first space transformer and the second side of the second space transformer. 如請求項8之裝置,其中該第一空間轉換器包含經電連接至處於該第一空間轉換器之該第一側之至少一個焊球或銅柱之至少一個貫穿陶瓷通路(TCV),且該第二空間轉換器包含經電連接至處於該第二空間轉換器之該第二側之該至少一個焊球或銅柱之至少一個貫穿玻璃通路(TGV)。 The device of claim 8, wherein the first space transformer includes at least one through ceramic via (TCV) electrically connected to at least one solder ball or copper pillar on the first side of the first space transformer, and The second space transformer includes at least one through glass via (TGV) electrically connected to the at least one solder ball or copper pillar on the second side of the second space transformer. 如請求項1之裝置,進一步包括處於該第二空間轉換器之該第一側之複數個探針引腳,其中該等探針引腳經組態以接觸該半導體晶圓之該等晶粒。 The device of claim 1, further comprising a plurality of probe pins on the first side of the second space converter, wherein the probe pins are configured to contact the dies of the semiconductor wafer . 如請求項1之裝置,進一步包括由該第一空間轉換器中之一開口形成之一腔中之該第二空間轉換器之該第二側承載的複數個電子組件。 The device of claim 1, further comprising a plurality of electronic components carried on the second side of the second space transformer in a cavity formed by an opening in the first space transformer. 如請求項11之裝置,其中該等電子組件係電容器。 Such as the device of claim 11, wherein the electronic components are capacitors. 如請求項1之裝置,進一步包括經電連接至該第一空間轉換器之該第二側之一印刷電路板(PCB)。 The device of claim 1, further comprising a printed circuit board (PCB) electrically connected to the second side of the first space converter. 如請求項1之裝置,進一步包括與處於該第二空間轉換器之該第一側之複數個探針引腳接觸之該晶圓。 The device of claim 1, further comprising the wafer in contact with a plurality of probe pins on the first side of the second space transformer. 一種用於測試一半導體晶圓之方法,其包括:使用經附接至一複合空間轉換器之複數個探針引腳接觸該半導體晶圓上之一晶粒,其中該複合空間轉換器包含:一第一空間轉換器,其具有經組態以面向該晶圓之一第一側,及背向該晶圓之一第二側,其中該第一空間轉換器係一第一下空間轉換器,其具有由陶瓷製成之一基板;一第二空間轉換器,其具有經組態以面向該晶圓之一第一側,及面向該第一空間轉換器之該第一側之一第二側,其中該第二空間轉換器具有由玻璃製成之一基板;一空間轉換器互連,其經組態以電連接該第一空間轉換器及該第二空間轉換器及;一第一上空間轉換器,其具有由陶瓷製成之一基板,其中該第一 上空間轉換器接觸該第一下空間轉換器之該第二側。 A method for testing a semiconductor wafer, comprising: contacting a die on the semiconductor wafer with a plurality of probe pins attached to a composite space transformer, wherein the composite space transformer includes: A first space transformer having a first side configured to face the wafer and a second side facing away from the wafer, wherein the first space transformer is a first lower space transformer , Which has a substrate made of ceramic; a second space transformer, which has a first side configured to face the wafer, and a first side that faces the first side of the first space transformer On two sides, the second space transformer has a substrate made of glass; a space transformer interconnect, which is configured to electrically connect the first space transformer and the second space transformer and; a first An upper space converter, which has a substrate made of ceramic, wherein the first The upper space transformer contacts the second side of the first lower space transformer. 如請求項15之方法,其中該複合空間轉換器包含該第一空間轉換器與該第二空間轉換器之間之一負載介面。 The method of claim 15, wherein the composite space transformer includes a load interface between the first space transformer and the second space transformer. 如請求項16之方法,其中該負載介面係可剝離的,該方法進一步包括:剝離該第一空間轉換器與該第二空間轉換器之間之該負載介面,其中該第二空間轉換器係可替代的;使用具有不同於該經替代第二空間轉換器之一設計之另一第二空間轉換器來替代該第二空間轉換器;及電連接該第一空間轉換器及該另一第二空間轉換器。 Such as the method of claim 16, wherein the load interface is peelable, the method further comprises: peeling the load interface between the first space transformer and the second space transformer, wherein the second space transformer is Alternative; replacing the second space transformer with another second space transformer having a design different from that of the replaced second space transformer; and electrically connecting the first space transformer and the another second space transformer Two space converters. 如請求項15之方法,其中該第二空間轉換器係可替代的,該方法進一步包括:使用具有不同於該經替代第二空間轉換器之一設計之另一第二空間轉換器來替代該第二空間轉換器;及電連接該第一空間轉換器及該另一第二空間轉換器。 The method of claim 15, wherein the second space transformer is replaceable, and the method further comprises: replacing the second space transformer with another second space transformer having a design different from that of the replaced second space transformer A second space transformer; and electrically connected to the first space transformer and the other second space transformer. 如請求項18之方法,其中電連接該第一空間轉換器及該另一第二空間轉換器包含使用接線將該第一空間轉換器之一周邊與該另一第二空間轉換器之一周邊連接。 The method of claim 18, wherein electrically connecting the first space transformer and the other second space transformer includes using wiring to connect a periphery of the first space transformer and a periphery of the other second space transformer connect. 如請求項19之方法,其中電連接該第一空間轉換器及該另一第二空間轉換器包含通過焊球將該第一空間轉換器之一第一側與該另一第二空間轉換器連接。 The method of claim 19, wherein electrically connecting the first space transformer and the another second space transformer includes a first side of the first space transformer and the other second space transformer through solder balls connect. 如請求項18之方法,其中電連接該第一空間轉換器及該另一第二空間轉換器包含通過焊球或銅柱將該第一空間轉換器之一第一側與該另一第二空間轉換器連接。 The method of claim 18, wherein electrically connecting the first space transformer and the other second space transformer includes a first side of the first space transformer and the other second space transformer through solder balls or copper pillars Space converter connection. 如請求項15之方法,其中該空間轉換器互連包括連接該第一空間轉換器之該第一側及該第二空間轉換器之該第一側的接線。 The method of claim 15, wherein the space transformer interconnection includes a wire connecting the first side of the first space transformer and the first side of the second space transformer. 如請求項15之方法,其中該空間轉換器互連包括連接該第一空間轉換器之該第一側及該第二空間轉換器之該第二側的焊球。 The method of claim 15, wherein the space transformer interconnection includes solder balls connecting the first side of the first space transformer and the second side of the second space transformer. 如請求項15之方法,其中該空間轉換器互連包括連接該第一空間轉換器之該第一側及該第二空間轉換器之該第二側的銅柱。 The method of claim 15, wherein the space transformer interconnection includes a copper pillar connecting the first side of the first space transformer and the second side of the second space transformer.
TW106127844A 2016-08-16 2017-08-16 Space transformers for probe cards, and associated systems and methods TWI743171B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662375552P 2016-08-16 2016-08-16
US62/375,552 2016-08-16

Publications (2)

Publication Number Publication Date
TW201820575A TW201820575A (en) 2018-06-01
TWI743171B true TWI743171B (en) 2021-10-21

Family

ID=61197015

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106127844A TWI743171B (en) 2016-08-16 2017-08-16 Space transformers for probe cards, and associated systems and methods

Country Status (2)

Country Link
TW (1) TWI743171B (en)
WO (1) WO2018035054A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110879342B (en) * 2018-08-27 2021-11-23 创意电子股份有限公司 Detection device
US20220196706A1 (en) * 2020-12-22 2022-06-23 Mediatek Inc. Probe card assembly
TWI792528B (en) * 2021-08-31 2023-02-11 旺矽科技股份有限公司 Probe card and wafer probing assembly thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070145989A1 (en) * 2005-12-27 2007-06-28 Hua Zhu Probe card with improved transient power delivery
US20090142707A1 (en) * 2004-08-19 2009-06-04 Formfactor, Inc. Method to build a wirebond probe card in a many at a time fashion
US20100127725A1 (en) * 2008-11-21 2010-05-27 Smith Kenneth R Replaceable coupon for a probing apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9470750B2 (en) * 2013-04-16 2016-10-18 Mpi Corporation Alignment adjusting mechanism for probe card, position adjusting module using the same and modularized probing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090142707A1 (en) * 2004-08-19 2009-06-04 Formfactor, Inc. Method to build a wirebond probe card in a many at a time fashion
US20070145989A1 (en) * 2005-12-27 2007-06-28 Hua Zhu Probe card with improved transient power delivery
US20100127725A1 (en) * 2008-11-21 2010-05-27 Smith Kenneth R Replaceable coupon for a probing apparatus

Also Published As

Publication number Publication date
WO2018035054A1 (en) 2018-02-22
TW201820575A (en) 2018-06-01

Similar Documents

Publication Publication Date Title
Smith et al. Evaluation of TSV and micro-bump probing for wide I/O testing
US7808261B2 (en) Contact with plural beams
US10119995B2 (en) Probe card
JP2011034999A (en) Semiconductor device, and method of manufacturing the same
TWI743171B (en) Space transformers for probe cards, and associated systems and methods
JP2006032593A (en) Probe cassette, semiconductor tester and method for manufacturing semiconductor device
US7825410B2 (en) Semiconductor device
US11199578B2 (en) Testing apparatus and testing method
KR101345308B1 (en) Probe Card
KR20100112629A (en) Manufacturing method and wafer unit for testing
US6867610B2 (en) Test structure for determining the stability of electronic devices comprising connected substrates
CN110531125B (en) Space transformer, probe card and manufacturing method thereof
KR20130130605A (en) Wafer level package resistance monitor scheme
TWM618418U (en) Probe card
KR100748393B1 (en) Substrate structure and probe card having the same
TW201825920A (en) Vertical ultra-low leakage current probe card for dc parameter test
US20080061812A1 (en) Component-attach test vehicle
US20160091532A1 (en) Flexible film electrical-test substrates with conductive coupling post(s) for integrated circuit (ic) bump(s) electrical testing, and related methods and testing apparatuses
TWI431278B (en) Semiconductor test probe card space transformer
JP2023507915A (en) Probe card assembly for automatic inspection equipment
Gunji et al. Cost-effective Capacitive Testing for Fine Pitch RDL First
JP4877465B2 (en) Semiconductor device, semiconductor device inspection method, semiconductor wafer
JP2007012709A (en) Semiconductor inspection device, and inspection method of semiconductor device
KR100274556B1 (en) System for testing on-wafer devices
JP2008205282A (en) Probe card