TWI736683B - 碳材料、電容器用電極片材及電容器 - Google Patents

碳材料、電容器用電極片材及電容器 Download PDF

Info

Publication number
TWI736683B
TWI736683B TW106133752A TW106133752A TWI736683B TW I736683 B TWI736683 B TW I736683B TW 106133752 A TW106133752 A TW 106133752A TW 106133752 A TW106133752 A TW 106133752A TW I736683 B TWI736683 B TW I736683B
Authority
TW
Taiwan
Prior art keywords
carbon material
graphite
graphene
capacitor
electrode sheet
Prior art date
Application number
TW106133752A
Other languages
English (en)
Other versions
TW201817675A (zh
Inventor
笹川直樹
小原峻士
Original Assignee
日商積水化學工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商積水化學工業股份有限公司 filed Critical 日商積水化學工業股份有限公司
Publication of TW201817675A publication Critical patent/TW201817675A/zh
Application granted granted Critical
Publication of TWI736683B publication Critical patent/TWI736683B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本發明提供一種可提高電容器之靜電電容及輸出特性此兩者之碳材料。 本發明係一種碳材料,其係用於蓄電裝置之電極材料者,上述碳材料包含具有石墨烯積層結構之第1碳材料,於測定上述碳材料、與體積平均粒徑為7.5±2.5 μm之矽粉末之混合比1:1之混合物之X射線繞射光譜時,源自石墨烯積層結構之波峰之高度a、與源自矽之波峰之高度b之比a/b為0.05以上且0.4以下。

Description

碳材料、電容器用電極片材及電容器
本發明係關於一種碳材料、以及使用該碳材料之電容器用電極片材及電容器。
先前,作為電容器之電極材料,就環境方面而言,廣泛使用石墨、活性碳、碳奈米纖維、或碳奈米管等碳材料。 例如,於下述專利文獻1中,作為電雙層電容器之電極材料,揭示有具有均勻之連通大孔之活性碳。專利文獻1中記載有上述活性碳之比表面積處於1500~2300 m2 /g之範圍。 又,下述專利文獻2中揭示有一種包含殘留樹脂之部分剝離型薄片化石墨及黏合劑樹脂之電容器用電極材料。上述殘留樹脂之部分剝離型薄片化石墨係具有石墨部分剝離之結構之碳材料。 [先前技術文獻] [專利文獻] [專利文獻1]國際公開第2013/140937號 [專利文獻2]國際公開第2015/98758號
[發明所欲解決之問題] 專利文獻1中,藉由將如上所述之活性碳用於電容器之電極材料,謀求電容器之靜電電容之增加。然而,專利文獻1之活性碳無法充分提高電容器之輸出特性。 又,於使用專利文獻2之部分剝離型薄片化石墨之情形時,亦難以謀求電容器之靜電電容及輸出特性之兼顧。 本發明之目的在於提供一種可提高電容器之靜電電容及輸出特性此兩者之碳材料、以及使用該碳材料之電容器用電極片材及電容器。 [解決問題之技術手段] 本發明之碳材料係用於蓄電裝置之電極材料者,上述碳材料包含具有石墨烯積層結構之第1碳材料,於測定上述碳材料、與體積平均粒徑為7.5±2.5 μm之矽粉末之混合比1:1之混合物之X射線繞射光譜時,源自石墨烯積層結構之波峰之高度a、與源自矽之波峰之高度b之比a/b為0.05以上且0.4以下。 本發明之碳材料較佳為上述比a/b為0.07以上且0.3以下。 於本發明之碳材料之某特定之態樣中,上述第1碳材料係石墨或薄片化石墨。 於本發明之碳材料之另一特定之態樣中,上述第1碳材料係具有石墨部分剝離之結構之部分剝離型薄片化石墨。 於本發明之碳材料之另一特定之態樣中,進而包含存在於上述第1碳材料之表面或石墨烯層間之第2碳材料。 本發明之電容器用電極片材包含依據本發明構成之碳材料。 於本發明之電容器用電極片材之某特定之態樣中,進而包含黏合劑樹脂。 於本發明之電容器用電極片材之另一特定之態樣中,上述黏合劑樹脂係苯乙烯丁二烯橡膠、聚乙烯醇縮丁醛、聚四氟乙烯、或氟系聚合物。 於本發明之電容器用電極片材之另一特定之態樣中,上述氟系聚合物係聚偏二氟乙烯。 於本發明之電容器用電極片材之進而另一特定之態樣中,相對於上述碳材料100重量份,包含上述黏合劑樹脂0.3~40重量份。 本發明之電容器具備依據本發明構成之電容器用電極片材。 [發明之效果] 根據本發明,可提供一種可提高電容器之靜電電容,並且提高輸出特性之碳材料。
以下說明本發明之詳細內容。 [碳材料] 本發明之碳材料係用於蓄電裝置之電極材料者。上述碳材料包含具有石墨烯積層結構之第1碳材料。 作為蓄電裝置,並無特別限定,可例示電雙層電容器或鋰離子電容器等電容器、或非水電解質一次電池、水系電解質一次電池、非水電解質二次電池、水系電解質二次電池、冷凝器。又,蓄電裝置較佳為電容器。於該情形時,可更進一步提高靜電電容及輸出特性此兩者。 於本發明中,於測定上述碳材料與矽粉末之混合物之X射線繞射(XRD)光譜時,源自石墨烯積層結構之波峰之高度a、與源自矽之波峰之高度b之比a/b為0.05以上且0.4以下。再者,上述矽粉末之體積平均粒徑為7.5±2.5 μm,即5.0 μm以上且10.0 μm以下。又,上述混合物中之上述碳材料與上述矽粉末之混合比為1:1。 再者,矽粉末之體積平均粒徑例如可藉由如下方法算出:使用以雷射繞射、散射法為原理之粒度分佈測定裝置,對粉體分散於乙醇中之試樣進行測定,藉此求出粒度分佈。作為粒度分佈測定裝置,例如可使用堀場製作所製造之型號「LA-950」。 再者,XRD光譜藉由廣角X射線繞射法進行測定。作為X射線,使用CuKα射線(波長1.541 Å)。作為X射線繞射裝置,例如可使用SmartLab(Rigaku公司製造)。 於XRD光譜中,源自石墨烯積層結構即石墨結構之波峰出現在2θ=26.4度附近。另一方面,源自矽粉末之波峰出現在2θ=28.5度附近。因此,上述比a/b可根據2θ=26.4度附近之波峰與2θ=28.5度附近之波峰之波峰高度之比(2θ=26.4度附近之波峰/2θ=28.5度附近之波峰)求出。 由於本發明之碳材料包含具有石墨烯積層結構之第1碳材料,故而導電性優異。因此,可有效地提高電容器之對充放電之應答性即輸出特性。又,由於本發明之碳材料之比a/b處於上述範圍內,故而具有較大之比表面積。因此,可提高電容器之靜電電容。 相對於此,於先前之碳材料中,伴隨靜電電容之高容量化,導入打亂規則整齊之石墨烯積層結構(石墨結構)之非晶質結構。因此,於先前之碳材料之XRD光譜中,無法確認源自石墨烯積層結構之26.4度附近之波峰。如此,先前之碳材料不具有石墨烯積層結構,因此與本發明之碳材料相比導電性較低,無法有效地提高電容器之輸出特性。再者,作為此種先前之碳材料,例如可列舉活性碳或氧化石墨烯。 本案發明係本案發明者等人努力研究,結果發現:藉由將包含具有石墨烯積層結構之第1碳材料之上述碳材料之比a/b設為上述特定之範圍內,可提高電容器之靜電電容及輸出特性此兩者。 又,本發明較佳為進而包含存在於第1碳材料之表面或石墨烯層間之第2碳材料。上述第2碳材料亦可藉由與第1碳材料複合化而形成複合體。又,第2碳材料更佳為存在於第1碳材料之石墨烯層間。於第2碳材料存在於第1碳材料之石墨烯層間之情形時,可更進一步擴大第1碳材料之孔徑。於該情形時,可更進一步增大可有助於離子之吸附脫附之面積,並且可更進一步提高碳材料間之導電性。又,可更進一步提高成膜性。再者,於碳材料進而包含第2碳材料之情形時,於包含第2碳材料之狀態下,將上述比a/b設為所求者。 上述第2碳材料較佳為具有適度之導電性。於該情形時,於第1碳材料間,藉由第2碳材料,可更進一步提高導電性。 如上所述,於本發明中,於測定上述碳材料與矽粉末之混合物之X射線繞射(XRD)光譜時,源自石墨烯積層結構之波峰之高度a、與源自矽之波峰之高度b之比a/b為0.05以上且0.4以下。於比a/b為上述下限以上之情形時,可提高碳材料之導電性。另一方面,於比a/b為上述上限以下之情形時,可增大碳材料之比表面積。再者,比a/b係表示具有石墨烯積層結構之碳材料之剝離度者。 就更進一步提高碳材料之導電性,且更進一步增大碳材料之比表面積之觀點而言,比a/b較佳為0.07以上,且較佳為0.3以下。又,比a/b更佳為0.08以上,且更佳為0.25以下。 再者,具有石墨烯積層結構之碳材料之比a/b之確認例如可使用X射線繞射裝置,於以下之要點下進行。 首先,將作為原料之碳材料,與Si奈米粒子(矽粉末,Aldrich公司製造)以1:1之比率於樣品瓶中進行混合,製作作為測定試樣之混合物。其次,測定所製作之混合物之XRD光譜。於所獲得之XRD光譜,將源自Si(矽)之波峰(2θ=28.5度附近)高度b設為1而標準化,藉由與源自石墨烯積層結構之波峰(Gr,2θ=26.4度附近)高度a進行比較可確認。具體而言,於各自之波峰比a/b即Gr/Si比較小之情形時,可知石墨烯積層結構較少,剝離部位增加。因此,若Gr/Si比為0.05以上,則表示存在對賦予導電性充分之石墨烯積層結構。又,此時,複合物等物質之重量除外,以作為主成分之碳材料與Si奈米粒子之混合比變為1:1之方式算出波峰比。 藉由將碳材料之Gr/Si比設為上述範圍,可製作兼具較大之比表面積與較高之導電性之電極材料,且可製作高容量且高輸出之電容器。又,其於在剝離部中***第2碳材料之情形時亦同樣適用。 就更進一步提高碳材料之導電性,且更進一步提高電容器之輸出特性之觀點而言,上述比a/b較佳為0.07以上,更佳為0.1以上,進而較佳為0.15以上,尤佳為0.2以上。 就更進一步增大碳材料之比表面積,且更進一步提高電容器之靜電電容之觀點而言,上述比a/b較佳為0.3以下,更佳為0.25以下,進而較佳為0.2以下,尤佳為0.15以下。 於本發明中,上述碳材料之利用BET(Brunauer-Emmett-Teller,布厄特)所得之比表面積(BET比表面積)較佳為100 m2 /g以上,更佳為300 m2 /g以上,進而較佳為500 m2 /g。於該情形時,可更進一步提高電容器之靜電電容。再者,於碳材料進而包含第2碳材料之情形時,於包含第2碳材料之狀態下,將上述BET比表面積設為所求者。又,BET比表面積之上限並無特別限定,例如可設為4000 m2 /g以下。 於本發明中,上述碳材料之粉體電阻較佳為5.0×10-2 Ω以下,更佳為1.0×10-2 Ω以下。於該情形時,可更進一步提高電容器之輸出特性。再者,於碳材料進而包含第2碳材料之情形時,於包含第2碳材料之狀態下,將上述粉體電阻設為所求者。又,粉體電阻之下限並無特別限定,例如可設為1.0×10-6 Ω以上。粉體電阻例如可藉由利用四端針法,對粉體每次施加4 kN之壓力,測定20 kN時之電阻值而獲得。粉體電阻例如可使用低電阻粉體測定裝置(Mitsubishi Chemical Analytech公司製造,Loresta GX)進行測定。 如上所述,本發明之碳材料可以高水準兼顧電容器之靜電電容、與輸出特性,因此可較佳地用於電容器之電極材料。上述電容器用電極材料之形狀並無特別限定,可使用膜狀、片狀、粒狀等適當之形狀者。 以下,對本發明之碳材料之詳細內容及製造方法進行說明。 (第1碳材料) 本發明中使用之第1碳材料係具有石墨烯積層結構之碳材料。 作為具有石墨烯積層結構之碳材料,並無特別限定,較佳為可使用石墨或薄片化石墨。更佳為可使用具有石墨部分剝離之結構之部分剝離型薄片化石墨。部分剝離型薄片化石墨係可藉由製造方法控制石墨結構與薄片化部位之比率即剝離度之材料。 所謂石墨,係複數片石墨烯片之積層體。石墨之石墨烯片之積層數係10萬層以上~100萬層左右。作為石墨,可使用天然石墨、人造石墨、膨脹石墨等。膨脹石墨較通常之石墨,石墨烯層彼此之層間更大。因此,作為石墨,較佳為使用膨脹石墨。 所謂薄片化石墨,係對原先之石墨進行剝離處理而獲得者,係指較原先之石墨更薄之石墨烯片積層體。薄片化石墨中之石墨烯片之積層數少於原先之石墨即可。又,藉由剝離處理,可增大比表面積。 於薄片化石墨中,石墨烯片之積層數較佳為1000層以下,更佳為500層以下。 部分剝離型薄片化石墨係準備包含石墨或者一次薄片化石墨、及樹脂,且樹脂藉由接枝或吸附而固定於石墨或一次薄片化石墨之組合物,對該組合物中所含之樹脂進行熱分解而得者。 藉由上述熱分解,擴大石墨或一次薄片化石墨中之石墨烯層間之距離。更具體而言,於石墨或一次薄片化石墨等石墨烯之積層體中,自端緣至某程度內側擴大石墨烯層間。即,可獲得於邊緣部分,石墨之一部分剝離,於中央側之部分石墨層與原先之石墨或一次薄片化石墨同樣積層之結構。如此,部分剝離型薄片化石墨具有石墨部分剝離之結構。 如上所述,所謂「石墨部分剝離」,係指於石墨烯之積層體中,自端緣至某程度內側石墨烯層間打開,即於端緣石墨之一部分剝離。又,係指於中央側之部分石墨層與原先之石墨或一次薄片化石墨同樣積層。因此,於端緣石墨之一部分剝離之部分與中央側之部分相連。再者,上述第1碳材料中亦可包含端緣之石墨剝離且薄片化者。 此種部分剝離型薄片化石墨詳細而言可藉由具備以下2個步驟之製造方法獲得。準備包含石墨或一次薄片化石墨及樹脂,且該樹脂固定於上述石墨或一次薄片化石墨之原料組合物之步驟,及藉由對該原料組合物中所含之樹脂進行熱分解,使樹脂之一部分殘留並且剝離石墨或一次薄片化石墨之步驟。例如,可利用與國際公開第2014/34156號中記載之薄片化石墨、樹脂複合材料之製造方法相同之方法製造。再者,作為上述石墨,為可更進一步容易地剝離石墨,較佳為使用膨脹石墨。 上述熱分解時之加熱溫度並無特別限定,例如可設為200℃以上且500℃以下。 又,上述熱分解時之加熱時間較佳為2小時以上,更佳為3小時以上,較佳為12小時以下,更佳為6小時以下。於加熱時間為上述下限以上之情形時,可更進一步提高剝離度,且可更進一步增大比表面積。又,於加熱時間為上述上限以下之情形時,可更進一步抑制石墨之再堆疊,因此可更進一步增大比表面積。再者,上述加熱時間係根據所使用之樹脂而異者,可對所使用之每種樹脂進行調整。 又,於本發明中,就更進一步降低電阻值之觀點而言,較佳為於上述熱分解時,使上述組合物中所含之樹脂之極少一部分殘留並且使之熱分解。因此,於部分剝離型薄片化石墨中,亦可殘留樹脂之一部分。又,於本發明中,利用上述方法,獲得樹脂殘留之部分剝離型薄片化石墨後,亦可利用其他步驟,進行加熱等之處理,藉此減少殘留樹脂量而使用。 作為此種樹脂,並無特別限定,較佳為自由基聚合性單體之聚合物。樹脂可為複數種自由基聚合性單體之共聚物,亦可為1種自由基聚合性單體之均聚物。 作為可使用之樹脂之例,可列舉:聚丙二醇、聚(甲基丙烯酸縮水甘油酯)、聚乙酸乙烯酯、聚乙烯醇縮丁醛、聚丙烯酸、聚乙二醇、或苯乙烯丁二烯橡膠。較佳為可列舉聚丙二醇、或聚乙酸乙烯酯。於使用聚丙二醇、或聚乙酸乙烯酯之情形時,可更進一步增大部分剝離型薄片化石墨之比表面積。 殘留於部分剝離型薄片化石墨中之樹脂之量相對於部分剝離型薄片化石墨100重量份,較佳為5重量份~350重量份,更佳為15重量份~250重量份,進而較佳為20重量份~200重量份。藉由將殘留樹脂之量設為上述範圍內,可更進一步增大部分剝離型薄片化石墨之比表面積。 進而,藉由減少殘留於部分剝離型薄片化石墨中之樹脂,可更進一步提高導電性,且可更進一步提高電容器之輸出特性。此時,可使用利用加熱或化學處理等之去除方法,亦可使一部分結構改質。 又,於使部分剝離型薄片化石墨與下述微粒子複合化之情形時,藉由微粒子而減少石墨之再堆疊,因此亦可去除殘留於部分剝離型薄片化石墨中之樹脂。 再者,部分剝離型薄片化石墨多數具有石墨薄片化之部分。所謂上述石墨薄片化之部分,係指石墨或一次薄片化石墨中,一部分石墨烯積層體復石墨烯部分剝離之部分。 又,部分剝離型薄片化石墨具有於中央側之部分,與原先之石墨或一次薄片化石墨同樣積層石墨烯之結構。然而,於中央側之部分,亦可存在藉由使樹脂熱分解,石墨烯層間較原先之石墨或一次薄片化石墨更擴大之部分。 於部分剝離型薄片化石墨中,石墨部分剝離之邊緣部、與未剝離之中央部之存在比率(邊緣部:中央部)較佳為1:30~1:60。再者,於該情形時,邊緣部亦可為左右不定型。藉由邊緣部與中央部之存在比率處於上述範圍內,可兼具更進一步大之比表面積與更進一步高之導電性。 於邊緣部,石墨部分剝離而薄片化之部分之石墨烯之積層數較少。石墨部分薄片化之部分之石墨烯之各積層數較佳為100層以下,更佳為50層以下,進而較佳為30層以下。於薄片化之部分之石墨烯積層數為上述上限以下之情形時,可更進一步提高與下述黏合劑樹脂之相容性。 又,於部分剝離型薄片化石墨中,石墨烯層間之層間距離擴大,邊緣部之薄片化之部分之石墨烯積層數較少,因此比表面積較大。 具有此種石墨烯積層結構之第1碳材料之藉由亞甲基藍吸附法測定之比表面積較佳為500 m2 /g以上,較佳為3000 m2 /g以下。 若第1碳材料之藉由亞甲基藍吸附法測定之比表面積過小,則有無法充分提高電容器之靜電電容之情況。又,若第1碳材料之藉由亞甲基藍吸附法測定之比表面積過大,則有產生再堆疊或翻捲,於製成電容器用電極片材之情形時無法維持最佳之構造之情況。 再者,上述利用亞甲基藍吸附法所得之比表面積可藉由以下之方法測定。 首先,求出測定試樣之亞甲基藍吸附量。亞甲基藍吸附量係基於10 mg/L之濃度之亞甲基藍之甲醇溶液之吸光度,與於該亞甲基藍之甲醇溶液中投入測定試樣,並進行攪拌後,藉由離心分離獲得之上清液之吸光度之差測定。 更詳細而言,亞甲基藍吸附量可利用以下方法求出。 首先,於10 mg/L之濃度之亞甲基藍之甲醇溶液中,投入測定試樣,並進行攪拌。其次,進行離心分離,觀察所獲得之上清液之極大吸收波長之吸光度變化。亞甲基藍係對測定試樣,藉由π共軛進行吸附。另一方面,亞甲基藍藉由光之照射發出螢光。若亞甲基藍吸附於測定試樣則變得不發出螢光。即,螢光強度降低。因此,可根據自上述上清液求出之螢光強度相對於原先之亞甲基藍之螢光強度之降低量,求出亞甲基藍吸附量。 繼而,根據以上述方式獲得之亞甲基藍吸附量算出比表面積。上述亞甲基藍吸附量、與第1碳材料之比表面積存在關聯。於先前已知之球狀之石墨粒子,於將藉由BET求出之比表面積(m2 /g)設為x,將上述亞甲基藍吸附量(μ莫耳/g)設為y時,處於y≒0.13x之關係。其表示比表面積越大,亞甲基藍吸附量變得越多。作為球狀之石墨粒子,可使用LION公司製造之商品名「科琴黑EC300JD」或日本紛體工業技術協會製造之商品名「RPSA-2」。假定該石墨粒子之亞甲基藍吸附量與藉由利用BET法之測定獲得之比表面積為相同值,根據亞甲基藍吸附量算出濕式表面積。其結果為,亞甲基藍吸附量與利用亞甲基藍吸附法所得之濕式表面積之關係式成為利用亞甲基藍吸附法所得之比表面積(m2 /g)=利用上述測定所得之亞甲基藍吸附量(μ莫耳/g)/0.13。再者,該關係式之係數係假定利用乾式法(BET法)所得之比表面積與利用濕式法所得之比表面積(濕式表面積)之間實質上無差異時之相關係數。 具有石墨烯積層結構之第1碳材料之中徑較佳為1 μm以上且100 μm以下。若第1碳材料之中徑過小,則有孔徑亦變小而離子之擴散變慢,無法充分提高輸出特性之情況。又,若第1碳材料之中徑過大,則有於使第2碳材料複合化之情形時無法充分增大複合體之比表面積之情況。 又,於如下所述,使第2碳材料與具有石墨烯積層結構之第1碳材料複合化之情形時,就更進一步增大比表面積、更進一步提高電容器之靜電電容之觀點而言,第1碳材料之中徑更佳為2 μm以上,進而較佳為5 μm以上。又,第1碳材料之中徑更佳為60 μm以下,進而較佳為40 μm以下。 再者,上述中徑係與粉體之粒徑分佈中之分佈之中央值對應之徑。例如可藉由使用以雷射繞射、散射法為原理之粒度分佈測定裝置(堀場製作所製造,型號「LA-950」),對粉體分散於乙醇中之試樣進行測定,藉此求出粒度分佈而算出。 第2碳材料; 如上所述,第1碳材料亦可與第2碳材料複合化而使用。本發明之碳材料亦可進而包含存在於第1碳材料之表面或石墨烯層間之第2碳材料。於第1碳材料為部分剝離型薄片化石墨之情形時,亦可於薄片化部位存在第2碳材料。 作為第2碳材料,並無特別限定,較佳為可進行離子之物理性吸附脫附之微粒子,及/或具有導電性之微粒子即導電性微粒子。 具體而言,可使用活性碳、碳黑、氧化石墨烯、石墨、氧化石墨、碳奈米管等。該等微粒子可單獨使用,亦可併用複數種。 上述微粒子之中徑較佳為10 nm以上,且較佳為20 μm以下。 若微粒子之中徑過小,則有例如於***至上述薄片化部位時,無法充分擴大孔徑,而促進微粒子彼此之凝集之情況。又,若微粒子之中徑過大,則有微粒子無法***至薄片化部位之情況。 就更進一步提高電容器之輸出特性之觀點而言,微粒子之中徑更佳為20 nm以上,進而較佳為30 nm以上,且更佳為10 μm以下,進而較佳為5 μm以下。 再者,微粒子之粒度分佈之上限較理想為50 μm以下。 微粒子之形狀並不限定於球狀,亦可為破碎狀、橢圓狀、或鱗片狀等各種形狀。 第2碳材料相對於具有石墨烯積層結構之第1碳材料之重量比(第2碳材料/第1碳材料)較佳為1/100以上且4以下。若具有石墨烯積層結構之第1碳材料之重量過大,則有無法獲得***至第1碳材料之層間之必需量之情況。因此,重量比(第2碳材料/第1碳材料)較佳為1/20以上。另一方面,若第2碳材料之重量過大,則有因作為複合體無助之第2碳材料之比率增加,未顯現作為上述中記載之複合體之效果之情況。 於本發明中,於上述複合體中,第2碳材料較佳為存在於具有石墨烯積層結構之第1碳材料之層間。即,於上述複合體中,第2碳材料較佳為***至具有石墨烯積層結構之第1碳材料之層間。於第2碳材料存在於具有石墨烯積層結構之第1碳材料之層間之情形時,藉由擴大電解液中之孔徑,可更進一步提高輸出特性。 再者,上述複合體可藉由將具有石墨烯積層結構之第1碳材料、與第2碳材料混合而獲得。作為混合方法,可列舉混練各粉體之乾式法、或使一種分散於水或者有機溶劑中之半濕式法、使各粉體分散於水或者有機溶劑中之濕式法等。再者,於在石墨烯層間***第2碳材料之情形時,石墨烯層間藉由溶劑而擴大,因此較佳為濕式法。 又,關於濕式法中之溶劑,為有效率地進行第2碳材料之吸附,較佳為對具有石墨烯積層結構之第1碳材料與第2碳材料,不過度成為良溶劑。若過度成為良溶劑,則有第2碳材料之吸附未充分進行之情況。另一方面,若過度成為不良溶劑,則有容易形成凝集體,無法充分增大比表面積之情況。 此處,作為對具有石墨烯積層結構之第1碳材料與第2碳材料,不過度成為良溶劑之溶劑,例如可使用乙醇、丙醇、碳酸丙二酯、碳酸二乙酯等有機溶劑。又,於水系,藉由改變分散劑之種類與濃度,可製備對具有石墨烯積層結構之第1碳材料與第2碳材料,不過度成為良溶劑之溶劑。 [電容器用電極片材] 本發明之電容器用電極片材包含依據本發明構成之上述碳材料。因此,本發明之電容器用電極片材可提高電容器之靜電電容及輸出特性此兩者。 (黏合劑樹脂) 本發明之電容器用電極片材亦可進而包含黏合劑樹脂。作為黏合劑樹脂,可使用聚乙烯醇縮丁醛、聚四氟乙烯、苯乙烯丁二烯橡膠、聚醯亞胺樹脂、或聚偏二氟乙烯(PVDF)等氟系聚合物或水溶性之羧甲基纖維素等。較佳為可使用聚四氟乙烯。於使用聚四氟乙烯之情形時,可更進一步提高分散性或耐熱性。 關於黏合劑樹脂之調配比率,相對於具有石墨烯積層結構之碳材料100重量份,較佳為0.3~40重量份之範圍,更佳為0.3~15重量份之範圍。藉由將黏合劑樹脂之調配比率設為上述範圍內,可更進一步提高電容器之靜電電容。 (電極片材之製造方法) 本發明之電極片材可藉由對於上述碳材料中視需要包含黏合劑樹脂或溶劑之組合物成形而製造。 上述組合物之成形例如可藉由於利用壓延輥片化後,進行乾燥而進行。又,亦可藉由將包含上述碳材料、黏合劑樹脂及溶劑之塗液塗佈於集電體,其後進行乾燥而進行。作為上述溶劑,可使用乙醇、N-甲基吡咯啶酮(NMP)或水等。 又,本發明之電極片材亦可藉由於上述組合物之成形後利用滾筒壓機進行加壓而獲得。 再者,於本說明書中,作為包含本發明之碳材料之電容器之電極材料,對電極片材進行說明,但如上所述,電極材料之形狀並無特別限定,可使用膜狀、或粒狀等適當之形狀者。 [電容器] 本發明之電容器具備依據本發明構成之上述電容器用電極片材。因此,本發明之電容器之靜電電容及輸出特性此兩者得以提高。作為電容器,例如可列舉電雙層電容器、或鋰離子電容器等。 作為電雙層電容器之電解液,可使用水系,亦可使用非水系(有機系)。 作為水系之電解液,例如可列舉於溶劑使用水,於電解質使用硫酸或氫氧化鉀等之電解液。 另一方面,作為非水系之電解液,例如可利用使用以下溶劑或電解質之電解液。具體而言,作為溶劑,可列舉:碳酸丙二酯(PC)、碳酸乙二酯(EC)、碳酸二甲酯(DMC)或碳酸二乙酯(DEC)等。又,作為電解質,可列舉:六氟磷酸鋰(LiPF6 )、四氟硼酸鋰(LiBF4 )、四氟硼酸四乙基銨(TEABF4 )或四氟硼酸三乙基甲基銨(TEMABF4 )等。 本發明之電容器於進行循環伏安法(CV,cyclic voltammetry)測定時,輸出特性較佳為0.4以上,更佳為0.5以上。就電解液中之離子之擴散速度之觀點而言,亦可將上限設為1.0左右。 再者,輸出特性係藉由於電解液中進行循環伏安法(CV)測定時,使施加外部電壓之掃描速度以10 mV/s及50 mV/s變化時之比定義。即,於將掃描速度為10 mV/s時之靜電電容設為C10 ,將50 mV/s時之靜電電容設為C50 之情形時,可藉由C10 /C50 求出。 繼而,藉由列舉本發明之具體之實施例及比較例明確本發明。再者,本發明並不限定於以下之實施例。 (實施例1) 作為碳材料之部分剝離型薄片化石墨之製備; 將膨脹化石墨20 g、作為熱分解性發泡劑之偶氮二甲醯胺40 g、聚丙二醇400 g、及作為溶劑之四氫呋喃400 g混合,準備原料組合物。作為膨脹化石墨,使用東洋碳公司製造之商品名「PF powder 8」(BET比表面積=22 m2 /g)。作為偶氮二甲醯胺(ADCA),使用永和化成公司製造之商品名「AC#R-K3」(熱分解溫度:210℃)。作為聚丙二醇,使用三洋化成公司製造之型號「SUNNIX GP-3000」(數量平均分子量=3000)。 對原料組合物,使用超音波處理裝置(本多電子公司製造),以100 W、振盪頻率:28 kHz照射2小時超音波。藉由超音波處理,使聚丙二醇(PPG)吸附於膨脹化石墨。藉由此種方式,準備聚丙二醇吸附於膨脹化石墨之組合物。 於上述超音波照射後,藉由溶液鑄膜法使上述組合物成形,於乾燥溫度80℃之溫度下維持2小時,繼而於110℃之溫度下維持1小時。之後,於150℃之溫度下維持1小時,進而於230℃之溫度下維持2小時。藉此,於上述組合物中,使上述ADCA熱分解,並使之發泡。 繼而,實施於400℃之溫度下,維持3小時之加熱步驟。藉此,獲得使上述聚丙二醇熱分解而得之部分剝離型薄片化石墨。 電極片材之製作; 使以上述方式獲得之部分剝離型薄片化石墨分散於N-甲基吡咯啶酮中,添加相對於部分剝離型薄片化石墨9重量份為1重量份之作為黏合劑樹脂之PVDF,並使之混合。將所獲得之塗液塗佈於鋁箔上,並使之乾燥。繼而,於室溫及間隙寬度80 μm之條件下,藉由滾筒壓機(東寶公司製造,型號「BLUD90A」)進行30秒鐘加壓,藉此獲得電極片材。 (實施例2) 於實施例1中之使聚丙二醇熱分解之加熱步驟中,並非於400℃之溫度下維持3小時之加熱步驟,實施於400℃之溫度下維持4.5小時之加熱步驟,除此以外,利用與實施例1相同之製造方法獲得作為碳材料之部分剝離型薄片化石墨。藉由延長加熱時間,更進一步進行薄片化。其他方面係以與實施例1相同之方式獲得電極片材。 (實施例3) 於實施例1中之使聚丙二醇熱分解之加熱步驟中,並非於400℃之溫度下維持3小時之加熱步驟,實施於380℃之溫度下維持6小時之加熱步驟,除此以外,利用與實施例1相同之製造方法獲得作為碳材料之部分剝離型薄片化石墨。藉由降低溫度並延長加熱時間,進而促進樹脂(聚丙二醇)之接枝反應,藉此更進一步進行薄片化。其他方面係以與實施例1相同之方式獲得電極片材。 (實施例4) 使用相對於實施例1中獲得之部分剝離型薄片化石墨(第1碳材料)60重量%,以成為40重量%之方式使作為微粒子(第2碳材料)之科琴黑(LION公司製造,型號「EC300J」)複合而得之複合體作為碳材料,除此以外,以與實施例1相同之方式獲得電極片材。再者,與微粒子之複合體藉由使部分剝離型薄片化石墨與科琴黑分別分散於THF中後,混合兩種分散液,並進行過濾及乾燥而獲得。 (比較例1) 於實施例1中之使聚丙二醇熱分解之加熱步驟中,並非於400℃之溫度下維持3小時之加熱步驟,實施於400℃之溫度下維持24小時之加熱步驟,除此以外,利用與實施例1相同之製造方法獲得作為碳材料之部分剝離型薄片化石墨。於比較例1中,由於過分延長加熱時間,故而樹脂極端減少而進行再堆疊。其他方面係以與實施例1相同之方式獲得電極片材。 (比較例2) 於實施例1中之使聚丙二醇熱分解之加熱步驟中,並非於400℃之溫度下維持3小時之加熱步驟,實施於400℃之溫度下維持1.5小時之加熱步驟,除此以外,利用與實施例1相同之製造方法獲得作為碳材料之部分剝離型薄片化石墨。再者,於比較例2中,由於加熱時間較短,故而無法充分剝離碳材料。其他方面係以與實施例1相同之方式獲得電極片材。 (比較例3) 使作為碳材料之活性碳(wako純藥公司製造)分散於N-甲基吡咯啶酮中,添加相對於活性碳9重量份為1重量份之作為黏合劑樹脂之PVDF,並使之混合。將所獲得之塗液塗佈於鋁箔上,並使之乾燥。繼而,於室溫及間隙寬度80 μm之條件下,藉由滾筒壓機(東寶公司製造,型號「BLUD90A」)進行加壓,藉此獲得電極片材。 (比較例4) 使作為碳材料之石墨烯(XG Science公司製造,型號「C-500」)分散於N-甲基吡咯啶酮中,添加相對於石墨烯9重量份為1重量份之作為黏合劑樹脂之PVDF,並使之混合。將所獲得之塗液塗佈於鋁箔上,並使之乾燥。繼而,於室溫及間隙寬度80 μm之條件下,藉由滾筒壓機(東寶公司製造,型號「BLUD90A」)進行加壓,藉此獲得電極片材。 (比較例5) 使作為碳材料之薄片化石墨(伊藤黑鉛公司製造,型號「PC-H」)分散於N-甲基吡咯啶酮中,添加相對於薄片化石墨9重量份為1重量份之作為黏合劑樹脂之PVDF,並使之混合。將所獲得之塗液塗佈於鋁箔上,並使之乾燥。繼而,於室溫及間隙寬度80 μm之條件下,藉由滾筒壓機(東寶公司製造,型號「BLUD90A」)進行加壓,藉此獲得電極片材。 (比a/b之評價) 比a/b係藉由以下方式求出。 首先,將實施例1~4及比較例1~5中使用之碳材料與矽粉末(Aldrich公司製造,體積平均粒徑:8.6 μm),以1:1之比率於樣品瓶中混合,製作作為測定試樣之混合物。其次,測定所獲得之混合物之XRD光譜。再者,XRD光譜係使用SmartLab(Rigaku公司製造)作為X射線繞射裝置,藉由廣角X射線繞射法測定。又,作為X射線,使用CuKα射線(波長1.541 Å)。又,矽粉末之體積平均粒徑藉由使用以雷射繞射、散射法為原理之粒度分佈測定裝置,對粉體分散於乙醇中之試樣進行測定,藉此求出粒度分佈而算出。作為粒度分佈測定裝置,使用堀場製作所製造之型號「LA-950」。 於所獲得之XRD光譜中,求出源自石墨結構之波峰(26.0度<2θ<27.0度)之高度a、與源自矽之波峰(28.0度<2θ<29.0度)之高度b之比a/b。將結果示於下述表1。 (利用循環伏安法測定所得之電容器評價) 藉由循環伏安法測定,利用以下方法對靜電電容及輸出特性進行評價。 於循環伏安法測定中,使用自實施例1~4及比較例1~5之電極片材沖裁之電極作為工作電極與相對電極。將該等與作為參照電極之Ag導線之3個電極浸漬於水系電解液或者有機系電解液中,進行測定。將自該資料獲得之靜電電容除以電極重量,藉此算出每單位重量之靜電電容。 再者,測定係使施加外部電壓之掃描速度以10 mV/s及50 mV/s變化而進行。又,將掃描速度為10 mV/s時之靜電電容設為C10 ,將50 mV/s時之靜電電容設為C50 。 靜電電容及輸出特性係利用下述基準判定。於靜電電容之判定,使用C10 。又,輸出特性藉由C10 /C50 進行判定。將結果示於下述表1。 [每單位重量之靜電電容之判定基準] ◎:10 F/g≦C10 ○:4 F/g≦C10 <10 F/g △:1 F/g≦C10 <4 F/g ×:0 F/g<C10 <1 F/g [輸出特性之判定基準] ◎:0.5≦C10 /C50 ○:0.4≦C10 /C50 <0.5 △:0.2≦C10 /C50 <0.4 ×:0<C10 /C50 <0.2 (BET比表面積之評價) 用秤量取碳材料100 mg,利用比表面積測定裝置(島津製作所公司製造,ASAP-2020),使用氮氣進行測定。將結果示於下述表1。 (粉體電阻之評價) 用秤量取碳材料100 mg以上,使用低電阻粉體測定裝置(Mitsubishi Chemical Analytech公司製造,Loresta GX),利用四端針法進行測定。對粉體每次施加4 kN之壓力,使用20 kN時之電阻值。將結果示於下述表1。 [表1]
Figure 106133752-A0304-0001
根據表1可知,於使用實施例1~4之電極片材之情形時,電容器之靜電電容及輸出特性之兩者得到提高。另一方面,可知於使用比較例1~5之電極片材之情形時,電容器之靜電電容及輸出特性中之任一者均未提高。

Claims (9)

  1. 一種碳材料,其係用於蓄電裝置之電極材料者;且上述碳材料包含具有石墨烯積層結構之第1碳材料;上述第1碳材料係具有石墨部分剝離之結構之部分剝離型薄片化石墨,於測定上述碳材料、與體積平均粒徑為7.5±2.5μm之矽粉末之混合比1:1之混合物之X射線繞射光譜時,源自石墨烯積層結構之2θ=26.4度附近之波峰之高度a、與源自矽之2θ=28.5度附近之波峰之高度b之比a/b為0.05以上且0.4以下。
  2. 如請求項1之碳材料,其中上述比a/b為0.07以上且0.3以下。
  3. 如請求項1或2之碳材料,其進而包含存在於上述第1碳材料之表面或石墨烯層間之第2碳材料。
  4. 一種電容器用電極片材,其包含如請求項1至3中任一項之碳材料。
  5. 如請求項4之電容器用電極片材,其進而包含黏合劑樹脂。
  6. 如請求項5之電容器用電極片材,其中上述黏合劑樹脂係苯乙烯丁二烯橡膠、聚乙烯醇縮丁醛、聚四氟乙烯、或氟系聚合物。
  7. 如請求項6之電容器用電極片材,其中上述氟系聚合物係聚偏二氟乙烯。
  8. 如請求項5至7中任一項之電容器用電極片材,其相對於上述碳材料100重量份,包含上述黏合劑樹脂0.3~40重量份。
  9. 一種電容器,其具備如請求項4至8中任一項之電容器用電極片材。
TW106133752A 2016-09-30 2017-09-29 碳材料、電容器用電極片材及電容器 TWI736683B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016193180 2016-09-30
JP??2016-193180 2016-09-30

Publications (2)

Publication Number Publication Date
TW201817675A TW201817675A (zh) 2018-05-16
TWI736683B true TWI736683B (zh) 2021-08-21

Family

ID=61762790

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106133752A TWI736683B (zh) 2016-09-30 2017-09-29 碳材料、電容器用電極片材及電容器

Country Status (7)

Country Link
US (1) US20190172655A1 (zh)
EP (1) EP3522192A4 (zh)
JP (1) JPWO2018062285A1 (zh)
KR (1) KR20190055019A (zh)
CN (1) CN109313989A (zh)
TW (1) TWI736683B (zh)
WO (1) WO2018062285A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6978410B2 (ja) 2017-02-28 2021-12-08 積水化学工業株式会社 ガスバリア材及び熱硬化性樹脂組成物
WO2019026940A1 (ja) * 2017-08-04 2019-02-07 積水化学工業株式会社 炭素材料、全固体電池用正極、全固体電池用負極、及び全固体電池
EP3751647A4 (en) * 2018-02-09 2021-10-06 Sekisui Chemical Co., Ltd. CARBON MATERIAL, ELECTRODE FOR ELECTRICITY STORAGE DEVICES, ELECTRICITY STORAGE DEVICE, AND SECONDARY BATTERY WITH AN ANYHERIC ELECTROLYTE
KR20210006897A (ko) * 2018-05-09 2021-01-19 세키스이가가쿠 고교가부시키가이샤 전고체 전지용 집전층, 전고체 전지 및 탄소 재료
WO2020196313A1 (ja) * 2019-03-27 2020-10-01 パナソニックIpマネジメント株式会社 キャパシタ用電極およびその製造方法ならびにキャパシタ
IT201900021096A1 (it) * 2019-11-13 2021-05-13 Fondazione St Italiano Tecnologia Composizioni per dispositivi di accumulo di energia e procedimenti di impiego

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201539500A (zh) * 2013-12-26 2015-10-16 Sekisui Chemical Co Ltd 電容器用電極材料及其製造方法、與電雙層電容器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6830595B2 (en) * 2002-12-20 2004-12-14 Advanced Energy Technology Inc. Method of making composite electrode and current collectors
TWI367511B (en) * 2005-06-10 2012-07-01 Japan Gore Tex Inc Electrode for electric double layer capacitor and electric double layer capacitor
WO2008123444A1 (ja) * 2007-03-29 2008-10-16 Mitsubishi Materials Corporation 正極形成材、その材料と製造方法、及びリチウムイオン二次電池
WO2009094277A2 (en) * 2008-01-14 2009-07-30 The Regents Of The University Of California High-throughput solution processing of large scale graphene and device applications
JP5645056B2 (ja) * 2010-05-12 2014-12-24 日本電気硝子株式会社 蓄電デバイス用負極活物質ならびにこれを用いた蓄電デバイス用負極材料および蓄電デバイス用負極
US9884934B2 (en) * 2011-02-04 2018-02-06 Sekisui Chemical Co., Ltd. Method for producing exfoliated graphite-polymer composite material
KR101274991B1 (ko) * 2011-09-28 2013-07-30 재단법인 포항산업과학연구원 커패시터용 질소도핑 그래핀 전극의 제조방법, 이를 이용한 전극 및 전기 이중층 커패시터
JP6047799B2 (ja) 2012-03-23 2016-12-21 アイオン株式会社 蓄電デバイスの電極用活性炭及び蓄電デバイスの電極用活性炭の製造方法
US20140030590A1 (en) * 2012-07-25 2014-01-30 Mingchao Wang Solvent-free process based graphene electrode for energy storage devices
ES2684343T3 (es) * 2012-08-27 2018-10-02 Sekisui Chemical Co., Ltd. Material compuesto de resina y grafito en copos y método para producir el mismo
US8947854B2 (en) * 2012-10-09 2015-02-03 Nanotek Instruments, Inc. Spacer-modified graphene electrode for supercapacitor
JP6285643B2 (ja) * 2013-03-04 2018-02-28 積水化学工業株式会社 リチウムイオン二次電池用負極材及びその製造方法、並びにリチウムイオン二次電池
JP2014225574A (ja) * 2013-05-16 2014-12-04 住友電気工業株式会社 キャパシタおよびその充放電方法
CN105788875B (zh) * 2016-03-02 2019-01-08 西北师范大学 四氧化三钴纳米线/还原氧化石墨烯水凝胶复合材料及其制备和应用
CN109314247B (zh) * 2016-08-31 2022-04-26 积水化学工业株式会社 蓄电设备用电极材料、蓄电设备用电极以及蓄电设备

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201539500A (zh) * 2013-12-26 2015-10-16 Sekisui Chemical Co Ltd 電容器用電極材料及其製造方法、與電雙層電容器

Also Published As

Publication number Publication date
CN109313989A (zh) 2019-02-05
EP3522192A1 (en) 2019-08-07
WO2018062285A1 (ja) 2018-04-05
EP3522192A4 (en) 2020-06-10
JPWO2018062285A1 (ja) 2019-07-11
US20190172655A1 (en) 2019-06-06
TW201817675A (zh) 2018-05-16
KR20190055019A (ko) 2019-05-22

Similar Documents

Publication Publication Date Title
TWI736683B (zh) 碳材料、電容器用電極片材及電容器
JP5969126B2 (ja) キャパシタ用電極材及びその製造方法、並びに電気二重層キャパシタ
TWI578600B (zh) 鋰離子二次電池用負極材料、鋰離子二次電池用複合負極材料、鋰離子二次電池負極用樹脂組成物、鋰離子二次電池用負極及鋰離子二次電池
WO2017090553A1 (ja) キャパシタ用電極材及びキャパシタ
WO2018230080A1 (ja) 炭素材料及びその製造方法、蓄電デバイス用電極材料、並びに蓄電デバイス
EP3831772A1 (en) Carbon material and method for producing same, electrode material for electrical storage device, and electrical storage device
WO2019078073A1 (ja) 複合体、蓄電デバイス用電極材料、及び蓄電デバイス
TW201631613A (zh) 用於鋰離子電容器的陰極
EP3943214A1 (en) Composite material, electrode material for electricity storage devices, and electricity storage device
JP2021101481A (ja) キャパシタ用電極材、キャパシタ用電極シート及びキャパシタ
JP6856448B2 (ja) 電極材及び蓄電デバイス
WO2020189520A1 (ja) 炭素材料、水蒸気吸着材、蓄電デバイス用電極材料、及び蓄電デバイス
JP6981854B2 (ja) 蓄電デバイス用炭素材料、蓄電デバイス用電極、蓄電デバイス、および蓄電デバイス用炭素材料の製造方法
WO2022102692A1 (ja) 非水電解質二次電池用正極材料、非水電解質二次電池用正極、及び非水電解質二次電池

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees