TWI735031B - 電阻式隨機存取記憶體結構及其製造方法 - Google Patents

電阻式隨機存取記憶體結構及其製造方法 Download PDF

Info

Publication number
TWI735031B
TWI735031B TW108130379A TW108130379A TWI735031B TW I735031 B TWI735031 B TW I735031B TW 108130379 A TW108130379 A TW 108130379A TW 108130379 A TW108130379 A TW 108130379A TW I735031 B TWI735031 B TW I735031B
Authority
TW
Taiwan
Prior art keywords
layer
dielectric layer
low
gap
random access
Prior art date
Application number
TW108130379A
Other languages
English (en)
Other versions
TW202109762A (zh
Inventor
李彥德
王景擁
尤建祥
陳宏生
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW108130379A priority Critical patent/TWI735031B/zh
Priority to US16/996,552 priority patent/US11737380B2/en
Publication of TW202109762A publication Critical patent/TW202109762A/zh
Application granted granted Critical
Publication of TWI735031B publication Critical patent/TWI735031B/zh
Priority to US18/324,709 priority patent/US20230301206A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/066Shaping switching materials by filling of openings, e.g. damascene method
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

本發明提供一種電阻式隨機存取記憶體結構及其製造方法。此電阻式隨機存取記憶體結構包括具有陣列區及周邊區的基板。第一低介電常數介電層位於周邊區,且其介電常數小於3。複數個記憶體單元,位於基板上且位於陣列區。間隙填充介電層位於陣列區,其覆蓋記憶體單元且填入相鄰的記憶體單元之間。間隙填充介電層的材料不同於第一低介電常數介電層的材料。複數個第一導電插塞位於間隙填充介電層中。第一導電插塞的每一者與記憶體單元之中的一者接觸。虛設記憶體單元位於陣列區與周邊區的交界處,虛設記憶體單元並未與第一導電插塞的任一者接觸。

Description

電阻式隨機存取記憶體結構及其製造方法
本發明係有關於一種記憶體裝置,且特別係有關於一種電阻式隨機存取記憶體結構及其製造方法。
電阻式隨機存取記憶體(RRAM)具有結構簡單、面積小、操作電壓小、操作速度快、記憶時間長、多狀態記憶、及耗功率低等優點。因此電阻式隨機存取記憶體極有潛力取代目前的快閃式記憶體,成為下世代的非揮發性記憶體主流。
在習知的電阻式隨機存取記憶體中,一個晶片通常包括陣列區與周邊區。陣列區包括多個記憶體單元,且每個記憶體單元包括圖案化的底電極層、電阻轉態層與頂電極層。周邊區主要是邏輯電路。在周邊區中,為了提高邏輯電路的操作速度,介電層會使用低介電常數(low-k)介電材料。在陣列區中,記憶體單元與記憶體單元之間的空間很小。當將低介電常數介電材料形成於多個記憶體單元之間時,由於低介電常數介電材料的間隙填充能力不 佳,將導致多個記憶體單元之間產生孔洞。如此一來,電阻式隨機存取記憶體裝置的操作容易出錯,且產品的良率及可靠度皆變差。
對記憶體產業的業者而言,為了提升電阻式隨機存取記憶體的可靠度與產品良率,並且降低生產所需的成本及時間,仍有需要對電阻式隨機存取記憶體及其製程進行改良。
本發明實施例提供一種電阻式隨機存取記憶體結構及其製造方法,能夠明顯改善產品的良率及可靠度,並且降低製程的複雜度、生產成本及生產時間。
本發明之一實施例係揭示一種電阻式隨機存取記憶體結構,包括:基板,其中基板包括陣列區及周邊區;第一低介電常數介電層,位於周邊區中,其中第一低介電常數介電層的介電常數小於3;複數個記憶體單元,位於基板上且位於陣列區中;間隙填充介電層,位於陣列區中,其中間隙填充介電層覆蓋記憶體單元且填入相鄰的記憶體單元之間,且其中間隙填充介電層的材料不同於第一低介電常數介電層的材料;複數個第一導電插塞,位於間隙填充介電層中,其中第一導電插塞的每一者與記憶體單元之中的一者接觸;以及虛設記憶體單元,位於陣列區與周邊區的交界處,其中虛設記憶體單元並未與第一導電插塞的任一者接觸。
本發明之一實施例係揭示一種電阻式隨機存取記憶體結構的製造方法,包括:提供基板,其中基板包括陣列區及周邊 區;形成第一低介電常數介電層於周邊區中,其中第一低介電常數介電層的介電常數小於3;形成複數個記憶體單元於陣列區中的基板上;形成虛設記憶體單元於陣列區與周邊區的交界處;形成間隙填充介電層於基板上,其中間隙填充介電層在陣列區中覆蓋記憶體單元及虛設記憶體單元,其中間隙填充介電層在周邊區中覆蓋第一低介電常數介電層,且其中間隙填充介電層的材料不同於第一低介電常數介電層的材料;以及形成複數個第一導電插塞於間隙填充介電層中,其中第一導電插塞的每一者與記憶體單元之中的一者接觸,且其中虛設記憶體單元並未與第一導電插塞的任一者接觸。
在本發明實施例所提供之電阻式隨機存取記憶體結構之製造方法中,在形成陣列區的記憶體單元之前,先在周邊區中形成一層低介電常數介電材料。在此製造方法中,可避免同時研磨周邊區的低介電常數介電材料與陣列區的間隙填充介電材料。因此,即使陣列區的介電層與周邊區的介電層使用不同的介電材料,也可避免在周邊區與陣列區的交界處產生裂縫。換言之,本發明實施例所提供之製造方法可根據需求分別選擇陣列區與周邊區的介電材料。如此一來,能夠明顯改善產品的良率及可靠度,而不會明顯增加製程的複雜度、生產成本及生產時間。
100、200:電阻式隨機存取記憶體結構
10:陣列區
20:周邊區
102:基板
104:絕緣層
106:接觸插塞
108:襯墊層
110:第一低介電常數介電層
112:第一研磨停止層
120:記憶體單元
120*:虛設記憶體單元
122:底電極層
124:電阻轉態層
126:頂電極層
128:硬罩幕層
130:罩幕圖案
132:保護層
134:介電層
136:第二低介電常數介電層
138:第二研磨停止層
142:第一導電插塞
144:第一導電線路
152:第二導電插塞
154:第二導電線路
第1A圖至第1E圖為本發明一些實施例之製造電阻式隨機存取記憶體結構的各步驟中所對應的剖面示意圖。
第2A圖至第2E圖為本發明另一些實施例之製造電阻式隨機存取記憶體結構的各步驟中所對應的剖面示意圖。
第3圖為第1B圖之電阻式隨機存取記憶體結構的上視示意圖。
為使本發明之目的、特徵、優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下。
請參照第1A圖,提供基板102,且基板102包括陣列區10及圍繞陣列區10的周邊區20。接著,形成絕緣層104於基板102上。絕緣層104可為,例如,氧化矽。接著,對絕緣層104進行圖案化製程,以形成開口。接著,將金屬材料填入開口中,以形成接觸插塞106於絕緣層104中。在本實施例中,接觸插塞106為單層導電層結構。在另一些實施例中,接觸插塞106包括襯層及導電層。襯層可改善導電層與基板102或絕緣層104的黏著性,且可避免金屬原子擴散進入基板102或絕緣層104中。襯層的材料可為,例如,氮化鈦。導電層的材料可為,例如,銅。
接著,依序形成襯墊層108、第一低介電常數介電層110及第一研磨停止層112於絕緣層104之上。之後,遮罩周邊區20且進行蝕刻製程,以在陣列區10中露出絕緣層104及接觸插塞106的頂表面。襯墊層108可避免後續製程中的水氣或氫氣進入下方的 基板102中。襯墊層108可為,例如,氮化矽。第一低介電常數介電層110的介電常數小於3,因此可提高位於周邊區20中的邏輯電路的操作速度,且其材料可為,例如,Black diamondTM
接著,順應性地依序形成底電極層122、電阻轉態層124、頂電極層126及硬罩幕層128,如第1A圖所示。
底電極層122可藉由接觸插塞106與其他元件(未繪示)電性連接。底電極層122與頂電極層126可各自獨立地為單層結構或多層結構。在一些實施例中,底電極層122為由氮化鈦所形成的單層結構,且頂電極層126為由鈦所形成的單層結構。可利用物理氣相沉積製程以形成底電極層122與頂電極層126。電阻轉態層124的材料可包括單層或多層的過渡金屬氧化物,例如,氧化鉿(HfO2)。可利用,例如,原子層沉積製程形成電阻轉態層124。
接著,形成且圖案化一罩幕層,以形成複數個罩幕圖案130於陣列區10中。如第1A圖所示,罩幕圖案130的位置對應於接觸插塞106的位置。
請參照第1B圖,進行圖案化製程,以移除未被罩幕圖案130覆蓋的底電極層122、電阻轉態層124、頂電極層126及硬罩幕層128。此圖案化製程可為非等向性的蝕刻製程。在圖案化製程之後,在陣列區10中,形成複數個記憶體單元120於基板102上。記憶體單元120的位置對應於接觸插塞106的位置,且每一個記憶體單元120與一個接觸插塞106電性連接。
圖案化製程同時也形成虛設記憶體單元120*於陣列區10與周邊區20的交界處。虛設記憶體單元120*並未與接觸插塞106電性連接。第3圖為第1B圖之電阻式隨機存取記憶體結構100的上視示意圖,且第1B圖是沿著第3圖中的剖線A-A所繪製。如第3圖所示,在上視圖中,虛設記憶體單元120*具有圍繞陣列區10的連續環型形狀。虛設記憶體單元120*具有L型的剖面輪廓,且殘留於虛設記憶體單元120*上的硬罩幕層128具有矩型的剖面輪廓。更詳言之,虛設記憶體單元120*的底電極層122、電阻轉態層124及頂電極層126皆具有L型的剖面輪廓。
應可理解的是,第3圖所示的虛設記憶體單元120*的形狀僅用於說明,並非用以限定本發明。舉例而言,在上視圖中,陣列區10可為三角形、不規則多邊形、圓形、橢圓形或其他合適之形狀。因此,虛設記憶體單元120*可具有圍繞陣列區10的連續環型形狀。在另一些實施例中,在上視圖中,虛設記憶體單元120*具有圍繞陣列區10的不連續環型形狀,且此不連續環型包括多個片段。此外,第1B圖所示的虛設記憶體單元120*及硬罩幕層128的剖面輪廓也僅用於說明,並非用以限定本發明。舉例而言,虛設記憶體單元120*可具有矩形的剖面輪廓。亦即,虛設記憶體單元120*的底電極層122及電阻轉態層124具有L型的剖面輪廓,且頂電極層126具有矩型的剖面輪廓。在一些實施例中,沒有硬罩幕層128殘留於虛設記憶體單元120*上。在另一些實施例中,硬罩幕層128具有朝 向上方逐漸縮窄的剖面輪廓。在一些實施例中,硬罩幕層128的剖面輪廓具有圓滑的邊角。
請參照第1C圖,順應性地形成保護層132於基板102上。在陣列區10中,保護層132順應性地覆蓋記憶體單元120及虛設記憶體單元120*。在周邊區20中,保護層132覆蓋第一研磨停止層112。接著,形成間隙填充介電層134於基板102上。在陣列區10中,間隙填充介電層134覆蓋記憶體單元120及虛設記憶體單元120*。在周邊區20中,間隙填充介電層134覆蓋保護層132、第一研磨停止層112及第一低介電常數介電層110。接著,進行第一平坦化製程(例如,化學機械研磨製程),以使第一研磨停止層112的頂表面與間隙填充介電層134的頂表面彼此共平面。
保護層132可為由單一材料所形成的單層結構或由多種不同材料所形成的多層結構。在一些實施例中,保護層132為由氫氣阻障層及形成於氫氣阻障層上的間隔層所形成的雙層結構,因此,氫氣阻障層可避免氫氣進入基板102中,因而可避免電阻式隨機存取記憶體結構的劣化或失效。氫氣阻障層的材料可為金屬氧化物或金屬氮化物。間隔層可減少或避免記憶體單元120在後續製程中受到損傷。間隔層的材料可為,例如,氧化矽或氮化矽。在本實施例中,保護層132為氧化鋁所形成的單層結構。在本實施例中,在第一平坦化製程之後,並未暴露覆蓋記憶體單元120的保護層132。因此,可避免保護層132及其下方的記憶體單元120受到損傷。
間隙填充介電層134的材料不同於第一低介電常數介電層110的材料。由於間隙填充介電層134具有良好的間隙填充能力,可避免記憶體單元120之間產生孔洞。如此一來,可減少或避免電阻式隨機存取記憶體結構的操作錯誤,並且可明顯改善產品的良率及可靠度。間隙填充介電層134的材料可包括氧化物,例如,氧化矽、氧化鋁等,並且可藉由化學氣相沉積法積形成。
第一研磨停止層112的材料不同於第一低介電常數介電層110的材料。當暴露出第一研磨停止層112時,即停止上述平坦化製程。第一研磨停止層112可為,例如,氮化矽。
請參照第1D圖,移除第一研磨停止層112。舉例而言,可使用罩幕層保護陣列區10,並藉由濕式蝕刻製程移除第一研磨停止層112。接著,形成第二低介電常數介電層136於間隙填充介電層134及第一低介電常數介電層110上。第二低介電常數介電層136的介電常數小於3,且其材料可與第一低介電常數介電層110的材料相同或相似。因此,可提高位於周邊區20中的邏輯電路的操作速度,也可提高位於陣列區10中的記憶體單元120的操作速度。如此一來,可進一步改善電阻式隨機存取記憶體結構100的效能。
請參照第1E圖,形成第二研磨停止層138於第二低介電常數介電層136上。第二研磨停止層138的材料可與第一研磨停止層112的材料相同或相似。之後,可視需要進行第二平坦化製程(例如,化學機械研磨製程),以使第二研磨停止層138具有平坦的 頂表面。在如此的實施例中,是對第二研磨停止層138進行研磨。因此,第二低介電常數介電層136的頂表面並未被研磨。
接著,進行雙鑲嵌製程。如第1E圖所示,在陣列區10中,形成第一導電插塞142於間隙填充介電層134及第二低介電常數介電層136中,並且形成第一導電線路144於第二低介電常數介電層136中。在周邊區20中,形成第二導電插塞152於第一低介電常數介電層110及第二低介電常數介電層136中,並且形成第二導電線路154於第二低介電常數介電層136中。
在本實施例中,第一導電插塞142、第一導電線路144、第二導電插塞152及第二導電線路154為包括銅的單層導電材料層結構。導電材料層可包括鎢、鋁、銅或其他合適的金屬。銅的導電性良好,因此可提高邏輯電路及記憶體單元120的操作速度。在另一些實施例中,第一導電插塞142、第一導電線路144、第二導電插塞152及第二導電線路154為包括導電襯層與導電材料層的雙層結構。導電襯層可改善導電材料層與低介電常數介電層的黏著性,且可避免金屬原子擴散進入低介電常數介電層中。導電襯層可包括鈦、氮化鈦或其他合適的導電材料。
之後,可進行其他習知的製程,以完成電阻式隨機存取記憶體結構100,在此不再詳述。
在本實施例中,是先形成位於周邊區20的第一低介電常數介電層110之後,才形成位於陣列區10的記憶體單元120及間隙填充介電層134。再者,在周邊區20形成一層第一研磨停止層 112覆蓋於第一低介電常數介電層110的頂表面上。這樣的製程能夠明顯改善產品的良率及可靠度,而不會明顯增加製程的複雜度、生產成本及生產時間。
更詳言之,請同時參照第1B圖與第3圖,電阻式隨機存取記憶體結構100包括陣列區10及圍繞陣列區10的周邊區20。在一片晶圓上通常會形成多個電阻式隨機存取記憶體結構100。第一低介電常數介電層110的材料的間隙填充能力不佳。若是先形成陣列區10的記憶體單元120及間隙填充介電層134,則當形成第一低介電常數介電層110於晶圓上時,第一低介電常數介電層110會具有不平坦的頂表面。因此,需要對第一低介電常數介電層110進行平坦化製程。在這樣的情況下,會藉由間隙填充介電層134作為研磨停止層。然而,間隙填充介電層134的材料與第一低介電常數介電層110的材料具有不同的性質,例如,硬度與機械強度。當同時研磨第一低介電常數介電層110與間隙填充介電層134時,研磨壓力可能會導致間隙填充介電層134與第一低介電常數介電層110的交界處發生破裂。如此一來,陣列區10的記憶體單元120將會因而受到損傷。再者,後續製程的溶液(例如,研磨液或蝕刻溶液)可能會沿著裂縫滲入陣列區10或周邊區20的基板102中,進而導致元件損壞。如此一來,會降低電阻式隨機存取記憶體100的良率與可靠度。
在本實施例中,是先形成第一低介電常數介電層110於整片晶圓上,才移除位於陣列區10的第一低介電常數介電層 110。因此,第一低介電常數介電層110具有平坦的頂表面,而不需要對第一低介電常數介電層110進行平坦化製程。
再者,在本實施例中,在周邊區20形成一層第一研磨停止層112覆蓋於第一低介電常數介電層110的頂表面上。當研磨間隙填充介電層134時,可避免同時研磨第一低介電常數介電層110與間隙填充介電層134。相較於第一低介電常數介電層110,第一研磨停止層112與間隙填充介電層134的性質較為接近。因此,可明顯減少或避免上述破裂的發生,進而改善產品的良率與可靠度。
在本實施例中,第二低介電常數介電層136也位於陣列區10中,因此可提高記憶體單元120的操作速度。如此一來,可進一步改善電阻式隨機存取記憶體結構100的效能。
在本實施例中,若第一研磨停止層112夠厚,則可確保研磨間隙填充介電層134時不會暴露出第一低介電常數介電層110的頂表面。另一方面,若第一研磨停止層112夠薄,則第二低介電常數介電層136可具有實質上平坦的頂表面,因而可省略第二平坦化製程。在一些實施例中,第一研磨停止層112的厚度為10-60nm。在另一些實施例中,第一研磨停止層112的厚度為20-40nm。
此外,若第一研磨停止層112的頂表面太低,則第一平坦化製程可能會造成記憶體單元120受到損傷。如此一來,不利於改善產品的良率。另一方面,若第一研磨停止層112的頂表面太高,則位於陣列區10的第二低介電常數介電層136的厚度降低。如此一來,不利於改善電阻式隨機存取記憶體結構100的效能。為了 兼顧產品的效能及良率,第一研磨停止層112的頂表面可高於或齊平於覆蓋於記憶體單元120上的保護層132的頂表面。
請參照第1E圖,在一些實施例中,提供一種電阻式隨機存取記憶體結構100。電阻式隨機存取記憶體結構100包括基板102,且基板102包括陣列區10及周邊區20。第一低介電常數介電層110位於周邊區20中,其中第一低介電常數介電層的介電常數小於3。複數個記憶體單元120位於陣列區10中且位於基板102上,且虛設記憶體單元120*位於陣列區10與周邊區20的交界處。間隙填充介電層134位於陣列區10中,覆蓋記憶體單元120且填入相鄰的記憶體單元120之間。間隙填充介電層134的材料不同於第一低介電常數介電層110的材料。保護層132位於陣列區10中且順應性地覆蓋記憶體單元120及虛設記憶體單元120*。保護層132位於記憶體單元120與間隙填充介電層134之間。第二低介電常數介電層136位於間隙填充介電層134及第一低介電常數介電層110上。第二低介電常數介電層136的介電常數小於3。複數個第一導電插塞142位於間隙填充介電層134中,且第一導電插塞142的每一者與記憶體單元120之中的一者接觸。虛設記憶體單元120*並未與第一導電插塞142的任一者接觸。第二導電插塞152位於第一低介電常數介電層110中。第二研磨停止層138位於周邊區20中,且其頂表面實質上齊平於第二導電線路154的頂表面。
在本實施例中,是先形成位於周邊區20的第一低介電常數介電層110之後,才形成位於陣列區10的記憶體單元120及 間隙填充介電層134。因此,會在陣列區10與周邊區20的交界處形成虛設記憶體單元120*,如第1E圖所示。虛設記憶體單元120*包括底電極層122、電阻轉態層124及頂電極層126。底電極層122順應性地形成於第一低介電常數介電層110的側壁及基板102的頂表面上。電阻轉態層124順應性地形成於底電極層122的側壁上。頂電極層126順應性地形成於電阻轉態層124的側壁上。第一低介電常數介電層110、底電極層122、電阻轉態層124及頂電極層126沿著平行於基板102的頂表面的一方向依序排列。虛設記憶體單元120*的頂表面可高於或齊平於記憶體單元120的任一者的頂表面。
如第3圖所示,虛設記憶體單元120*位於陣列區10與周邊區20的交界處並且圍繞陣列區10。因此,在後續的製程中,虛設記憶體單元120*可避免陣列區10與周邊區20互相影響。再者,當進行第一或第二平坦化製程時,虛設記憶體單元120*可做為緩衝層,以降低平坦化製程所產生的應力,進而提高產品良率。
在本實施例中,如1E圖所示,硬罩幕層128位於記憶體單元120上。硬罩幕層128受到保護層132的覆蓋且環繞第一導電插塞142。在另一些實施例中,硬罩幕層128在雙鑲嵌製程期間完全被移除,而並未殘留於於頂電極層126上。在另一些實施例中,並未形成硬罩幕層128於頂電極層126上。
在本實施例中,如1E圖所示,在陣列區10中,第二低介電常數介電層136的底表面與間隙填充介電層134的頂表面直接接觸。由於在陣列區10中形成第二低介電常數介電層136,因此, 可改善記憶體裝置的電性表現。例如,可降低電容效應,且可減少記憶體單元120操作時所產生的熱量。在周邊區20中,第二低介電常數介電層136的底表面與第一低介電常數介電層110的頂表面直接接觸。在另一些實施例中,為了使第二低介電常數介電層136的頂表面更平坦,不移除第一研磨停止層112。因此,在周邊區20中,第二低介電常數介電層136的底表面與第一研磨停止層112的頂表面直接接觸。
第2A圖至第2E圖為本發明另一些實施例之製造電阻式隨機存取記憶體結構200的各步驟中所對應的剖面示意圖。在第2A圖至第2E圖中,相同於第1A圖至第1E圖所示的元件使用相同的標號表示。為了簡化說明,關於相同於第1A圖至第1E圖所示的元件及其形成製程步驟,在此不再詳述。
第2B圖與第1A圖相似,差異在於第2B圖的第一低介電常數介電層110具有較大的高度。第2C圖與第1B圖相似,差異在於第2C圖的虛設記憶體單元120*具有較大的高度。第2D圖與第1C圖相似,差異在於第2D圖的間隙填充介電層134具有較大的高度。第2E圖與第1E圖相似,差異在於第2E圖中不具有第二低介電常數介電層136。
請參照第2E圖,在形成間隙填充介電層134於陣列區10之後,進行第一平坦化製程,以使第一研磨停止層112的頂表面與間隙填充介電層134的頂表面彼此共平面。在一些實施例中,第一平坦化製程為化學機械研磨製程。在本實施例中,是對第一研 磨停止層112進行研磨。因此,第一低介電常數介電層110的頂表面並未被研磨。
相似於第1A圖至第1E圖所示的實施例,在本實施例中,也可避免同時研磨位於周邊區20的第一低介電常數介電層110與位於陣列區10的間隙填充介電層134。
再者,在本實施例中,如第2A圖所示,直接在周邊區20中形成具有預定高度的第一低介電常數介電層110。因此,可省略形成第二低介電常數介電層136及第二研磨停止層138的步驟。也可省略第二平坦化步驟。因此,可大幅簡化製程。
此外,在第一平坦化製程期間,間隙填充介電層134的移除速率高於第一研磨停止層112的移除速率。因此,容易在陣列區10發生碟型凹陷(dishing)。若第一研磨停止層112的頂表面與保護層132的頂表面過於接近,則記憶體單元120容易受到損傷。在本實施例中,第一低介電常數介電層110具有較大的高度。即使在陣列區10發生碟型凹陷,記憶體單元120也不會受到損傷。換言之,在本實施例中,平坦化製程的操作視窗或容忍度較大,有利於量產。
綜上所述,在本發明實施例所提供之電阻式隨機存取記憶體結構的製造方法中,可避免同時研磨位於周邊區的低介電常數介電層與位於陣列區的間隙填充介電層。在這樣的製程中,即使周邊區的低介電常數介電層與陣列區的間隙填充介電層使用不同的介電材料,也可避免在平坦化製程期間發生上述破裂。因此,可根據需求分別選擇陣列區與周邊區的介電材料。本發明實施例所提 供之製程能夠明顯改善產品的良率及可靠度,而不會明顯增加製程的複雜度、生產成本及生產時間。
雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
100:電阻式隨機存取記憶體結構
10:陣列區
20:周邊區
102:基板
104:絕緣層
106:接觸插塞
108:襯墊層
110:第一低介電常數介電層
120:記憶體單元
120*:虛設記憶體單元
122:底電極層
124:電阻轉態層
126:頂電極層
128:硬罩幕層
132:保護層
134:間隙填充介電層
136:第二低介電常數介電層
138:第二研磨停止層
142:第一導電插塞
144:第一導電線路
152:第二導電插塞
154:第二導電線路

Claims (13)

  1. 一種電阻式隨機存取記憶體結構,包括:一基板,其中該基板包括一陣列區及一周邊區;一第一低介電常數介電層,位於該周邊區中,其中該第一低介電常數介電層的介電常數小於3;複數個記憶體單元,位於該基板上且位於該陣列區中;一間隙填充介電層,位於該陣列區中,其中該間隙填充介電層覆蓋該等記憶體單元且填入相鄰的該等記憶體單元之間,且其中該間隙填充介電層的材料不同於該第一低介電常數介電層的材料;複數個第一導電插塞,位於該間隙填充介電層中,其中該等第一導電插塞的每一者與該等記憶體單元之中的一者接觸;以及一虛設記憶體單元,位於該陣列區與該周邊區的交界處,其中該虛設記憶體單元並未與該等第一導電插塞的任一者接觸。
  2. 如申請專利範圍第1項所述之電阻式隨機存取記憶體結構,其中該虛設記憶體單元的一頂表面高於或齊平於該等記憶體單元的任一者的一頂表面。
  3. 如申請專利範圍第1項所述之電阻式隨機存取記憶體結構,其中該虛設記憶體單元包括:一底電極層,順應性地形成於該第一低介電常數介電層的一側壁及該基板的一頂表面上;一電阻轉態層,順應性地形成於該底電極層的一側壁上;以及 一頂電極層,順應性地形成於該電阻轉態層的一側壁上,其中該第一低介電常數介電層、該底電極層、該電阻轉態層及該頂電極層沿著平行於該基板的該頂表面的一方向依序排列。
  4. 如申請專利範圍第1項所述之電阻式隨機存取記憶體結構,更包括一第二低介電常數介電層,位於該間隙填充介電層及該第一低介電常數介電層上,其中該第二低介電常數介電層的介電常數小於3。
  5. 如申請專利範圍第1項所述之電阻式隨機存取記憶體結構,更包括:一保護層,位於該陣列區中且順應性地覆蓋該等記憶體單元及該虛設記憶體單元,其中該保護層位於該等記憶體單元與該間隙填充介電層之間;以及一第二導電插塞,位於該第一低介電常數介電層中。
  6. 如申請專利範圍第5項所述之電阻式隨機存取記憶體結構,更包括:一硬罩幕層,位於該等記憶體單元上,其中該硬罩幕層受到該保護層的覆蓋且環繞該第一導電插塞;以及一研磨停止層,其中該研磨停止層的一頂表面齊平於該間隙填充介電層的一頂表面。
  7. 一種電阻式隨機存取記憶體結構的製造方法,包括:提供一基板,其中該基板包括一陣列區及一周邊區; 形成一第一低介電常數介電層於該周邊區中,其中該第一低介電常數介電層的介電常數小於3;形成複數個記憶體單元於該陣列區中的該基板上;形成一虛設記憶體單元於該陣列區與該周邊區的交界處;形成一間隙填充介電層於該基板上,其中該間隙填充介電層在該陣列區中覆蓋該等記憶體單元及該虛設記憶體單元,其中該間隙填充介電層在該周邊區中覆蓋該第一低介電常數介電層,且其中該間隙填充介電層的材料不同於該第一低介電常數介電層的材料;以及形成複數個第一導電插塞於該間隙填充介電層中,其中該等第一導電插塞的每一者與該等記憶體單元之中的一者接觸,且其中該虛設記憶體單元並未與該等第一導電插塞的任一者接觸。
  8. 如申請專利範圍第7項所述之電阻式隨機存取記憶體結構的製造方法,其中形成該等記憶體單元及該虛設記憶體單元包括:在形成該第一低介電常數介電層於該周邊區中之後,順應性地形成一底電極層於該第一低介電常數介電層及該基板上;順應性地形成一電阻轉態層於該底電極層上;以及順應性地形成一頂電極層,於該電阻轉態層上;以及圖案化該底電極層、該電阻轉態層及該頂電極層,以形成該等記憶體單元及該虛設記憶體單元。
  9. 如申請專利範圍第8項所述之電阻式隨機存取記憶體結構的製造方法,更包括: 形成一第一研磨停止層於該第一低介電常數介電層的一頂表面上;順應性地形成一硬罩幕層於該頂電極層上;在形成該硬罩幕層之後,圖案化該底電極層、該電阻轉態層、該頂電極層及該硬罩幕層;順應性地形成一保護層於該基板上,其中該保護層在該陣列區中順應性地覆蓋該等記憶體單元及該虛設記憶體單元,且該保護層在該周邊區中覆蓋該第一研磨停止層;以及形成一第二導電插塞於該第一低介電常數介電層中。
  10. 如申請專利範圍第9項所述之電阻式隨機存取記憶體結構的製造方法,更包括:進行一第一平坦化製程,以使該第一研磨停止層的一頂表面與該間隙填充介電層的一頂表面彼此共平面;移除該第一研磨停止層;形成一第二低介電常數介電層於該間隙填充介電層及該第一低介電常數介電層上,其中該第二低介電常數介電層的介電常數小於3;形成一第二研磨停止層於該第二低介電常數介電層上;以及進行一第二平坦化製程,以使該第二研磨停止層具有一平坦的頂表面。
  11. 如申請專利範圍第10項所述之電阻式隨機存取記憶體結構的製造方法,其中該第二低介電常數介電層的一頂表面並未被研磨。
  12. 如申請專利範圍第9項所述之電阻式隨機存取記憶體結構的製造方法,更包括:進行一平坦化製程,以使該第一研磨停止層的一頂表面與該間隙填充介電層的一頂表面彼此共平面。
  13. 如申請專利範圍第12項所述之電阻式隨機存取記憶體結構的製造方法,其中該第一低介電常數介電層的該頂表面並未被研磨。
TW108130379A 2019-08-26 2019-08-26 電阻式隨機存取記憶體結構及其製造方法 TWI735031B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW108130379A TWI735031B (zh) 2019-08-26 2019-08-26 電阻式隨機存取記憶體結構及其製造方法
US16/996,552 US11737380B2 (en) 2019-08-26 2020-08-18 Resistive random access memory structure and manufacturing method thereof
US18/324,709 US20230301206A1 (en) 2019-08-26 2023-05-26 Method for manufacturing resistive random access memory structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108130379A TWI735031B (zh) 2019-08-26 2019-08-26 電阻式隨機存取記憶體結構及其製造方法

Publications (2)

Publication Number Publication Date
TW202109762A TW202109762A (zh) 2021-03-01
TWI735031B true TWI735031B (zh) 2021-08-01

Family

ID=74681362

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108130379A TWI735031B (zh) 2019-08-26 2019-08-26 電阻式隨機存取記憶體結構及其製造方法

Country Status (2)

Country Link
US (2) US11737380B2 (zh)
TW (1) TWI735031B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI692889B (zh) * 2019-04-03 2020-05-01 華邦電子股份有限公司 電阻式隨機存取記憶體結構及其製造方法
TWI735031B (zh) * 2019-08-26 2021-08-01 華邦電子股份有限公司 電阻式隨機存取記憶體結構及其製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI559301B (zh) * 2010-07-12 2016-11-21 三星半導體股份有限公司 非依電性靜態隨機存取記憶體胞元電路與計時方法
US9620509B1 (en) * 2015-10-30 2017-04-11 Taiwan Semiconductor Manufacturing Co., Ltd. Static random access memory device with vertical FET devices

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8148223B2 (en) 2006-05-22 2012-04-03 Taiwan Semiconductor Manufacturing Co., Ltd. 1T MIM memory for embedded ram application in soc
US8395935B2 (en) 2010-10-06 2013-03-12 Macronix International Co., Ltd. Cross-point self-aligned reduced cell size phase change memory
US9673102B2 (en) 2011-04-01 2017-06-06 Micron Technology, Inc. Methods of forming vertical field-effect transistor with self-aligned contacts for memory devices with planar periphery/array and intermediate structures formed thereby
US9299927B2 (en) 2013-08-16 2016-03-29 Taiwan Semiconductor Manufacturing Company, Ltd. Memory cell having resistance variable film and method of making the same
TWI692889B (zh) * 2019-04-03 2020-05-01 華邦電子股份有限公司 電阻式隨機存取記憶體結構及其製造方法
TWI735031B (zh) * 2019-08-26 2021-08-01 華邦電子股份有限公司 電阻式隨機存取記憶體結構及其製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI559301B (zh) * 2010-07-12 2016-11-21 三星半導體股份有限公司 非依電性靜態隨機存取記憶體胞元電路與計時方法
US9620509B1 (en) * 2015-10-30 2017-04-11 Taiwan Semiconductor Manufacturing Co., Ltd. Static random access memory device with vertical FET devices

Also Published As

Publication number Publication date
US11737380B2 (en) 2023-08-22
US20230301206A1 (en) 2023-09-21
US20210066594A1 (en) 2021-03-04
TW202109762A (zh) 2021-03-01

Similar Documents

Publication Publication Date Title
TWI692889B (zh) 電阻式隨機存取記憶體結構及其製造方法
US20230301206A1 (en) Method for manufacturing resistive random access memory structure
US9054225B2 (en) Integrated capacitor having a non-uniform thickness
TW201904022A (zh) 半導體裝置
TWI749559B (zh) 半導體元件及其製造方法
US7994561B2 (en) Semiconductor device for preventing the leaning of storage nodes
US20120115309A1 (en) Methods of Manufacturing a Vertical Type Semiconductor Device
US20200343255A1 (en) Memory device
CN103730435A (zh) 半导体结构及其制造方法
KR20100005393A (ko) 패드 메탈 박피를 막는 구조를 갖는 반도체 및 그 제조방법
CN102543699A (zh) 一种金属栅极的形成方法
CN112531107B (zh) 电阻式随机存取存储结构及其制造方法
US10483322B2 (en) Memory device and method for fabricating the same
TWI435416B (zh) 記憶體的製造方法
US10276493B2 (en) Semiconductor structure and method for fabricating the same
CN110197788B (zh) 栅极凹槽的形成方法
TWI632677B (zh) 半導體結構及其製造方法
KR100790816B1 (ko) 반도체 메모리 디바이스의 배선 제조방법
KR100833424B1 (ko) 반도체 메모리 소자의 금속배선 제조방법
CN111834392B (zh) 电阻式随机存取存储器结构及其制造方法
TW201947746A (zh) 接觸結構、形成接觸結構的方法及記憶體裝置
KR100728968B1 (ko) 반도체 소자의 제조방법
TWI699874B (zh) 半導體結構及其製造方法
CN114078780B (zh) 半导体结构及其制作方法
US20210210382A1 (en) Method for forming contact structure