TWI737274B - Method and apparatus of encoding or decoding video data - Google Patents

Method and apparatus of encoding or decoding video data Download PDF

Info

Publication number
TWI737274B
TWI737274B TW109113769A TW109113769A TWI737274B TW I737274 B TWI737274 B TW I737274B TW 109113769 A TW109113769 A TW 109113769A TW 109113769 A TW109113769 A TW 109113769A TW I737274 B TWI737274 B TW I737274B
Authority
TW
Taiwan
Prior art keywords
mode
intra
current block
size
interpolation filter
Prior art date
Application number
TW109113769A
Other languages
Chinese (zh)
Other versions
TW202044832A (en
Inventor
蔡佳銘
徐志瑋
Original Assignee
聯發科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯發科技股份有限公司 filed Critical 聯發科技股份有限公司
Publication of TW202044832A publication Critical patent/TW202044832A/en
Application granted granted Critical
Publication of TWI737274B publication Critical patent/TWI737274B/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/80Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation
    • H04N19/82Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation involving filtering within a prediction loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

A video processing method for a video encoder or decoder comprises receiving input data of a current block, determining an intra prediction mode and reference samples according to the intra prediction mode, determining an intra reference sample filter from a Gaussian interpolation filter and an alternative interpolation filter for the current block, applying the intra reference sample filter to the reference samples to generate an intra predictor for the current block, and encoding or decoding the current block based on the intra predictor. A determination between the Gaussian and alternative interpolation filters is depending on a comparison of a mode difference value calculated by the intra prediction mode with a size-dependent threshold. The size-dependent threshold is set to be equal to 24 for blocks with block size smaller than or equal to 32 samples according to an embodiment. The alternative interpolation filter may be a DCT-IF interpolation filter.

Description

編碼或解碼視頻資料的方法和裝置 Method and device for encoding or decoding video data

本發明涉及通過參考同一視頻圖片中的相鄰樣本來對視頻資料進行編碼或解碼。特別地,本發明涉及利用由模式相關的(mode dependent)幀內平滑濾波器匯出的幀內預測器來對視頻資料進行編碼或解碼。 The present invention relates to encoding or decoding video data by referring to adjacent samples in the same video picture. In particular, the present invention relates to encoding or decoding video data using an intra-frame predictor exported by a mode dependent intra-frame smoothing filter.

幀內預測已經在各種圖片和視頻編碼標準中被廣泛採用,以處理初始圖片或週期性地***I圖片或I塊用於隨機訪問或用於減輕錯誤傳播。幀內預測被設計為利用圖片中的空間特徵,例如圖片內或圖片區域內的平滑區域、垂直線或邊緣、水平線或邊緣、以及對角線或邊緣。幀內預測對於運動或場景變化較大的區域也是有用的。對於基於塊的視頻編碼標準,當前塊的幀內預測依賴於已處理的相鄰塊中的樣本。舉例來說,如果視頻圖片或圖片區域中的塊是從頂部到底部且從左到右逐行依次處理的,則當前塊的頂部上的相鄰塊和左側上的相鄰塊可用以形成用於預測當前塊中的樣本的幀內預測器。 Intra prediction has been widely adopted in various picture and video coding standards to process initial pictures or to periodically insert I pictures or I blocks for random access or to mitigate error propagation. Intra prediction is designed to utilize spatial features in a picture, such as smooth areas, vertical lines or edges, horizontal lines or edges, and diagonal lines or edges in a picture or in a picture area. Intra prediction is also useful for areas with large motion or scene changes. For block-based video coding standards, the intra prediction of the current block depends on the samples in the processed neighboring blocks. For example, if the blocks in the video picture or picture area are processed line by line from top to bottom and from left to right, the neighboring block on the top of the current block and the neighboring block on the left can be used to form An intra predictor used to predict samples in the current block.

高效視頻編碼(HEVC)標準支援35種幀內預測模式,包括33個角度模式、DC模式和平面模式。第1圖例示出了HEVC標準中支援的33個角度幀內預測模式的預測方向,其中H表示水平方向模式,而V表示垂直方向模式。通過包括幀內平滑濾波器、幀內預測和幀內梯度濾波器的三個步驟來生成用於通過HEVC的幀內預測來編碼或要通過HEVC的幀內預測來編碼的針對當 前塊的幀內預測器。第2圖例示出了由幀內平滑濾波器濾波的用於匯出當前塊的幀內預測器的示例性參考樣本。在計算當前塊20的幀內預測器之前,對當前塊20的參考樣本22應用作為預處理步驟的平滑操作。平滑操作對應於將具有低通特性的有限脈衝回應(FIR)幀內平滑濾波器[1 2 1]>>2應用於屬於當前塊20的左側相鄰列和上方相鄰行的參考樣本22。平滑操作通過應用FIR濾波器來減少由幀內預測模式中的一些引入的不連續性。根據幀內預測模式和當前塊的尺寸自我調整地應用該平滑操作。 The High Efficiency Video Coding (HEVC) standard supports 35 intra prediction modes, including 33 angle modes, DC mode, and planar mode. The first figure shows the prediction directions of 33-angle intra prediction modes supported in the HEVC standard, where H represents the horizontal direction mode, and V represents the vertical direction mode. The three steps including intra-frame smoothing filter, intra-frame prediction, and intra-frame gradient filter are used to generate the data for encoding by HEVC intra-frame prediction or encoding by HEVC intra-frame prediction. The intra predictor of the previous block. The second figure shows an exemplary reference sample of the intra predictor used to export the current block filtered by the intra smoothing filter. Before calculating the intra predictor of the current block 20, a smoothing operation as a preprocessing step is applied to the reference samples 22 of the current block 20. The smoothing operation corresponds to applying a finite impulse response (FIR) intra-frame smoothing filter [1 2 1]>>2 with a low-pass characteristic to the reference samples 22 belonging to the left adjacent column and the upper adjacent row of the current block 20. The smoothing operation reduces the discontinuities introduced by some of the intra prediction modes by applying FIR filters. The smoothing operation is self-adjusted according to the intra prediction mode and the size of the current block.

幀內預測的第二步驟是根據從35個幀內預測模式中選擇的一個幀內預測模式從相鄰參考樣本中匯出幀內預測器。幀內預測模式由編碼器決定並在位元流中用信號發送,因此對應的解碼器可以從位元流解析幀內預測模式。當選擇角度模式時,通過根據所選擇的角度模式的預測方向從參考樣本外推樣本來預測當前塊中的各個樣本的值。當選擇平面模式時,假定具有從相鄰塊的邊界樣本匯出的水平和垂直平滑梯度的幅度表面來計算當前塊中的各個樣本的值。當選擇DC模式時,當前塊的各個樣本的值是參考樣本的平均值。 The second step of intra-frame prediction is to export an intra-frame predictor from adjacent reference samples according to an intra-frame prediction mode selected from 35 intra-frame prediction modes. The intra prediction mode is determined by the encoder and signaled in the bit stream, so the corresponding decoder can parse the intra prediction mode from the bit stream. When the angle mode is selected, the value of each sample in the current block is predicted by extrapolating the sample from the reference sample according to the prediction direction of the selected angle mode. When the plane mode is selected, the magnitude surface with horizontal and vertical smooth gradients derived from the boundary samples of the adjacent block is assumed to calculate the value of each sample in the current block. When the DC mode is selected, the value of each sample of the current block is the average value of the reference sample.

在第三步驟中,幀內梯度濾波器被應用於當前塊的左邊界和上邊界處的樣本。應用幀內梯度濾波器的概念是利用沿著幀內預測方向的梯度資訊來改進幀內預測的品質。第3A圖例示出了將幀內梯度濾波應用於通過垂直模式或水平模式預測的預測器。在第3A圖中,預測像素Pij表示在行i和列j的預測器,並且AL表示當前塊的左上角處的重構樣本,而Li表示當前塊的左側相鄰列中的重構樣本。在應用幀內梯度濾波器之後,通過等式(1)計算各個預測像素Pij的最終預測像素P'ij。 In the third step, the intra-frame gradient filter is applied to the samples at the left and upper boundaries of the current block. The concept of applying an intra-frame gradient filter is to use gradient information along the direction of intra-frame prediction to improve the quality of intra-frame prediction. Fig. 3A illustrates the application of intra-frame gradient filtering to a predictor predicted by vertical mode or horizontal mode. In Figure 3A, the predicted pixel Pij represents the predictor at row i and column j, and AL represents the reconstructed sample at the upper left corner of the current block, and Li represents the reconstructed sample in the left adjacent column of the current block. After applying the intra-frame gradient filter, the final predicted pixel P'ij of each predicted pixel Pij is calculated by equation (1).

P'ij=Pij+α.(Li-AL) 等式(1) P ' ij=Pij+ α . (Li-AL) Equation (1)

其中,α為0至1的分數,並且是根據水平位移j來選擇的,例如,當j=0時,α=1/2,並且當j=1時,α=1/4。對於通過水平模式預測的當前塊,通過等式 (2)計算各個預測像素Pij的最終預測像素P'ij。 Among them, α is a fraction of 0 to 1, and is selected according to the horizontal displacement j, for example, when j=0, α=1/2, and when j=1, α=1/4. For the current block predicted by the horizontal mode, through the equation (2) Calculate the final predicted pixel P'ij of each predicted pixel Pij.

P'ij=Pij+α.(Aj-AL) 等式(2) P ' ij=Pij+ α . (Aj-AL) Equation (2)

其中Aj是上述行中的重構樣本。對於方向模式v+1~v+8和h+1~h+8,首先沿著幀內預測方向獲得重構樣本Li或Aj的對應參考樣本RLi或RAj,以替換重構樣本Li或Aj。當當前塊的上一行或左列中的整像素不位於整像素的位置時,應用其插值以產生對應的參考樣本RLi或RAj。第3B圖例示出了將幀內梯度濾波器應用於v+1~v+8個方向模式的示例。根據等式(3)從各個預測像素Pij計算最終預測像素P'ij。 Where Aj is the reconstructed sample in the above row. For the direction modes v+1~v+8 and h+1~h+8, first obtain the corresponding reference sample RLi or RAj of the reconstructed sample Li or Aj along the intra prediction direction to replace the reconstructed sample Li or Aj. When the whole pixel in the upper row or left column of the current block is not located at the position of the whole pixel, its interpolation is applied to generate the corresponding reference sample RLi or RAj. Figure 3B shows an example of applying an intra-frame gradient filter to v+1 to v+8 directional patterns. The final predicted pixel P'ij is calculated from each predicted pixel Pij according to equation (3).

P'ij=Pij+α.(Li-RLi) 等式(3) P ' ij=Pij+ α . (Li-RLi) Equation (3)

與垂直模式類似,α是從0到1的分數,並且是根據幀內預測的方向和水平位移j來選擇的。對於h+1~h+8個方向模式,最終預測像素P'ij是根據等式(4)從各個預測像素Pij計算出的,其中α是從0到1的分數,並且是根據幀內預測方向和垂直位移i選擇的。 Similar to the vertical mode, α is a score from 0 to 1, and is selected according to the direction of intra prediction and the horizontal displacement j. For h+1~h+8 directional modes, the final predicted pixel P'ij is calculated from each predicted pixel Pij according to equation (4), where α is a score from 0 to 1, and is based on intra prediction The direction and vertical displacement i are selected.

P'ij=Pij+α.(Aj-RAj) 等式(4) P ' ij=Pij+ α . (Aj-RAj) Equation (4)

雖然幀內梯度濾波器可以應用於所有的方向模式v+1~v+8和h+1~h+8,但是僅當幀內預測模式是HEVC標準中的DC模式、水平模式或垂直模式時,才應用幀內梯度濾波器。當所選擇的幀內預測模式為DC模式時,通過幀內梯度濾波器對當前塊的第一行及第一列中的樣本進行濾波。當所選擇的幀內預測模式為水平模式時,通過幀內梯度濾波器對第一行中的樣本進行濾波,並且如果所選擇的幀內預測模式為垂直模式,則通過幀內梯度濾波器對第一列中的樣本進行濾波。 Although the intra-frame gradient filter can be applied to all directional modes v+1~v+8 and h+1~h+8, but only when the intra-frame prediction mode is the DC mode, horizontal mode or vertical mode in the HEVC standard , The intra-frame gradient filter is applied. When the selected intra prediction mode is the DC mode, the samples in the first row and the first column of the current block are filtered through the intra gradient filter. When the selected intra-frame prediction mode is the horizontal mode, the samples in the first row are filtered by the intra-frame gradient filter, and if the selected intra-frame prediction mode is the vertical mode, the samples in the first row are filtered by the intra-frame gradient filter. The samples in the first column are filtered.

MPM列表生成 在HEVC標準中支援的35個幀內預測模式中,三個幀內預測模式被視為用於預測當前塊的當前幀內預測模式的最可能模式(MPM)。左側相鄰塊和上方相鄰塊的相鄰幀內預測模式被包括在三個MPM中。 在兩個相鄰幀內預測模式是相同方向模式,或兩個相鄰幀內預測模式中僅有一個幀內預測模式可用且是方向模式的情況下,緊鄰此方向模式的兩個相鄰方向也包含在三個MPM中。當左側相鄰或上方相鄰幀內預測模式不是方向性的或當幀內預測中相鄰塊不可用或未編碼時,DC模式和平面模式也被視為MPM。用信號發送第一MPM標誌以指示當前幀內預測模式是否與三個MPM中的一個MPM相同,如果相同,則發送另一標誌以指示選擇了三個MPM中的哪個MPM;如果第一MPM標誌為假,則當前幀內預測模式為非MPM模式,並且使用5位元固定長度代碼字來顯式地用信號發送當前幀內預測模式。 MPM list generation Among the 35 intra prediction modes supported in the HEVC standard, the three intra prediction modes are regarded as the most probable mode (MPM) of the current intra prediction mode for predicting the current block. The neighboring intra prediction modes of the left neighboring block and the upper neighboring block are included in three MPMs. When two adjacent intra prediction modes are in the same direction mode, or only one of the two adjacent intra prediction modes is available and is a direction mode, the two adjacent directions next to this direction mode Also included in the three MPMs. When the left adjacent or upper adjacent intra prediction mode is not directional or when the adjacent block is unavailable or uncoded in intra prediction, the DC mode and the planar mode are also regarded as MPM. Signal the first MPM flag to indicate whether the current intra prediction mode is the same as one of the three MPMs, if the same, send another flag to indicate which MPM of the three MPMs is selected; if the first MPM flag If false, the current intra prediction mode is a non-MPM mode, and a 5-bit fixed-length codeword is used to explicitly signal the current intra prediction mode.

第1圖所示的33個角度模式可以擴展到具有更多或更少角度模式的一般情況,其中各個角度模式可以由模式H+k或模式V+k表示,其中H表示水平模式的方向,V表示垂直模式的方向,並且k=0、+-1、+-2、...+-K。第4圖中示出了用於幀內預測的65個角度模式的示例,其中k的範圍從-16到16。模式H-16和模式V-16是相同的模式,其中該模式是指從當前塊的左上角到中心的預測方向。第4圖例示出了65個角度幀內預測模式,其中在HEVC的原始33個角度模式之間具有額外的32個角度模式。第4圖中的65個角度模式包括在塊的左邊界處從底部到頂部的模式H+16到H-15和在塊的頂部邊界處從左到右的模式V-16到V+16。這些更密集的方向幀內預測模式可以應用於所有塊尺寸並且用於亮度分量和色度分量兩者。 The 33 angle modes shown in Figure 1 can be extended to the general situation with more or less angle modes, where each angle mode can be represented by mode H+k or mode V+k, where H represents the direction of the horizontal mode, V represents the direction of the vertical mode, and k=0, +-1, +-2, ... +-K. Figure 4 shows an example of 65 angle modes for intra prediction, where k ranges from -16 to 16. Mode H-16 and Mode V-16 are the same mode, where the mode refers to the prediction direction from the upper left corner of the current block to the center. Figure 4 shows 65-angle intra-prediction modes, in which there are additional 32-angle modes between the original 33-angle modes of HEVC. The 65 angle patterns in Figure 4 include patterns H+16 to H-15 from bottom to top at the left boundary of the block and patterns V-16 to V+16 from left to right at the top boundary of the block. These denser directional intra prediction modes can be applied to all block sizes and for both luma and chroma components.

在最近的發展中,具有6個MPM的幀內模式編碼方法考慮了與兩個相鄰塊(具有模式A的左側塊和具有模式B的上方相鄰塊)相關聯的兩個可用的相鄰幀內預測模式。通過考慮以下三個方面來構造MPM列表:預設幀內預測模式、相鄰幀內預測模式和派生幀內預測模式。6個MPM列表生成處理開始於將默認MPM列表初始化為{A,平面(0)或DC(1),垂直(50),水平(18),VER-4(46)),VER+4(54))}。在兩個相鄰模式A和B相同並且A大於DC(1)模式 的情況下,MPM清單包括三個預設模式{A,平面(0),DC(1)}和三個派生模式。通過將預定義的偏移值加到相鄰模式並執行模運算來獲得三個派生模式。在兩個相鄰模式不同的情況下,兩個相鄰模式被分配給MPM清單中的前兩個MPM,而剩餘四個MPM是從預設模式和相鄰模式派生的。在6個MPM列表產生處理期間,使用修剪來移除重複的模式,使得在MPM清單中僅包括唯一模式。對於61個非MPM模式的熵編碼,使用截斷二進位碼(TBC)。 In recent developments, the intra-mode encoding method with 6 MPMs takes into account the two available adjacent blocks associated with two adjacent blocks (the left block with mode A and the upper adjacent block with mode B) Intra prediction mode. The MPM list is constructed by considering the following three aspects: preset intra prediction mode, adjacent intra prediction mode, and derived intra prediction mode. The 6 MPM list generation process starts by initializing the default MPM list to {A, plane (0) or DC (1), vertical (50), horizontal (18), VER-4 (46)), VER+4 (54) ))}. In two adjacent modes A and B are the same and A is greater than DC(1) mode In the case of, the MPM list includes three preset modes {A, plane(0), DC(1)} and three derived modes. Three derived modes are obtained by adding a predefined offset value to the adjacent mode and performing a modulo operation. In the case where the two adjacent modes are different, the two adjacent modes are assigned to the first two MPMs in the MPM list, and the remaining four MPMs are derived from the preset mode and the adjacent mode. During the 6 MPM list generation process, pruning is used to remove duplicate patterns so that only unique patterns are included in the MPM list. For 61 entropy coding in non-MPM mode, truncated binary code (TBC) is used.

用於非方形塊的寬角(wide-angle)幀內預測 將若干常規角度幀內預測模式自我調整地替換為用於非方形塊的寬角幀內預測(WAIP)模式。常規角度幀內預測方向被定義為按順時針方向從45度到-135度。在最近的發展中,通過將原始模式索引用於發送信號來將一些原始模式替換為WAIP模式,在解析後WAIP模式的實際索引被重新映射,從而使幀內預測模式的總數不變,並且幀內模式編碼方法也保持不變。為了支援這些WAIP模式,在第5A圖和第5B圖中定義了具有長度2W+1的頂部參考和具有長度2H+1的左側參考。在第5A圖中,當前塊52可以通過具有角度大於模式2的角度的左側參考樣本預測,在第5B圖中,當前塊54可以通過具有角度大於模式66的角度的頂部參考樣本來預測。寬角方向模式中被替換的模式的數量取決於塊的縱橫比。表1中例示出了替換後的幀內預測模式。 Wide-angle intra prediction for non-square blocks Several regular-angle intra prediction modes are self-adjusted to be replaced with wide-angle intra prediction (WAIP) modes for non-square blocks. The normal angle intra prediction direction is defined as from 45 degrees to -135 degrees in a clockwise direction. In recent developments, some original modes are replaced with WAIP modes by using the original mode index for signal transmission. After parsing, the actual index of the WAIP mode is remapped, so that the total number of intra prediction modes remains unchanged, and the frame The intra-mode encoding method also remains unchanged. To support these WAIP modes, a top reference with a length of 2W+1 and a left reference with a length of 2H+1 are defined in Figures 5A and 5B. In Figure 5A, the current block 52 can be predicted by the left reference sample having an angle greater than that of Mode 2, and in Figure 5B, the current block 54 can be predicted by the top reference sample having an angle greater than that of Mode 66. The number of modes to be replaced in the wide-angle direction mode depends on the aspect ratio of the block. Table 1 shows an example of the intra prediction mode after replacement.

Figure 109113769-A0305-02-0007-1
Figure 109113769-A0305-02-0007-1
Figure 109113769-A0305-02-0008-2
Figure 109113769-A0305-02-0008-2

第6圖例示出在通過寬角幀內預測進行預測的當前塊中由兩個垂直相鄰的預測樣本參考的參考樣本的不連續性的示例。由兩個垂直相鄰的預測樣本62和64參考的兩個參考樣本66和68之間的間隔大於1個樣本。低通參考樣本濾波器和側平滑被應用於寬角幀內預測,以減小兩個參考樣本66和68之間的增加的間隙△pα的負面影響,其中α小於45度。 Fig. 6 shows an example of discontinuity of reference samples referenced by two vertically adjacent prediction samples in the current block predicted by wide-angle intra prediction. The interval between the two reference samples 66 and 68 referenced by the two vertically adjacent prediction samples 62 and 64 is greater than 1 sample. A low-pass reference sample filter and side smoothing are applied to wide-angle intra prediction to reduce the negative impact of the increased gap Δpα between the two reference samples 66 and 68, where α is less than 45 degrees.

模式相關的幀內平滑 在HEVC標準中,一旦決定了方向預測模式,除了平面模式和DC模式之外,使用兩抽頭線性插值濾波器(two-tap linear interpolation filter)來根據方向預測模式生成幀內預測塊。四抽頭幀內插值濾波器(four-tap linear interpolation filter)被證明是進一步提高了方向幀內預測的精度。例如,簡化的6位元四抽頭高斯插值濾波器(6-bit four-tap Gaussian interpolation filter)用於方向幀內預測模式,而非方向幀內預測處理並未被修改。在即將到來的視頻編碼標準通用視頻編碼(VVC)的開發中,根據用於提供非分數位移的方向幀內預測模式的模式相關的幀內平滑(Mode Dependent Intra Smoothing,MDIS)狀況來確定被應用於參考樣本的幀內平滑濾波器的選擇。 Mode-related intra-frame smoothing In the HEVC standard, once the directional prediction mode is determined, in addition to the planar mode and the DC mode, a two-tap linear interpolation filter is used to generate the intra-frame according to the directional prediction mode. Prediction block. The four-tap linear interpolation filter is proven to further improve the accuracy of directional intra prediction. For example, a simplified 6-bit four-tap Gaussian interpolation filter (6-bit four-tap Gaussian interpolation filter) is used in the directional intra prediction mode, and the non-directional intra prediction processing has not been modified. In the development of the upcoming video coding standard General Video Coding (VVC), the application is determined according to the mode-dependent intra-frame smoothing (Mode Dependent Intra Smoothing, MDIS) conditions used to provide non-fractional-shifted directional intra-frame prediction modes The selection of the smoothing filter within the frame of the reference sample.

通過採用MDIS,取決於幀內預測模式來執行幀內預測中的參考樣本處理。方向幀內預測模式首先被分類為以下三組中的一組:A、垂直模式(VER_IDX)或水平模式(HOR_IDX);B、表示角度等於45度倍數的對角模式(即2、DIA_IDX、VDIA_IDX);以及C、其餘的方向模式。如果方向幀內預測模式被分類為屬於A組,則不會將濾波器應用於參考樣本以生成預測樣本。如果幀內預測模式被分類為屬於B組,則將[1,2,1]參考樣本濾波器自我調整地應用於 參考樣本,以將這些濾波後的值進一步複製到幀內預測器。不將插值濾波器應用於屬於B組的任何模式。否則,如果幀內預測模式被分類為屬於C組,則僅將插值濾波器應用於參考樣本,以根據所選擇的方向生成落入參考樣本之間的分數或整數位置的預測樣本。當將幀內參考樣本插值濾波器應用于參考樣本時,不執行參考樣本濾波。實際上,將值minDistVerhor計算為當前模式減去50的絕對值與當前模式減去18的絕對值之間的最小值,minDistVerhor=min(abs(predModeIntra-50),abs(predModeIntra-18))。如果minDistVerDistHor大於表2中定義的閾值IntraHorVerDistThres,或者如果當前模式是WAIP模式,則應用高斯插值濾波器來計算幀內預測樣本。否則,應用DCT-IF插值濾波器來計算幀內預測樣本。 By adopting MDIS, reference sample processing in intra prediction is performed depending on the intra prediction mode. Directional intra prediction modes are first classified into one of the following three groups: A, vertical mode (VER_IDX) or horizontal mode (HOR_IDX); B, diagonal mode with an angle equal to a multiple of 45 degrees (ie 2, DIA_IDX, VDIA_IDX) ); and C, the rest of the direction mode. If the directional intra prediction mode is classified as belonging to group A, the filter will not be applied to the reference samples to generate prediction samples. If the intra prediction mode is classified as belonging to group B, the [1,2,1] reference sample filter is self-adjusted to apply Reference samples to further copy these filtered values to the intra predictor. The interpolation filter is not applied to any mode belonging to group B. Otherwise, if the intra prediction mode is classified as belonging to the C group, only the interpolation filter is applied to the reference samples to generate prediction samples of fractional or integer positions that fall between the reference samples according to the selected direction. When the intra-frame reference sample interpolation filter is applied to the reference samples, the reference sample filtering is not performed. In fact, the value minDistVerhor is calculated as the minimum value between the absolute value of the current mode minus 50 and the absolute value of the current mode minus 18, minDistVerhor=min(abs(predModeIntra-50), abs(predModeIntra-18)). If minDistVerDistHor is greater than the threshold IntraHorVerDistThres defined in Table 2, or if the current mode is the WAIP mode, a Gaussian interpolation filter is applied to calculate the intra prediction samples. Otherwise, the DCT-IF interpolation filter is applied to calculate the intra prediction samples.

Figure 109113769-A0305-02-0009-3
Figure 109113769-A0305-02-0009-3

位置相關的幀內預測組合 在即將到來的視頻編碼標準VVC的最新發展中,通過位置相關的幀內預測組合(PDPC)方法進一步修改平面模式的幀內預測的預測結果。PDPC方法是一種幀內預測方法,其調用未濾波的邊界參考樣本和具有濾波的邊界參考樣本的HEVC樣式的幀內預測的組合。PDPC應用於平面模式、DC模式、水平模式、垂直模式、左下角度模式及其八個相鄰角度模式,以及右上角度模式及其八個相鄰角度模式,而無需發送信號。根據PDPC方法,根據以下等式使用幀內預測模式和參考樣本的線性組合來預測預測樣本pred(x,y):pred(x,y)=(wL×R(-1,y)-wT×R(x,-1)-wTL×R(-1,-1)+(64-wL-wT+wTL)×pred(x,y)-32)>>6 等式(5) Position-related intra-frame prediction combination In the latest development of the upcoming video coding standard VVC, the prediction result of the plane mode intra-frame prediction is further modified through the position-related intra-frame prediction combination (PDPC) method. The PDPC method is an intra prediction method that calls a combination of unfiltered boundary reference samples and HEVC style intra prediction with filtered boundary reference samples. PDPC is applied to planar mode, DC mode, horizontal mode, vertical mode, lower left angle mode and its eight adjacent angle modes, and upper right angle mode and its eight adjacent angle modes without sending a signal. According to the PDPC method, a linear combination of an intra prediction mode and a reference sample is used to predict the prediction sample pred(x,y) according to the following equation: pred(x,y)=(wL×R (-1,y) -wT× R (x,-1) -wTL×R (-1,-1) +(64-wL-wT+wTL)×pred(x,y)-32)>>6 Equation (5)

其中R(x,-1)、R(-1,y)分別表示位於當前樣本(x,y)的頂部和左側的參考樣本, 而R(-1,-1)表示位於當前塊的左上角的參考樣本。 Among them, R (x,-1) and R (-1,y) respectively represent the reference samples located at the top and left of the current sample (x,y), and R (-1,-1) represents the upper left corner of the current block Reference sample.

如果PDPC方法應用於DC模式、平面模式、水平模式和垂直模式,則不需要附加的邊界濾波器。第7A圖、第7B圖、第7C圖和第7D圖例示出了應用於各種預測模式的PDPC的參考樣本74a、74b、74c或74d的定義。預測樣本pred(x',y')位於預測塊72a、72b、72c或72d內的(x',y')處。第7A圖例示出了應用於對角右上模式的PDPC所使用的樣本,第7B圖例示出了應用于對角左下模式的PDPC所使用的樣本,第7C圖例示出了應用於相鄰對角右上模式的PDPC所使用的樣本,並且第7D圖例示出了應用于相鄰對角左下模式的PDPC所使用的樣本。在示例中,對於對角模式,參考樣本R(x,-1)的座標x由等式x=x'+y'+1給出,並且參考樣本R(-1,y)的座標類似地由等式y=x'+y'+1給出。對於其它角度模式,參考樣本R(x,-1)和R(-1,y)位於分數樣本位置。在這種情況下,使用最近整數樣本位置的樣本值。PDPC權重取決於預測模式且示出在表3中。 If the PDPC method is applied to DC mode, planar mode, horizontal mode, and vertical mode, no additional boundary filters are required. Fig. 7A, Fig. 7B, Fig. 7C, and Fig. 7D illustrate the definition of reference samples 74a, 74b, 74c, or 74d of PDPC applied to various prediction modes. The prediction sample pred (x', y') is located at (x', y') in the prediction block 72a, 72b, 72c, or 72d. Figure 7A shows the sample used by PDPC applied to the diagonal upper right mode, Figure 7B shows the sample used by PDPC applied to the diagonal lower left mode, and Figure 7C shows the sample applied to the adjacent diagonal The samples used by the PDPC in the upper right mode, and the 7D legend shows the samples used by the PDPC in the adjacent diagonal lower left mode. In the example, for the diagonal mode, the coordinate x of the reference sample R(x,-1) is given by the equation x=x'+y'+1, and the coordinate of the reference sample R(-1,y) is similarly It is given by the equation y=x'+y'+1. For other angle modes, the reference samples R(x,-1) and R(-1,y) are located at the fractional sample position. In this case, the sample value of the nearest integer sample position is used. The PDPC weight depends on the prediction mode and is shown in Table 3.

Figure 109113769-A0305-02-0010-4
Figure 109113769-A0305-02-0010-4

公開了一種用於在視頻編解碼系統中處理通過幀內預測編碼或要通過幀內預測編碼的視頻資料的視頻編碼或解碼的方法和裝置。視頻編解碼系統的實施方式接收與當前圖片中的當前塊相關聯的輸入資料。視頻編解碼系統確定當前塊的幀內預測模式,然後根據幀內預測模式確定當前塊的參考樣本。根據當前塊的幀內預測模式和塊尺寸,從高斯插值濾波器和另選插值濾波器中確定用於當前塊的幀內參考樣本濾波器。在高斯插值濾波器與另選插值濾波器之間的確定取決於通過幀內預測模式計算的模式差值與尺寸相關閾值的比較。對於塊尺寸小於或等於32個樣本的塊,或者對於4×4、4×8和8×4的塊,尺寸相關閾值被設定為等於或大於24。將幀內參考樣本濾波器應用於當前塊的參考樣本,以產生當前塊的幀內預測器,並且幀內預測器被用於對當前塊進行編碼或解碼。 Disclosed is a method and device for video encoding or decoding of video data encoded by intra-frame prediction or to be encoded by intra-frame prediction in a video encoding and decoding system. The implementation of the video codec system receives input data associated with the current block in the current picture. The video codec system determines the intra prediction mode of the current block, and then determines the reference sample of the current block according to the intra prediction mode. According to the intra prediction mode and block size of the current block, the intra reference sample filter for the current block is determined from the Gaussian interpolation filter and the alternative interpolation filter. The determination between the Gaussian interpolation filter and the alternative interpolation filter depends on the comparison of the mode difference calculated by the intra prediction mode with the size-related threshold. For blocks whose block size is less than or equal to 32 samples, or for blocks of 4×4, 4×8, and 8×4, the size-related threshold is set to be equal to or greater than 24. The intra reference sample filter is applied to the reference samples of the current block to generate an intra predictor of the current block, and the intra predictor is used to encode or decode the current block.

在一些實施方式中,通過幀內預測模式計算的模式差值是幀內預測模式與水平模式之間的絕對模式數差和幀內預測模式與垂直模式之間的絕對模式數差中的最小值。水平模式數為18,並且垂直模式數為50。當通過當前幀內預測模式計算的模式差值大於尺寸相關閾值時,選擇高斯插值濾波器用於當前塊,並且當通過當前幀內預測模式計算的模式差值小於或等於尺寸相關閾值時,選擇另選插值濾波器。根據幀內預測模式,從當前塊的相鄰重構樣本確定當前塊的參考樣本。 In some embodiments, the mode difference calculated by the intra prediction mode is the minimum of the absolute mode number difference between the intra prediction mode and the horizontal mode and the absolute mode number difference between the intra prediction mode and the vertical mode. . The number of horizontal modes is 18, and the number of vertical modes is 50. When the mode difference calculated by the current intra prediction mode is greater than the size-related threshold, the Gaussian interpolation filter is selected for the current block, and when the mode difference calculated by the current intra prediction mode is less than or equal to the size-related threshold, select another Select the interpolation filter. According to the intra prediction mode, the reference sample of the current block is determined from the neighboring reconstructed samples of the current block.

在一些實施方式中,根據變數nTbS確定當前塊的尺寸相關閾值,並且將變數nTbS定義為當前塊的寬度取Log2加上當前塊的高度取Log2之後移位1。根據優選實施方式,當變數nTbS等於2時,當前塊的尺寸相關閾值等於24。在該實施方式中,當變數nTbS等於3時,尺寸相關閾值等於14,當變數nTbS等於4時,尺寸相關閾值等於2,並且當變數nTbS等於或大於5時,尺寸 相關閾值等於0。 In some embodiments, the size-related threshold of the current block is determined according to the variable nTbS, and the variable nTbS is defined as the width of the current block taking Log2 plus the height of the current block taking Log2 and then shifting by 1. According to a preferred embodiment, when the variable nTbS is equal to 2, the size-related threshold of the current block is equal to 24. In this embodiment, when the variable nTbS is equal to 3, the size-related threshold is equal to 14, when the variable nTbS is equal to 4, the size-related threshold is equal to 2, and when the variable nTbS is equal to or greater than 5, the size The correlation threshold is equal to zero.

另選插值濾波器可以是Cubic或DCT-IF插值濾波器。當前塊的幀內預測模式是常規(regular)方向幀內預測模式或寬角幀內預測模式。當前塊是亮度CB,並且塊尺寸對當前塊中的亮度樣本的數量進行計數。 Alternative interpolation filters can be Cubic or DCT-IF interpolation filters. The intra prediction mode of the current block is a regular direction intra prediction mode or a wide-angle intra prediction mode. The current block is the luma CB, and the block size counts the number of luma samples in the current block.

在一些示例性實施方式中,當塊尺寸大於32個樣本時並且當當前塊的幀內預測模式是預定義模式時,確定[1 2 1]參考樣本平滑濾波器用於當前塊。例如,預定義模式是平面模式、模式-14、模式-12、模式-10、模式-6、模式2、模式34、模式66、模式72、模式76、模式78和模式80中的一者或組合。 In some exemplary embodiments, when the block size is greater than 32 samples and when the intra prediction mode of the current block is a predefined mode, it is determined that the [1 2 1] reference sample smoothing filter is used for the current block. For example, the predefined mode is one of plane mode, mode-14, mode-12, mode-10, mode-6, mode 2, mode 34, mode 66, mode 72, mode 76, mode 78, and mode 80, or combination.

如果當前塊的幀內預測模式是平面模式、模式-14、模式-12、模式-10、模式-6、模式2、模式34、模式66、模式72、模式76、模式78和模式80中的一者,則處理方法的一些實施方式將不選擇高斯插值濾波器用於對參考樣本進行濾波。 If the intra prediction mode of the current block is one of Planar Mode, Mode-14, Mode-12, Mode-10, Mode-6, Mode 2, Mode 34, Mode 66, Mode 72, Mode 76, Mode 78, and Mode 80 For one thing, some implementations of the processing method will not select a Gaussian interpolation filter for filtering the reference samples.

如果幀內預測模式是垂直模式或水平模式,或者如果根據一些實施方式確定[1 2 1]參考樣本平滑濾波器,則選擇另選插值濾波器用於當前塊,並且另選插值濾波器是具有係數[0 64 0 0]的DCT-IF濾波器。在另一實施方式中,如果幀內預測模式是垂直模式或水平模式,則不將濾波器應用於當前塊的參考樣本。 If the intra prediction mode is the vertical mode or the horizontal mode, or if the [1 2 1] reference sample smoothing filter is determined according to some embodiments, the alternative interpolation filter is selected for the current block, and the alternative interpolation filter has coefficients [0 64 0 0] DCT-IF filter. In another embodiment, if the intra prediction mode is the vertical mode or the horizontal mode, the filter is not applied to the reference samples of the current block.

根據實施方式,如果塊尺寸是4×4、4×8或8×4並且幀內預測模式是模式2、模式34或模式66,或者如果塊尺寸是4×8並且幀內預測模式是模式-6,或者如果塊尺寸是8×4並且幀內預測模式是模式72,則不選擇[1 2 1]參考樣本平滑濾波器用於當前塊。 According to an embodiment, if the block size is 4×4, 4×8, or 8×4 and the intra prediction mode is mode 2, mode 34, or mode 66, or if the block size is 4×8 and the intra prediction mode is mode − 6. Or if the block size is 8×4 and the intra prediction mode is mode 72, the [1 2 1] reference sample smoothing filter is not selected for the current block.

根據實施方式,如果塊尺寸大於32個樣本,則僅選擇[1 2 1]參考樣本平滑濾波器和高斯插值濾波器用於當前塊。所述另選插值濾波器是DCT-IF插值濾波器,且如果所述塊尺寸為4×4、4×8或8×4或所述塊尺寸小於 或等於32個樣本,則總是選擇DCT-IF插值濾波器用於當前塊。 According to an embodiment, if the block size is greater than 32 samples, only the [1 2 1] reference sample smoothing filter and Gaussian interpolation filter are selected for the current block. The alternative interpolation filter is a DCT-IF interpolation filter, and if the block size is 4×4, 4×8, or 8×4 or the block size is less than Or equal to 32 samples, the DCT-IF interpolation filter is always selected for the current block.

本公開的各方面還提供了一種視頻編碼系統中的裝置,用於接收與通過幀內預測編碼或要通過幀內預測編碼的當前塊相關聯的輸入資料,相應地確定當前塊的幀內預測模式和參考樣本,根據當前塊的幀內預測模式和塊尺寸從高斯插值濾波器和另選插值濾波器確定幀內參考樣本濾波器,將幀內參考樣本濾波器應用於參考樣本以生成當前塊的幀內預測器,以及基於幀內預測器對當前塊進行編碼或解碼。高斯插值濾波器與另選插值濾波器之間的選擇取決於通過幀內預測模式計算的模式差值與尺寸相關閾值的比較。對於塊尺寸小於或等於32個樣本的塊,尺寸相關閾值被設定為等於或大於24。 Aspects of the present disclosure also provide a device in a video encoding system for receiving input data associated with a current block encoded by intra-frame prediction or to be encoded by intra-frame prediction, and correspondingly determining the intra-frame prediction of the current block Mode and reference samples, determine the intra-frame reference sample filter from the Gaussian interpolation filter and alternative interpolation filters according to the intra-frame prediction mode and block size of the current block, and apply the intra-frame reference sample filter to the reference samples to generate the current block The intra-frame predictor, and based on the intra-frame predictor to encode or decode the current block. The choice between the Gaussian interpolation filter and the alternative interpolation filter depends on the comparison of the mode difference calculated by the intra prediction mode with the size-related threshold. For blocks whose block size is less than or equal to 32 samples, the size-dependent threshold is set to be equal to or greater than 24.

本發明的各方面進一步提供一種存儲程式指令的非暫時性電腦可讀介質,所述程式指令使裝置的處理電路通過利用根據當前塊的幀內預測模式和塊尺寸而選擇的幀內參考樣本濾波器進行幀內預測來對所述當前塊的視頻資料進行編碼或解碼。通過閱讀下面對具體實施例的描述,本發明的其他方面和特徵對於本領域普通技術人員將變得顯而易見。 Aspects of the present invention further provide a non-transitory computer-readable medium storing program instructions that cause the processing circuit of the device to filter by using intra-frame reference samples selected according to the intra-frame prediction mode and block size of the current block The device performs intra-frame prediction to encode or decode the video data of the current block. By reading the following description of specific embodiments, other aspects and features of the present invention will become apparent to those of ordinary skill in the art.

20、52、54:當前塊 20, 52, 54: current block

22、66、68、74a、74b、74c、74d:參考樣本 22, 66, 68, 74a, 74b, 74c, 74d: reference samples

62、64:預測樣本 62, 64: prediction sample

72a、72b、72c、72d:預測塊 72a, 72b, 72c, 72d: prediction block

900:視頻編碼器 900: Video encoder

910、1012:幀內預測模組 910, 1012: intra prediction module

912、1014:幀間預測模組 912, 1014: Inter-frame prediction module

916:加法器模組 916: Adder Module

918:變換模組(T) 918: Transformation Module (T)

920:量化模組(Q) 920: Quantization Module (Q)

922、1020:逆量化模組(IQ) 922, 1020: Inverse Quantization Module (IQ)

924、1022:逆變換模組(IT) 924, 1022: Inverse Transformation Module (IT)

926、1018:重構模組(REC) 926, 1018: Refactoring Module (REC)

928、1024:去塊濾波器(DF) 928, 1024: Deblocking filter (DF)

930、1026:環內濾波器 930, 1026: In-loop filter

932、1028:參考圖片緩衝器 932, 1028: reference picture buffer

934:熵編碼器 934: Entropy encoder

1000:視頻解碼器 1000: Video decoder

1016:切換模組 1016: Switch module

S802-S820:步驟 S802-S820: steps

參考圖式,提出多種實施例作為舉例說明,其中相同的代碼指示相同的元件。 With reference to the drawings, various embodiments are presented as examples, where the same codes indicate the same elements.

第1圖示例出了HEVC標準中支援的33個角度幀內預測模式。 Figure 1 illustrates the 33-angle intra prediction modes supported in the HEVC standard.

第2圖例示出了由幀內平滑濾波器濾波的用於匯出當前塊的幀內預測器的示例性參考樣本。 The second figure shows an exemplary reference sample of the intra predictor used to export the current block filtered by the intra smoothing filter.

第3A圖例示出了幀內預測中將幀內梯度濾波應用於通過垂直模式預測的預測器。 Fig. 3A illustrates that the intra-frame gradient filter is applied to the predictor predicted by the vertical mode in the intra-frame prediction.

第3B圖例示出了幀內預測中將幀內梯度濾波應用於通過角度模式預測的預測 器。 Figure 3B shows the application of intra-frame gradient filtering to predictions predicted by angle mode in intra-frame prediction Device.

第4圖例示出了65個角度幀內預測模式的示例。 Figure 4 shows an example of 65-angle intra prediction modes.

第5A圖和第5B圖例示出了應用於兩個示例矩形塊的寬角幀內預測的參考樣本。 Figures 5A and 5B illustrate reference samples for wide-angle intra prediction applied to two example rectangular blocks.

第6圖例示出了在寬角幀內預測的示例中的參考樣本的不連續性。 Fig. 6 shows the discontinuity of reference samples in the example of wide-angle intra prediction.

第7A圖至第7D圖例示出了應用於對角右上模式、對角左下模式、相鄰對角右上模式和相鄰對角左下模式的位置相關的幀內預測組合(PDPC)的參考樣本的定義。 Figures 7A to 7D illustrate the reference samples applied to the position-dependent intra prediction combination (PDPC) of the diagonal upper right mode, the diagonal lower left mode, the adjacent diagonal upper right mode, and the adjacent diagonal lower left mode. definition.

第8圖例示出了根據本發明的實施方式的示例性方法的流程圖。 Figure 8 illustrates a flowchart of an exemplary method according to an embodiment of the present invention.

第9圖例示出了根據本發明的實施方式的結合了視頻處理方法的視頻編碼系統的示例性系統框圖。 Fig. 9 illustrates an exemplary system block diagram of a video encoding system incorporating a video processing method according to an embodiment of the present invention.

第10圖例示出了根據本發明的實施方式的結合了視頻處理方法的視頻解碼系統的示例性系統框圖。 Figure 10 illustrates an exemplary system block diagram of a video decoding system incorporating a video processing method according to an embodiment of the present invention.

容易理解,如在本文的附圖中一般性描述和例示出的,本發明的模組和部件可以以各種不同的配置來設置和設計。因此,如附圖中所表示的,本發明的系統和方法的實施方式的下述更詳細描述並非旨在限制所要求保護的本發明的範圍,而僅是表示本發明的所選實施方式。 It is easy to understand that, as generally described and illustrated in the drawings herein, the modules and components of the present invention can be arranged and designed in various configurations. Therefore, as represented in the drawings, the following more detailed description of the embodiments of the system and method of the present invention is not intended to limit the scope of the claimed invention, but merely represents selected embodiments of the present invention.

在整個說明書中,對"實施方式"、"一些實施方式"或類似語言的引用意味著結合實施方式描述的特定特徵、結構或特性可以包括在本發明的至少一個實施方式中。因此,在整個說明書中的各個地方出現的短語"在實施方式中"或"在一些實施方式中"不一定全部指同一實施方式,這些實施方式可以單獨地或結合一個或更多個其它實施方式來實現。此外,所描述的特徵、結構或特 性可以以任何合適的方式組合在一個或更多個實施方式中。然而,相關領域的技術人員將認識到,可以在沒有一個或更多個特定細節的情況下,或者利用其它方法、部件等來實踐本發明。在其它示例中,沒有詳細示出或描述公知的結構或操作,以避免模糊本發明的各方面。 Throughout the specification, references to "embodiments", "some embodiments" or similar language mean that a particular feature, structure, or characteristic described in conjunction with the embodiments may be included in at least one embodiment of the present invention. Therefore, the phrases "in an embodiment" or "in some embodiments" appearing in various places throughout the specification do not necessarily all refer to the same embodiment, and these embodiments can be implemented individually or in combination with one or more other embodiments. Way to achieve. In addition, the described features, structures or characteristics The sexes can be combined in one or more embodiments in any suitable way. However, those skilled in the relevant art will recognize that the present invention can be practiced without one or more specific details, or using other methods, components, and the like. In other examples, well-known structures or operations are not shown or described in detail to avoid obscuring aspects of the present invention.

將WAIP模式作為常規方向幀內模式,以用於插值濾波器選擇Use the WAIP mode as the normal direction intra-frame mode for interpolation filter selection

如前所述,將低通參考樣本濾波器和側平滑濾波器應用於寬角幀內預測(WAIP)模式,以減少兩個參考樣本之間的增加的間隙的負面影響。本發明的一些實施方式對WAIP模式進行與常規方向幀內預測模式相同的處理,以在幀內預測處理中選擇插值濾波器。無論當前幀內預測模式是WAIP模式還是常規方向幀內預測模式,始終使用模式相關的幀內平滑(MDIS)插值濾波器選擇條件進行確定。MDIS插值濾波器選擇條件檢查值minDistVerHor是否大於閾值。通過當前幀內預測模式與水平模式之間的絕對模式數差和當前幀內預測模式與垂直模式之間的絕對模式數差中的最小值來計算值minDistVerHor。如果MDIS插值濾波器選擇條件的檢查為真,則選擇高斯插值濾波器用於當前塊;否則選擇另選插值濾波器。另選插值濾波器的一些示例包括Cubic插值濾波器和DCT-IF插值濾波器。 As mentioned earlier, the low-pass reference sample filter and the side smoothing filter are applied to the wide-angle intra prediction (WAIP) mode to reduce the negative impact of the increased gap between the two reference samples. Some embodiments of the present invention perform the same processing on the WAIP mode as the normal direction intra prediction mode to select an interpolation filter in the intra prediction process. Regardless of whether the current intra-frame prediction mode is the WAIP mode or the normal-direction intra-frame prediction mode, the mode-dependent intra-frame smoothing (MDIS) interpolation filter selection condition is always used to determine. The MDIS interpolation filter selection condition checks whether the value minDistVerHor is greater than the threshold. The value minDistVerHor is calculated by the minimum of the absolute mode number difference between the current intra prediction mode and the horizontal mode and the absolute mode number difference between the current intra prediction mode and the vertical mode. If the check of the MDIS interpolation filter selection condition is true, the Gaussian interpolation filter is selected for the current block; otherwise, another interpolation filter is selected. Some examples of alternative interpolation filters include Cubic interpolation filters and DCT-IF interpolation filters.

基於塊尺寸和幀內預測模式確定幀內平滑濾波器 使用當前塊的一個或更多個彩色分量的相鄰重構樣本作為參考樣本,以用於預測在幀內預測中編碼的當前塊。本發明的實施方式改進了幀內預測中的MDIS的設計。在一些示例性實施方式中,基於多次檢查,在[1 2 1]參考樣本平滑濾波器、高斯插值濾波器和DCT-IF插值濾波器中確定一種類型的幀內參考樣本濾波器用於各個幀內編碼塊。當滿足預定義條件時,將[1 2 1]參考樣本平滑濾波器應用於當前塊的重構邊界樣本。舉例來說,當前塊為亮度編碼塊(CB)。選擇[1 2 1]參考樣本平滑濾波器的預定義條件的實施方式是:在當前亮度CB的尺寸大於32個亮度樣 本並且當前幀內預測模式為預定義模式中的一者時。例如,預定義模式包括模式-14、模式-12、模式-10、模式-6、模式2、模式34、模式66、模式72、模式76、模式78和模式80以及平面模式中的一者或組合。預定義條件的另一實施方式是:當前幀內預測模式是具有45度倍數的角度的對角模式(例如模式2、模式34或模式66)中的一者。如第4圖所示,模式-14、模式-12、模式-10、模式-6、模式72、模式76、模式78和模式80是各種寬角方向模式,並且模式2、模式34和模式66是表示45度倍數的角度的對角模式。在一個實施方式中,當選擇[1 2 1]參考樣本平滑濾波器用於當前塊時,使用具有係數[0 64 0 0]的DCT-IF濾波器來對當前塊的參考樣本進行濾波。 The intra-frame smoothing filter is determined based on the block size and the intra-frame prediction mode . The adjacent reconstructed samples of one or more color components of the current block are used as reference samples to predict the current block encoded in the intra-frame prediction. The embodiments of the present invention improve the design of MDIS in intra prediction. In some exemplary embodiments, based on multiple inspections, one type of intra-frame reference sample filter is determined for each frame among [1 2 1] reference sample smoothing filter, Gaussian interpolation filter, and DCT-IF interpolation filter Inner coding block. When the predefined conditions are met, the [1 2 1] reference sample smoothing filter is applied to the reconstruction boundary samples of the current block. For example, the current block is a luma coding block (CB). The implementation of selecting the predefined condition of the [1 2 1] reference sample smoothing filter is: when the size of the current luminance CB is greater than 32 luminance samples and the current intra prediction mode is one of the predefined modes. For example, the predefined modes include Mode-14, Mode-12, Mode-10, Mode-6, Mode 2, Mode 34, Mode 66, Mode 72, Mode 76, Mode 78, Mode 80, and Planar Mode. combination. Another embodiment of the predefined condition is that the current intra prediction mode is one of the diagonal modes (for example, mode 2, mode 34, or mode 66) having an angle multiple of 45 degrees. As shown in Figure 4, Mode-14, Mode-12, Mode-10, Mode-6, Mode 72, Mode 76, Mode 78, and Mode 80 are various wide-angle orientation modes, and Mode 2, Mode 34, and Mode 66 It is a diagonal mode that expresses an angle multiple of 45 degrees. In one embodiment, when the [1 2 1] reference sample smoothing filter is selected for the current block, a DCT-IF filter with a coefficient [0 64 0 0] is used to filter the reference samples of the current block.

如果未選擇[1 2 1]參考樣本平滑濾波器,則將高斯插值濾波器有條件地應用於當前塊,以根據當前塊的幀內預測模式生成幀內預測器。在一個實施方式中,當以下兩個條件都為真時,應用高斯插值濾波器。當當前幀內預測模式不是平面模式、模式-14、模式-12、模式-10、模式-6、模式2、模式34、模式66、模式72、模式76、模式78和模式80中的任何一者時,第一條件為真。當當前幀內預測模式與水平模式之間的絕對模式數差和當前幀內預測模式與垂直模式之間的絕對模式數差的最小值(即,minDisVerHor)大於尺寸相關閾值時,第二條件為真。垂直預測模式數為50且水平預測模式數為18。將模式差值minDistVerHor計算為當前模式減去50的絕對值與當前模式減去18的絕對值之間的最小值。用於匯出值minDistVerHor的等式為:minDistVerHor=min(abs(predModeIntra-50),abs(predModeIntra-18))。在另一實施方式中,無論當前幀內預測模式是WAIP模式還是常規方向幀內預測模式,當模式差值minDisVerHor大於尺寸相關閾值時,應用高斯插值濾波器。在本發明的一些實施方式中,當當前塊的變數nTbS等於2時,當前塊的尺寸相關閾值IntraHorVerDistThres等於24,其中變數nTbS被定義為:Log2(塊寬度)+Log2(塊 高度)>>1。換句話說,當當前塊的塊尺寸為4×4、4×8或8×4個樣本時(意味著當當前塊的塊面積小於或等於32個樣本時),當前塊的尺寸相關閾值IntraHorVerDistThres等於24。在一個實施方式中,當變數nTbS等於3時,閾值IntraHorVerDistThres等於14,並且當變數nTbS等於4時,閾值IntraHorVerDistThres等於2。在此實施方式中,當變數nTbS等於5、6或7時,尺寸相關閾值IntraHorVerDistThres等於0。當塊尺寸等於或大於1024個樣本(即,32×32、16×16或64×16)時,當前塊的變數nTbS等於或大於5。即,如果當前塊的參考樣本沒有被[1 2 1]參考樣本平滑濾波器濾波,則高斯插值濾波器被應用於具有等於或大於32×32、16×64或64×16個樣本尺寸的當前塊,並且被通過除了垂直模式和水平模式之外的方向幀內預測模式編碼。舉例來說,對於大於1024個樣本且具有不等於平面模式、垂直模式、水平模式、模式-14、模式-12、模式-10、模式-6、模式2、模式34、模式66、模式72、模式76、模式78或模式80的幀內預測模式的塊,將高斯插值濾波器應用於相鄰重構樣本。否則,對使用方向幀內預測模式編碼的任何塊的相鄰重構樣本應用DCT-IF插值濾波器。 If the [1 2 1] reference sample smoothing filter is not selected, the Gaussian interpolation filter is conditionally applied to the current block to generate an intra predictor according to the intra prediction mode of the current block. In one embodiment, when the following two conditions are both true, a Gaussian interpolation filter is applied. When the current intra prediction mode is not any one of plane mode, mode-14, mode-12, mode-10, mode-6, mode 2, mode 34, mode 66, mode 72, mode 76, mode 78, and mode 80 The first condition is true. When the minimum value of the absolute mode number difference between the current intra prediction mode and the horizontal mode and the absolute mode number difference between the current intra prediction mode and the vertical mode (ie, minDisVerHor) is greater than the size-related threshold, the second condition is real. The number of vertical prediction modes is 50 and the number of horizontal prediction modes is 18. The mode difference minDistVerHor is calculated as the minimum value between the absolute value of the current mode minus 50 and the absolute value of the current mode minus 18. The equation used to export the value minDistVerHor is: minDistVerHor=min(abs(predModeIntra-50), abs(predModeIntra-18)). In another embodiment, regardless of whether the current intra prediction mode is the WAIP mode or the regular direction intra prediction mode, when the mode difference minDisVerHor is greater than the size-related threshold, a Gaussian interpolation filter is applied. In some embodiments of the present invention, when the variable nTbS of the current block is equal to 2, the size-related threshold IntraHorVerDistThres of the current block is equal to 24, where the variable nTbS is defined as: Log2 (block width) + Log2 (block Height)>>1. In other words, when the block size of the current block is 4×4, 4×8, or 8×4 samples (meaning when the block area of the current block is less than or equal to 32 samples), the size-related threshold IntraHorVerDistThres of the current block Equal to 24. In one embodiment, when the variable nTbS is equal to 3, the threshold IntraHorVerDistThres is equal to 14, and when the variable nTbS is equal to 4, the threshold IntraHorVerDistThres is equal to 2. In this embodiment, when the variable nTbS is equal to 5, 6, or 7, the size-related threshold IntraHorVerDistThres is equal to 0. When the block size is equal to or greater than 1024 samples (ie, 32×32, 16×16, or 64×16), the variable nTbS of the current block is equal to or greater than 5. That is, if the reference sample of the current block is not filtered by the [1 2 1] reference sample smoothing filter, the Gaussian interpolation filter is applied to the current block with a size equal to or greater than 32×32, 16×64, or 64×16 samples. Blocks, and are encoded by directional intra prediction modes other than vertical mode and horizontal mode. For example, for samples greater than 1024 and not equal to planar mode, vertical mode, horizontal mode, mode-14, mode-12, mode-10, mode-6, mode 2, mode 34, mode 66, mode 72, For blocks in the intra prediction mode of mode 76, mode 78, or mode 80, a Gaussian interpolation filter is applied to adjacent reconstructed samples. Otherwise, the DCT-IF interpolation filter is applied to adjacent reconstructed samples of any block encoded using the directional intra prediction mode.

與常規協定相比,在本申請的實施方式中,尺寸相關閾值IntraHorVerDistThres的設定已改變。例如,針對等於2的nTbS,尺寸相關閾值IntraHorVerDistThres變為24。針對等於2的nTbS,增加尺寸相關閾值IntraHorVerDistThres導致增大了針對小塊使用DCT-IF插值濾波器的概率。這反映了本申請的一些重要概念。針對小塊的強幀內插值濾波器(例如高斯濾波器)的需求不如針對較大塊的多。因此,根據此需要保護申請的實施方式,簡化針對小塊在插值濾波器的選擇方法以降低小塊的幀內預測模式的運算/設計複雜度,其中高斯插值濾波器比DCT-IF插值濾波器要使用多得多的複雜性和資源用於編碼/解碼處理。在針對變數nTbS等於2的塊或針對尺寸等於4×4、4×8或8×4個樣本的塊,將尺寸相關閾值IntraHorVerDistThres設定為等於24的實施方式中, 當幀內預測模式為模式-6與模式74之間的任何模式時,值minDistVerHor小於或等於24。因此,將DCT-IF插值濾波器應用於通過模式-6與模式74之間的任何模式編碼的所有4×4、4×8及8×4塊。僅將高斯插值濾波器應用於通過模式-14與模式-7之間的任何模式或模式75到模式80之間的任何模式編碼的4×4、4×8及8×4塊。在另一實施方式中,將針對等於2的nTbS的閾值IntraHorVerDistThres設定為等於或大於24。在一些其它實施方式中,將針對等於2的nTbS的閾值IntraHorVerDistThres設定為17、18、19、21或22,因此,將DCT-IF插值濾波器用於由對應於分別小於或等於17、18、19、21或22的值MinDistVerHor的模式編碼的4×4、4×8及8×4塊。舉例來說,當針對等於2的nTbS的閾值IntraHorVerDistThres設定為21時,將DCT-IF插值濾波器用於具有小於或等於32個樣本的塊面積的小塊並且通過模式-3與模式71之間的任何模式編碼,否則,選擇高斯插值濾波器用於所述小塊。 Compared with the conventional agreement, in the embodiment of this application, the setting of the size-related threshold IntraHorVerDistThres has been changed. For example, for nTbS equal to 2, the size-dependent threshold IntraHorVerDistThres becomes 24. For nTbS equal to 2, increasing the size-dependent threshold IntraHorVerDistThres results in an increase in the probability of using a DCT-IF interpolation filter for small blocks. This reflects some important concepts of this application. The demand for a strong intra-frame interpolation filter (such as a Gaussian filter) for small blocks is not as great as for larger blocks. Therefore, according to the implementation mode of the protection application, the method of selecting interpolation filters for small blocks is simplified to reduce the calculation/design complexity of the intra prediction mode of small blocks. The Gaussian interpolation filter is better than the DCT-IF interpolation filter. Much more complexity and resources are used for encoding/decoding processing. In an embodiment where the size-dependent threshold IntraHorVerDistThres is set equal to 24 for a block with the variable nTbS equal to 2 or for a block with a size equal to 4×4, 4×8, or 8×4 samples, When the intra prediction mode is any mode between mode-6 and mode 74, the value minDistVerHor is less than or equal to 24. Therefore, the DCT-IF interpolation filter is applied to all 4×4, 4×8, and 8×4 blocks encoded by any mode between mode-6 and mode 74. Only the Gaussian interpolation filter is applied to 4×4, 4×8, and 8×4 blocks encoded by any mode between mode-14 and mode-7 or any mode between mode 75 and mode 80. In another embodiment, the threshold IntraHorVerDistThres for nTbS equal to 2 is set to be equal to or greater than 24. In some other embodiments, the threshold IntraHorVerDistThres for nTbS equal to 2 is set to 17, 18, 19, 21, or 22, and therefore, the DCT-IF interpolation filter is used to set the threshold value IntraHorVerDistThres for nTbS equal to or less than 17, 18, 19, respectively. , 21 or 22 values MinDistVerHor mode coded 4×4, 4×8, and 8×4 blocks. For example, when the threshold IntraHorVerDistThres for nTbS equal to 2 is set to 21, the DCT-IF interpolation filter is used for small blocks with a block area less than or equal to 32 samples and passes the difference between mode-3 and mode 71 Any mode encoding, otherwise, a Gaussian interpolation filter is selected for the small block.

由於通過垂直模式(模式50)或水平模式(模式18)編碼的當前塊對應於minDistVerhor=0,所以總是選擇另選濾波器(例如DCT-IF濾波器),而不管當前塊的尺寸如何。根據一個實施方式,使用具有係數[0 64 0 0]的DCT-IF濾波器來對通過垂直或水平幀內預測模式編碼的幀內編碼塊的相鄰重構樣本進行濾波。在另一實施方式中,編碼器或解碼器不需要在幀內參考樣本濾波器當中針對通過垂直模式(模式50)和水平模式(模式18)編碼的塊選擇濾波器,因為這些塊的相鄰重構樣本在幀內預測中未被濾波。 Since the current block encoded by the vertical mode (mode 50) or the horizontal mode (mode 18) corresponds to minDistVerhor=0, an alternative filter (such as a DCT-IF filter) is always selected regardless of the size of the current block. According to one embodiment, a DCT-IF filter with a coefficient [0 64 0 0] is used to filter adjacent reconstructed samples of an intra-coded block coded by a vertical or horizontal intra prediction mode. In another embodiment, the encoder or decoder does not need to select filters for the blocks encoded by the vertical mode (mode 50) and the horizontal mode (mode 18) among the intra-frame reference sample filters, because these blocks are adjacent to each other. The reconstructed samples are not filtered in intra prediction.

下面描述用於確定[1 2 1]參考樣本平滑濾波器的預定義條件的一個實施方式。如果當前塊尺寸是4×4、4×8或8×4個樣本並且所應用的幀內預測模式是模式2、模式34或模式66,則不將[1 2 1]參考樣本平滑濾波器應用至當前塊(例如,排除[1 2 1]參考樣本平滑濾波器);如果當前塊尺寸是4×8個樣本並且所應用的幀內預測模式是模式-6,則不將[1 2 1]參考樣本平滑濾波器應用至 當前塊(例如,排除[1 2 1]參考樣本平滑濾波器);並且如果當前塊尺寸是8×4個樣本並且所應用的幀內預測模式是模式72,則不將[1 2 1]參考樣本平滑濾波器應用至當前塊。對於其他塊尺寸,可以根據當前塊的幀內預測模式將[1 2 1]參考樣本濾波選擇性地/有條件地應用於當前塊。 An embodiment for determining the predefined condition of the [1 2 1] reference sample smoothing filter is described below. If the current block size is 4×4, 4×8, or 8×4 samples and the applied intra prediction mode is mode 2, mode 34, or mode 66, then the [1 2 1] reference sample smoothing filter is not applied To the current block (for example, excluding the [1 2 1] reference sample smoothing filter); if the current block size is 4×8 samples and the applied intra prediction mode is mode-6, then [1 2 1] The reference sample smoothing filter is applied to The current block (for example, [1 2 1] reference sample smoothing filter is excluded); and if the current block size is 8×4 samples and the applied intra prediction mode is mode 72, then [1 2 1] is not referenced The sample smoothing filter is applied to the current block. For other block sizes, [1 2 1] reference sample filtering can be selectively/conditionally applied to the current block according to the intra prediction mode of the current block.

針對小塊的DCT-IF插值濾波器 在本發明的一些實施方式中,[1 2 1]參考樣本平滑濾波器或高斯插值濾波器僅應用於塊尺寸大於32個樣本的塊,因此當塊尺寸是4×4、4×8或8×4時或當塊面積小於或等於32個樣本時,不將[1 2 1]參考樣本平滑濾波器或高斯插值濾波器應用於當前塊。當塊尺寸是4×4、4×8或8×4個樣本時或當塊面積小於或等於32個樣本時,將DCT-IF插值濾波器應用於當前塊。在本實施方式中,對於尺寸大於4×4、4×8或8×4個樣本或面積大於32個樣本的塊,當滿足根據當前塊的幀內預測模式或根據當前塊的幀內預測模式和塊尺寸兩者的標準時,應用[1 2 1]參考樣本平滑濾波器。例如,根據一個實施方式,當幀內預測模式是諸如模式2、模式34或模式66的對角模式時,將[1 2 1]參考樣本平滑濾波器應用於當前塊的參考樣本。在另選實施方式中,當幀內預測模式是平面模式、模式-14、模式-12、模式-10、模式-6、模式2、模式34、模式66、模式72、模式76、模式78和模式80中的一者時,將[1 2 1]參考樣本平滑濾波器應用於當前塊的參考樣本。 DCT-IF interpolation filter for small blocks In some embodiments of the present invention, [1 2 1] reference sample smoothing filter or Gaussian interpolation filter is only applied to blocks with a block size greater than 32 samples, so when the block size When it is 4×4, 4×8, or 8×4 or when the block area is less than or equal to 32 samples, the [1 2 1] reference sample smoothing filter or Gaussian interpolation filter is not applied to the current block. When the block size is 4×4, 4×8, or 8×4 samples or when the block area is less than or equal to 32 samples, the DCT-IF interpolation filter is applied to the current block. In this embodiment, for a block with a size larger than 4×4, 4×8, or 8×4 samples or an area larger than 32 samples, when the intra prediction mode according to the current block is satisfied or the intra prediction mode according to the current block is satisfied When the standard of both and the block size is used, the [1 2 1] reference sample smoothing filter is applied. For example, according to one embodiment, when the intra prediction mode is a diagonal mode such as mode 2, mode 34, or mode 66, the [1 2 1] reference sample smoothing filter is applied to the reference samples of the current block. In an alternative embodiment, when the intra prediction mode is planar mode, mode-14, mode-12, mode-10, mode-6, mode 2, mode 34, mode 66, mode 72, mode 76, mode 78 and In one of the modes 80, the [1 2 1] reference sample smoothing filter is applied to the reference samples of the current block.

簡化位置相關的幀內預測組合 在將位置相關的幀內預測組合(PDPC)應用於當前預測樣本的一些實施方式中,PDPC中使用的相鄰參考樣本來自未濾波樣本,且PDPC中使用的預測樣本由插值濾波器來插值。在一個實施方式中,PDPC的相鄰參考樣本R(x,-1)、R(-1,y)和R(-1,-1)是未進行參考樣本濾波的幀內參考樣本。此外,通過插值濾波器對預測樣本pred(x,y)進行插值。在另一實施方式中,如果PDPC的相鄰參考樣本R(x,-1)、R(-1,y)和R(-1,-1)是未進行參考樣本濾波的幀內參考樣本,並且預測樣本pred(x,y)也沒有***值濾波器插值, 則對於當前幀內預測模式,PDPC是禁用的。在一個實施方式中,僅允許將PDPC用於面積大於S的塊,以最小化較小塊的等待時間(latency)。例如,S是32、64或128個樣本。在另一實施方式中,在僅允許對面積大於S的塊應用參考平滑濾波器或參考樣本插值的情況下,也僅允許將PDPC用於面積大於S的塊。S的一些示例是32、64和128個樣本。在又一實施方式中,當應用PDPC時,僅在幀內預測模式不是DC模式、平面模式、水平模式和垂直模式中的一者的情況下,PDPC的相鄰參考樣本R(x,-1)、R(-1,y)和R(-1,-1)是未進行參考樣本濾波的幀內參考樣本,並且預測樣本pred(x,y)由插值濾波器插值。 Simplified position-related intra-frame prediction combination In some embodiments where position-related intra-frame prediction combination (PDPC) is applied to the current prediction sample, the adjacent reference samples used in PDPC come from unfiltered samples, and the prediction used in PDPC The samples are interpolated by the interpolation filter. In one embodiment, the adjacent reference samples R (x, -1) , R (-1, y), and R (-1, -1) of the PDPC are intra-frame reference samples without reference sample filtering. In addition, the prediction sample pred (x, y) is interpolated through an interpolation filter. In another embodiment, if the adjacent reference samples R (x, -1) , R (-1, y), and R (-1, -1) of the PDPC are intra-frame reference samples without reference sample filtering, And the prediction sample pred(x, y) is not interpolated by the interpolation filter, so PDPC is disabled for the current intra prediction mode. In one embodiment, PDPC is only allowed to be used for blocks with an area larger than S to minimize the latency of smaller blocks. For example, S is 32, 64, or 128 samples. In another embodiment, in a case where the reference smoothing filter or reference sample interpolation is only allowed to be applied to blocks with an area greater than S, PDPC is also allowed to be used only for blocks with an area greater than S. Some examples of S are 32, 64, and 128 samples. In yet another embodiment, when PDPC is applied, only if the intra prediction mode is not one of the DC mode, the planar mode, the horizontal mode, and the vertical mode, the adjacent reference sample R (x, -1) of the PDPC ) , R (-1, y) and R (-1, -1) are intra-frame reference samples without reference sample filtering, and the prediction sample pred(x, y) is interpolated by the interpolation filter.

在另一實施方式中,如果當前幀內預測模式屬於表示45度倍數的角度的模式,則不使用[1 2 1]參考樣本平滑濾波器。相反,應用高斯插值濾波器來生成幀內預測樣本。換句話說,除了DC模式、平面模式、水平模式和垂直模式之外,當應用PDPC時,不對相鄰參考樣本R(x,-1)、R(-1,y)和R(-1,-1)通過參考樣本濾波進行處理,而是由插值濾波器對預測樣本pred(x,y)進行插值。在一個實施方式中,對於具有PDPC的平面模式,不對相鄰參考樣本R(x,-1)、R(-1,y)和R(-1,-1)通過參考樣本濾波進行處理,並且未濾波的相鄰參考樣本和預測樣本pred(x,y)被用於PDPC。在另一個實施方式中,對於具有PDPC的平面模式,未濾波的參考樣本R(x,-1)、R(-1,y)和R(-1,-1)被用於PDPC,但是在應用PDPC之前,通過使用濾波的相鄰參考樣本來生成預測樣本pred(x,y)。 In another embodiment, if the current intra prediction mode belongs to a mode representing an angle multiple of 45 degrees, the [1 2 1] reference sample smoothing filter is not used. Instead, a Gaussian interpolation filter is applied to generate intra prediction samples. In other words, in addition to DC mode, planar mode, horizontal mode, and vertical mode, when PDPC is applied, adjacent reference samples R (x, -1) , R (-1, y), and R (-1, -1) The processing is performed through reference sample filtering, but the prediction sample pred(x, y) is interpolated by the interpolation filter. In one embodiment, for the planar mode with PDPC, adjacent reference samples R (x, -1) , R (-1, y), and R (-1, -1) are not processed by reference sample filtering, and The unfiltered neighboring reference samples and prediction samples pred(x, y) are used for PDPC. In another embodiment, for the planar mode with PDPC, unfiltered reference samples R (x, -1) , R (-1, y) and R (-1, -1) are used for PDPC, but in Before applying PDPC, the predicted sample pred(x, y) is generated by using filtered neighboring reference samples.

代表性流程圖 第8圖是例示出根據本發明的實施方式的用於處理通過幀內預測編碼或要通過幀內預測編碼的當前塊的視頻處理方法的流程圖。在步驟S802中,視頻編碼器或解碼器接收當前圖片中的當前塊的輸入資料。在步驟S804和步驟S806中,視頻編碼器或解碼器確定當前塊的幀內預測模式,並根據幀內預測模式確定當前塊的參考樣本。在步驟S808中,視頻編碼器或解碼器根據當前塊的幀內預測模式和塊尺寸中的一者或兩者檢查是否滿足當前塊 的預定義條件。例如,當塊尺寸大於32個樣本時,以及當幀內預測模式為平面模式、模式-14、模式-12、模式-10、模式-6、模式2、模式34、模式66、模式72、模式76、模式78和模式80中的一者時,滿足預定義條件。如果滿足預定義條件,則在步驟S810中,確定/選擇將[1 2 1]參考樣本平滑濾波器用於當前塊,否則,在步驟S812中,視頻編碼器或解碼器檢查通過幀內預測模式計算的模式差值是否大於尺寸相關閾值。通過幀內預測模式計算的模式差值minDistVerhor的示例為水平模式的模式數差與垂直模式的模式數差之間的最小值,即minDistVerhor=min(abs(predModeIntra-50),abs(predModeIntra-18),本文中50表示模式50,並且18表示模式18。針對塊尺寸小於或等於32個樣本的塊,將尺寸相關閾值設定為等於24。如果通過幀內預測模式計算的模式差值大於尺寸相關閾值,則在步驟S814中確定/選擇高斯插值濾波器用於當前塊;否則,如果通過幀內預測模式計算的值小於或等於尺寸相關閾值,則在步驟S816中確定另選插值濾波器用於當前塊。另選插值濾波器的一些示例為Cubic和DCT-IF插值濾波器。然後在步驟S818中,將上文所確定的幀內參考樣本濾波器應用於當前塊的參考樣本,以產生當前塊的幀內預測器。在步驟S820中,視頻編碼器或解碼器基於幀內預測器對視頻圖片中的當前塊進行編碼或解碼。 Representative flowchart Fig . 8 is a flowchart illustrating a video processing method for processing a current block encoded by intra prediction or to be encoded by intra prediction according to an embodiment of the present invention. In step S802, the video encoder or decoder receives input data of the current block in the current picture. In step S804 and step S806, the video encoder or decoder determines the intra prediction mode of the current block, and determines the reference sample of the current block according to the intra prediction mode. In step S808, the video encoder or decoder checks whether the predefined condition of the current block is satisfied according to one or both of the intra prediction mode and the block size of the current block. For example, when the block size is greater than 32 samples, and when the intra prediction mode is planar mode, mode-14, mode-12, mode-10, mode-6, mode2, mode34, mode66, mode72, mode 76. When one of the mode 78 and the mode 80, the predefined condition is satisfied. If the predefined conditions are met, then in step S810, it is determined/selected to use the [1 2 1] reference sample smoothing filter for the current block, otherwise, in step S812, the video encoder or decoder checks through the intra prediction mode calculation Whether the mode difference of is greater than the size-related threshold. An example of the mode difference value minDistVerhor calculated by the intra prediction mode is the minimum value between the mode number difference of the horizontal mode and the mode number difference of the vertical mode, namely minDistVerhor=min(abs(predModeIntra-50), abs(predModeIntra-18 ), in this article 50 means mode 50, and 18 means mode 18. For blocks with a block size less than or equal to 32 samples, the size-dependent threshold is set equal to 24. If the mode difference calculated by the intra prediction mode is greater than the size-dependent In step S814, determine/select a Gaussian interpolation filter for the current block; otherwise, if the value calculated by the intra prediction mode is less than or equal to the size-related threshold, then in step S816, determine/select an alternative interpolation filter for the current block Some examples of alternative interpolation filters are Cubic and DCT-IF interpolation filters. Then in step S818, the intra-frame reference sample filter determined above is applied to the reference samples of the current block to generate Intra predictor: In step S820, the video encoder or decoder encodes or decodes the current block in the video picture based on the intra predictor.

代表性框圖第9圖例示出了實現本發明的一個或更多個視頻處理方法的視頻編碼器900的示例性系統框圖。將根據相鄰重構樣本通過幀內預測對當前塊進行編碼。幀內預測模組910確定當前塊的幀內預測模式,然後根據幀內預測模式確定當前塊的參考樣本。幀內預測模組910根據當前塊的幀內預測模式和塊尺寸從高斯插值濾波器和DCT-IF插值濾波器確定幀內參考樣本濾波器。高斯插值濾波器和DCT-IF插值濾波器之間的確定或選擇取決於通過幀內預測模式計算的值與尺寸相關閾值的比較,並且對於塊尺寸小於或等於32個樣本的塊,尺寸相關閾值被設定為等於或大於24。幀內預測模組910通過將幀內 參考樣本濾波器應用於當前塊的參考樣本來生成幀內預測器。幀間預測模組912執行運動估計(ME)和運動補償(MC),以基於來自其它一個或多個圖片的視頻資料來提供幀間預測器。幀內預測模組910或幀間預測模組912將所選擇的預測器提供給加法器模組916,以形成預測誤差(也稱為預測殘差)。由於當前塊是通過幀內預測編碼的,因此幀內預測模組910將當前塊的幀內預測器發送到加法器模組916以產生當前塊的預測殘差。 Representative Block Diagram The ninth figure illustrates an exemplary system block diagram of a video encoder 900 that implements one or more video processing methods of the present invention. The current block will be coded through intra prediction based on neighboring reconstructed samples. The intra prediction module 910 determines the intra prediction mode of the current block, and then determines the reference sample of the current block according to the intra prediction mode. The intra prediction module 910 determines an intra reference sample filter from the Gaussian interpolation filter and the DCT-IF interpolation filter according to the intra prediction mode and block size of the current block. The determination or selection between the Gaussian interpolation filter and the DCT-IF interpolation filter depends on the comparison of the value calculated by the intra prediction mode with the size-dependent threshold, and for blocks with a block size less than or equal to 32 samples, the size-dependent threshold It is set equal to or greater than 24. The intra prediction module 910 generates an intra predictor by applying an intra reference sample filter to the reference samples of the current block. The inter prediction module 912 performs motion estimation (ME) and motion compensation (MC) to provide an inter predictor based on video data from one or more other pictures. The intra prediction module 910 or the inter prediction module 912 provides the selected predictor to the adder module 916 to form a prediction error (also referred to as a prediction residual). Since the current block is encoded by intra-frame prediction, the intra-frame prediction module 910 sends the intra-frame predictor of the current block to the adder module 916 to generate the prediction residual of the current block.

當前塊的預測殘差由變換模組(T)918接著由量化模組(Q)920進一步處理。然後,熵編碼器934對變換後和量化後的殘差信號進行編碼,以形成編碼視頻位元流。然後,編碼視頻位元流與輔助資訊一起封裝。由逆量化模組(IQ)922和逆變換模組(IT)924處理當前塊的變換後和量化後的殘差信號,以恢復預測殘差。如第9圖所示,通過在重構模組(REC)926處將其加回到所選擇的預測器來恢復預測殘差,以產生重構樣本。重構樣本可以存儲在參考圖片緩衝器(Ref.Pict.Buffer)932中,並用於預測其它圖片。來自REC926的重構樣本可能由於編碼處理而受到各種損傷,因此,在將重構樣本存儲在參考圖片緩衝器932中之前,對重構樣本應用環內處理去塊濾波器(DF)928和環內濾波器930,以進一步增強圖片品質。與環內處理DF928和環內濾波器930的資訊相關聯的語法被提供給熵編碼器934,以結合到編碼視頻位元流中。 The prediction residual of the current block is further processed by the transform module (T) 918 and then by the quantization module (Q) 920. Then, the entropy encoder 934 encodes the transformed and quantized residual signal to form an encoded video bitstream. Then, the encoded video bit stream is packaged with auxiliary information. The inverse quantization module (IQ) 922 and the inverse transform module (IT) 924 process the transformed and quantized residual signals of the current block to restore the prediction residuals. As shown in Figure 9, the prediction residual is restored by adding it back to the selected predictor at the reconstruction module (REC) 926 to generate reconstructed samples. The reconstructed samples can be stored in a reference picture buffer (Ref. Pict. Buffer) 932 and used to predict other pictures. The reconstructed samples from REC926 may suffer various impairments due to the encoding process. Therefore, before storing the reconstructed samples in the reference picture buffer 932, the in-loop processing deblocking filter (DF) 928 and the loop are applied to the reconstructed samples. Inner filter 930 to further enhance the picture quality. The syntax associated with the in-loop processing DF928 and the in-loop filter 930 information is provided to the entropy encoder 934 to be incorporated into the encoded video bitstream.

第10圖示出了與第9圖的視頻編碼器900相對應的視頻解碼器1000,編碼的視頻位元流是視頻解碼器1000的輸入,並由熵解碼器1010解碼,以解析和恢復變換後和量化後的殘差信號和其它系統資訊。除了解碼器1000僅需要幀間預測模組1014中的運動補償預測之外,解碼器1000的解碼處理類似於編碼器900處的重構迴圈。各個塊由幀內預測模組1012或幀間預測模組1014解碼。切換模組1016根據解碼的模式資訊選擇來自幀內預測模組1012的幀內預測器或來自幀間預測模組1014的幀間預測器。根據本發明的實施方式,幀內 預測模組1012對當前塊的幀內預測模式進行解碼,並根據幀內預測模式確定當前塊的參考樣本。根據當前塊的幀內預測模式和塊尺寸,從高斯插值濾波器和DCT-IF插值濾波器中確定幀內參考樣本濾波器用於當前塊。將通過幀內預測模式計算的模式差值與尺寸相關閾值進行比較,如果通過幀內預測模式計算的模式差值大於尺寸相關閾值,則選擇高斯插值濾波器用於當前塊,否則選擇DCT-IF插值濾波器。幀內預測模組1012將幀內參考樣本濾波器應用於當前塊的參考樣本,以產生當前塊的幀內預測器。與各個塊相關聯的變換後和量化後的殘差信號由逆量化模組(IQ)1020和逆變換模組(IT)1022恢復。通過在REC模組1018中加回預測器來重構經恢復的變換後和量化後的殘差信號,以產生重構樣本。重構樣本進一步由DF1024和環內濾波器1026處理,以生成最終解碼視頻。如果當前解碼圖片是參考圖片,則根據解碼順序,當前解碼圖片的重構樣本也被存儲在參考圖片緩衝器1028中以用於後續圖片。 Figure 10 shows a video decoder 1000 corresponding to the video encoder 900 of Figure 9. The encoded video bitstream is the input of the video decoder 1000 and is decoded by the entropy decoder 1010 to parse and restore the transform Post and quantized residual signal and other system information. Except that the decoder 1000 only needs motion compensation prediction in the inter prediction module 1014, the decoding process of the decoder 1000 is similar to the reconstruction loop at the encoder 900. Each block is decoded by the intra prediction module 1012 or the inter prediction module 1014. The switching module 1016 selects the intra predictor from the intra prediction module 1012 or the inter predictor from the inter prediction module 1014 according to the decoded mode information. According to the embodiment of the present invention, the intra-frame The prediction module 1012 decodes the intra prediction mode of the current block, and determines the reference sample of the current block according to the intra prediction mode. According to the intra prediction mode and block size of the current block, an intra reference sample filter is determined from the Gaussian interpolation filter and the DCT-IF interpolation filter to be used for the current block. The mode difference calculated by the intra prediction mode is compared with the size-related threshold. If the mode difference calculated by the intra-prediction mode is greater than the size-related threshold, the Gaussian interpolation filter is selected for the current block, otherwise the DCT-IF interpolation is selected filter. The intra prediction module 1012 applies the intra reference sample filter to the reference samples of the current block to generate an intra predictor of the current block. The transformed and quantized residual signals associated with each block are restored by an inverse quantization module (IQ) 1020 and an inverse transform module (IT) 1022. The restored transformed and quantized residual signals are reconstructed by adding back the predictor in the REC module 1018 to generate reconstructed samples. The reconstructed samples are further processed by DF1024 and in-loop filter 1026 to generate the final decoded video. If the current decoded picture is a reference picture, according to the decoding order, the reconstructed samples of the currently decoded picture are also stored in the reference picture buffer 1028 for subsequent pictures.

第9圖中的視頻編碼器900和第10圖中的視頻解碼器1000的各種部件可由硬體部件、經配置以執行存儲在記憶體中的程式指令的一個或更多個處理器、或硬體與處理器的組合來實現。例如,處理器執行程式指令以控制在多個參考樣本濾波器中選擇濾波器用於各個幀內編碼塊。處理器配備有單個或多個處理核。在一些示例中,處理器執行程式指令以執行編碼器900和解碼器1000中的一些部件中的功能,並且與處理器電聯接的記憶體被用於存儲程式指令、與塊的重構圖像相對應的資訊和/或編碼或解碼處理期間的中間資料。在一些實施方式中,記憶體包括非暫時性電腦可讀介質,諸如半導體或固態記憶體、隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟、光碟或其它合適的存儲介質。記憶體還可以是上面列出的非暫時性電腦可讀介質中的兩者或更多者的組合。如第9圖和第10圖所示,編碼器900和解碼器1000可以在同一電子設備中實現,因此如果在同一電子設備中實現,則編碼器900和解碼器1000的各 種功能部件可以被共用或重複使用。例如,第9圖中的重構模組926、逆變換模組924、逆量化模組922、去塊濾波器928、環內濾波器930和參考圖片緩衝器932中的一者或更多者還可以分別用作第10圖中的重構模組1018、逆變換模組1022、逆量化模組1020、去塊濾波器1024、環內濾波器1026和參考圖片緩衝器1028。 The various components of the video encoder 900 in Figure 9 and the video decoder 1000 in Figure 10 may be hardware components, one or more processors configured to execute program instructions stored in memory, or hardware The combination of body and processor is realized. For example, the processor executes program instructions to control the selection of filters among a plurality of reference sample filters for each intra coding block. The processor is equipped with single or multiple processing cores. In some examples, the processor executes program instructions to perform functions in some components in the encoder 900 and decoder 1000, and the memory electrically connected to the processor is used to store the program instructions and the reconstructed image of the block. Corresponding information and/or intermediate data during encoding or decoding processing. In some embodiments, the memory includes non-transitory computer-readable media, such as semiconductor or solid-state memory, random access memory (RAM), read-only memory (ROM), hard disk, optical disk, or other suitable storage medium. The memory may also be a combination of two or more of the non-transitory computer-readable media listed above. As shown in Figures 9 and 10, the encoder 900 and the decoder 1000 can be implemented in the same electronic device. Therefore, if implemented in the same electronic device, each of the encoder 900 and the decoder 1000 These functional components can be shared or reused. For example, one or more of the reconstruction module 926, the inverse transform module 924, the inverse quantization module 922, the deblocking filter 928, the in-loop filter 930, and the reference picture buffer 932 in Figure 9 It can also be used as the reconstruction module 1018, the inverse transform module 1022, the inverse quantization module 1020, the deblocking filter 1024, the in-loop filter 1026, and the reference picture buffer 1028 in Figure 10, respectively.

編碼視頻編碼系統的處理方法的實施方式可以在集成到視頻壓縮晶片中的電路中或者集成到視頻壓縮軟體中的程式碼中實現,以執行上述處理。例如,可以在電腦處理器、數位訊號處理器(DSP)、微處理器或現場可程式設計閘陣列(FPGA)上執行的程式碼中實現在多個參考樣本濾波器中選擇濾波器用於各個幀內編碼塊。這些處理器可以被配置為通過執行定義了本發明所體現的特定方法的機器可讀軟體代碼或固件代碼來執行根據本發明的特定任務。 The implementation of the processing method of the encoded video encoding system can be implemented in a circuit integrated into a video compression chip or in a program code integrated into a video compression software to perform the above-mentioned processing. For example, it can be implemented in a computer processor, a digital signal processor (DSP), a microprocessor, or a field programmable gate array (FPGA) in the code that runs on it. Select a filter among multiple reference sample filters for each frame Inner coding block. These processors may be configured to perform specific tasks according to the present invention by executing machine-readable software codes or firmware codes that define specific methods embodied in the present invention.

本發明可以以其它特定形式實施而不脫離其精神或本質特徵。所描述的示例在所有方面都應被認為僅是說明性的而非限制性的。因此,本發明的範圍由所附權利要求而非由前文描述來指示。在權利要求的等效含義和範圍內的所有改變都將包含在所述權利要求的範圍內。 The present invention can be implemented in other specific forms without departing from its spirit or essential characteristics. The described examples should be considered in all respects only as illustrative and not restrictive. Therefore, the scope of the present invention is indicated by the appended claims rather than by the foregoing description. All changes within the equivalent meaning and scope of the claims will be included in the scope of the claims.

S802-S820:步驟 S802-S820: steps

Claims (18)

一種在視頻編解碼系統中對視頻資料進行編碼或解碼的方法,所述方法包括以下步驟:接收與在視頻圖片中通過幀內預測編碼或要通過幀內預測編碼的當前塊相關聯的輸入資料;確定所述當前塊的幀內預測模式;根據所述當前塊的所述幀內預測模式確定所述當前塊的參考樣本;根據所述當前塊的所述幀內預測模式和塊尺寸,從高斯插值濾波器和另選插值濾波器中確定幀內參考樣本濾波器,其中,在所述高斯插值濾波器與所述另選插值濾波器之間的所述確定取決於通過所述幀內預測模式計算的模式差值與尺寸相關閾值的比較,其中,對於塊尺寸小於或等於32個樣本的塊,所述尺寸相關閾值被設定為等於或大於24;將所述幀內參考樣本濾波器應用於所述當前塊的所述參考樣本,以產生所述當前塊的幀內預測器;以及基於所述幀內預測器對所述視頻圖片中的所述當前塊進行編碼或解碼。 A method for encoding or decoding video data in a video encoding and decoding system, the method comprising the following steps: receiving input data associated with a current block encoded by intra-frame prediction or to be encoded by intra-frame prediction in a video picture ; Determine the intra prediction mode of the current block; determine the reference sample of the current block according to the intra prediction mode of the current block; according to the intra prediction mode and block size of the current block, from An intra-frame reference sample filter is determined in the Gaussian interpolation filter and the alternative interpolation filter, wherein the determination between the Gaussian interpolation filter and the alternative interpolation filter depends on the intra prediction A comparison between the mode difference calculated by the mode and the size-related threshold, where for a block whose block size is less than or equal to 32 samples, the size-related threshold is set to be equal to or greater than 24; applying the intra-frame reference sample filter Generating an intra-frame predictor of the current block based on the reference samples of the current block; and encoding or decoding the current block in the video picture based on the intra-frame predictor. 如請求項1之方法,其中,通過所述幀內預測模式計算的所述模式差值是所述幀內預測模式與水平模式之間的絕對模式數差和所述幀內預測模式與垂直模式之間的絕對模式數差中的最小值。 The method of claim 1, wherein the mode difference calculated by the intra prediction mode is the absolute mode number difference between the intra prediction mode and the horizontal mode, and the intra prediction mode and the vertical mode The minimum value of the absolute mode number difference between. 如請求項2之方法,其中,當通過所述當前塊的所述幀內預測模式計算的所述模式差值大於所述尺寸相關閾值時,確定要應用所述高斯插值濾波器,並且當通過所述當前塊的所述幀內預測模式計算的所述模式差值小於或等於所述尺寸相關閾值時,確定要應用所述另選插值濾波器。 The method of claim 2, wherein when the mode difference calculated by the intra prediction mode of the current block is greater than the size-related threshold, it is determined to apply the Gaussian interpolation filter, and when the When the mode difference calculated by the intra prediction mode of the current block is less than or equal to the size-related threshold, it is determined that the alternative interpolation filter is to be applied. 如請求項1之方法,其中,根據所述當前塊的相鄰重構樣本確定所述當前塊的所述參考樣本。 The method of claim 1, wherein the reference sample of the current block is determined according to adjacent reconstructed samples of the current block. 如請求項1之方法,其中,根據變數nTbS確定所述尺寸相關閾值,並且將所述變數nTbS定義為所述當前塊的寬度的Log2加上所述當前塊的高度的Log2移位1:nTbS=Log2(寬度)+Log2(高度)>>1。 Such as the method of claim 1, wherein the size-related threshold is determined according to a variable nTbS, and the variable nTbS is defined as Log2 of the width of the current block plus Log2 of the height of the current block. Shift 1: nTbS =Log2(width)+Log2(height)>>1. 如請求項5之方法,其中,當所述變數nTbS為2時,所述尺寸相關閾值等於24。 Such as the method of claim 5, wherein, when the variable nTbS is 2, the size-related threshold is equal to 24. 如請求項5之方法,其中,當所述變數nTbS為3時,所述尺寸相關閾值等於14;當所述變數nTbS為4時,所述尺寸相關閾值等於2;並且當所述變數nTbS等於或大於5時,所述尺寸相關閾值等於0。 Such as the method of claim 5, wherein when the variable nTbS is 3, the size-related threshold is equal to 14; when the variable nTbS is 4, the size-related threshold is equal to 2; and when the variable nTbS is equal to Or when it is greater than 5, the size-related threshold is equal to zero. 如請求項1之方法,其中,所述另選插值濾波器是Cubic插值濾波器或DCT-IF插值濾波器。 The method of claim 1, wherein the alternative interpolation filter is a Cubic interpolation filter or a DCT-IF interpolation filter. 如請求項1之方法,其中,所述當前塊的所述幀內預測模式是常規方向幀內預測模式或寬角幀內預測模式。 The method according to claim 1, wherein the intra prediction mode of the current block is a normal direction intra prediction mode or a wide-angle intra prediction mode. 如請求項1之方法,其中,所述當前塊為亮度編碼塊(CB),並且所述塊尺寸對所述當前塊中的亮度樣本的數量進行計數。 The method of claim 1, wherein the current block is a luma coding block (CB), and the block size counts the number of luma samples in the current block. 如請求項1之方法,其中,所述方法還包括以下步驟:當所述塊尺寸大於32個樣本時並且當所述當前塊的所述幀內預測模式是預定義模式時,確定[1 2 1]參考樣本平滑濾波器用於所述當前塊。 Such as the method of claim 1, wherein the method further comprises the following steps: when the block size is greater than 32 samples and when the intra prediction mode of the current block is a predefined mode, determining [1 2 1] A reference sample smoothing filter is used for the current block. 如請求項11之方法,其中,所述預定義模式是平面模式、模式-14、模式-12、模式-10、模式-6、模式2、模式34、模式66、模式72、模式76、模式78和模式80中的一者或組合。 Such as the method of claim 11, wherein the predefined modes are plane mode, mode-14, mode-12, mode-10, mode-6, mode2, mode34, mode66, mode72, mode76, mode One or a combination of 78 and mode 80. 如請求項1之方法,其中,所述確定步驟包括:當所述當前塊的所述幀內預測模式為平面模式、模式-14、模式-12、模式-10、模式-6、模式2、模式34、模式66、模式72、模式76、模式78和模式80中的一者時,排除所述高斯插值濾波器。 For example, the method of claim 1, wherein the determining step includes: when the intra prediction mode of the current block is planar mode, mode-14, mode-12, mode-10, mode-6, mode2, In one of the mode 34, the mode 66, the mode 72, the mode 76, the mode 78, and the mode 80, the Gaussian interpolation filter is excluded. 如請求項1之,其中,所述確定步驟包括:如果所述幀內預測模式為垂直模式或水平模式,確定所述另選插值濾波器用於所述當前塊,並且所述另選插值濾波器為具有係數[0 64 0 0]的DCT-IF濾波器。 According to claim 1, wherein the determining step includes: if the intra prediction mode is a vertical mode or a horizontal mode, determining that the alternative interpolation filter is used for the current block, and the alternative interpolation filter It is a DCT-IF filter with coefficient [0 64 0 0]. 如請求項1之方法,其中,所述確定步驟包括:如果所述塊尺寸為4×4、4×8或8×4並且所述幀內預測模式為模式2、模式34或模式66,或者如果所述塊尺寸為4×8並且所述幀內預測模式為模式-6,或者如果所述塊尺寸為8×4並且所述幀內預測模式為模式72,排除[1 2 1]參考樣本平滑濾波器用於所述當前塊。 The method of claim 1, wherein the determining step includes: if the block size is 4×4, 4×8, or 8×4 and the intra prediction mode is mode 2, mode 34, or mode 66, or If the block size is 4×8 and the intra prediction mode is mode-6, or if the block size is 8×4 and the intra prediction mode is mode 72, exclude [1 2 1] reference samples A smoothing filter is used for the current block. 如請求項1之方法,其中,所述確定步驟包括:如果所述塊尺寸大於32個樣本,則從針對所述當前塊的[1 2 1]參考樣本平滑濾波器和所述高斯插值濾波器中進行確定,其中,所述另選插值濾波器是DCT-IF插值濾波器,並且所述確定步驟包括:如果所述塊尺寸小於或等於32個樣本,則確定所述DCT-IF插值濾波器用於所述當前塊。 For example, the method of claim 1, wherein the determining step includes: if the block size is greater than 32 samples, smoothing the filter from the [1 2 1] reference sample for the current block and the Gaussian interpolation filter Where the alternative interpolation filter is a DCT-IF interpolation filter, and the determining step includes: if the block size is less than or equal to 32 samples, determining that the DCT-IF interpolation filter is used In the current block. 一種執行視頻編碼的裝置,所述裝置包括:電腦處理器,所述電腦處理器被配置為接收視頻資料;以及通過執行包括以下步驟的步驟來對在所述電腦處理器上能夠執行的程式進行程式設計以用於視頻編解碼:接收與視頻圖片中通過幀內預測編碼或要通過幀內預測編碼的當前塊相關聯的輸入資料;確定所述當前塊的幀內預測模式;根據所述當前塊的所述幀內預測模式確定所述當前塊的參考樣本;根據所述當前塊的所述幀內預測模式和塊尺寸,從高斯插值濾波器和另選插值濾波器中確定幀內參考樣本濾波器,其中,在所述高斯插值濾波器與所述另選插值濾波器之間的所述確定取決於通過所述幀內預測模式計算的模式差值與尺寸相關閾值的比較,其中,對於塊尺寸小於或等於32個樣本的塊,所述尺 寸相關閾值被設定為等於或大於24;將所述幀內參考樣本濾波器應用於所述當前塊的所述參考樣本,以產生所述當前塊的幀內預測器;以及基於所述幀內預測器對所述視頻圖片中的所述當前塊進行編碼或解碼。 A device for performing video encoding, the device comprising: a computer processor configured to receive video data; and performing steps including the following steps to execute a program executable on the computer processor Programming for video encoding and decoding: receiving input data associated with the current block in the video picture that is encoded by intra-frame prediction or to be encoded by intra-frame prediction; determining the intra-frame prediction mode of the current block; The intra-frame prediction mode of the block determines the reference sample of the current block; according to the intra-frame prediction mode and block size of the current block, the intra-frame reference sample is determined from a Gaussian interpolation filter and an alternative interpolation filter Filter, wherein the determination between the Gaussian interpolation filter and the alternative interpolation filter depends on a comparison of a mode difference calculated by the intra prediction mode with a size-related threshold, wherein for The block size is less than or equal to 32 samples, the ruler The size correlation threshold is set to be equal to or greater than 24; applying the intra-frame reference sample filter to the reference samples of the current block to generate an intra-frame predictor of the current block; and based on the intra-frame The predictor encodes or decodes the current block in the video picture. 一種存儲程式指令的非暫時性電腦可讀介質,所述程式指令使裝置的處理電路執行視頻資料的視頻處理方法,並且所述方法包括以下步驟:接收與視頻圖片中通過幀內預測編碼或要通過幀內預測編碼的當前塊相關聯的輸入資料;確定所述當前塊的幀內預測模式;根據所述當前塊的所述幀內預測模式確定所述當前塊的參考樣本;根據所述當前塊的所述幀內預測模式和塊尺寸,從高斯插值濾波器和另選插值濾波器中確定幀內參考樣本濾波器,其中,在所述高斯插值濾波器與所述另選插值濾波器之間的所述確定取決於通過所述幀內預測模式計算的模式差值與尺寸相關閾值的比較,其中,對於塊尺寸小於或等於32個樣本的塊,所述尺寸相關閾值被設定為等於或大於24;將所述幀內參考樣本濾波器應用於所述當前塊的所述參考樣本,以產生所述當前塊的幀內預測器;以及基於所述幀內預測器對所述視頻圖片中的所述當前塊進行編碼或解碼。 A non-transitory computer-readable medium storing program instructions. The program instructions cause the processing circuit of the device to execute a video processing method of video data, and the method includes the following steps: Input data associated with the current block encoded by intra-frame prediction; determine the intra-frame prediction mode of the current block; determine the reference sample of the current block according to the intra-frame prediction mode of the current block; The intra-frame prediction mode and block size of the block are determined from the Gaussian interpolation filter and the alternative interpolation filter, and the intra-frame reference sample filter is determined between the Gaussian interpolation filter and the alternative interpolation filter. The determination between the frames depends on the comparison between the mode difference calculated by the intra-frame prediction mode and the size-related threshold, wherein for a block whose block size is less than or equal to 32 samples, the size-related threshold is set to be equal to or Greater than 24; applying the intra-frame reference sample filter to the reference samples of the current block to generate an intra-frame predictor of the current block; and applying the intra-frame predictor to the video picture Encoding or decoding of the current block.
TW109113769A 2019-04-25 2020-04-24 Method and apparatus of encoding or decoding video data TWI737274B (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201962838392P 2019-04-25 2019-04-25
US62/838,392 2019-04-25
US201962851136P 2019-05-22 2019-05-22
US62/851,136 2019-05-22
US201962862202P 2019-06-17 2019-06-17
US62/862,202 2019-06-17
PCT/CN2020/086170 WO2020216255A1 (en) 2019-04-25 2020-04-22 Method and apparatus of encoding or decoding with mode dependent intra smoothing filter in intra prediction
WOPCT/CN2020/086170 2020-04-22

Publications (2)

Publication Number Publication Date
TW202044832A TW202044832A (en) 2020-12-01
TWI737274B true TWI737274B (en) 2021-08-21

Family

ID=72941537

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109113769A TWI737274B (en) 2019-04-25 2020-04-24 Method and apparatus of encoding or decoding video data

Country Status (5)

Country Link
US (1) US20220201286A1 (en)
EP (1) EP3949424A4 (en)
CN (1) CN113796086B (en)
TW (1) TWI737274B (en)
WO (1) WO2020216255A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117041548A (en) 2016-04-29 2023-11-10 世宗大学校产学协力团 Method and apparatus for encoding/decoding image signal
HUE063986T2 (en) * 2018-09-16 2024-02-28 Huawei Tech Co Ltd Method and apparatus for prediction
US11671592B2 (en) * 2019-12-09 2023-06-06 Qualcomm Incorporated Position-dependent intra-prediction combination for angular intra-prediction modes for video coding
TW202236848A (en) * 2020-12-22 2022-09-16 美商高通公司 Intra prediction using enhanced interpolation filters
WO2023183366A1 (en) * 2022-03-22 2023-09-28 Beijing Dajia Internet Information Technology Co., Ltd. Planar mode improvement for intra prediction

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130121401A1 (en) * 2011-11-16 2013-05-16 Alexander Zheludkov Video compression for high efficiency video coding
CN104041051A (en) * 2011-06-30 2014-09-10 华为技术有限公司 Simplified bilateral intra smoothing filter
TW201717626A (en) * 2015-06-18 2017-05-16 高通公司 Intra prediction and intra mode coding
WO2018221817A1 (en) * 2017-05-31 2018-12-06 엘지전자 주식회사 Method and device for performing image decoding on basis of intra prediction in image coding system
CN109314782A (en) * 2016-05-24 2019-02-05 夏普株式会社 System and method for intraframe predictive coding

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120183041A1 (en) * 2011-01-14 2012-07-19 Sony Corporation Interpolation filter for intra prediction of hevc
CN107852492A (en) * 2015-05-12 2018-03-27 三星电子株式会社 Method and apparatus for being coded and decoded to image
US20160373782A1 (en) * 2015-06-18 2016-12-22 Qualcomm Incorporated Intra prediction and intra mode coding
US20160373742A1 (en) * 2015-06-18 2016-12-22 Qualcomm Incorporated Intra prediction and intra mode coding
US10841593B2 (en) * 2015-06-18 2020-11-17 Qualcomm Incorporated Intra prediction and intra mode coding
US11463689B2 (en) * 2015-06-18 2022-10-04 Qualcomm Incorporated Intra prediction and intra mode coding
US20170150186A1 (en) * 2015-11-25 2017-05-25 Qualcomm Incorporated Flexible transform tree structure in video coding
EP3446480A1 (en) * 2016-04-22 2019-02-27 VID SCALE, Inc. Prediction systems and methods for video coding based on filtering nearest neighboring pixels
US10419757B2 (en) * 2016-08-31 2019-09-17 Qualcomm Incorporated Cross-component filter
US10652575B2 (en) * 2016-09-15 2020-05-12 Qualcomm Incorporated Linear model chroma intra prediction for video coding
FI20175006A1 (en) * 2017-01-03 2019-02-15 Nokia Technologies Oy Video and image coding with wide-angle intra prediction
CN116962676A (en) * 2017-01-16 2023-10-27 世宗大学校产学协力团 Video decoding/encoding method and method for transmitting bit stream
EP3646599A1 (en) * 2017-06-30 2020-05-06 Telefonaktiebolaget LM Ericsson (PUBL) Encoding and decoding a picture block using a curved intra-prediction mode
JP2021005741A (en) * 2017-09-14 2021-01-14 シャープ株式会社 Image coding device and image decoding device
JP7343487B2 (en) * 2017-09-20 2023-09-12 ヴィド スケール インコーポレイテッド Handling face discontinuities in 360-degree video encoding
KR20190045885A (en) * 2017-10-24 2019-05-03 주식회사 윌러스표준기술연구소 A method and an apparatus for processing a video signal
WO2019098758A1 (en) * 2017-11-16 2019-05-23 한국전자통신연구원 Image encoding/decoding method and device, and recording medium storing bitstream
US11310517B2 (en) * 2017-12-07 2022-04-19 Electronics And Telecommunications Research Institute Method and apparatus for encoding and decoding using selective information sharing between channels
WO2019143551A1 (en) * 2018-01-16 2019-07-25 Vid Scale, Inc. Adaptive frame packing for 360-degree video coding
GB2571313B (en) * 2018-02-23 2022-09-21 Canon Kk New sample sets and new down-sampling schemes for linear component sample prediction
WO2019194147A1 (en) * 2018-04-02 2019-10-10 Sharp Kabushiki Kaisha Systems and methods for deriving quantization parameters for video blocks in video coding
US10382772B1 (en) * 2018-07-02 2019-08-13 Tencent America LLC Method and apparatus for video coding
US10284844B1 (en) * 2018-07-02 2019-05-07 Tencent America LLC Method and apparatus for video coding
US10834393B2 (en) * 2018-09-10 2020-11-10 Tencent America LLC Intra interpolation filter for multi-line intra prediction
US10469845B1 (en) * 2018-09-21 2019-11-05 Tencent America, Llc Method and apparatus for intra mode coding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104041051A (en) * 2011-06-30 2014-09-10 华为技术有限公司 Simplified bilateral intra smoothing filter
US20130121401A1 (en) * 2011-11-16 2013-05-16 Alexander Zheludkov Video compression for high efficiency video coding
TW201717626A (en) * 2015-06-18 2017-05-16 高通公司 Intra prediction and intra mode coding
CN109314782A (en) * 2016-05-24 2019-02-05 夏普株式会社 System and method for intraframe predictive coding
WO2018221817A1 (en) * 2017-05-31 2018-12-06 엘지전자 주식회사 Method and device for performing image decoding on basis of intra prediction in image coding system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FILIPPOV Alexey et al. "JVET-M0392 Non-CE3: Extended Mode-Dependent Intra Smoothing" the Whole document Joint Video Experts Team (JVET) 0flTU-T SG I6 WP 3 and ISO/[EC JTC I/SC29/WG 11 13th Meeting: Marrakeeh, MA, 9-18 Jan. 2019, 18 January 2019 (2019/01/18), http://phenix.it-sudparis.eu/jvet/doc_end_user/current_document.php?id=5197
FILIPPOV Alexey et al. "JVET-M0392 Non-CE3: Extended Mode-Dependent Intra Smoothing" the Whole document Joint Video Experts Team (JVET) 0flTU-T SG I6 WP 3 and ISO/[EC JTC I/SC29/WG 11 13th Meeting: Marrakeeh, MA, 9-18 Jan. 2019, 18 January 2019 (2019/01/18), http://phenix.it-sudparis.eu/jvet/doc_end_user/current_document.php?id=5197 FILIPPOV, Alexey et al. "JVET-L0628 CE3: A combination of tests 3.1.2 and 3.1.4 for intra l-l8 reference sample interpolation filter" Joint Video Experts Team (JVET) oflTU-T SG I6 WP 3 and ISO/[EC JTC I/SC29/WG 11 12th Meeting: Macao, M0, 03-12 Oct. 2018, l2 October 2018 (2018/l0/l2), http://phenix.it-sudparis.eu/jvet/doc_end_user/current_document.php?id=4741 *
FILIPPOV, Alexey et al. "JVET-L0628 CE3: A combination of tests 3.1.2 and 3.1.4 for intra l-l8 reference sample interpolation filter" Joint Video Experts Team (JVET) oflTU-T SG I6 WP 3 and ISO/[EC JTC I/SC29/WG 11 12th Meeting: Macao, M0, 03-12 Oct. 2018, l2 October 2018 (2018/l0/l2), http://phenix.it-sudparis.eu/jvet/doc_end_user/current_document.php?id=4741 。

Also Published As

Publication number Publication date
EP3949424A4 (en) 2022-12-21
TW202044832A (en) 2020-12-01
EP3949424A1 (en) 2022-02-09
US20220201286A1 (en) 2022-06-23
WO2020216255A1 (en) 2020-10-29
CN113796086A (en) 2021-12-14
CN113796086B (en) 2023-06-06

Similar Documents

Publication Publication Date Title
TWI737274B (en) Method and apparatus of encoding or decoding video data
TWI619380B (en) Method and apparatus of intra prediction in image and video processing
CN108353171B (en) Method and apparatus for adaptive filtering of video coding samples
CN113994670B (en) Video encoding and decoding method and device for cross-component adaptive loop filtering with virtual boundary
TWI769516B (en) Method and apparatus for adaptive loop filtering at picture and sub-picture boundary in video coding
KR100906243B1 (en) Video coding method of rgb color space signal
TWI719612B (en) Method and apparatus of intra prediction with mpm generation in image and video processing
JP2023090929A (en) Video decoding method, video decoding apparatus, and storage medium
JP2023143946A (en) Quantization parameter offset for chroma deblock filtering
Chen et al. The adaptive loop filtering techniques in the HEVC standard
TW201328362A (en) Video encoding method and apparatus, video decoding method and apparatus, and programs thereof
CN113068030B (en) Video image component prediction method and device, and computer storage medium
TWI821103B (en) Method and apparatus using boundary matching for overlapped block motion compensation in video coding system
TWI737429B (en) Method and apparatus of encoding or decoding video data with intra prediction mode mapping
US20210185314A1 (en) Image decoding device, image coding device, image processing system, and program
WO2022140905A1 (en) Prediction methods, encoder, decoder, and storage medium
US11178397B2 (en) Method and apparatus of encoding or decoding using reference samples determined by predefined criteria
KR20120047821A (en) Method for deblocking filtering for intra prediction
KR101475286B1 (en) Method and apparatus for intra prediction, and apparatus for processing picture
AU2015255215A1 (en) Image processing apparatus and method
TW202344058A (en) Method and apparatus of improvement for decoder-derived intra prediction in video coding system
TW202408233A (en) Methods and apparatus for implicit sub-block transform coding
TW202329688A (en) Video coding methods and apparatuses
TW202209893A (en) Inter-frame prediction method, coder, decoder and computer storage medium characterized by reducing the prediction errors and promoting the coding performance to increase the coding/decoding efficiency
Yoon et al. Adaptive prediction block filter for video coding