TWI738139B - Device, system, and method for data acquisition - Google Patents

Device, system, and method for data acquisition Download PDF

Info

Publication number
TWI738139B
TWI738139B TW108144274A TW108144274A TWI738139B TW I738139 B TWI738139 B TW I738139B TW 108144274 A TW108144274 A TW 108144274A TW 108144274 A TW108144274 A TW 108144274A TW I738139 B TWI738139 B TW I738139B
Authority
TW
Taiwan
Prior art keywords
data
frequency
sensing data
unit
data acquisition
Prior art date
Application number
TW108144274A
Other languages
Chinese (zh)
Other versions
TW202123024A (en
Inventor
卓凱翊
Original Assignee
財團法人資訊工業策進會
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人資訊工業策進會 filed Critical 財團法人資訊工業策進會
Priority to TW108144274A priority Critical patent/TWI738139B/en
Priority to CN202010113266.2A priority patent/CN112904799A/en
Publication of TW202123024A publication Critical patent/TW202123024A/en
Application granted granted Critical
Publication of TWI738139B publication Critical patent/TWI738139B/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31204Blind node, executes control, data acquisition without having operator interfaces

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

A device, system and method for data acquisition are provided. The device for data acquisition includes a data acquisition unit, a pre-processing unit, and a frequency adjustment unit. The data acquisition unit receives sensing data of sensing elements, and converts the sensing data into digital sensing data respectively according to sampling frequencies of the sensing data, wherein each of the digital sensing data corresponds to a data threshold. The pre-processing unit compares at least one digital sensing data with a corresponding data threshold to determine whether to transmit a frequency adjustment message to the frequency adjustment unit. The frequency adjustment unit adjusts the sample frequency of at least one sensing data according to the frequency adjustment message, so as to dynamically calibrate the sample frequency of each of the sensing elements.

Description

資料擷取裝置、系統及其方法Data acquisition device, system and method

本發明是有關於一種資料擷取,且特別是一種可動態調整取樣頻率的資料擷取裝置、系統及其方法。The present invention relates to a data acquisition device, a system and a method thereof that can dynamically adjust the sampling frequency.

一般而言,不同的感測器所使用的通訊介面不盡相同,使得每一個感測器所使用的運作頻率也不完全相同。再者,即使是同一個通訊介面也可能是在不同的運作頻率下運作,例如標準的I2C(Inter-Integrated Circuit)可以支援100kHz、400kHz、1MHz、3.4MHz及5MHz的運作頻率。因此,對資料擷取設備而言,若同一個資料擷取設備裝設不同介面的感測器或者感測器是操作在不同的運作頻率,將導致接收的資料頻率不一致,使得各個關聯資料時間點無法同步對齊,這將嚴重的影響到後續資料分析的可靠度。然而,即使多個感測器的取樣頻率相同,也可能會因為不同的資料類型而出現資料冗長的現象,導致資料量過多。此外,資料擷取設備的實際取樣頻率乃是取決於韌體程序在硬體上的運作速度,所以實際取樣頻率將稍低於理想取樣頻率。因此,對於裝設不同介面的感測器的資料擷取設備或者感測器是操作在不同運作頻率的資料擷取設備而言,如何提供一種可以動態調整各個感測器的取樣頻率,以準確記錄資料特徵的完整性,同時達到降低資料量、保留關鍵資料特徵並提高後續資料分析的可靠度,以及即時校正取樣頻率,將是本案所要著重的問題與解決的重點。Generally speaking, different sensors use different communication interfaces, so that the operating frequencies used by each sensor are not exactly the same. Furthermore, even the same communication interface may operate at different operating frequencies. For example, a standard I2C (Inter-Integrated Circuit) can support operating frequencies of 100kHz, 400kHz, 1MHz, 3.4MHz, and 5MHz. Therefore, for data acquisition equipment, if the same data acquisition equipment is equipped with sensors with different interfaces or the sensors are operated at different operating frequencies, the frequency of the received data will be inconsistent, and the time of each associated data will be inconsistent. The points cannot be aligned synchronously, which will seriously affect the reliability of subsequent data analysis. However, even if the sampling frequency of multiple sensors is the same, the data may be redundant due to different data types, resulting in an excessive amount of data. In addition, the actual sampling frequency of the data acquisition device depends on the operating speed of the firmware program on the hardware, so the actual sampling frequency will be slightly lower than the ideal sampling frequency. Therefore, for data acquisition equipment equipped with sensors with different interfaces or data acquisition equipment operating at different operating frequencies, how to provide a way to dynamically adjust the sampling frequency of each sensor to accurately Recording the integrity of the data characteristics, while reducing the amount of data, retaining key data characteristics and improving the reliability of subsequent data analysis, as well as real-time correction of sampling frequency, will be the focus of this case and the focus of the solution.

有鑑於此,本發明實施例提供一種資料擷取裝置,包括:資料擷取單元、前置處理單元、頻率調整單元以及通訊介面單元。資料擷取單元用以接收多個感測元件之多個感測資料,其中每一個感測資料分別對應到取樣頻率,資料擷取單元根據多個取樣頻率分別將多個感測資料轉換為多個數位感測資料,其中每一個數位感測資料分別對應至資料門檻值。前置處理單元耦接於資料擷取單元且接收數位感測資料,其中前置處理單元包括門檻值判斷電路,門檻值判斷電路將至少一數位感測資料與對應的資料門檻值進行比對以決定是否傳送頻率調整訊息。頻率調整單元耦接於資料擷取單元與前置處理單元之間,且根據頻率調整訊息調整至少一感測資料的取樣頻率。In view of this, an embodiment of the present invention provides a data capture device, including: a data capture unit, a pre-processing unit, a frequency adjustment unit, and a communication interface unit. The data acquisition unit is used to receive a plurality of sensing data of a plurality of sensing elements, each of the sensing data corresponds to a sampling frequency, and the data acquisition unit converts the plurality of sensing data into a plurality of sensing data according to the plurality of sampling frequencies. Digital sensing data, each of which corresponds to a data threshold. The pre-processing unit is coupled to the data acquisition unit and receives the digital sensing data. The pre-processing unit includes a threshold determination circuit. The threshold determination circuit compares at least one digital sensing data with a corresponding data threshold to Decide whether to send frequency adjustment messages. The frequency adjustment unit is coupled between the data acquisition unit and the preprocessing unit, and adjusts the sampling frequency of at least one sensing data according to the frequency adjustment message.

本發明實施例提供一種資料擷取系統,包括:感測裝置、資料擷取裝置以及主機。感測裝置具有多個感測元件,感測元件分別感測出多個感測資料。資料擷取裝置耦接於感測裝置,資料擷取裝置包括資料擷取單元、前置處理單元、頻率調整單元以及通訊介面單元。資料擷取單元用以接收感測資料,其中每一個感測資料分別對應到取樣頻率,資料擷取單元根據取樣頻率,分別將感測資料轉換為多個數位感測資料,其中每一個數位感測資料分別對應至資料門檻值。前置處理單元耦接於資料擷取單元且接收數位感測資料,其中前置處理單元包括門檻值判斷電路,門檻值判斷電路將至少一數位感測資料與對應的資料門檻值進行比對以決定是否傳送頻率調整訊息。頻率調整單元耦接於資料擷取單元與前置處理單元之間,且根據頻率調整訊息調整至少一感測資料的取樣頻率。通訊介面單元耦接於前置處理單元。主機耦接於資料擷取裝置,主機包括資料儲存單元,用以通過通訊介面單元接收且儲存數位感測資料。An embodiment of the present invention provides a data acquisition system, including: a sensing device, a data acquisition device, and a host. The sensing device has a plurality of sensing elements, and the sensing elements respectively sense a plurality of sensing data. The data acquisition device is coupled to the sensing device. The data acquisition device includes a data acquisition unit, a pre-processing unit, a frequency adjustment unit, and a communication interface unit. The data acquisition unit is used to receive the sensing data. Each sensing data corresponds to a sampling frequency. The data acquisition unit converts the sensing data into a plurality of digital sensing data according to the sampling frequency. The measured data respectively correspond to the data threshold. The pre-processing unit is coupled to the data acquisition unit and receives the digital sensing data. The pre-processing unit includes a threshold determination circuit. The threshold determination circuit compares at least one digital sensing data with a corresponding data threshold to Decide whether to send frequency adjustment messages. The frequency adjustment unit is coupled between the data acquisition unit and the preprocessing unit, and adjusts the sampling frequency of at least one sensing data according to the frequency adjustment message. The communication interface unit is coupled to the pre-processing unit. The host is coupled to the data acquisition device, and the host includes a data storage unit for receiving and storing digital sensing data through the communication interface unit.

本發明實施例提供一種資料擷取方法,適用於資料擷取裝置,其中資料擷取裝置包括資料擷取單元、前置處理單元及頻率調整單元,且資料擷取方法包括:(A)於資料擷取單元接收多個感測元件之多個感測資料,其中每一個感測資料分別對應到取樣頻率;(B)於資料擷取單元根據這些感測資料的取樣頻率,分別將感測資料轉換為多個數位感測資料,其中每一個數位感測資料分別對應至資料門檻值;(C)於前置處理單元將至少一數位感測資料與對應的資料門檻值進行比對,以決定是否傳送頻率調整訊息至頻率調整單元,若是,於頻率調整單元根據頻率調整訊息調整至少一感測資料的取樣頻率。The embodiment of the present invention provides a data acquisition method suitable for a data acquisition device, wherein the data acquisition device includes a data acquisition unit, a pre-processing unit, and a frequency adjustment unit, and the data acquisition method includes: (A) in the data The acquisition unit receives a plurality of sensing data from a plurality of sensing elements, and each of the sensing data corresponds to a sampling frequency; (B) the data acquisition unit separates the sensing data according to the sampling frequency of the sensing data Converted into multiple digital sensing data, each of which corresponds to a data threshold; (C) At least one digital sensing data is compared with the corresponding data threshold in the pre-processing unit to determine Whether to send a frequency adjustment message to the frequency adjustment unit, if so, the frequency adjustment unit adjusts the sampling frequency of at least one sensing data according to the frequency adjustment message.

本發明實施例所提供的資料擷取裝置、系統及其方法,可以動態地調整各個感測器的取樣頻率與即時設定或調整各種運算參數的設定值,以準確記錄資料特徵的完整性,同時達到降低資料量、保留關鍵資料特徵並提高後續資料分析的可靠度,以及達到即時校正取樣頻率等功效。The data acquisition device, system and method provided by the embodiments of the present invention can dynamically adjust the sampling frequency of each sensor and real-time setting or adjusting the setting values of various calculation parameters, so as to accurately record the integrity of data characteristics, and at the same time To reduce the amount of data, retain key data characteristics and improve the reliability of subsequent data analysis, and achieve real-time correction of sampling frequency and other functions.

上述說明僅是本發明技術方案的概述,為了能夠更清楚瞭解本發明的技術手段,而可依照說明書的內容予以實施,並且為了讓本發明的上述和其他目的、特徵和優點能夠更明顯易懂,以下特舉較佳實施例,並配合附圖,詳細說明如下。為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式,作詳細說明如下。The above description is only an overview of the technical solution of the present invention. In order to understand the technical means of the present invention more clearly, it can be implemented in accordance with the content of the specification, and in order to make the above and other objectives, features and advantages of the present invention more obvious and understandable. In the following, the preferred embodiments are cited in conjunction with the drawings, and the detailed description is as follows. In order to make the above and other objects, features and advantages of the present invention more comprehensible, the following specific examples are given in conjunction with the accompanying drawings, which are described in detail as follows.

本發明實施例所提供之資料擷取裝置、系統及其方法可應用於工廠沖壓或電腦數值控制(Computer Numerical Control, CNC)加工機台等安裝感測元件的設備。The data acquisition device, system and method provided by the embodiments of the present invention can be applied to equipment with sensing components such as factory stamping or computer numerical control (CNC) processing machines.

本發明實施例可以根據不同的需求而有不同的資料擷取裝置、系統及其方法,初步可以分為五種實作方式。第一種實作方式是關於取樣頻率的調整。更進一步來說,資料擷取裝置對特定感測元件(例如是運作頻率較高的感測器或是溫度感測器)進行取樣頻率的調整,使這些特定感測元件的取樣頻率與其它感測元件(例如運作頻率較低的感測器或是壓力感測器)的取樣頻率達到一致性,從而達到頻率同步對齊的目的。此外,資料擷取裝置可以在異常即將發生時(例如機台的溫度異常上升時),根據感測資料來動態調整特定感測元件的取樣頻率,以確保後續資料分析的可靠度或減少資料的記錄量。The embodiments of the present invention may have different data acquisition devices, systems and methods according to different requirements, which can be preliminarily divided into five implementation modes. The first implementation method is about the adjustment of the sampling frequency. Furthermore, the data acquisition device adjusts the sampling frequency of specific sensing elements (for example, a sensor with a higher operating frequency or a temperature sensor), so that the sampling frequency of these specific sensing elements is the same as that of other sensing elements. The sampling frequency of the sensing element (such as a sensor with a lower operating frequency or a pressure sensor) achieves consistency, so as to achieve the purpose of frequency synchronization and alignment. In addition, the data acquisition device can dynamically adjust the sampling frequency of a specific sensing element based on the sensing data when an abnormality is about to occur (for example, when the temperature of the machine rises abnormally), so as to ensure the reliability of subsequent data analysis or reduce data loss. The amount of records.

第二種實作方式是關於取樣頻率的校正。資料擷取裝置的前置處理單元根據數位感測資料來計算感測資料的實際取樣頻率。更進一步來說,首先將感測資料的取樣頻率與實際取樣頻率進行差值比對,接著根據比對的結果進行取樣頻率的校正程序。藉此,改善因韌體程序在硬體上的運作速度所造成的實際取樣頻率低於所設定之取樣頻率(即理想取樣頻率)的現象。The second implementation method is about the correction of sampling frequency. The pre-processing unit of the data acquisition device calculates the actual sampling frequency of the sensed data based on the digital sensed data. Furthermore, first, the sampling frequency of the sensed data is compared with the actual sampling frequency, and then the sampling frequency correction procedure is performed according to the comparison result. In this way, the phenomenon that the actual sampling frequency is lower than the set sampling frequency (that is, the ideal sampling frequency) caused by the operating speed of the firmware program on the hardware is improved.

第三種實作方式是關於算術運算。更進一步來說,資料擷取裝置對擷取後的感測資料(數位感測資料)進行邏輯運算(即資料前置處理),例如是各種單元的換算,以產生算術感測資料,並通過通訊介面將此算術感測資料傳送至主機。此外,此邏輯運算的演算法可以通過主機來重新設定或調整。The third way of implementation is about arithmetic operations. Furthermore, the data acquisition device performs logical operations (ie data preprocessing) on the acquired sensing data (digital sensing data), such as conversion of various units to generate arithmetic sensing data, and pass The communication interface sends this arithmetic sensing data to the host. In addition, the algorithm of this logic operation can be reset or adjusted by the host.

第四種實作方式是關於動態調整取樣頻率。更進一步來說,當數位感測資料與對應的資料門檻值之間的誤差值大於誤差門檻值時,資料擷取裝置之前置處理單元將調整對應數位感測資料的取樣頻率直到誤差值小於誤差門檻值。藉此,改善傳統資料擷取裝置無法動態調整取樣頻率的缺失。The fourth implementation method is about dynamically adjusting the sampling frequency. Furthermore, when the error value between the digital sensing data and the corresponding data threshold is greater than the error threshold, the pre-processing unit of the data acquisition device will adjust the sampling frequency of the corresponding digital sensing data until the error is less than Error threshold. In this way, the lack of a traditional data acquisition device that cannot dynamically adjust the sampling frequency is improved.

第五種實作方式是關於參數的設定。更進一步來說,資料擷取裝置的各樣參數可以通過主機重新設定或調整。藉此,提升參數設定的便利性與時效性。The fifth implementation method is about parameter setting. Furthermore, various parameters of the data acquisition device can be reset or adjusted by the host. In this way, the convenience and timeliness of parameter setting is improved.

首先請參閱圖1,圖1是依照本發明實施例所繪示之資料擷取系統的架構示意圖。資料擷取系統1包括一感測裝置20、一資料擷取裝置10及一主機30。感測裝置20具有多個感測元件20-1至20-N,感測元件20-1至20-N將感測到的物理訊號轉換為電氣訊號以分別感測出多個感測資料。值得注意的是,感測元件20-1至20-N可以是類比型式或數位型式的感測元件。一般來說,類比型式的感測元件主要是提供類比(連續性)的感測資料,而數位型式的感測元件主要是根據不同的傳輸速度來提供數位的感測資料。例如:感測元件20-1可以是溫度感測器,用以感測出溫度的資料。感測元件20-2可以是壓力感測器,用以感測出壓力的資料。感測元件20-3(圖未繪)可以是振動加速規(Accelerometer),用以感測出振動的資料。感測元件20-4(圖未繪)可以是類比型式的感測元件。First, please refer to FIG. 1. FIG. 1 is a schematic diagram of a data acquisition system according to an embodiment of the present invention. The data acquisition system 1 includes a sensing device 20, a data acquisition device 10 and a host 30. The sensing device 20 has a plurality of sensing elements 20-1 to 20-N, and the sensing elements 20-1 to 20-N convert the sensed physical signals into electrical signals to respectively sense a plurality of sensing data. It should be noted that the sensing elements 20-1 to 20-N may be analog or digital sensing elements. Generally speaking, the analog type sensing element mainly provides analog (continuous) sensing data, while the digital type sensing element mainly provides digital sensing data according to different transmission speeds. For example, the sensing element 20-1 may be a temperature sensor for sensing temperature data. The sensing element 20-2 may be a pressure sensor for sensing pressure data. The sensing element 20-3 (not shown in the figure) can be a vibration accelerometer (Accelerometer) for sensing vibration data. The sensing element 20-4 (not shown in the figure) may be an analog type sensing element.

資料擷取裝置10耦接於感測裝置20,用以將接收到的感測資料進行資料擷取、前置處理以及頻率調整等處理。資料擷取裝置10包括資料擷取單元110、前置處理單元120、頻率調整單元130及通訊介面單元140。資料擷取單元110用以接收感測元件20-1至20-N的感測資料(圖未繪),其中感測元件20-1至20-N的感測資料分別對應到一取樣頻率,亦即每一個感測資料有自己對應的取樣頻率,且資料擷取單元110將依照各自的取樣頻率來接收感測元件20-1至20-N感測出的感測資料。此外,資料擷取單元110根據每一個感測資料對應的取樣頻率,分別將這些感測資料轉換為對應的數位感測資料(圖未繪),也就是將收到的類比感測資料或數位感測資料轉換為可解讀的數位資料。The data acquisition device 10 is coupled to the sensing device 20, and is used for processing the received sensing data such as data acquisition, preprocessing, and frequency adjustment. The data capture device 10 includes a data capture unit 110, a pre-processing unit 120, a frequency adjustment unit 130, and a communication interface unit 140. The data acquisition unit 110 is used to receive the sensing data of the sensing elements 20-1 to 20-N (not shown in the figure), wherein the sensing data of the sensing elements 20-1 to 20-N respectively correspond to a sampling frequency, That is, each sensing data has its own corresponding sampling frequency, and the data acquisition unit 110 will receive the sensing data sensed by the sensing elements 20-1 to 20-N according to the respective sampling frequency. In addition, the data acquisition unit 110 converts the sensed data into corresponding digital sensed data (not shown in the figure) according to the corresponding sampling frequency of each sensed data, that is, converts the received analog sensed data or digital The sensed data is converted into interpretable digital data.

前置處理單元120耦接於資料擷取單元110且接收這些數位感測資料。前置處理單元120包括門檻值判斷電路1202,其中每一個數位感測資料對應至一資料門檻值。門檻值判斷電路1202分別將每一個數位感測資料與對應的資料門檻值進行比對,以決定是否傳送多個頻率調整訊息至頻率調整單元130。在其他實施例中,門檻值判斷電路1202也可以將多個取樣頻率與一頻率目標值進行比對,以決定是否傳送頻率調整訊息至頻率調整單元130,以藉此將多個取樣頻率調整至頻率目標值。有關門檻值判斷電路1202如何決定傳送頻率調整訊息至頻率調整單元130的實施方式,將於後面第一種實作方式中說明,故在此不論述。值得注意的是,資料門檻值可以直接由主機30進行設定,以取代傳統通過資料擷取裝置10重新燒入韌體的設定方式。藉此,提升參數設定的便利性與時效性。The pre-processing unit 120 is coupled to the data acquisition unit 110 and receives these digital sensing data. The pre-processing unit 120 includes a threshold value determining circuit 1202, wherein each digital sensing data corresponds to a data threshold value. The threshold value determining circuit 1202 compares each digital sensing data with the corresponding data threshold value to determine whether to send multiple frequency adjustment messages to the frequency adjustment unit 130. In other embodiments, the threshold value determining circuit 1202 may also compare multiple sampling frequencies with a frequency target value to determine whether to send a frequency adjustment message to the frequency adjustment unit 130, so as to adjust the multiple sampling frequencies to Frequency target value. The implementation of how the threshold value determining circuit 1202 decides to transmit the frequency adjustment message to the frequency adjustment unit 130 will be described in the first implementation manner later, so it will not be discussed here. It is worth noting that the data threshold value can be directly set by the host 30 to replace the traditional setting method of re-burning the firmware through the data capture device 10. In this way, the convenience and timeliness of parameter setting is improved.

此外,當門檻值判斷電路1202判斷出至少一筆數位感測資料與對應的資料門檻值之間的誤差值大於誤差門檻值時,頻率調整單元130將調整對應的數位感測資料的取樣頻率,直到誤差值小於誤差門檻值。更進一步來說,頻率調整單元130係使用一預定演算法(例如是比例-積分-微分(PID)演算法)來調整取樣頻率直到誤差值小於誤差門檻值。有關頻率調整單元130如何調整對應的數位感測資料的取樣頻率,直到誤差值小於誤差門檻值的實施方式,將於後面第四種實作方式中說明,故在此不論述。In addition, when the threshold determination circuit 1202 determines that the error value between at least one piece of digital sensing data and the corresponding data threshold is greater than the error threshold, the frequency adjustment unit 130 will adjust the sampling frequency of the corresponding digital sensing data until The error value is less than the error threshold. Furthermore, the frequency adjustment unit 130 uses a predetermined algorithm (for example, a proportional-integral-derivative (PID) algorithm) to adjust the sampling frequency until the error value is less than the error threshold. The implementation of how the frequency adjustment unit 130 adjusts the sampling frequency of the corresponding digital sensing data until the error value is less than the error threshold will be described in the fourth implementation manner later, so it will not be discussed here.

另外,前置處理單元120更包括一算術邏輯電路1201,算術邏輯電路1201耦接門檻值判斷電路1202,用以對多個數位感測資料進行邏輯運算,例如是四則運算(Elementary arithmetic)、布林運算、函數運算,以產生多個算術感測資料,並通過通訊介面單元140傳送多個算術感測資料至主機30。有關算術邏輯電路1201如何產生算術感測資料的實施方式,將於後面第三種實作方式中說明,故在此不論述。In addition, the pre-processing unit 120 further includes an arithmetic logic circuit 1201. The arithmetic logic circuit 1201 is coupled to the threshold value judgment circuit 1202 for performing logical operations on a plurality of digital sensing data, such as elementary arithmetic and distribution. Forest operations and function operations to generate a plurality of arithmetic sensing data, and transmit the plurality of arithmetic sensing data to the host 30 through the communication interface unit 140. The implementation of how the arithmetic logic circuit 1201 generates the arithmetic sensing data will be described in the third implementation method below, so it will not be discussed here.

頻率調整單元130耦接於資料擷取單元110與前置處理單元120之間,其用以根據頻率調整訊息調整至少一個感測資料的取樣頻率。通訊介面單元140耦接於前置處理單元120,用以傳送多個數位感測資料至主機30以及接收主機30所傳送的一個或多個參數控制訊息。這裡所提到的通訊介面單元140,可以是無線資料傳輸的技術,例如Wi-Fi、藍牙(Bluetooth)、ZigBee,或者是有線資料傳輸的技術,例如UART、TCP/IP,本發明對此不作限制。The frequency adjustment unit 130 is coupled between the data acquisition unit 110 and the pre-processing unit 120, and is used for adjusting the sampling frequency of at least one sensing data according to the frequency adjustment message. The communication interface unit 140 is coupled to the pre-processing unit 120 for transmitting a plurality of digital sensing data to the host 30 and receiving one or more parameter control messages transmitted by the host 30. The communication interface unit 140 mentioned here may be a wireless data transmission technology, such as Wi-Fi, Bluetooth (Bluetooth), ZigBee, or a wired data transmission technology, such as UART, TCP/IP, and the present invention does not do this. limit.

主機30耦接於資料擷取裝置10,主機30包括資料儲存單元301,用以接收並儲存多個數位感測資料。這裡所提到的主機30可以是內含作業系統的網路伺服器,且主機30可以通過遠端控制來控制資料擷取裝置10。此外,主機30更包括參數設定單元302。請同時參閱圖2,圖2是依照本發明實施例所繪示之參數設定單元的架構示意圖。參數設定單元302包括頻率參數設定電路3021、門檻值設定電路3022以及運算參數設定電路3023。頻率參數設定電路3021用以設定每個感測資料的取樣頻率。門檻值設定電路3022用以設定每個數位感測資料的資料門檻值。而運算參數設定電路3023則用以設定算術邏輯電路1201對這些數位感測資料進行邏輯運算的演算法。值得注意的是,主機30可以根據不同的實作方式,選擇性的傳送一個或多個參數控制訊息至資料擷取裝置10以設定或調整各種參數。而有關頻率參數設定電路3021如何設定感測資料的取樣頻率、門檻值設定電路3022如何設定數位感測資料的資料門檻值以及運算參數設定電路3023如何設定邏輯運算的演算法的實施方式,將於後面第五種實作方式中說明,故在此不論述。The host 30 is coupled to the data acquisition device 10, and the host 30 includes a data storage unit 301 for receiving and storing a plurality of digital sensing data. The host 30 mentioned here can be a network server containing an operating system, and the host 30 can control the data capture device 10 through remote control. In addition, the host 30 further includes a parameter setting unit 302. Please refer to FIG. 2 at the same time. FIG. 2 is a schematic structural diagram of a parameter setting unit according to an embodiment of the present invention. The parameter setting unit 302 includes a frequency parameter setting circuit 3021, a threshold value setting circuit 3022, and an arithmetic parameter setting circuit 3023. The frequency parameter setting circuit 3021 is used to set the sampling frequency of each sensing data. The threshold setting circuit 3022 is used to set the data threshold of each digital sensing data. The arithmetic parameter setting circuit 3023 is used to set the arithmetic logic circuit 1201 to perform logic operations on the digital sensing data. It is worth noting that the host 30 can selectively send one or more parameter control messages to the data acquisition device 10 to set or adjust various parameters according to different implementation methods. The implementation of how the frequency parameter setting circuit 3021 sets the sampling frequency of the sensing data, how the threshold setting circuit 3022 sets the data threshold of the digital sensing data, and how the calculation parameter setting circuit 3023 sets the logic operation algorithm will be It will be explained in the fifth implementation method, so it will not be discussed here.

在其他實施例中,前置處理單元120之算術邏輯電路1201亦可根據這些數位感測資料分別計算每個感測資料的一實際取樣頻率。而門檻值判斷電路1202分別將每個感測資料的取樣頻率與對應的實際取樣頻率進行比對,以決定是否傳送一頻率校正訊息至頻率調整單元130。頻率調整單元130再根據頻率校正訊息將至少一實際取樣頻率調整至對應的取樣頻率。而有關實際取樣頻率,以及門檻值判斷電路1202如何決定是否傳送頻率校正訊息至頻率調整單元130的實施方式將於第二種實作方式中說明,故在此不論述。In other embodiments, the arithmetic logic circuit 1201 of the preprocessing unit 120 can also calculate an actual sampling frequency of each sensing data according to the digital sensing data. The threshold judgment circuit 1202 compares the sampling frequency of each sensing data with the corresponding actual sampling frequency to determine whether to send a frequency correction message to the frequency adjustment unit 130. The frequency adjustment unit 130 then adjusts at least one actual sampling frequency to a corresponding sampling frequency according to the frequency correction message. The actual sampling frequency and how the threshold determination circuit 1202 decides whether to send the frequency correction message to the frequency adjustment unit 130 will be described in the second implementation manner, so it will not be discussed here.

接著說明的是,本發明實施例的第一種實作方式。一般而言,感測元件分為類比感測元件與數位感測元件。對於數位感測元件而言,不同通訊介面的感測元件會有不同的通訊協定(亦即不同的運作頻率、傳輸頻率),使得每一筆接收資料的頻率不一致。此結果造成同一個系統架構中各個資料關聯時間點無法同步對齊,從而嚴重影響後續資料分析的可靠度。另外,在異常即將發生時(例如機台的溫度異常上升時),若特定感測元件的取樣頻率沒有即時提升,將無法準確記錄異常發生時的關鍵特徵,從而嚴重影響後續資料分析的可靠度。因此,本發明實施例的第一種實作方式的目的便是改善上述的缺失。Next, the first implementation manner of the embodiment of the present invention will be described. Generally speaking, sensing elements are classified into analog sensing elements and digital sensing elements. For digital sensing elements, sensing elements of different communication interfaces have different communication protocols (that is, different operating frequencies and transmission frequencies), so that the frequency of each received data is inconsistent. As a result, the data associated time points in the same system architecture cannot be synchronized and aligned, which seriously affects the reliability of subsequent data analysis. In addition, when an abnormality is about to occur (for example, when the temperature of the machine rises abnormally), if the sampling frequency of a specific sensing element is not increased immediately, it will not be able to accurately record the key characteristics when the abnormality occurs, which will seriously affect the reliability of subsequent data analysis. . Therefore, the purpose of the first implementation manner of the embodiment of the present invention is to improve the above-mentioned shortcomings.

請同時參閱圖1及圖3A,圖3A是依照本發明資料擷取方法之第一種實作方式的實施例流程圖。資料擷取方法適用於資料擷取裝置10,資料擷取裝置10包括資料擷取單元110、前置處理單元120、頻率調整單元130及通訊介面單元140。資料擷取方法包括:步驟S101至S109。首先,資料擷取單元110接收多個感測元件20-1至20-N之多個感測資料(步驟S101)。接著,資料擷取單元110根據多個感測資料的多個取樣頻率,分別將多個感測資料轉換為多個數位感測資料(步驟S103)。然後,在步驟S105中,前置處理單元120將至少一數位感測資料與對應的資料門檻值進行比對,以決定是否傳送頻率調整訊息至頻率調整單元130。若是,頻率調整單元130將根據多個頻率調整訊息,調整至少一感測資料的取樣頻率(步驟S107);若否,通訊介面單元140將傳送多個數位感測資料至主機30(步驟S109)。Please refer to FIG. 1 and FIG. 3A at the same time. FIG. 3A is a flowchart of an embodiment of the first implementation of the data retrieval method according to the present invention. The data acquisition method is applicable to the data acquisition device 10, and the data acquisition device 10 includes a data acquisition unit 110, a pre-processing unit 120, a frequency adjustment unit 130 and a communication interface unit 140. The data retrieval method includes steps S101 to S109. First, the data acquisition unit 110 receives a plurality of sensing data of the plurality of sensing elements 20-1 to 20-N (step S101). Then, the data acquisition unit 110 respectively converts the plurality of sensing data into a plurality of digital sensing data according to the plurality of sampling frequencies of the plurality of sensing data (step S103). Then, in step S105, the pre-processing unit 120 compares at least one digital sensing data with the corresponding data threshold to determine whether to send a frequency adjustment message to the frequency adjustment unit 130. If yes, the frequency adjustment unit 130 will adjust the sampling frequency of at least one sensing data according to a plurality of frequency adjustment messages (step S107); if not, the communication interface unit 140 will transmit a plurality of digital sensing data to the host 30 (step S109) .

舉例來說,機台具有資料擷取裝置10。資料擷取裝置10連接二個感測元件20-1及20-2,且分別為溫度感測器(用以偵測機台的溫度)及壓力感測器(用以偵測機台的壓力)。當機台的溫度異常上升時,代表機台即將發生異常,此時資料擷取裝置10可以調整壓力感測器之感測訊號對應的取樣頻率。反之,當機台的溫度回復至正常時,代表機台恢復正常,此時資料擷取裝置10將不調整壓力感測器之感測訊號對應的取樣頻率。因此,監控人員可以通過將資料門檻值設定為特定溫度的方式,來調整壓力感測器的取樣頻率,以密集或正常的擷取速度來監控機台的壓力,從而記錄機台異常或正常運作的過程。例如資料門檻值設定為溫度80°C,當感測元件20-1(即溫度感測器)所傳送的感測資料為高於80°C(例如85°C)時,前置處理單元120將傳送頻率調整訊息至頻率調整單元130,以進一步調整感測元件20-2(即壓力感測器)的取樣頻率例如從50KHz提升至100KHz,從而提升感測元件20-2的解析度、擷取週期。藉此,資料擷取裝置10可以準確記錄異常發生時的關鍵特徵,以確保後續資料分析的正確度、可靠度。之後,當感測元件20-1所傳送的感測資料為低於80°C(例如55°C)時,前置處理單元120將傳送頻率調整訊息至頻率調整單元130,以進一步調整感測元件20-2的取樣頻率例如從100KHz下降至50KHz。藉此,大幅度地減少資料的記錄量。For example, the machine has a data acquisition device 10. The data acquisition device 10 is connected to two sensing elements 20-1 and 20-2, which are respectively a temperature sensor (used to detect the temperature of the machine) and a pressure sensor (used to detect the pressure of the machine) ). When the temperature of the machine rises abnormally, it means that the machine is about to be abnormal. At this time, the data acquisition device 10 can adjust the sampling frequency corresponding to the sensing signal of the pressure sensor. Conversely, when the temperature of the machine returns to normal, it means that the machine returns to normal. At this time, the data acquisition device 10 will not adjust the sampling frequency corresponding to the sensing signal of the pressure sensor. Therefore, the monitoring personnel can adjust the sampling frequency of the pressure sensor by setting the data threshold value to a specific temperature, and monitor the pressure of the machine with intensive or normal acquisition speed, so as to record the abnormal or normal operation of the machine the process of. For example, the data threshold is set to a temperature of 80°C. When the sensing data transmitted by the sensing element 20-1 (ie, the temperature sensor) is higher than 80°C (for example, 85°C), the pre-processing unit 120 The frequency adjustment message is sent to the frequency adjustment unit 130 to further adjust the sampling frequency of the sensing element 20-2 (ie, the pressure sensor), for example, from 50KHz to 100KHz, thereby improving the resolution and capture of the sensing element 20-2 Take the cycle. In this way, the data acquisition device 10 can accurately record the key features when the abnormality occurs, so as to ensure the accuracy and reliability of subsequent data analysis. After that, when the sensing data sent by the sensing element 20-1 is lower than 80°C (for example, 55°C), the preprocessing unit 120 will send a frequency adjustment message to the frequency adjustment unit 130 to further adjust the sensing The sampling frequency of the element 20-2 is reduced from 100KHz to 50KHz, for example. This greatly reduces the amount of data recorded.

請參閱圖3B,圖3B是依照本發明資料擷取方法之第一種實作方式的另一實施例流程圖。在步驟S103後,還包括前置處理單元120將多個取樣頻率與一頻率目標值進行比對,以決定是否傳送頻率調整訊息至頻率調整單元130,然後頻率調整單元130根據頻率調整訊息,將多個取樣頻率調整至頻率目標值(步驟S1051)。Please refer to FIG. 3B. FIG. 3B is a flowchart of another embodiment of the first implementation of the data retrieval method of the present invention. After step S103, the pre-processing unit 120 compares a plurality of sampling frequencies with a frequency target value to determine whether to send a frequency adjustment message to the frequency adjustment unit 130, and then the frequency adjustment unit 130 compares the frequency adjustment message to the frequency adjustment unit 130. The multiple sampling frequencies are adjusted to the frequency target value (step S1051).

舉例來說,若感測元件20-3所對應的取樣頻率為400KHz且設定的頻率目標值為100KHz時,前置處理單元120將取樣頻率400KHz與頻率目標值100KHz進行比對,而得到的比對結果是取樣頻率400KHz大於頻率目標值100KHz(差值為300KHz)。因此,前置處理單元120傳送頻率調整訊息至頻率調整單元130。然後,頻率調整單元130便根據此頻率調整訊息將感測元件20-3的取樣頻率從400KHz調整至100KHz。類似地,若感測元件20-1所對應的取樣頻率為100KHz且設定的頻率目標值為100KHz時,前置處理單元120將取樣頻率100KHz與頻率目標值100KHz進行比對,而得到比對結果是取樣頻率100KHz等於頻率目標值100KHz(差值為0KHz)。因此,前置處理單元120不會傳送頻率調整訊息至頻率調整單元130。藉此,感測元件20-1、20-3的取樣頻率將互相對齊,達到頻率同步對齊的目的,同時改善各種資料關聯的特徵時間點無法對齊的缺失,並大幅度提高後續資料分析的可靠度。For example, if the sampling frequency corresponding to the sensing element 20-3 is 400KHz and the set frequency target value is 100KHz, the preprocessing unit 120 compares the sampling frequency 400KHz with the frequency target value 100KHz to obtain a ratio The result is that the sampling frequency of 400KHz is greater than the frequency target value of 100KHz (the difference is 300KHz). Therefore, the preprocessing unit 120 sends a frequency adjustment message to the frequency adjustment unit 130. Then, the frequency adjustment unit 130 adjusts the sampling frequency of the sensing element 20-3 from 400KHz to 100KHz according to the frequency adjustment information. Similarly, if the sampling frequency corresponding to the sensing element 20-1 is 100KHz and the set frequency target value is 100KHz, the preprocessing unit 120 compares the sampling frequency 100KHz with the frequency target value 100KHz to obtain the comparison result The sampling frequency of 100KHz is equal to the frequency target value of 100KHz (the difference is 0KHz). Therefore, the pre-processing unit 120 does not send the frequency adjustment message to the frequency adjustment unit 130. As a result, the sampling frequencies of the sensing elements 20-1 and 20-3 will be aligned with each other, achieving the purpose of frequency synchronization alignment, while improving the lack of alignment of the characteristic time points associated with various data, and greatly improving the reliability of subsequent data analysis Spend.

接著要說明的是第二種實作方式。一般而言,在執行取樣頻率調整時,實際的取樣頻率會因為韌體程序在硬體上的運作速度而產生些許的延遲現象,使得實際的取樣頻率低於設定的取樣頻率。因此,本發明實施例的第二種實作方式的目的便是改善上述的缺失。請參閱圖4,圖4是依照本發明資料擷取方法之第二種實作方式的實施例流程圖。在步驟S103之後,還包括前置處理單元120根據多個數位感測資料分別計算每一個感測資料的實際取樣頻率,並分別將每一個感測資料的取樣頻率與實際取樣頻率進行比對,以決定是否傳送一頻率校正訊息至頻率調整單元130,且頻率調整單元130根據頻率校正訊息將至少一實際取樣頻率調整至對應的取樣頻率(步驟S1052)。The next thing to explain is the second way of implementation. Generally speaking, when performing sampling frequency adjustment, the actual sampling frequency will be slightly delayed due to the operating speed of the firmware program on the hardware, making the actual sampling frequency lower than the set sampling frequency. Therefore, the purpose of the second implementation manner of the embodiment of the present invention is to improve the above-mentioned shortcomings. Please refer to FIG. 4, which is a flowchart of an embodiment of the second implementation of the data retrieval method according to the present invention. After step S103, the pre-processing unit 120 separately calculates the actual sampling frequency of each sensed data according to the multiple digital sensed data, and compares the sampling frequency of each sensed data with the actual sampling frequency. To determine whether to send a frequency correction message to the frequency adjustment unit 130, and the frequency adjustment unit 130 adjusts at least one actual sampling frequency to the corresponding sampling frequency according to the frequency correction message (step S1052).

舉例來說,資料擷取單元110對每一個感測元件20-1至20-N所設定的取樣頻率皆為10Hz(每秒擷取10筆資料)。前置處理單元120對接收到的多個數位感測資料進行邏輯運算,以計算出這些感測資料各自的實際取樣頻率(每秒實際擷取的資料量)。假設前置處理單元120根據每一個數位感測資料計算出的實際取樣頻率皆為9Hz(每秒擷取9筆資料)。前置處理單元120接著將實際取樣頻率9Hz與設定的取樣頻率10Hz進行比對,且得到的比對結果是實際取樣頻率9Hz小於取樣頻率10Hz(差值為1Hz)。因此,前置處理單元120將傳送頻率校正訊息至頻率調整單元130。然後,頻率調整單元130便根據此頻率校正訊息將每一個感測元件20-1至20-N的取樣頻率向上調整(例如調整為11Hz),使得每一個感測元件20-1至20-N每秒實際擷取的資料量趨近於設定的取樣頻率(即10Hz)。藉此,上述實作方式將可有效地改善資料擷取裝置10因韌體、硬體運作的因素,造成實際取樣頻率低於設定的取樣頻率之延遲現象。For example, the sampling frequency set by the data acquisition unit 110 for each of the sensing elements 20-1 to 20-N is 10 Hz (10 data acquisitions per second). The pre-processing unit 120 performs logical operations on the received multiple digital sensing data to calculate the actual sampling frequency (the amount of data actually captured per second) of each of the sensing data. It is assumed that the actual sampling frequency calculated by the pre-processing unit 120 based on each digital sensing data is 9 Hz (9 data is captured per second). The preprocessing unit 120 then compares the actual sampling frequency of 9 Hz with the set sampling frequency of 10 Hz, and the comparison result obtained is that the actual sampling frequency of 9 Hz is less than the sampling frequency of 10 Hz (the difference is 1 Hz). Therefore, the pre-processing unit 120 will send the frequency correction message to the frequency adjustment unit 130. Then, the frequency adjustment unit 130 adjusts the sampling frequency of each sensing element 20-1 to 20-N upwards (for example, to 11 Hz) according to the frequency correction information, so that each sensing element 20-1 to 20-N The actual amount of data captured per second approaches the set sampling frequency (ie, 10 Hz). In this way, the above-mentioned implementation method can effectively improve the delay phenomenon of the actual sampling frequency lower than the set sampling frequency caused by the operating factors of the firmware and hardware of the data acquisition device 10.

接著說明的是,本發明實施例的第三種實作方式。一般而言,資料擷取裝置並不支援函數轉換例如單位換算,使得這些函數轉換的工作落在主機,或是工廠的監控人員身上。因此,本發明實施例的第三種實作方式的目的便是改善上述的缺失。請參閱圖5,圖5是依照本發明資料擷取方法之第三種實作方式的實施例流程圖。在資料擷取單元110根據多個感測資料的多個取樣頻率,分別將多個感測資料轉換為多個數位感測資料(步驟S103)的步驟後,更包括步驟S1031、步驟S1033。首先,前置處理單元120的算術邏輯電路1201對多個數位感測資料進行邏輯運算,例如是函數轉換、單位換算,以產生對應的多個算術感測資料(步驟S1031)。接著,前置處理單元120通過通訊介面單元140傳送多個算術感測資料至主機30(步驟S1033)。Next, the third implementation manner of the embodiment of the present invention will be described. Generally speaking, the data acquisition device does not support function conversion such as unit conversion, so that the work of these function conversion falls on the host or the monitoring personnel of the factory. Therefore, the purpose of the third implementation manner of the embodiment of the present invention is to improve the above-mentioned shortcomings. Please refer to FIG. 5. FIG. 5 is a flowchart of an embodiment of a third implementation manner of the data retrieval method according to the present invention. After the step of converting the plurality of sensing data into a plurality of digital sensing data according to the plurality of sampling frequencies of the plurality of sensing data (step S103), the data capturing unit 110 further includes step S1031 and step S1033. First, the arithmetic logic circuit 1201 of the preprocessing unit 120 performs logical operations on multiple digital sensing data, such as function conversion and unit conversion, to generate corresponding multiple arithmetic sensing data (step S1031). Next, the pre-processing unit 120 transmits a plurality of arithmetic sensing data to the host 30 through the communication interface unit 140 (step S1033).

舉例來說,假設感測元件20-1(溫度感測器) 感測出的感測資料的單位為攝氏溫度,但主機30希望接收到的感測資料的單位為華氏溫度。因此,主機30可通過資料擷取裝置10的通訊介面單元140傳送代表將攝氏溫度轉換為華氏溫度的參數控制訊息至前置處理單元120的算術邏輯電路1201。而算術邏輯電路1201將根據參數控制訊息來設定相對應邏輯運算的演算法。藉此,算術邏輯電路1201可以對這些數位感測資料進行邏輯運算以產生相對應的算術感測資料,亦即將數位感測資料的單位由攝氏溫度轉換為華氏溫度。藉此,改善資料擷取裝置10無法即時進行各種單元換算的缺失。For example, suppose that the unit of the sensing data sensed by the sensing element 20-1 (temperature sensor) is Celsius, but the unit of the sensing data that the host 30 hopes to receive is Fahrenheit. Therefore, the host 30 can send a parameter control message representing the conversion of Celsius temperature to Fahrenheit temperature to the arithmetic logic circuit 1201 of the preprocessing unit 120 through the communication interface unit 140 of the data acquisition device 10. The arithmetic logic circuit 1201 will set the corresponding logic operation algorithm according to the parameter control message. In this way, the arithmetic logic circuit 1201 can perform logical operations on these digital sensing data to generate corresponding arithmetic sensing data, that is, converting the unit of the digital sensing data from Celsius to Fahrenheit. In this way, the defect that the data acquisition device 10 cannot perform various unit conversions in real time is improved.

接著說明的是,本發明實施例的第四種實作方式。一般而言,當這些感測元件感測出的感測資料的資料量突然增加且資料擷取裝置仍以固定的取樣頻率擷取感測資料時,資料擷取裝置所擷取到的感測資料的資料量可能不足這些感測元件感測出的感測資料的資料量。因此,若資料擷取裝置沒有對取樣頻率進行動態調整,使得資料擷取裝置所擷取的感測資料的資料量與這些感測元件感測出的感測資料量非常不一致,導致資料擷取裝置沒有擷取到突然增加的一些資料,從而大幅降低後續資料分析的可靠度。因此,本發明實施例的第四種實作方式的目的便是改善上述的缺失。請參閱圖6,圖6是依照本發明資料擷取方法之第四種實作方式的實施例流程圖。在資料擷取單元110根據多個感測資料的多個取樣頻率,分別將多個感測資料轉換為多個數位感測資料(步驟S103)的步驟後,更包括步驟S104。在步驟S104中,當前置處理單元120判斷至少一數位感測資料與對應的資料門檻值之間的誤差值大於一誤差門檻值時,頻率調整單元130調整對應數位感測資料的取樣頻率直到誤差值小於誤差門檻值。Next, the fourth implementation manner of the embodiment of the present invention will be described. Generally speaking, when the amount of sensing data sensed by these sensing elements suddenly increases and the data capture device still captures the sensed data at a fixed sampling frequency, the sensing data captured by the data capture device The amount of data may be insufficient for the amount of sensing data sensed by these sensing elements. Therefore, if the data acquisition device does not dynamically adjust the sampling frequency, the data amount of the sensed data captured by the data acquisition device is very inconsistent with the amount of sensed data sensed by these sensing elements, resulting in data capture The device did not capture some of the sudden increase in data, which greatly reduced the reliability of subsequent data analysis. Therefore, the purpose of the fourth implementation manner of the embodiment of the present invention is to improve the above-mentioned shortcomings. Please refer to FIG. 6. FIG. 6 is a flowchart of an embodiment of a fourth implementation manner of the data retrieval method according to the present invention. After the data acquisition unit 110 respectively converts the plurality of sensing data into a plurality of digital sensing data according to the plurality of sampling frequencies of the plurality of sensing data (step S103), the step S104 is further included. In step S104, when the preset processing unit 120 determines that the error value between at least one digital sensing data and the corresponding data threshold is greater than an error threshold, the frequency adjustment unit 130 adjusts the sampling frequency of the corresponding digital sensing data until the error is reached. The value is less than the error threshold.

舉例來說,假設資料擷取單元110對感測元件20-1的感測資料之取樣頻率設定為100Hz(每秒擷取100筆資料),代表對應於感測元件20-1的數位感測資料應該是100筆資料,因此對應於感測元件20-1的資料門檻值應設為100。假設誤差門檻值預設為1%,當前置處理單元120收到對應於感測元件20-1的數位感測資料之數量是小於93筆或大於107筆時,前置處理單元120判斷出感測元件20-1的數位感測資料與對應的資料門檻值之間的誤差值(取絕對值後)會超過誤差門檻值的1%。此時,頻率調整單元130將根據上述判斷結果來調整感測元件20-1的取樣頻率,直到誤差值小於誤差門檻值。更進一步來說,頻率調整單元130將使用一預定演算法(例如是比例-積分-微分(PID)演算法) 以調升或調降感測元件20-1的取樣頻率,直到誤差值低於1%時才停止,同時恢復為起初設定的取樣頻率。藉此,改善傳統的資料擷取裝置無法動態調整取樣頻率的缺失。For example, suppose that the data acquisition unit 110 sets the sampling frequency of the sensing data of the sensing element 20-1 to 100 Hz (acquiring 100 data per second), which represents the digital sensing corresponding to the sensing element 20-1 The data should be 100 data, so the data threshold corresponding to the sensing element 20-1 should be set to 100. Assuming that the error threshold is preset to 1%, when the number of digital sensing data corresponding to the sensing element 20-1 received by the pre-processing unit 120 is less than 93 or greater than 107, the pre-processing unit 120 determines The error value (after taking the absolute value) between the digital sensing data of the sensing element 20-1 and the corresponding data threshold will exceed 1% of the error threshold. At this time, the frequency adjustment unit 130 will adjust the sampling frequency of the sensing element 20-1 according to the above determination result until the error value is less than the error threshold value. Furthermore, the frequency adjustment unit 130 will use a predetermined algorithm (for example, a proportional-integral-derivative (PID) algorithm) to increase or decrease the sampling frequency of the sensing element 20-1 until the error value is lower than It stops only at 1%, and at the same time it returns to the original sampling frequency. In this way, the traditional data acquisition device cannot dynamically adjust the lack of sampling frequency.

接著說明的是,本發明實施例的第五種實作方式。其可以與上述第一種至第四種實作方式同時實施。更進一步的說,工廠的監控人員可以通過主機30來設定或調整資料擷取裝置10的參數,例如是多個取樣頻率、資料門檻值、邏輯運算、預定演算法等。請參閱圖7,圖7是依照本發明資料擷取方法之第五種實作方式的實施例流程圖。首先,在資料擷取單元110根據多個感測資料的多個取樣頻率,分別將多個感測資料轉換為多個數位感測資料(步驟S103)的步驟前,更包括步驟S1011。另外,主機30包括頻率參數設定電路3021。在步驟S1011中,頻率參數設定電路3021用以設定每個感測資料的取樣頻率。換言之,工廠的監控人員可以通過主機30的參數設定電路3021來設定或調整資料擷取裝置10的參數,例如是取樣頻率。更進一步來說,主機30通過資料擷取裝置10的通訊介面單元140傳送參數控制訊息(包括上述設定或調整的參數)至資料擷取單元110進行參數設定。藉此,提升資料擷取裝置10之參數設定的便利性與時效性。Next, the fifth implementation manner of the embodiment of the present invention will be described. It can be implemented simultaneously with the first to fourth implementation manners described above. Furthermore, the factory monitoring personnel can set or adjust the parameters of the data acquisition device 10 through the host 30, such as multiple sampling frequencies, data thresholds, logic operations, predetermined algorithms, and so on. Please refer to FIG. 7. FIG. 7 is a flowchart of an embodiment of a fifth implementation manner of the data retrieval method according to the present invention. First, before the step of converting the plurality of sensing data into a plurality of digital sensing data according to the plurality of sampling frequencies of the plurality of sensing data by the data acquisition unit 110 (step S103), the step S1011 is further included. In addition, the host 30 includes a frequency parameter setting circuit 3021. In step S1011, the frequency parameter setting circuit 3021 is used to set the sampling frequency of each sensing data. In other words, the monitoring personnel of the factory can set or adjust the parameters of the data acquisition device 10 through the parameter setting circuit 3021 of the host 30, such as the sampling frequency. More specifically, the host 30 transmits parameter control messages (including the above-mentioned set or adjusted parameters) to the data acquisition unit 110 through the communication interface unit 140 of the data acquisition device 10 for parameter setting. Thereby, the convenience and timeliness of parameter setting of the data acquisition device 10 is improved.

其次,在步驟S103後,更包括步驟S1032與步驟S1034。另外,主機30包括門檻值設定電路3022及運算參數設定電路3023。在步驟S1032中,門檻值設定電路3022用以設定每個數位感測資料的資料門檻值。換言之,工廠的監控人員可以通過主機30的門檻值設定電路3022來設定或調整資料擷取裝置10的參數,例如是資料門檻值或誤差門檻值。更進一步來說,主機30通過資料擷取裝置10的通訊介面單元140傳送參數控制訊息(包括上述設定或調整的參數)至前置處理單元120進行參數設定。藉此,提升參數設定的便利性與時效性。此外,在步驟S1034中,運算參數設定電路3023用以設定前置處理單元120之算術邏輯電路1201的演算法(包括邏輯運算或預定演算法)。換言之,工廠的監控人員可以通過主機30的運算參數設定電路3023來設定或調整資料擷取裝置10的參數,例如是邏輯運算或預定演算法。更進一步來說,主機30通過資料擷取裝置10的通訊介面單元140傳送參數控制訊息(包括上述設定或調整的參數)至前置處理單元120進行參數設定。藉此,提升資料擷取裝置10之參數設定的便利性與時效性。Secondly, after step S103, it further includes step S1032 and step S1034. In addition, the host 30 includes a threshold setting circuit 3022 and a calculation parameter setting circuit 3023. In step S1032, the threshold setting circuit 3022 is used to set the data threshold of each digital sensing data. In other words, the monitoring personnel of the factory can set or adjust the parameters of the data acquisition device 10 through the threshold setting circuit 3022 of the host 30, for example, the data threshold or the error threshold. More specifically, the host 30 transmits parameter control messages (including the above-mentioned set or adjusted parameters) through the communication interface unit 140 of the data capture device 10 to the pre-processing unit 120 for parameter setting. In this way, the convenience and timeliness of parameter setting is improved. In addition, in step S1034, the arithmetic parameter setting circuit 3023 is used to set the algorithm of the arithmetic logic circuit 1201 of the preprocessing unit 120 (including a logic operation or a predetermined algorithm). In other words, the monitoring personnel of the factory can set or adjust the parameters of the data acquisition device 10 through the calculation parameter setting circuit 3023 of the host 30, such as a logical operation or a predetermined algorithm. More specifically, the host 30 transmits parameter control messages (including the above-mentioned set or adjusted parameters) through the communication interface unit 140 of the data capture device 10 to the pre-processing unit 120 for parameter setting. Thereby, the convenience and timeliness of parameter setting of the data acquisition device 10 is improved.

綜上所述,本發明實施例所提供的資料擷取裝置、系統及其方法,可以動態地調整各個感測器的取樣頻率與即時設定或調整各種運算參數的設定值,以達到頻率同步對齊的目的,同時準確記錄資料特徵的完整性,並達到降低資料量、保留關鍵資料特徵與提高後續資料分析的可靠度,以及達到即時校正取樣頻率等功效。In summary, the data acquisition device, system and method provided by the embodiments of the present invention can dynamically adjust the sampling frequency of each sensor and real-time settings or adjust the setting values of various calculation parameters to achieve frequency synchronization and alignment. At the same time, it can accurately record the completeness of data characteristics, reduce the amount of data, retain key data characteristics, improve the reliability of subsequent data analysis, and achieve the effects of real-time correction of sampling frequency.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Those with ordinary knowledge in the technical field of the present invention can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be subject to those defined by the attached patent application scope.

1:資料擷取系統 10:資料擷取裝置 110:資料擷取單元 120:前置處理單元 1201:算術邏輯電路 1202:門檻值判斷電路 130:頻率調整單元 140:通訊介面單元 20:感測裝置 20-1~20-N:感測元件 30:主機 301:資料儲存單元 302:參數設定單元 3021:頻率參數設定電路 3022:門檻值設定電路 3023:運算參數設定電路 S101、S103、S104、S105、S107、S109:步驟 S1011:步驟 S1031、S1032、S1033、S1034:步驟 S1051、S1052:步驟1: Data acquisition system 10: Data acquisition device 110: Data Acquisition Unit 120: pre-processing unit 1201: Arithmetic and Logic Circuit 1202: Threshold value judgment circuit 130: frequency adjustment unit 140: Communication interface unit 20: Sensing device 20-1~20-N: Sensing element 30: host 301: data storage unit 302: Parameter setting unit 3021: Frequency parameter setting circuit 3022: Threshold setting circuit 3023: Operation parameter setting circuit S101, S103, S104, S105, S107, S109: steps S1011: steps S1031, S1032, S1033, S1034: steps S1051, S1052: steps

圖1是依照本發明實施例所繪示之資料擷取系統的架構示意圖。 圖2是依照本發明實施例所繪示之參數設定單元的架構示意圖。 圖3A是依照本發明資料擷取方法之第一種實作方式的實施例流程圖。 圖3B是依照本發明資料擷取方法之第一種實作方式的另一實施例流程圖。 圖4是依照本發明資料擷取方法之第二種實作方式的實施例流程圖。 圖5是依照本發明資料擷取方法之第三種實作方式的實施例流程圖。 圖6是依照本發明資料擷取方法之第四種實作方式的實施例流程圖。 圖7是依照本發明資料擷取方法之第五種實作方式的實施例流程圖。FIG. 1 is a schematic diagram of the structure of a data acquisition system according to an embodiment of the present invention. FIG. 2 is a schematic structural diagram of a parameter setting unit according to an embodiment of the present invention. FIG. 3A is a flowchart of an embodiment of the first implementation manner of the data retrieval method according to the present invention. 3B is a flowchart of another embodiment of the first implementation of the data retrieval method according to the present invention. 4 is a flowchart of an embodiment of a second implementation manner of the data retrieval method according to the present invention. FIG. 5 is a flowchart of an embodiment of a third implementation manner of the data retrieval method according to the present invention. FIG. 6 is a flowchart of an embodiment of a fourth implementation manner of the data retrieval method according to the present invention. FIG. 7 is a flowchart of an embodiment of a fifth implementation manner of the data retrieval method according to the present invention.

S101、S103、S105、S107、S109:步驟S101, S103, S105, S107, S109: steps

Claims (14)

一種資料擷取裝置,包括: 一資料擷取單元,用以接收多個感測元件之多個感測資料,其中各該感測資料分別對應到一取樣頻率,該資料擷取單元根據該些取樣頻率,分別將該些感測資料轉換為多個數位感測資料,其中各該數位感測資料分別對應至一資料門檻值; 一前置處理單元,耦接於該資料擷取單元且接收該數位感測資料,其中該前置處理單元包括一門檻值判斷電路,該門檻值判斷電路將至少一該數位感測資料與對應的該資料門檻值進行比對,以決定是否傳送一頻率調整訊息;以及 一頻率調整單元,耦接於該資料擷取單元與該前置處理單元之間,且根據該頻率調整訊息調整至少一該感測資料的該取樣頻率。A data acquisition device includes: A data acquisition unit is used to receive a plurality of sensing data of a plurality of sensing elements, wherein each of the sensing data corresponds to a sampling frequency, and the data acquisition unit respectively uses the sensing data according to the sampling frequencies. The measurement data is converted into a plurality of digital sensing data, wherein each of the digital sensing data corresponds to a data threshold value; A pre-processing unit, coupled to the data acquisition unit and receiving the digital sensing data, wherein the pre-processing unit includes a threshold value determining circuit, and the threshold value determining circuit associates at least one of the digital sensing data with the corresponding To compare the data threshold of to determine whether to send a frequency adjustment message; and A frequency adjustment unit is coupled between the data acquisition unit and the pre-processing unit, and adjusts the sampling frequency of at least one of the sensing data according to the frequency adjustment message. 如申請專利範圍第1項所述之資料擷取裝置,其中當該門檻值判斷電路判斷至少一該數位感測資料與對應的該資料門檻值之間的一誤差值大於一誤差門檻值時,該頻率調整單元調整對應該數位感測資料的該取樣頻率直到該誤差值小於該誤差門檻值。For example, the data acquisition device described in item 1 of the scope of patent application, wherein when the threshold value determining circuit determines that an error value between at least one of the digital sensing data and the corresponding data threshold value is greater than an error threshold value, The frequency adjustment unit adjusts the sampling frequency corresponding to the digital sensing data until the error value is less than the error threshold value. 如申請專利範圍第1項所述之資料擷取裝置,其中該前置處理單元更包括一算術邏輯電路,該算術邏輯電路耦接該門檻值判斷電路,該算術邏輯電路根據該些數位感測資料分別計算各該感測資料的一實際取樣頻率,該門檻值判斷電路分別將各該感測資料的該取樣頻率與該實際取樣頻率進行比對,以決定是否傳送一頻率校正訊息至該頻率調整單元,且該頻率調整單元根據該頻率校正訊息將至少一該實際取樣頻率調整至對應的該取樣頻率。For the data acquisition device described in claim 1, wherein the pre-processing unit further includes an arithmetic logic circuit, the arithmetic logic circuit is coupled to the threshold value judgment circuit, and the arithmetic logic circuit senses the numbers according to the The data respectively calculates an actual sampling frequency of each of the sensed data, and the threshold determination circuit compares the sampling frequency of each of the sensed data with the actual sampling frequency to determine whether to send a frequency correction message to the frequency An adjustment unit, and the frequency adjustment unit adjusts at least one actual sampling frequency to the corresponding sampling frequency according to the frequency correction message. 如申請專利範圍第1項所述之資料擷取裝置,其中該門檻值判斷電路將該些取樣頻率與一頻率目標值進行比對,以決定是否傳送該頻率調整訊息至該頻率調整單元,且該頻率調整單元根據該頻率調整訊息將該些取樣頻率調整至該頻率目標值。For example, the data acquisition device described in item 1 of the scope of patent application, wherein the threshold value determining circuit compares the sampling frequencies with a frequency target value to determine whether to send the frequency adjustment message to the frequency adjustment unit, and The frequency adjustment unit adjusts the sampling frequencies to the frequency target value according to the frequency adjustment message. 一種資料擷取系統,包括: 一感測裝置,具有多個感測元件,該些感測元件分別感測出多個感測資料; 一資料擷取裝置,耦接於該感測裝置,該資料擷取裝置包括: 一資料擷取單元,用以接收該些感測資料,其中各該感測資料分別對應到一取樣頻率,該資料擷取單元根據該些取樣頻率,分別將該些感測資料轉換為多個數位感測資料,其中各該數位感測資料分別對應至一資料門檻值; 一前置處理單元,耦接於該資料擷取單元且接收該數位感測資料,其中該前置處理單元包括一門檻值判斷電路,該門檻值判斷電路將至少一該數位感測資料與對應的該資料門檻值進行比對,以決定是否傳送一頻率調整訊息; 一頻率調整單元,耦接於該資料擷取單元與該前置處理單元之間,且根據該頻率調整訊息調整至少一該感測資料的該取樣頻率; 一通訊介面單元,耦接於該前置處理單元;以及 一主機,耦接於該資料擷取裝置,該主機包括一資料儲存單元,用以通過該通訊介面單元接收且儲存該些數位感測資料。A data acquisition system includes: A sensing device having a plurality of sensing elements, and the sensing elements respectively sense a plurality of sensing data; A data acquisition device is coupled to the sensing device, and the data acquisition device includes: A data acquisition unit for receiving the sensing data, wherein each sensing data corresponds to a sampling frequency, and the data acquisition unit converts the sensing data into a plurality of sensing data according to the sampling frequencies Digital sensing data, wherein each of the digital sensing data corresponds to a data threshold value; A pre-processing unit, coupled to the data acquisition unit and receiving the digital sensing data, wherein the pre-processing unit includes a threshold value determining circuit, and the threshold value determining circuit associates at least one of the digital sensing data with the corresponding To compare the data threshold of to determine whether to send a frequency adjustment message; A frequency adjustment unit, coupled between the data acquisition unit and the preprocessing unit, and adjusts the sampling frequency of at least one of the sensing data according to the frequency adjustment message; A communication interface unit coupled to the pre-processing unit; and A host is coupled to the data acquisition device. The host includes a data storage unit for receiving and storing the digital sensing data through the communication interface unit. 如申請專利範圍第5項所述之資料擷取系統,其中該前置處理單元更包括一算術邏輯電路,該算術邏輯電路耦接該門檻值判斷電路,用以對該些數位感測資料進行邏輯運算,以產生多個算術感測資料,並通過該通訊介面單元傳送該些算術感測資料至該主機。For example, in the data acquisition system described in item 5 of the scope of patent application, the pre-processing unit further includes an arithmetic logic circuit, and the arithmetic logic circuit is coupled to the threshold judging circuit for processing the digital sensing data Logical operation to generate a plurality of arithmetic sensing data, and transmit the arithmetic sensing data to the host through the communication interface unit. 如申請專利範圍第5項所述之資料擷取系統,其中當該門檻值判斷電路判斷至少一該數位感測資料與對應的該資料門檻值之間的一誤差值大於一誤差門檻值時,該頻率調整單元調整對應該數位感測資料的該取樣頻率直到該誤差值小於該誤差門檻值。For example, the data acquisition system described in item 5 of the scope of patent application, wherein when the threshold value determining circuit determines that an error value between at least one of the digital sensing data and the corresponding data threshold value is greater than an error threshold value, The frequency adjustment unit adjusts the sampling frequency corresponding to the digital sensing data until the error value is less than the error threshold value. 如申請專利範圍第5項所述之資料擷取系統,其中該前置處理單元更包括一算術邏輯電路,該算術邏輯電路耦接該門檻值判斷電路,用以根據該些數位感測資料分別計算各該感測資料的一實際取樣頻率,該門檻值判斷電路分別將各該感測資料的該取樣頻率與該實際取樣頻率進行比對,以決定是否傳送一頻率校正訊息至該頻率調整單元,且該頻率調整單元根據該頻率校正訊息將至少一該實際取樣頻率調整至對應的該取樣頻率。For example, in the data acquisition system described in item 5 of the scope of patent application, the pre-processing unit further includes an arithmetic logic circuit, and the arithmetic logic circuit is coupled to the threshold judging circuit, and is used for separately according to the digital sensing data. Calculate an actual sampling frequency of each sensing data, and the threshold value judgment circuit compares the sampling frequency of each sensing data with the actual sampling frequency to determine whether to send a frequency correction message to the frequency adjustment unit , And the frequency adjustment unit adjusts at least one actual sampling frequency to the corresponding sampling frequency according to the frequency correction message. 如申請專利範圍第5項所述之資料擷取系統,其中該門檻值判斷電路將該些取樣頻率與一頻率目標值進行比對,以決定是否傳送該頻率調整訊息,且該頻率調整單元根據該頻率調整訊息將該些取樣頻率調整至該頻率目標值。For example, in the data acquisition system described in item 5 of the scope of patent application, the threshold value determining circuit compares the sampling frequencies with a frequency target value to determine whether to transmit the frequency adjustment message, and the frequency adjustment unit is based on The frequency adjustment message adjusts the sampling frequencies to the frequency target value. 如申請專利範圍第5項所述之資料擷取系統,其中該主機更包括一參數設定單元,且該參數設定單元包括: 一頻率參數設定電路,用以設定該些感測資料的該些取樣頻率; 一門檻值設定電路,用以設定該些數位感測資料的該些資料門檻值;以及 一運算參數設定電路,用以設定該算術邏輯電路對該些數位感測資料進行邏輯運算的演算法。For the data acquisition system described in item 5 of the scope of patent application, the host further includes a parameter setting unit, and the parameter setting unit includes: A frequency parameter setting circuit for setting the sampling frequencies of the sensing data; A threshold setting circuit for setting the data thresholds of the digital sensing data; and An arithmetic parameter setting circuit is used to set the arithmetic logic circuit to perform logic operations on the digital sensing data. 一種資料擷取方法,適用於一資料擷取裝置,其中該資料擷取裝置包括一資料擷取單元、一前置處理單元及一頻率調整單元,且該資料擷取方法包括: 於該資料擷取單元接收多個感測元件之多個感測資料,其中各該感測資料分別對應到一取樣頻率; 於該資料擷取單元根據該些感測資料的該些取樣頻率,分別將該些感測資料轉換為多個數位感測資料,其中各該數位感測資料分別對應至一資料門檻值;以及 於該前置處理單元將至少一該數位感測資料與對應的該資料門檻值進行比對,以決定是否傳送一頻率調整訊息至該頻率調整單元,若是,於該頻率調整單元根據該頻率調整訊息調整至少一該感測資料的該取樣頻率。A data capturing method is suitable for a data capturing device, wherein the data capturing device includes a data capturing unit, a pre-processing unit and a frequency adjustment unit, and the data capturing method includes: Receiving a plurality of sensing data of a plurality of sensing elements in the data acquisition unit, wherein each of the sensing data corresponds to a sampling frequency; According to the sampling frequencies of the sensing data, the data acquisition unit converts the sensing data into a plurality of digital sensing data, wherein each of the digital sensing data corresponds to a data threshold value; and In the preprocessing unit, at least one of the digital sensing data is compared with the corresponding data threshold to determine whether to send a frequency adjustment message to the frequency adjustment unit, and if so, the frequency adjustment unit adjusts according to the frequency The message adjusts the sampling frequency of at least one of the sensing data. 如申請專利範圍第11項所述之資料擷取方法,其中於該資料擷取單元分別將該些感測資料轉換為該些數位感測資料的步驟後,更包括: 於該前置處理單元判斷至少一該數位感測資料與對應的該資料門檻值之間的一誤差值大於一誤差門檻值時,該頻率調整單元調整對應該數位感測資料的該取樣頻率直到該誤差值小於該誤差門檻值。For example, in the data acquisition method described in claim 11, after the data acquisition unit respectively converts the sensing data into the digital sensing data, it further includes: When the pre-processing unit determines that an error value between at least one of the digital sensing data and the corresponding data threshold is greater than an error threshold, the frequency adjustment unit adjusts the sampling frequency corresponding to the digital sensing data until The error value is less than the error threshold value. 如申請專利範圍第11項所述之資料擷取方法,其中於該資料擷取單元分別將該些感測資料轉換為該些數位感測資料的步驟後,更包括: 於該前置處理單元根據該些數位感測資料分別計算各該感測資料的一實際取樣頻率,並分別將各該感測資料的該取樣頻率與該實際取樣頻率進行比對,以決定是否傳送一頻率校正訊息至該頻率調整單元,且於該頻率調整單元根據該頻率校正訊息將至少一該實際取樣頻率調整至對應的該取樣頻率。For example, in the data acquisition method described in claim 11, after the data acquisition unit respectively converts the sensing data into the digital sensing data, it further includes: In the pre-processing unit, an actual sampling frequency of each sensing data is calculated according to the digital sensing data, and the sampling frequency of each sensing data is compared with the actual sampling frequency to determine whether A frequency correction message is sent to the frequency adjustment unit, and the frequency adjustment unit adjusts at least one actual sampling frequency to the corresponding sampling frequency according to the frequency correction message. 如申請專利範圍第11項所述之資料擷取方法,其中於該資料擷取單元分別將該些感測資料轉換為該些數位感測資料的步驟後,更包括: 於該前置處理單元將該些取樣頻率與一頻率目標值進行比對,以決定是否傳送該頻率調整訊息至該頻率調整單元,且於該頻率調整單元根據該頻率調整訊息將該些取樣頻率調整至該頻率目標值。For example, in the data acquisition method described in claim 11, after the data acquisition unit respectively converts the sensing data into the digital sensing data, it further includes: The pre-processing unit compares the sampling frequencies with a frequency target value to determine whether to send the frequency adjustment message to the frequency adjustment unit, and the frequency adjustment unit uses the frequency adjustment message for the sampling frequencies Adjust to the frequency target value.
TW108144274A 2019-12-04 2019-12-04 Device, system, and method for data acquisition TWI738139B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW108144274A TWI738139B (en) 2019-12-04 2019-12-04 Device, system, and method for data acquisition
CN202010113266.2A CN112904799A (en) 2019-12-04 2020-02-24 Data acquisition device, system and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108144274A TWI738139B (en) 2019-12-04 2019-12-04 Device, system, and method for data acquisition

Publications (2)

Publication Number Publication Date
TW202123024A TW202123024A (en) 2021-06-16
TWI738139B true TWI738139B (en) 2021-09-01

Family

ID=76110872

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108144274A TWI738139B (en) 2019-12-04 2019-12-04 Device, system, and method for data acquisition

Country Status (2)

Country Link
CN (1) CN112904799A (en)
TW (1) TWI738139B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW429689B (en) * 1999-09-30 2001-04-11 Ctx Opto Electronics Corp Automatic sampling adjusting system
US20020171838A1 (en) * 2001-05-16 2002-11-21 Pal Andrew Attila Variable sampling control for rendering pixelization of analysis results in a bio-disc assembly and apparatus relating thereto
TWI342677B (en) * 2006-07-17 2011-05-21 Fortemedia Inc Method for converting an analog signal to multiple different outputs with an analog-to-digital converter, analog-to-digital converter, and poly-phase decimator.
TW201729537A (en) * 2015-12-22 2017-08-16 微晶片科技公司 System and method for reducing noise in a sensor system
TW201740304A (en) * 2016-05-13 2017-11-16 指紋卡公司 Fingerprint sensing device and method therein for noise detection

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6408479B2 (en) * 2012-12-03 2018-10-17 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Patient monitoring system and patient monitoring method
KR101710666B1 (en) * 2012-12-12 2017-02-27 한국전자통신연구원 Apparatus and Method for Monitoring Complex Slope based on Wireless Network
CN105682121A (en) * 2016-01-29 2016-06-15 中国联合网络通信集团有限公司 Data acquisition method for sensor network, gateway and data acquisition system
US20180284745A1 (en) * 2016-05-09 2018-10-04 StrongForce IoT Portfolio 2016, LLC Methods and systems for self-organization of collected data using 3rd party data from a data marketplace in an industrial internet of things environment
CN106535253B (en) * 2016-11-23 2019-10-25 北京必创科技股份有限公司 A kind of wireless data dynamic acquisition and transmission method
CN106530599A (en) * 2016-11-30 2017-03-22 英业达科技有限公司 Home environment monitoring and alarming system
US10402205B2 (en) * 2017-03-02 2019-09-03 Quanta Computer Inc. System and method for dynamically optimizing hardware frequency for booting

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW429689B (en) * 1999-09-30 2001-04-11 Ctx Opto Electronics Corp Automatic sampling adjusting system
US20020171838A1 (en) * 2001-05-16 2002-11-21 Pal Andrew Attila Variable sampling control for rendering pixelization of analysis results in a bio-disc assembly and apparatus relating thereto
TWI342677B (en) * 2006-07-17 2011-05-21 Fortemedia Inc Method for converting an analog signal to multiple different outputs with an analog-to-digital converter, analog-to-digital converter, and poly-phase decimator.
TW201729537A (en) * 2015-12-22 2017-08-16 微晶片科技公司 System and method for reducing noise in a sensor system
TW201740304A (en) * 2016-05-13 2017-11-16 指紋卡公司 Fingerprint sensing device and method therein for noise detection

Also Published As

Publication number Publication date
CN112904799A (en) 2021-06-04
TW202123024A (en) 2021-06-16

Similar Documents

Publication Publication Date Title
JP6374466B2 (en) Sensor interface device, measurement information communication system, measurement information communication method, and measurement information communication program
TWI748833B (en) Punching abnormality detection system
JP6312744B2 (en) Method and apparatus for coupling a first sensor with at least one second sensor
US20200099598A1 (en) Monitoring system, processing device, and monitoring device
TW201837830A (en) Production management method and system of utilizing power consumption feature
TWM575368U (en) Cloud computing system for intelligent machine tools
WO2018216258A1 (en) Processing device, processing method, and program
TW201925942A (en) Intelligent diagnosis system and method
TW202026096A (en) Tool life prediction system and method thereof
TWI738139B (en) Device, system, and method for data acquisition
TWI586943B (en) Enhanced-fft online machine vibration measurement system and method
JP6861893B2 (en) Condition monitoring device and asynchronous data adjustment method
JP2015118505A (en) Controller system
TW201736997A (en) Control apparatus for rotating device
US11144028B2 (en) Communication device, control method of communication device, external device, control method of external device, and control system
TW202014814A (en) Tools monitoring system and monitoring method thereof
JP2021502789A5 (en)
JPWO2022031659A5 (en)
TWI820612B (en) Method for detecting abnormities of stamping equipment,device,equipment and storage medium using the same
KR20200079769A (en) Method for monitoring health of machines using smart vibration sensor
TWI748361B (en) Shoemaking machine abnormal notification method
US20240241502A1 (en) Control system and programmable logic controller
WO2022091608A1 (en) Higher-order management apparatus, production control system, higher-order management method, and higher-order management program
US20240027985A1 (en) Programmable logic controller, moving image management device, moving image management system, and method for managing moving image
CN115144125B (en) Pressure sensing detection and calibration method, module and system for pressing part of electronic equipment