TWI732503B - Optical lens and head-mounted display - Google Patents

Optical lens and head-mounted display Download PDF

Info

Publication number
TWI732503B
TWI732503B TW109110420A TW109110420A TWI732503B TW I732503 B TWI732503 B TW I732503B TW 109110420 A TW109110420 A TW 109110420A TW 109110420 A TW109110420 A TW 109110420A TW I732503 B TWI732503 B TW I732503B
Authority
TW
Taiwan
Prior art keywords
lens
optical lens
optical
image
fov
Prior art date
Application number
TW109110420A
Other languages
Chinese (zh)
Other versions
TW202101064A (en
Inventor
郭道宏
莊福明
Original Assignee
中強光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中強光電股份有限公司 filed Critical 中強光電股份有限公司
Publication of TW202101064A publication Critical patent/TW202101064A/en
Application granted granted Critical
Publication of TWI732503B publication Critical patent/TWI732503B/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/16Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • G02B25/001Eyepieces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0025Diffusing sheet or layer; Prismatic sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

An optical lens including a first lens, a second lens, a third lens and a fourth lens sequentially arranged from a light exit side to a light incident side is provided. The first lens, the second lens, the third lens and the fourth lens sequentially comprise positive refractive power, negative refractive power, positive refractive power and positive refractive power. An image generation is disposed at the light incident side. The optical lens is adapted to receive an image beam provided by the image generation. The image beam forms a stop at the light exit side. The stop has the smallest cross-sectional area of the image beam. In addition, a head-mounted display is also provided.

Description

光學鏡頭及頭戴式顯示裝置Optical lens and head-mounted display device

本發明是有關於一種光學鏡頭,並且特別涉及一種頭戴式顯示裝置所具有的光學鏡頭。 The present invention relates to an optical lens, and more particularly to an optical lens of a head-mounted display device.

具有波導(waveguide)的顯示器(波導顯示器)依其影像源的種類可區分為具有是自發光面板架構、穿透式面板架構以及反射式面板架構。具有自發光或穿透式面板架構的波導顯示器,上述各種形式的面板所提供的影像光束經過光學鏡頭,由耦合入口進入波導。接著,影像光束在波導中傳遞至耦合出口,再將影像光束投射至人眼的位置,形成影像。其中,反射式面板架構的波導顯示器,其光源提供的照明光束經照明光學裝置的傳遞後,藉由照明稜鏡將照明光束照射在反射式面板上,反射式面板將照明光束轉換成影像光束,因此反射式面板將影像光束傳遞至光學鏡頭,影像光束經過光學鏡頭導入波導中。接著,影像光束在波導中傳遞至耦合出口,再將影像光束投射至人眼位置。光學鏡頭會將影像源(面板)產生的影像在一定距離外形成一個虛像,此虛像透 過人眼再成像在視網膜上。光學鏡頭應用在波導顯示器中,光學鏡頭在設計上尺寸大小與重量的考量是重要的議題。 A display with a waveguide (waveguide) can be divided into a self-luminous panel structure, a transmissive panel structure, and a reflective panel structure according to the type of its image source. In the waveguide display with self-luminous or penetrating panel structure, the image beams provided by the above-mentioned various forms of panels pass through the optical lens and enter the waveguide through the coupling entrance. Then, the image beam is transmitted to the coupling outlet in the waveguide, and then the image beam is projected to the position of the human eye to form an image. Among them, the reflective panel structure of the waveguide display, after the illumination beam provided by the light source is transmitted by the illumination optical device, the illumination beam is irradiated on the reflective panel by the illumination beam, and the reflective panel converts the illumination beam into an image beam. Therefore, the reflective panel transmits the image beam to the optical lens, and the image beam is guided into the waveguide through the optical lens. Then, the image beam is transmitted to the coupling outlet in the waveguide, and then the image beam is projected to the position of the human eye. The optical lens will form a virtual image from the image generated by the image source (panel) at a certain distance. This virtual image is transparent Pass the human eye and then image it on the retina. Optical lenses are used in waveguide displays. The size and weight of optical lenses are important issues in the design.

“先前技術”段落只是用來幫助瞭解本發明內容,因此在“先前技術”段落所揭露的內容可能包含一些沒有構成所屬技術領域中具有通常知識者所知道的習知技術。在“先前技術”段落所揭露的內容,不代表該內容或者本發明一個或多個實施例所要解決的問題,在本發明申請前已被所屬技術領域中具有通常知識者所知曉或認知。 The "prior art" paragraph is only used to help understand the content of the present invention, so the contents disclosed in the "prior art" paragraph may include some conventional technologies that do not constitute the common knowledge in the technical field. The content disclosed in the "prior art" paragraph does not represent the content or the problem to be solved by one or more embodiments of the present invention, and has been known or recognized by those with ordinary knowledge in the technical field before the application of the present invention.

本發明提供一種光學鏡頭,其尺寸小、重量輕、視角大且解析度高。 The invention provides an optical lens with small size, light weight, large viewing angle and high resolution.

本發明的其他目的和優點可以從本發明所揭露的技術特徵中得到進一步的瞭解。為達上述之一或部份或全部目的或是其他目的,本發明的一實施例提出一種光學鏡頭包括從出光側往入光側依序排列的第一透鏡、第二透鏡、第三透鏡及第四透鏡。第一透鏡、第二透鏡、第三透鏡及第四透鏡的屈光度依序為正、負、正及正。影像產生器設置於入光側。光學鏡頭用於接收影像產生器所提供的影像光束。影像光束在出光側形成光欄。光欄具有影像光束的光束縮束的最小截面積。 The other objectives and advantages of the present invention can be further understood from the technical features disclosed in the present invention. In order to achieve one or part or all of the above objectives or other objectives, an embodiment of the present invention provides an optical lens including a first lens, a second lens, a third lens, and a lens that are sequentially arranged from the light exit side to the light entrance side. The fourth lens. The refractive powers of the first lens, the second lens, the third lens, and the fourth lens are positive, negative, positive, and positive in order. The image generator is arranged on the light incident side. The optical lens is used to receive the image beam provided by the image generator. The image beam forms a light barrier on the light emitting side. The diaphragm has the smallest cross-sectional area of the image beam that reduces the beam.

為達上述之一或部份或全部目的或是其他目的,本發明的另一實施例提出一種頭戴式顯示裝置,包括光學鏡頭及波導元 件。光學鏡頭包括從出光側往入光側依序排列的第一透鏡、第二透鏡、第三透鏡及第四透鏡。第一透鏡、第二透鏡、第三透鏡及第四透鏡的屈光度依序為正、負、正及正。影像產生器設置於入光側。光學鏡頭用於接收影像產生器所提供的影像光束。影像光束在出光側形成光欄。光欄具有影像光束的光束縮束的最小截面積。光欄形成在波導元件的耦合入口。影像光束通過光欄經由耦合入口進入波導元件,並且傳遞至波導元件的耦合出口,再投射到目標。 In order to achieve one or part or all of the above objects or other objects, another embodiment of the present invention provides a head-mounted display device including an optical lens and a waveguide element Pieces. The optical lens includes a first lens, a second lens, a third lens, and a fourth lens that are sequentially arranged from the light exit side to the light entrance side. The refractive powers of the first lens, the second lens, the third lens, and the fourth lens are positive, negative, positive, and positive in order. The image generator is arranged on the light incident side. The optical lens is used to receive the image beam provided by the image generator. The image beam forms a light barrier on the light emitting side. The diaphragm has the smallest cross-sectional area of the image beam that is reduced by the beam. The light barrier is formed at the coupling entrance of the waveguide element. The image light beam enters the waveguide element through the coupling entrance through the diaphragm, and is transmitted to the coupling exit of the waveguide element, and then is projected to the target.

基於上述,本發明的實施例至少具有以下其中一個優點或功效。在本發明的示範實施例中,光學鏡頭的設計符合預先設定的規範,使得光學鏡頭縮短光學鏡頭整體的長度,使得顯示器的外觀體積變小,以及考量光學鏡頭中所有鏡片的材料,使得光學鏡頭的重量變輕,進而讓頭戴式顯示器的重量變輕。此外,避免波導的視場角(FOV)變大時,則光學鏡頭的設計也會隨著變為複雜,進而導致顯示器的體積與重量也跟著變大與變重的問題。因此本發明光學鏡頭具有尺寸小、重量輕、視角大且解析度高的優點。更值得一提的是,當使用頭戴式顯示器時,會產生熱量而造成光學鏡頭的變形進而影響影像品質,但借由本發明的光學鏡頭設計,可以有效解決熱漂移(thermal drift)的問題,以提升影像品質。 Based on the above, the embodiments of the present invention have at least one of the following advantages or effects. In the exemplary embodiment of the present invention, the design of the optical lens conforms to the preset specifications, so that the optical lens shortens the overall length of the optical lens, so that the appearance volume of the display becomes smaller, and the materials of all the lenses in the optical lens are considered to make the optical lens The weight becomes lighter, which in turn makes the weight of the head-mounted display lighter. In addition, if the angle of view (FOV) of the waveguide becomes larger, the design of the optical lens will become more complicated, which will lead to the problem that the volume and weight of the display will also become larger and heavier. Therefore, the optical lens of the present invention has the advantages of small size, light weight, large viewing angle and high resolution. What’s more worth mentioning is that when a head-mounted display is used, heat will be generated to cause the deformation of the optical lens and affect the image quality. However, the optical lens design of the present invention can effectively solve the problem of thermal drift. To improve image quality.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

100、200、300:頭戴式顯示裝置 100, 200, 300: head-mounted display device

110、410:光學鏡頭 110, 410: optical lens

112、114、116、118:透鏡 112, 114, 116, 118: lens

120:傳遞稜鏡、第二稜鏡 120: Passing 稜鏡, second 稜鏡

130、230:波導元件 130, 230: waveguide components

150:影像產生器 150: image generator

140:玻璃蓋 140: glass cover

232:耦合入口 232: Coupling Entrance

234:耦合出口 234: Coupling Outlet

260:轉折稜鏡、第一稜鏡 260: Turning Point, First Point

900:目標 900: target

A、C:距離 A, C: distance

B:鏡頭總長 B: Total lens length

D:通光口徑 D: Clear aperture

ES:出光側 ES: Light emitting side

IM:影像光束 IM: image beam

IS:入光側 IS: Light incident side

S1、S2、S3、S4、S5、S6、S7、S8:表面 S1, S2, S3, S4, S5, S6, S7, S8: surface

ST:光欄 ST: light barrier

OA:光軸 OA: Optical axis

X、Y、Z:座標軸 X, Y, Z: coordinate axis

圖1繪示本發明第一實施例之頭戴式顯示裝置的概要示意圖。 FIG. 1 is a schematic diagram of a head-mounted display device according to a first embodiment of the present invention.

圖2A是圖1的光學鏡頭的像散場曲圖及畸變圖。 FIG. 2A is an astigmatic field curve diagram and a distortion diagram of the optical lens of FIG. 1.

圖2B是圖1的光學鏡頭的橫向色差圖。 Fig. 2B is a lateral chromatic aberration diagram of the optical lens of Fig. 1.

圖2C是圖1的光學鏡頭的調制轉換函數曲線圖。 FIG. 2C is a graph of the modulation transfer function of the optical lens of FIG. 1.

圖2D是圖1的光學鏡頭的光程差圖。 FIG. 2D is an optical path difference diagram of the optical lens of FIG. 1.

圖3繪示本發明第二實施例之頭戴式顯示裝置的概要示意圖。 FIG. 3 is a schematic diagram of a head-mounted display device according to a second embodiment of the present invention.

圖4繪示本發明第三實施例之頭戴式顯示裝置的概要示意圖。 4 is a schematic diagram of a head-mounted display device according to a third embodiment of the present invention.

圖5A是第四至第六實施例的光學鏡頭的像散場曲圖及畸變圖。 5A is an astigmatic field curve diagram and a distortion diagram of the optical lens of the fourth to sixth embodiments.

圖5B是第四至第六實施例的光學鏡頭的橫向色差圖。 FIG. 5B is a lateral chromatic aberration diagram of the optical lens of the fourth to sixth embodiments.

圖5C是第四至第六實施例的的光學鏡頭的調制轉換函數曲線圖。 FIG. 5C is a graph of modulation transfer function of the optical lens of the fourth to sixth embodiments.

圖5D是第四至第六實施例的光學鏡頭的光程差圖。 5D is an optical path difference diagram of the optical lens of the fourth to sixth embodiments.

圖6繪示第四至第六實施例的顯示影像的概要示意圖。 FIG. 6 is a schematic diagram of the display images of the fourth to sixth embodiments.

圖7A、圖7B、圖7C分別繪示第四至第六實施例的光學鏡頭在環境溫度0℃、25℃、40℃的熱平衡的調制轉換函數的概要示意 圖。 7A, 7B, and 7C are schematic diagrams of the thermal equilibrium modulation transfer functions of the optical lenses of the fourth to sixth embodiments at ambient temperatures of 0°C, 25°C, and 40°C, respectively Figure.

圖8繪示本發明第七實施例之頭戴式顯示裝置的概要示意圖。 FIG. 8 is a schematic diagram of a head-mounted display device according to a seventh embodiment of the present invention.

圖9A是圖8的光學鏡頭的像散場曲圖及畸變圖。 FIG. 9A is an astigmatic field curve diagram and a distortion diagram of the optical lens of FIG. 8.

圖9B是圖8的光學鏡頭的橫向色差圖。 Fig. 9B is a lateral chromatic aberration diagram of the optical lens of Fig. 8.

圖9C是圖8的光學鏡頭的光程差圖。 FIG. 9C is an optical path difference diagram of the optical lens of FIG. 8. FIG.

圖10A、圖10B、圖10C、圖10D分別繪示第七實施例的光學鏡頭在環境溫度20℃、0℃、25℃、40℃的熱平衡的調制轉換函數的概要示意圖。 10A, FIG. 10B, FIG. 10C, and FIG. 10D respectively show schematic diagrams of the thermal equilibrium modulation transfer function of the optical lens of the seventh embodiment at an ambient temperature of 20°C, 0°C, 25°C, and 40°C.

圖11繪示本發明第八實施例之頭戴式顯示裝置的概要示意圖。 FIG. 11 is a schematic diagram of a head-mounted display device according to an eighth embodiment of the present invention.

圖12A是圖11的光學鏡頭的像散場曲圖及畸變圖。 FIG. 12A is an astigmatic field curve diagram and a distortion diagram of the optical lens of FIG. 11.

圖12B是圖11的光學鏡頭的橫向色差圖。 Fig. 12B is a lateral chromatic aberration diagram of the optical lens of Fig. 11.

圖12C是圖11的光學鏡頭的光程差圖 Fig. 12C is an optical path difference diagram of the optical lens of Fig. 11

圖13A、圖13B、圖13C、圖13D分別繪示第八實施例的光學鏡頭在環境溫度20℃、0℃、25℃、40℃的熱平衡的調制轉換函數的概要示意圖。 13A, FIG. 13B, FIG. 13C, and FIG. 13D are schematic diagrams of the thermal equilibrium modulation transfer function of the optical lens of the eighth embodiment at an ambient temperature of 20°C, 0°C, 25°C, and 40°C, respectively.

圖14繪示本發明第九實施例之頭戴式顯示裝置的概要示意圖。 FIG. 14 is a schematic diagram of a head-mounted display device according to a ninth embodiment of the present invention.

圖15A是圖14的光學鏡頭的像散場曲圖及畸變圖。 FIG. 15A is an astigmatic field curvature diagram and a distortion diagram of the optical lens of FIG. 14.

圖15B是圖14的光學鏡頭的橫向色差圖。 Fig. 15B is a lateral chromatic aberration diagram of the optical lens of Fig. 14.

圖15C是圖14的光學鏡頭的光程差圖。 FIG. 15C is an optical path difference diagram of the optical lens of FIG. 14.

圖16A、圖16B、圖16C、圖16D分別繪示第九實施例的光學鏡頭在環境溫度20℃、0℃、25℃、40℃的熱平衡的調制轉換函數的概要示意圖。 16A, FIG. 16B, FIG. 16C, and FIG. 16D are schematic diagrams of the thermal equilibrium modulation transfer function of the optical lens of the ninth embodiment at an ambient temperature of 20°C, 0°C, 25°C, and 40°C, respectively.

有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之一較佳實施例的詳細說明中,將可清楚的呈現。以下實施例中所提到的方向用語,例如:上、下、左、右、前或後等,僅是參考附加圖式的方向。因此,使用的方向用語是用來說明並非用來限制本發明。 The foregoing and other technical content, features, and effects of the present invention will be clearly presented in the following detailed description of a preferred embodiment with reference to the drawings. The directional terms mentioned in the following embodiments, for example: up, down, left, right, front or back, etc., are only directions for referring to the attached drawings. Therefore, the directional terms used are used to illustrate but not to limit the present invention.

圖1繪示本發明第一實施例之頭戴式顯示裝置的概要示意圖。請參考圖1,本實施例之頭戴式顯示裝置100是具有波導元件130,但本發明不限於此。在本實施例中,頭戴式顯示裝置100包括光學鏡頭110、傳遞稜鏡(第二稜鏡)120、波導元件130及影像產生器150。在相對於光學鏡頭110的入光側IS設置影像產生器150。影像產生器150可以是數字微型反射鏡元件(Digital Micromirror Device,DMD)或反射式液晶顯示器(Liquid crystal on silicon,LCoS)等影像顯示元件,在其他實施例中,影像產生器150可以是穿透式的空間光調製器,例如透光液晶面板(Transparent Liquid Crystal Panel)。影像產生器150又或者是有機發光二極管(Organic Light-Emitting Diode,OLED),微有機發光二極管(Micro Organic Light-Emitting Diode,Micro OLED), 微發光二極管(Micro Light Emitting Diode,Micro LED)。本發明對影像產生器150的型態及其種類並不加以限制。傳遞稜鏡120設置在光學鏡頭110與影像產生器150之間。影像產生器150所提供的影像光束IM,通過傳遞稜鏡120,並且進入光學鏡頭110。光學鏡頭110適於接收影像光束IM。在本實施例中,在影像產生器150與傳遞稜鏡120之間設置玻璃蓋(cover glass)140,以避免灰塵累積於影像產生器150的表面上影響影像光束IM的傳遞,造成影像的不清晰。 FIG. 1 is a schematic diagram of a head-mounted display device according to a first embodiment of the present invention. Please refer to FIG. 1, the head-mounted display device 100 of this embodiment has a waveguide element 130, but the invention is not limited to this. In this embodiment, the head-mounted display device 100 includes an optical lens 110, a transmission beam (second beam) 120, a waveguide element 130, and an image generator 150. An image generator 150 is provided on the light incident side IS with respect to the optical lens 110. The image generator 150 may be an image display device such as a digital micromirror device (DMD) or a reflective liquid crystal display (Liquid crystal on silicon, LCoS). In other embodiments, the image generator 150 may be a transparent device. A type of spatial light modulator, such as a transparent liquid crystal panel (Transparent Liquid Crystal Panel). The image generator 150 may also be an organic light-emitting diode (Organic Light-Emitting Diode, OLED), or a micro organic light-emitting diode (Micro Organic Light-Emitting Diode, Micro OLED), Micro Light Emitting Diode (Micro LED). The invention does not limit the type and type of the image generator 150. The transmission frame 120 is arranged between the optical lens 110 and the image generator 150. The image beam IM provided by the image generator 150 passes through the transmission beam 120 and enters the optical lens 110. The optical lens 110 is suitable for receiving the image beam IM. In this embodiment, a cover glass 140 is provided between the image generator 150 and the transmission frame 120 to prevent dust from accumulating on the surface of the image generator 150 and affecting the transmission of the image beam IM, resulting in image failure. Clear.

在本實施例中,影像光束IM在經過光學鏡頭110之後,在相對於光學鏡頭110的出光側ES形成光欄(stop)ST。在本實施例中,光欄ST形成於影像光束IM的出光側ES。光欄ST具有影像光束IM的最小截面積。舉例而言,在本實施例中,位於X軸與Y軸形成的參考平面上,光欄ST例如是圓形,並且在X軸方向上與在Y軸方向上的直徑尺寸一致。在本實施例中,影像光束IM經過光學鏡頭110之後形成光欄ST,光欄ST具有影像光束IM的最小截面積。因此,影像光束IM在經過光學鏡頭110之後縮束至光欄ST,並且在通過光欄ST之後發散。在本實施例中,影像光束IM傳遞至波導元件130的耦合出口,光欄ST位於波導元件130的耦合出口,再投射到預設的目標。在一實施例中,所述預設的目標例如是人眼。在其他實施例中,光欄ST可位於波導元件130的入光口或波導元件130內的任一位置,經由波導元件130傳遞至耦合出口後,再投射到預設的目標。入光側IS為影像光束 IM進入光學鏡頭110的側邊,出光側ES為影像光束IM離開光學鏡頭110的側邊。 In this embodiment, after the image light beam IM passes through the optical lens 110, a stop ST is formed on the light exit side ES of the optical lens 110. In this embodiment, the stop ST is formed on the light exit side ES of the image beam IM. The diaphragm ST has the smallest cross-sectional area of the image beam IM. For example, in this embodiment, located on the reference plane formed by the X-axis and the Y-axis, the diaphragm ST is, for example, circular, and its diameter in the X-axis direction and in the Y-axis direction are the same. In this embodiment, the image light beam IM passes through the optical lens 110 to form an aperture ST, and the aperture ST has the smallest cross-sectional area of the image light beam IM. Therefore, the image light beam IM shrinks to the stop ST after passing through the optical lens 110, and diverges after passing through the stop ST. In this embodiment, the image light beam IM is transmitted to the coupling exit of the waveguide element 130, and the light barrier ST is located at the coupling exit of the waveguide element 130, and then is projected to a preset target. In an embodiment, the preset target is, for example, the human eye. In other embodiments, the light barrier ST may be located at the light entrance of the waveguide element 130 or any position within the waveguide element 130, and after being transmitted to the coupling exit through the waveguide element 130, it is then projected to a preset target. IS on the incident side is the image beam IM enters the side of the optical lens 110, and the light exit side ES is the side of the image beam IM leaving the optical lens 110.

在本實施例中,其中一種情況為光學鏡頭110符合B×D<130,其中B為光學鏡頭110的鏡頭總長,在本實施例中,例如B為在光軸OA上表面S1至表面S8的距離,且D為光學鏡頭110中最大透鏡的通光口徑(Clear aperture),在本實施例中,例如為第四透鏡118的通光口徑。在本實施例中,另一種情況為光學鏡頭110符合A+C<20,其中A為光欄ST與光學鏡頭110的表面S1在光軸OA上的距離,也就是光欄ST與第一透鏡112的出光面的距離,且C為光學鏡頭110的表面S8與影像產生器150的表面在光軸OA上的距離。在本實施例中,又另一種情況為光學鏡頭110符合FOV/(B×D)>0.4,其中FOV為光學鏡頭110的視場角。在本實施例中,又另一種情況為光學鏡頭110符合FOV>50。在本實施例中,又另一種情況為光學鏡頭110同時符合B×D<130,A+C<20,FOV/(B×D)>0.4,FOV>50。上述參數A、B、C、D、FOV的定義同上所述。在本實施例中,上述參數A、B、C、D例如分別是5.8毫米(millimeters)、10.85毫米、11.45毫米、11.7毫米。這些參數的數值不用以限定本發明。在本實施例中,光學鏡頭110的視場角例如為60度。 In this embodiment, one of the cases is that the optical lens 110 meets B×D<130, where B is the total length of the optical lens 110. In this embodiment, for example, B is the distance from the upper surface S1 to the surface S8 on the optical axis OA. The distance, and D is the clear aperture of the largest lens in the optical lens 110. In this embodiment, for example, it is the clear aperture of the fourth lens 118. In this embodiment, another situation is that the optical lens 110 meets A+C<20, where A is the distance between the stop ST and the surface S1 of the optical lens 110 on the optical axis OA, that is, the stop ST and the first lens The distance from the light-emitting surface of 112, and C is the distance between the surface S8 of the optical lens 110 and the surface of the image generator 150 on the optical axis OA. In this embodiment, another situation is that the optical lens 110 conforms to FOV/(B×D)>0.4, where FOV is the angle of view of the optical lens 110. In this embodiment, another situation is that the optical lens 110 meets FOV>50. In this embodiment, another situation is that the optical lens 110 simultaneously meets B×D<130, A+C<20, FOV/(B×D)>0.4, and FOV>50. The definitions of the above parameters A, B, C, D, FOV are the same as described above. In this embodiment, the aforementioned parameters A, B, C, and D are, for example, 5.8 millimeters, 10.85 millimeters, 11.45 millimeters, and 11.7 millimeters, respectively. The values of these parameters are not to limit the present invention. In this embodiment, the angle of view of the optical lens 110 is, for example, 60 degrees.

值得一提的是,A+C代表前焦距加上後焦距的距離數值,前焦距為在出光側ES的光學鏡頭110的焦距距離,後焦距為在入光側IS的光學鏡頭110的焦距距離。本案為遠心光學鏡頭設 計,因此當A+C的數值和大於20mm時,對遠心光學鏡頭設計上要兼顧光學鏡頭的廣角角度(視場角度)設計是相當困難的,因此本發明將A+C的數值維持小於20mm,可克服上述的缺點。B×D代表光學鏡頭的截面積。在此技術領域的人員可知設計越小體積的光學鏡頭越是困難。當B的數值過大時,在設計光學鏡頭就無法顧及光學鏡頭的廣角角度,因此需控制B的數值,使得B×D<130,讓本實施例的光學鏡頭具有體積小且廣角角度大的優點。同理,FOV/(B×D)>0.4代表單位截面積的視場角度,FOV>50代表視場角度維持於50度以上。 It is worth mentioning that A+C represents the distance value of the front focal length plus the back focal length. The front focal length is the focal length distance of the optical lens 110 on the light-emitting side ES, and the back focal length is the focal length distance of the optical lens 110 on the light-incident side IS. . This case is a telecentric optical lens design Therefore, when the sum of A+C values is greater than 20mm, it is quite difficult for the telecentric optical lens design to take into account the wide-angle angle (field of view) design of the optical lens. Therefore, the present invention maintains the value of A+C to be less than 20mm. , Can overcome the above shortcomings. B×D represents the cross-sectional area of the optical lens. Those skilled in the art know that it is more difficult to design an optical lens with a smaller volume. When the value of B is too large, the wide-angle angle of the optical lens cannot be considered when designing the optical lens. Therefore, the value of B must be controlled so that B×D<130, so that the optical lens of this embodiment has the advantages of small size and large wide-angle angle . In the same way, FOV/(B×D)>0.4 represents the field of view angle per unit cross-sectional area, and FOV>50 means that the field of view angle is maintained above 50 degrees.

在本實施例中,光學鏡頭110包括從出光側ES往入光側IS依序排列的第一透鏡112、第二透鏡114、第三透鏡116及第四透鏡118。第一透鏡112、第二透鏡114、第三透鏡116及第四透鏡118的屈光度依序為正、負、正及正。在本實施例中,第一透鏡112例如為雙凸透鏡,第二透鏡114例如為凸凹透鏡且具有朝向入光側IS的凸面,第三透鏡116為雙凸透鏡、第四透鏡118為凹凸透鏡且具有朝向入光側IS的凹面。在本實施例中,第一透鏡112、第二透鏡114、第三透鏡116及第四透鏡118為玻璃非球面透鏡。其中凸凹透鏡或凹凸透鏡例如為新月透鏡(Meniscus lens),差異在於凸面朝向的方向不同。 In this embodiment, the optical lens 110 includes a first lens 112, a second lens 114, a third lens 116, and a fourth lens 118 that are sequentially arranged from the light exit side ES to the light entrance side IS. The refractive powers of the first lens 112, the second lens 114, the third lens 116, and the fourth lens 118 are positive, negative, positive, and positive in order. In this embodiment, the first lens 112 is, for example, a biconvex lens, the second lens 114 is, for example, a convex-concave lens and has a convex surface facing the light incident side IS, the third lens 116 is a biconvex lens, and the fourth lens 118 is a meniscus lens and has The concave surface facing the light incident side IS. In this embodiment, the first lens 112, the second lens 114, the third lens 116, and the fourth lens 118 are glass aspheric lenses. The convex-concave lens or the concave-convex lens is, for example, a Meniscus lens, and the difference lies in the direction of the convex surface.

以下內容將舉出光學鏡頭110之一實施例。需注意的是,以下內容所列的數據資料並非用以限定本發明,任何所屬技術領域中具有通常知識者在參照本發明之後,當可對其參數或設定作 適當的更動,惟其仍應屬於本發明之範疇內。 The following content will cite an embodiment of the optical lens 110. It should be noted that the data listed in the following content are not used to limit the present invention. Anyone with ordinary knowledge in the relevant technical field can make parameters or settings after referring to the present invention. Appropriate changes, but they should still fall within the scope of the present invention.

Figure 109110420-A0305-02-0012-1
Figure 109110420-A0305-02-0012-1

請參照圖1及表一,表一中列出各個透鏡(包括第一透鏡112至第四透鏡118)的表面。舉例而言,表面S1為第一透鏡112面向出光側ES的表面,而表面S2為第一透鏡112面向入光側IS的表面,以此類推。另外,間距是指兩相鄰表面之間於光軸OA上的直線距離。舉例來說,對應表面S1的間距,即表面S1至表面S2間於光軸OA上的直線距離,而對應表面S2的間距,即表面S2至表面S3間於光軸OA上的直線距離,以此類推。 Please refer to FIG. 1 and Table 1. Table 1 lists the surfaces of each lens (including the first lens 112 to the fourth lens 118). For example, the surface S1 is the surface of the first lens 112 facing the light-emitting side ES, and the surface S2 is the surface of the first lens 112 facing the light-incident side IS, and so on. In addition, the pitch refers to the linear distance between two adjacent surfaces on the optical axis OA. For example, the distance corresponding to the surface S1 is the linear distance between the surface S1 and the surface S2 on the optical axis OA, and the distance corresponding to the surface S2 is the linear distance between the surface S2 and the surface S3 on the optical axis OA. And so on.

在本實施例中,第一透鏡112、第二透鏡114、第三透鏡116及第四透鏡118可為非球面透鏡。非球面透鏡的公式如下所示:

Figure 109110420-A0305-02-0012-2
In this embodiment, the first lens 112, the second lens 114, the third lens 116, and the fourth lens 118 may be aspheric lenses. The formula of aspheric lens is as follows:
Figure 109110420-A0305-02-0012-2

上式中,X為光軸OA方向的偏移量(sag),R是密切球面(osculating sphere)的半徑,也就是接近光軸OA處的曲率半徑(如 表一所列的曲率的倒數)。k是二次曲面係數(conic),Y是非球面高度,即為從透鏡中心往透鏡邊緣的高度,而係數A2、A4、A6、A8、A10、A12為非球面係數(aspheric coefficient)。在本實施例中,係數A2為0。以下表二所列出的是各透鏡的表面的參數值。 In the above formula, X is the offset in the direction of the optical axis OA (sag), and R is the radius of the osculating sphere, that is, the radius of curvature close to the optical axis OA (such as The reciprocal of the curvature listed in Table 1). k is the conic coefficient (conic), Y is the aspherical height, that is, the height from the center of the lens to the edge of the lens, and the coefficients A2, A4, A6, A8, A10, and A12 are aspheric coefficients. In this embodiment, the coefficient A2 is zero. Table 2 below lists the parameter values of the surface of each lens.

Figure 109110420-A0305-02-0013-3
Figure 109110420-A0305-02-0013-3

圖2A是圖1的光學鏡頭的像散場曲(field curvature)圖及畸變圖。圖2B是圖1的光學鏡頭的橫向色差圖,其是以波長465奈米(nm)、525奈米、620奈米的光所作出的模擬數據圖,縱座標為像高。圖2C是圖1的光學鏡頭的調制轉換函數曲線圖,其中橫座標為焦點偏移量(focus shift),縱座標為光學轉移函數的模數(modulus of the OTF)。圖2D是圖1的光學鏡頭的光程差圖。圖2A至圖2D所顯示出的圖形均在標準的範圍內,由此可驗證本實施例的光學鏡頭110能夠達到良好的成像效果。此外,由圖2D可知,在影像產生器150的主動表面上,影像光束IM具有OPD的範圍是-2.0 λ<OPD<2.0 λ,其中OPD為在各視場角的光程差,λ為各色光的波長,且影像光束IM包括紅色光、綠色光、藍色光。影像產生器150的主動表面是影像光束IM出射的表面。進 一步說明,此光程差的設計,熟知此技術領域的人員容易可知道在設計光學鏡頭時,透過光學模擬的方式從物平面(預設的目標地平面)反推回在影像源需提供的影像光束在各視場角的光程差。在本實施例中,設計優化視場角FOV可達60度,可擁有較佳的視野涵蓋。單位截面積所達視場角比值高,比值可達0.47(度/平方毫米),使得光學鏡頭110在體積上較為輕薄短小,空間有效利用率高。參考圖2B至圖2D,在本實施例中,影像產生器150的主動表面上形成最大影像高度為4.09mm,且光學鏡頭110的設計符合預先設定的規範,可以解析至少93lp/mm解析度的影像,因此光學鏡頭110的尺寸小、重量輕、視角大且具有高解析度。 FIG. 2A is an astigmatic field curvature diagram and a distortion diagram of the optical lens of FIG. 1. Fig. 2B is a lateral chromatic aberration diagram of the optical lens of Fig. 1, which is a simulation data diagram of light with wavelengths of 465 nanometers (nm), 525 nanometers, and 620 nanometers. The ordinate is the image height. 2C is a graph of the modulation transfer function of the optical lens of FIG. 1, where the abscissa is the focus shift and the ordinate is the modulus of the OTF. FIG. 2D is an optical path difference diagram of the optical lens of FIG. 1. The graphics shown in FIGS. 2A to 2D are all within the standard range, which can verify that the optical lens 110 of this embodiment can achieve a good imaging effect. In addition, it can be seen from FIG. 2D that on the active surface of the image generator 150, the image beam IM has an OPD in the range of -2.0 λ<OPD<2.0 λ, where OPD is the optical path difference at each angle of view, and λ is each color The wavelength of light, and the image beam IM includes red light, green light, and blue light. The active surface of the image generator 150 is the surface from which the image beam IM exits. Advance One step is to explain the design of this optical path difference. Those familiar with this technical field can easily know that when designing an optical lens, it is reversed from the object plane (the preset target ground plane) back to the image source when designing an optical lens. The optical path difference of the image beam at each angle of view. In this embodiment, the design optimized field of view FOV can reach 60 degrees, which can have a better field of view coverage. The ratio of the angle of view achieved by the unit cross-sectional area is high, and the ratio can reach 0.47 (degrees/square millimeter), which makes the optical lens 110 lighter, thinner, shorter, and more efficient in space utilization. Referring to FIGS. 2B to 2D, in this embodiment, the maximum image height formed on the active surface of the image generator 150 is 4.09mm, and the design of the optical lens 110 meets the preset specifications, which can resolve at least 93lp/mm resolution Therefore, the optical lens 110 has a small size, a light weight, a large viewing angle, and a high resolution.

圖3繪示本發明第二實施例之頭戴式顯示裝置的概要示意圖。請參考圖3,本實施例之頭戴式顯示裝置200類似於圖1的頭戴式顯示裝置100,惟兩者之間主要的差異例如在於頭戴式顯示裝置200還包括轉折稜鏡260(第一稜鏡)以及波導元件230的設計。在本實施例中,轉折稜鏡260設置在光學鏡頭110與光欄ST之間。影像光束IM離開光學鏡頭110,通過轉折稜鏡260後改變其傳遞方向,而會聚至光欄ST。影像光束IM在通過光欄ST之後發散。在本實施例中,波導元件230包括耦合入口232及耦合出口234。耦合入口232及耦合出口234例如是影像光束入射至波導元件230的表面區域與影像光束離開波導元件230的表面區域。光欄ST形成在波導元件230的耦合入口232。影像光束IM通過光欄ST經由耦合入口232進入波導元件230,並且傳遞至波 導元件230的耦合出口234,再投射到目標900。此處的投射目標900例如是人眼。在本實施例中,波導元件230包括光學微結構(未繪示)。光學微結構設置在耦合出口234處,且光學微結構反射影像光束IM並傳遞至耦合出口234而將影像光束IM投射到目標900。在其他實施中,光學微結構也可以設置在波導元件230的耦合入口232,影像光束借由光學微結構穿透耦合入口232並在波導元件230中傳遞,在借由耦合出口234的光學微結構反射而離開波導元件230。 FIG. 3 is a schematic diagram of a head-mounted display device according to a second embodiment of the present invention. Please refer to FIG. 3, the head-mounted display device 200 of this embodiment is similar to the head-mounted display device 100 of FIG. The first step) and the design of the waveguide element 230. In this embodiment, the turning point 260 is provided between the optical lens 110 and the stop ST. The image light beam IM leaves the optical lens 110, changes its transmission direction after the turning angle 260, and then converges to the stop ST. The image light beam IM diverges after passing through the light barrier ST. In this embodiment, the waveguide element 230 includes a coupling inlet 232 and a coupling outlet 234. The coupling inlet 232 and the coupling outlet 234 are, for example, the surface area where the image light beam enters the waveguide element 230 and the surface area where the image light beam leaves the waveguide element 230. The diaphragm ST is formed at the coupling entrance 232 of the waveguide element 230. The image light beam IM enters the waveguide element 230 through the coupling entrance 232 through the diaphragm ST, and is transmitted to the wave The coupling outlet 234 of the guide element 230 is projected to the target 900 again. The projection target 900 here is, for example, a human eye. In this embodiment, the waveguide element 230 includes an optical microstructure (not shown). The optical microstructure is disposed at the coupling exit 234, and the optical microstructure reflects the image beam IM and transmits it to the coupling exit 234 to project the image beam IM to the target 900. In other implementations, the optical microstructure can also be arranged at the coupling entrance 232 of the waveguide element 230. The image beam is transmitted through the coupling entrance 232 through the optical microstructure and is transmitted in the waveguide element 230. Reflects and leaves the waveguide element 230.

在本實施例中,其中一種情況為光學鏡頭110符合B×D<130;另一種情況為光學鏡頭110符合A+C<20;光學鏡頭110符合FOV/(B×D)>0.4;又另一種情況為光學鏡頭110符合FOV>50;另一種情況為光學鏡頭110同時符合B×D<130,A+C<20,FOV/(B×D)>0.4,FOV>50。其中A為光欄ST與光學鏡頭110的表面S1在光軸OA上的距離。在本實施例中,A為第一透鏡112的表面S1與轉折稜鏡260的表面S9在光軸OA上的距離以及轉折稜鏡260的表面S9與光欄ST在光軸OA上的距離的總和。在本實施例中,上述參數A、B、C、D例如分別是5.8毫米(millimeters)、10.84毫米、11.45毫米、11.7毫米。這些參數的數值不用以限定本發明。 In this embodiment, one of the cases is that the optical lens 110 meets B×D<130; the other is that the optical lens 110 meets A+C<20; the optical lens 110 meets FOV/(B×D)>0.4; and another case is that the optical lens 110 meets A+C<20; In one case, the optical lens 110 meets FOV>50; in the other case, the optical lens 110 meets B×D<130, A+C<20, FOV/(B×D)>0.4, and FOV>50 at the same time. A is the distance between the stop ST and the surface S1 of the optical lens 110 on the optical axis OA. In the present embodiment, A is the distance between the surface S1 of the first lens 112 and the surface S9 of the turning lens 260 on the optical axis OA, and the distance between the surface S9 of the turning lens 260 and the diaphragm ST on the optical axis OA. sum. In this embodiment, the aforementioned parameters A, B, C, and D are, for example, 5.8 millimeters, 10.84 millimeters, 11.45 millimeters, and 11.7 millimeters, respectively. The values of these parameters are not to limit the present invention.

參考圖3,以下內容將舉出光學鏡頭110之一實施例。需注意的是,以下內容所列的數據資料並非用以限定本發明,任何所屬技術領域中具有通常知識者在參照本發明之後,當可對其參 數或設定作適當的更動,惟其仍應屬於本發明之範疇內。 Referring to FIG. 3, the following content will cite an embodiment of the optical lens 110. It should be noted that the data listed in the following content are not used to limit the present invention. Anyone with ordinary knowledge in the technical field can refer to the present invention after referring to the present invention. The number or setting is appropriately changed, but it should still fall within the scope of the present invention.

Figure 109110420-A0305-02-0016-4
Figure 109110420-A0305-02-0016-4

圖4繪示本發明第三實施例之頭戴式顯示裝置的概要示意圖。請參考圖4,本實施例之頭戴式顯示裝置300類似於圖1的頭戴式顯示裝置100,惟兩者之間主要的差異例如在於波導元件230的設計。此外,在本實施例中,在光欄ST與第一透鏡112之間無玻璃塊或稜鏡。影像光束IM離開光學鏡頭110後在空氣中傳遞而會聚至光欄ST。 4 is a schematic diagram of a head-mounted display device according to a third embodiment of the present invention. Please refer to FIG. 4, the head-mounted display device 300 of this embodiment is similar to the head-mounted display device 100 of FIG. 1, but the main difference between the two is the design of the waveguide element 230. In addition, in this embodiment, there is no glass block or rim between the stop ST and the first lens 112. After the image beam IM leaves the optical lens 110, it travels in the air and is condensed to the stop ST.

在本實施例中,其中一種情況為光學鏡頭110符合B×D<130;另一種情況為光學鏡頭110符合A+C<20;光學鏡頭110符合FOV/(B×D)>0.4;又另一種情況為光學鏡頭110符合 FOV>50;另一種情況為光學鏡頭110同時符合B×D<130,A+C<20,FOV/(B×D)>0.4,FOV>50。在本實施例中,上述參數A、B、C、D例如分別是3.8毫米(millimeters)、10.85毫米、11.45毫米、11.7毫米。這些參數的數值不用以限定本發明。 In this embodiment, one of the cases is that the optical lens 110 meets B×D<130; the other is that the optical lens 110 meets A+C<20; the optical lens 110 meets FOV/(B×D)>0.4; and another case is that the optical lens 110 meets A+C<20; One situation is that the optical lens 110 conforms to FOV>50; another situation is that the optical lens 110 meets B×D<130, A+C<20, FOV/(B×D)>0.4, FOV>50 at the same time. In this embodiment, the aforementioned parameters A, B, C, and D are, for example, 3.8 millimeters, 10.85 millimeters, 11.45 millimeters, and 11.7 millimeters, respectively. The values of these parameters are not to limit the present invention.

綜上所述,本發明的第一至第三實施例至少具有以下其中一個優點或功效。在本發明的示範實施例中,光學鏡頭的設計符合預先設定的規範,因此光學鏡頭的尺寸小、重量輕、視角大且解析度高。 In summary, the first to third embodiments of the present invention have at least one of the following advantages or effects. In the exemplary embodiment of the present invention, the design of the optical lens complies with the preset specifications, so the optical lens is small in size, light in weight, large in viewing angle and high in resolution.

底下說明本發明第四至第六實施例。 The fourth to sixth embodiments of the present invention will be described below.

本發明第四至第六實施例的頭戴式顯示裝置的架構與圖1、圖3以及圖4所繪示的第一至第三實施例的頭戴式顯示裝置的架構相同,惟第四至第六實施例的第一透鏡112、第二透鏡114為塑膠非球面透鏡,且第三透鏡116及第四透鏡118為玻璃非球面透鏡。此外,第四至第六實施例的頭戴式顯示裝置的光學參數與第一實施例的頭戴式顯示裝置的光學參數不相同,具體說明如下。 The structure of the head-mounted display device of the fourth to sixth embodiments of the present invention is the same as the structure of the head-mounted display device of the first to third embodiments shown in FIG. 1, FIG. 3, and FIG. The first lens 112 and the second lens 114 of the sixth embodiment are plastic aspheric lenses, and the third lens 116 and the fourth lens 118 are glass aspheric lenses. In addition, the optical parameters of the head-mounted display device of the fourth to sixth embodiments are different from the optical parameters of the head-mounted display device of the first embodiment, and the specific description is as follows.

在第四至第六實施例中,其中一種情況為光學鏡頭110符合B×D<170;另一種情況為光學鏡頭110符合A+C<25;光學鏡頭110符合FOV/(B×D)>0.2;又另一種情況為光學鏡頭110符合FOV>40;另一種情況為光學鏡頭110同時符合B×D<170,A+C<25,FOV/(B×D)>0.2,FOV>40。其中A為光欄ST與光學鏡頭110的表面S1在光軸OA上的距離。在第四至第六實施例中,A例如為第一透鏡112的表面S1與轉折稜鏡260的表面S9在光 軸OA上的距離以及轉折稜鏡260的表面S9與光欄ST在光軸OA上的距離的總和。第四至第六實施例的參數如表四及表五所示。這些參數的數值不用以限定本發明。 In the fourth to sixth embodiments, one of the cases is that the optical lens 110 meets B×D<170; the other is that the optical lens 110 meets A+C<25; the optical lens 110 meets FOV/(B×D)> 0.2; In another case, the optical lens 110 meets FOV>40; in another case, the optical lens 110 meets B×D<170, A+C<25, FOV/(B×D)>0.2, and FOV>40 at the same time. A is the distance between the stop ST and the surface S1 of the optical lens 110 on the optical axis OA. In the fourth to sixth embodiments, A is, for example, the surface S1 of the first lens 112 and the surface S9 of the turning point 260 in the light The sum of the distance on the axis OA and the distance between the surface S9 of the turning point 260 and the stop ST on the optical axis OA. The parameters of the fourth to sixth embodiments are shown in Table 4 and Table 5. The values of these parameters are not to limit the present invention.

Figure 109110420-A0305-02-0018-5
Figure 109110420-A0305-02-0018-5

Figure 109110420-A0305-02-0018-6
Figure 109110420-A0305-02-0018-6

圖5A是第四至第六實施例的光學鏡頭的像散場曲(field curvature)圖及畸變圖。圖5B是第四至第六實施例的光學鏡頭的橫向色差圖,其是以波長465奈米(nm)、525奈米、620奈米的光所作出的模擬數據圖,縱座標為像高。圖5C是第四至第六實施例的光學鏡頭的調制轉換函數曲線圖,其中橫座標為焦點偏移量(focus shift),縱座標為光學轉換函數的模數(modulus of the OTF,MTF)。圖5D是第四至第六實施例的光學鏡頭的光程差圖。圖5A至圖5D所顯示出的圖形均在標準的範圍內,由此可驗證第四至第六實施例的光學鏡頭110能夠達到良好的成像效果。此外,由圖5D可知,在影像產生器150的主動表面上,影像光束IM具有OPD的範圍是-2.0 λ<OPD<2.0 λ,其中OPD為在各視場角的光程差,λ為各色光的波長,且影像光束IM包括紅色光、綠色光、藍色光。影像產生器150的主動表面是影像光束IM出射的表面。進一步說明,此光程差的設計,熟知此技術領域的人員容易可知道在設計光學鏡頭時,透過光學模擬的方式從物平面反推回在影像源需提供的影像光束在各視場角的光程差。在第四至第六實施例中,設計優化視場角FOV可達47.8度,可擁有較佳的視野涵蓋。單位截面積所達視場角比值高,比值可達0.75(度/平方毫米),使得光學鏡頭110在體積上較為輕薄短小,空間有效利用率高。參考圖5B至圖5D,在本實施例中,影像產生器150的主動表面上形成最大影像高度為3.34mm,且光學鏡頭110的設計符合預先設定的規範,可以解析至少111 lp/mm解析度的影像,因此光學鏡頭110的尺寸小、重量輕、視角大且具有高解析度。 5A is an astigmatic field curvature diagram and a distortion diagram of the optical lens of the fourth to sixth embodiments. Fig. 5B is a diagram of lateral chromatic aberration of the optical lens of the fourth to sixth embodiments, which is a simulation data diagram of light with wavelengths of 465 nanometers (nm), 525 nanometers, and 620 nanometers. The ordinate is the image height. . 5C is a graph of the modulation transfer function of the optical lens of the fourth to sixth embodiments, in which the abscissa is the focus shift, and the ordinate is the modulus of the optical transfer function. OTF, MTF). 5D is an optical path difference diagram of the optical lens of the fourth to sixth embodiments. The graphs shown in FIGS. 5A to 5D are all within the standard range, so it can be verified that the optical lens 110 of the fourth to sixth embodiments can achieve a good imaging effect. In addition, it can be seen from FIG. 5D that on the active surface of the image generator 150, the image beam IM has an OPD in the range of -2.0 λ<OPD<2.0 λ, where OPD is the optical path difference at each angle of view, and λ is each color The wavelength of light, and the image beam IM includes red light, green light, and blue light. The active surface of the image generator 150 is the surface from which the image beam IM exits. To further explain, the design of the optical path difference, those familiar with this technical field can easily know that when designing an optical lens, the optical simulation method is used to reverse the object plane back to the image source to provide the image beam at each field of view angle. Optical path difference. In the fourth to sixth embodiments, the design-optimized field of view FOV can reach 47.8 degrees, which can have a better field of view coverage. The ratio of the angle of view achieved by the unit cross-sectional area is high, and the ratio can reach 0.75 (degrees/square millimeter), which makes the optical lens 110 lighter, thinner, shorter, and more efficient in space utilization. Referring to FIGS. 5B to 5D, in this embodiment, the maximum image height formed on the active surface of the image generator 150 is 3.34mm, and the design of the optical lens 110 meets the preset specifications, which can resolve at least 111 lp/mm resolution Therefore, the optical lens 110 has a small size, a light weight, a large viewing angle, and a high resolution.

以下內容將舉出第四實施例的光學鏡頭110之一實施例。需注意的是,以下內容所列的數據資料並非用以限定本發明,任何所屬技術領域中具有通常知識者在參照本發明之後,當可對其參數或設定作適當的更動,惟其仍應屬於本發明之範疇內。 The following content will cite an embodiment of the optical lens 110 of the fourth embodiment. It should be noted that the data listed in the following content are not used to limit the present invention. Anyone with ordinary knowledge in the technical field can make appropriate changes to its parameters or settings after referring to the present invention, but it should still belong to Within the scope of the present invention.

表六

Figure 109110420-A0305-02-0020-7
Table 6
Figure 109110420-A0305-02-0020-7

請參照圖1及表六,表六中列出各個透鏡(包括第一透鏡112至第四透鏡118)的表面。舉例而言,表面S1為第一透鏡112面向出光側ES的表面,而表面S2為第一透鏡112面向入光側IS的表面,以此類推。另外,間距是指兩相鄰表面之間於光軸OA上的直線距離。舉例來說,對應表面S1的間距,即表面S1至表面S2間於光軸OA上的直線距離,而對應表面S2的間距,即表面S2至表面S3間於光軸OA上的直線距離,以此類推。 Please refer to FIG. 1 and Table 6. The surface of each lens (including the first lens 112 to the fourth lens 118) is listed in Table 6. For example, the surface S1 is the surface of the first lens 112 facing the light-emitting side ES, and the surface S2 is the surface of the first lens 112 facing the light-incident side IS, and so on. In addition, the pitch refers to the linear distance between two adjacent surfaces on the optical axis OA. For example, the distance corresponding to the surface S1 is the linear distance between the surface S1 and the surface S2 on the optical axis OA, and the distance corresponding to the surface S2 is the linear distance between the surface S2 and the surface S3 on the optical axis OA. And so on.

在第四實施例中,第一透鏡112、第二透鏡114、第三透鏡116及第四透鏡118可為非球面透鏡。第一透鏡112、第二透鏡114的材質為塑膠,第三透鏡116及第四透鏡118的材質為玻璃。非球面透鏡的公式如下所示:

Figure 109110420-A0305-02-0020-8
In the fourth embodiment, the first lens 112, the second lens 114, the third lens 116, and the fourth lens 118 may be aspheric lenses. The material of the first lens 112 and the second lens 114 is plastic, and the material of the third lens 116 and the fourth lens 118 is glass. The formula of aspheric lens is as follows:
Figure 109110420-A0305-02-0020-8

上式中,X為光軸OA方向的偏移量(sag),R是密切球面(osculating sphere)的半徑,也就是接近光軸OA處的曲率半徑(如 表一所列的曲率的倒數)。k是二次曲面係數(conic),Y是非球面高度,即為從透鏡中心往透鏡邊緣的高度,而係數A2、A4、A6、A8、A10、A12、A14、A16為非球面係數(aspheric coefficient)。在第四實施例中,係數A2為0。以下表七所列出的是各透鏡的表面的參數值。 In the above formula, X is the offset in the direction of the optical axis OA (sag), and R is the radius of the osculating sphere, that is, the radius of curvature close to the optical axis OA (such as The reciprocal of the curvature listed in Table 1). k is the quadric coefficient (conic), Y is the height of the aspheric surface, which is the height from the center of the lens to the edge of the lens, and the coefficients A2, A4, A6, A8, A10, A12, A14, and A16 are the aspheric coefficients. ). In the fourth embodiment, the coefficient A2 is zero. The following Table 7 lists the parameter values of the surface of each lens.

Figure 109110420-A0305-02-0021-9
Figure 109110420-A0305-02-0021-9

第四至第六實施例的光學鏡頭的架構可降低熱漂移的問題,說明如下。圖6繪示第四至第六實施例的顯示影像的概要示意圖。圖7A、圖7B、圖7C分別繪示第四至第六實施例的光學鏡頭在環境溫度0℃、25℃、40℃的熱平衡的調制轉換函數(MTF)的概要示意圖。表八中列出各個透鏡(包括第一透鏡112至第四透鏡118)的在不同環境溫度的透鏡溫度。 The architecture of the optical lens of the fourth to sixth embodiments can reduce the problem of thermal drift, as described below. FIG. 6 is a schematic diagram of the display images of the fourth to sixth embodiments. 7A, FIG. 7B, and FIG. 7C are schematic diagrams of the thermal equilibrium modulation transfer function (MTF) of the optical lens of the fourth to sixth embodiments at an ambient temperature of 0° C., 25° C., and 40° C., respectively. Table 8 lists the lens temperature of each lens (including the first lens 112 to the fourth lens 118) at different ambient temperatures.

Figure 109110420-A0305-02-0021-10
Figure 109110420-A0305-02-0021-10
Figure 109110420-A0305-02-0022-11
Figure 109110420-A0305-02-0022-11

在圖6中,縱坐標為MTF,橫坐標為離焦的位置(Defocusing Position)。F1為影像中心,F2為距離影像中心的位置,F3為影像邊界位置。舉例而言,F1至F3的距離代表為1,則F1至F2的距離代表為0.7。在圖7A、圖7B、圖7C中,F2:T代表正切(tangential)方向,F2:R代表徑向(Radial)方向。由圖7A、圖7B、圖7C可知,第四至第六實施例的光學鏡頭的架構的背焦距(BFL)的熱漂移(thermal drift)小於0.015毫米,可降低熱漂移的問題。 In FIG. 6, the ordinate is MTF, and the abscissa is Defocusing Position. F1 is the image center, F2 is the position from the image center, and F3 is the image boundary position. For example, the distance from F1 to F3 is represented as 1, and the distance from F1 to F2 is represented as 0.7. In FIGS. 7A, 7B, and 7C, F2: T represents the tangential direction, and F2: R represents the radial direction. It can be seen from FIGS. 7A, 7B, and 7C that the thermal drift of the back focal length (BFL) of the optical lens architecture of the fourth to sixth embodiments is less than 0.015 mm, which can reduce the problem of thermal drift.

底下說明本發明第七至第九實施例。 The seventh to ninth embodiments of the present invention will be described below.

圖8繪示本發明第七實施例之頭戴式顯示裝置的概要示意圖。請參考圖8,在本實施例中,第一透鏡112、第二透鏡114、第三透鏡116為塑膠非球面透鏡。第四透鏡118為玻璃非球面透鏡。 FIG. 8 is a schematic diagram of a head-mounted display device according to a seventh embodiment of the present invention. Please refer to FIG. 8, in this embodiment, the first lens 112, the second lens 114, and the third lens 116 are plastic aspheric lenses. The fourth lens 118 is a glass aspheric lens.

在本實施例中,其中一種情況為光學鏡頭110符合B×D<170,其中B為光學鏡頭110的鏡頭總長,在本實施例中,例如B為在光軸OA上表面S1至表面S8的距離,且D為光學鏡頭110中最大透鏡的通光口徑(Clear aperture),在本實施例中,例如為第四透鏡118的通光口徑。在本實施例中,另一種情況為光學鏡頭110符合A+C<25,其中A為光欄ST與光學鏡頭110的表面 S1在光軸OA上的距離,也就是光欄ST與第一透鏡112的出光面的距離,且C為光學鏡頭110的表面S8與影像產生器150的表面在光軸OA上的距離。在本實施例中,又另一種情況為光學鏡頭110符合FOV/(B×D)>0.2,其中FOV為光學鏡頭110的視場角。在本實施例中,又另一種情況為光學鏡頭110符合FOV>40。在本實施例中,又另一種情況為光學鏡頭110同時符合B×D<170,A+C<25,FOV/(B×D)>0.2,FOV>40。上述參數A、B、C、D、FOV的定義同上所述。在本實施例中,上述參數A、B、C、D例如分別是5.45毫米(millimeters)、7.7毫米、6.35毫米、8.2毫米。上述參數A+C、B×D、FOV/(B×D)、FOV例如分別是11.8毫米(millimeters)、63.14毫米、0.77毫米、48.73毫米。這些參數的數值不用以限定本發明。 In this embodiment, one of the cases is that the optical lens 110 meets B×D<170, where B is the total lens length of the optical lens 110. In this embodiment, for example, B is the distance from the upper surface S1 to the surface S8 on the optical axis OA. The distance, and D is the clear aperture of the largest lens in the optical lens 110. In this embodiment, for example, it is the clear aperture of the fourth lens 118. In this embodiment, another situation is that the optical lens 110 meets A+C<25, where A is the surface of the stop ST and the optical lens 110 The distance of S1 on the optical axis OA is the distance between the stop ST and the light-emitting surface of the first lens 112, and C is the distance between the surface S8 of the optical lens 110 and the surface of the image generator 150 on the optical axis OA. In this embodiment, another situation is that the optical lens 110 conforms to FOV/(B×D)>0.2, where FOV is the angle of view of the optical lens 110. In this embodiment, another situation is that the optical lens 110 conforms to FOV>40. In this embodiment, another situation is that the optical lens 110 simultaneously meets B×D<170, A+C<25, FOV/(B×D)>0.2, and FOV>40. The definitions of the above parameters A, B, C, D, FOV are the same as described above. In this embodiment, the aforementioned parameters A, B, C, and D are, for example, 5.45 millimeters, 7.7 millimeters, 6.35 millimeters, and 8.2 millimeters, respectively. The above-mentioned parameters A+C, B×D, FOV/(B×D), FOV are, for example, 11.8 millimeters, 63.14 millimeters, 0.77 millimeters, and 48.73 millimeters, respectively. The values of these parameters are not to limit the present invention.

以下內容將舉出光學鏡頭110之一實施例。需注意的是,以下內容所列的數據資料並非用以限定本發明,任何所屬技術領域中具有通常知識者在參照本發明之後,當可對其參數或設定作適當的更動,惟其仍應屬於本發明之範疇內。 The following content will cite an embodiment of the optical lens 110. It should be noted that the data listed in the following content are not used to limit the present invention. Anyone with ordinary knowledge in the technical field can make appropriate changes to its parameters or settings after referring to the present invention, but it should still belong to Within the scope of the present invention.

Figure 109110420-A0305-02-0023-12
Figure 109110420-A0305-02-0023-12
Figure 109110420-A0305-02-0024-13
Figure 109110420-A0305-02-0024-13

請參照圖8及表九,表九中列出各個透鏡(包括第一透鏡112至第四透鏡118)的表面。舉例而言,表面S1為第一透鏡112面向出光側ES的表面,而表面S2為第一透鏡112面向入光側IS的表面,以此類推。另外,間距是指兩相鄰表面之間於光軸OA上的直線距離。舉例來說,對應表面S1的間距,即表面S1至表面S2間於光軸OA上的直線距離,而對應表面S2的間距,即表面S2至表面S3間於光軸OA上的直線距離,以此類推。 Please refer to FIG. 8 and Table 9. Table 9 lists the surfaces of each lens (including the first lens 112 to the fourth lens 118). For example, the surface S1 is the surface of the first lens 112 facing the light-emitting side ES, and the surface S2 is the surface of the first lens 112 facing the light-incident side IS, and so on. In addition, the pitch refers to the linear distance between two adjacent surfaces on the optical axis OA. For example, the distance corresponding to the surface S1 is the linear distance between the surface S1 and the surface S2 on the optical axis OA, and the distance corresponding to the surface S2 is the linear distance between the surface S2 and the surface S3 on the optical axis OA. And so on.

在本實施例中,第一透鏡112、第二透鏡114、第三透鏡116及第四透鏡118可為非球面透鏡。非球面透鏡的公式如下所示:

Figure 109110420-A0305-02-0024-14
In this embodiment, the first lens 112, the second lens 114, the third lens 116, and the fourth lens 118 may be aspheric lenses. The formula of aspheric lens is as follows:
Figure 109110420-A0305-02-0024-14

上式中,X為光軸OA方向的偏移量(sag),R是密切球面(osculating sphere)的半徑,也就是接近光軸OA處的曲率半徑(如表一所列的曲率的倒數)。k是二次曲面係數(conic),Y是非球面高度,即為從透鏡中心往透鏡邊緣的高度,而係數A2、A4、A6、A8、A10、A12、A14、A16為非球面係數(aspheric coefficient)。在本實施例中,係數A2為0。以下表十所列出的是各透鏡的表面的參數值。 In the above formula, X is the offset in the direction of the optical axis OA (sag), and R is the radius of the osculating sphere, which is the radius of curvature close to the optical axis OA (as the reciprocal of the curvature listed in Table 1) . k is the quadric coefficient (conic), Y is the height of the aspheric surface, which is the height from the center of the lens to the edge of the lens, and the coefficients A2, A4, A6, A8, A10, A12, A14, and A16 are the aspheric coefficients. ). In this embodiment, the coefficient A2 is zero. Table 10 below lists the parameter values of the surface of each lens.

Figure 109110420-A0305-02-0024-15
Figure 109110420-A0305-02-0024-15
Figure 109110420-A0305-02-0025-16
Figure 109110420-A0305-02-0025-16

圖9A是圖8的光學鏡頭的像散場曲(field curvature)圖及畸變圖。圖9B是圖8的光學鏡頭的橫向色差圖,其是以波長465奈米(nm)、525奈米、620奈米的光所作出的模擬數據圖,縱座標為像高。圖9C是圖8的光學鏡頭的光程差圖。圖9A至圖9C所顯示出的圖形均在標準的範圍內,由此可驗證本實施例的光學鏡頭110能夠達到良好的成像效果。此外,由圖9C可知,在影像產生器150的主動表面上,影像光束IM具有OPD的範圍是-2.0 λ<OPD<2.0 λ,其中OPD為在各視場角的光程差,λ為各色光的波長,且影像光束IM包括紅色光、綠色光、藍色光。影像產生器150的主動表面是影像光束IM出射的表面。進一步說明,此光程差的設計,熟知此技術領域的人員容易可知道在設計光學鏡頭時,透過光學模擬的方式從物平面反推回在影像源需提供的影像光束在各視場角的光程差。在本實施例中,設計優化視場角FOV可達48.73度,可擁有較佳的視野涵蓋。單位截面積所達視場角比值高,比值可達0.77(度/平方毫米),使得光學鏡頭110在體積上較為輕薄短小,空間有效利用率高。參考圖9B至圖9C,在本實施例中,影像產生器150的主動表面上形成最大影像高度為 3.34mm,且光學鏡頭110的設計符合預先設定的規範,可以解析至少111 lp/mm解析度的影像,因此光學鏡頭110的尺寸小、重量輕、視角大且具有高解析度。 FIG. 9A is an astigmatic field curvature diagram and a distortion diagram of the optical lens of FIG. 8. FIG. 9B is a lateral chromatic aberration diagram of the optical lens of FIG. 8, which is a simulation data diagram of light with wavelengths of 465 nanometers (nm), 525 nanometers, and 620 nanometers, and the ordinate is the image height. FIG. 9C is an optical path difference diagram of the optical lens of FIG. 8. FIG. The graphs shown in FIGS. 9A to 9C are all within the standard range, so it can be verified that the optical lens 110 of this embodiment can achieve a good imaging effect. In addition, it can be seen from FIG. 9C that on the active surface of the image generator 150, the image beam IM has an OPD in the range of -2.0 λ<OPD<2.0 λ, where OPD is the optical path difference at each angle of view, and λ is each color. The wavelength of light, and the image beam IM includes red light, green light, and blue light. The active surface of the image generator 150 is the surface from which the image beam IM exits. To further explain, the design of the optical path difference, those familiar with this technical field can easily know that when designing an optical lens, the optical simulation method is used to reverse the object plane back to the image source to provide the image beam at each field of view angle. Optical path difference. In this embodiment, the design optimized FOV can reach 48.73 degrees, which can have better coverage. The ratio of the angle of view achieved by the unit cross-sectional area is high, and the ratio can reach 0.77 (degrees/square millimeter), making the optical lens 110 lighter, thinner, shorter, and more efficient in space utilization. Referring to FIGS. 9B to 9C, in this embodiment, the maximum image height formed on the active surface of the image generator 150 is 3.34mm, and the design of the optical lens 110 meets the preset specifications, and can resolve images with a resolution of at least 111 lp/mm. Therefore, the optical lens 110 has a small size, light weight, large viewing angle and high resolution.

第七實施例的光學鏡頭的架構可降低熱漂移的問題,說明如下。圖10A、圖10B、圖10C、圖10D分別繪示第七實施例的光學鏡頭在環境溫度20℃、0℃、25℃、40℃的熱平衡的調制轉換函數(MTF)的概要示意圖。光學鏡頭110的各項光學參數例如是以環境溫度20℃為參考所設計的,因此,圖10A所繪示的熱平衡的調制轉換函數(MTF)可作為光學鏡頭110是產生否熱漂移的參考值。由圖10B、圖10C、圖10D可知,當環境溫度從0℃變化至40℃,光學鏡頭110經過此熱效應(Thermal effect)之後,其MTF仍大於40%。 The structure of the optical lens of the seventh embodiment can reduce the problem of thermal drift, which is described as follows. 10A, FIG. 10B, FIG. 10C, and FIG. 10D respectively show schematic diagrams of the thermal equilibrium modulation transfer function (MTF) of the optical lens of the seventh embodiment at ambient temperatures of 20°C, 0°C, 25°C, and 40°C. The optical parameters of the optical lens 110 are designed with reference to an ambient temperature of 20°C. Therefore, the thermal balance modulation transfer function (MTF) shown in FIG. 10A can be used as a reference value for whether the optical lens 110 generates thermal drift. . It can be seen from FIGS. 10B, 10C, and 10D that when the ambient temperature changes from 0° C. to 40° C., after the thermal effect of the optical lens 110, the MTF of the optical lens 110 is still greater than 40%.

圖11繪示本發明第八實施例之頭戴式顯示裝置的概要示意圖。請參考圖11,在本實施例中,第一透鏡112為玻璃非球面透鏡、第二透鏡114為塑膠非球面透鏡、第三透鏡116為塑膠非球面透鏡以及第四透鏡118為玻璃非球面透鏡。 FIG. 11 is a schematic diagram of a head-mounted display device according to an eighth embodiment of the present invention. 11, in this embodiment, the first lens 112 is a glass aspheric lens, the second lens 114 is a plastic aspheric lens, the third lens 116 is a plastic aspheric lens, and the fourth lens 118 is a glass aspheric lens .

在本實施例中,其中一種情況為光學鏡頭110符合B×D<170,其中B為光學鏡頭110的鏡頭總長,在本實施例中,例如B為在光軸OA上表面S1至表面S8的距離,且D為光學鏡頭110中最大透鏡的通光口徑(Clear aperture),在本實施例中,例如為第四透鏡118的通光口徑。在本實施例中,另一種情況為光學鏡頭110符合A+C<25,其中A為光欄ST與光學鏡頭110的表面 S1在光軸OA上的距離,也就是光欄ST與第一透鏡112的出光面的距離,且C為光學鏡頭110的表面S8與影像產生器150的表面在光軸OA上的距離。在本實施例中,又另一種情況為光學鏡頭110符合FOV/(B×D)>0.2,其中FOV為光學鏡頭110的視場角。在本實施例中,又另一種情況為光學鏡頭110符合FOV>40。在本實施例中,又另一種情況為光學鏡頭110同時符合B×D<170,A+C<25,FOV/(B×D)>0.2,FOV>40。上述參數A、B、C、D、FOV的定義同上所述。在本實施例中,上述參數A、B、C、D例如分別是5.45毫米(millimeters)、8.34毫米、5.48毫米、8.1毫米。上述參數A+C、B×D、FOV/(B×D)、FOV例如分別是10.93毫米(millimeters)、67.55毫米、0.77毫米、48.29毫米。這些參數的數值不用以限定本發明。 In this embodiment, one of the cases is that the optical lens 110 meets B×D<170, where B is the total lens length of the optical lens 110. In this embodiment, for example, B is the distance from the upper surface S1 to the surface S8 on the optical axis OA. The distance, and D is the clear aperture of the largest lens in the optical lens 110. In this embodiment, for example, it is the clear aperture of the fourth lens 118. In this embodiment, another situation is that the optical lens 110 meets A+C<25, where A is the surface of the stop ST and the optical lens 110 The distance of S1 on the optical axis OA is the distance between the stop ST and the light-emitting surface of the first lens 112, and C is the distance between the surface S8 of the optical lens 110 and the surface of the image generator 150 on the optical axis OA. In this embodiment, another situation is that the optical lens 110 conforms to FOV/(B×D)>0.2, where FOV is the angle of view of the optical lens 110. In this embodiment, another situation is that the optical lens 110 conforms to FOV>40. In this embodiment, another situation is that the optical lens 110 simultaneously meets B×D<170, A+C<25, FOV/(B×D)>0.2, and FOV>40. The definitions of the above parameters A, B, C, D, FOV are the same as described above. In this embodiment, the aforementioned parameters A, B, C, and D are, for example, 5.45 millimeters, 8.34 millimeters, 5.48 millimeters, and 8.1 millimeters, respectively. The above-mentioned parameters A+C, B×D, FOV/(B×D), and FOV are, for example, 10.93 millimeters, 67.55 millimeters, 0.77 millimeters, and 48.29 millimeters, respectively. The values of these parameters are not to limit the present invention.

以下內容將舉出光學鏡頭110之一實施例。需注意的是,以下內容所列的數據資料並非用以限定本發明,任何所屬技術領域中具有通常知識者在參照本發明之後,當可對其參數或設定作適當的更動,惟其仍應屬於本發明之範疇內。 The following content will cite an embodiment of the optical lens 110. It should be noted that the data listed in the following content are not used to limit the present invention. Anyone with ordinary knowledge in the technical field can make appropriate changes to its parameters or settings after referring to the present invention, but it should still belong to Within the scope of the present invention.

Figure 109110420-A0305-02-0027-17
Figure 109110420-A0305-02-0027-17
Figure 109110420-A0305-02-0028-18
Figure 109110420-A0305-02-0028-18

請參照圖11及表十一,表十一中列出各個透鏡(包括第一透鏡112至第四透鏡118)的表面。舉例而言,表面S1為第一透鏡112面向出光側ES的表面,而表面S2為第一透鏡112面向入光側IS的表面,以此類推。另外,間距是指兩相鄰表面之間於光軸OA上的直線距離。舉例來說,對應表面S1的間距,即表面S1至表面S2間於光軸OA上的直線距離,而對應表面S2的間距,即表面S2至表面S3間於光軸OA上的直線距離,以此類推。 Please refer to FIG. 11 and Table 11. Table 11 lists the surfaces of each lens (including the first lens 112 to the fourth lens 118). For example, the surface S1 is the surface of the first lens 112 facing the light-emitting side ES, and the surface S2 is the surface of the first lens 112 facing the light-incident side IS, and so on. In addition, the pitch refers to the linear distance between two adjacent surfaces on the optical axis OA. For example, the distance corresponding to the surface S1 is the linear distance between the surface S1 and the surface S2 on the optical axis OA, and the distance corresponding to the surface S2 is the linear distance between the surface S2 and the surface S3 on the optical axis OA. And so on.

在本實施例中,第一透鏡112、第二透鏡114、第三透鏡116及第四透鏡118可為非球面透鏡。非球面透鏡的公式如下所示:

Figure 109110420-A0305-02-0028-19
In this embodiment, the first lens 112, the second lens 114, the third lens 116, and the fourth lens 118 may be aspheric lenses. The formula of aspheric lens is as follows:
Figure 109110420-A0305-02-0028-19

上式中,X為光軸OA方向的偏移量(sag),R是密切球面(osculating sphere)的半徑,也就是接近光軸OA處的曲率半徑(如表一所列的曲率的倒數)。k是二次曲面係數(conic),Y是非球面高度,即為從透鏡中心往透鏡邊緣的高度,而係數A2、A4、A6、A8、A10、A12、A14、A16為非球面係數(aspheric coefficient)。在本實施例中,係數A2為0。以下表十二所列出的是各透鏡的表面的參數值。 In the above formula, X is the offset in the direction of the optical axis OA (sag), and R is the radius of the osculating sphere, which is the radius of curvature close to the optical axis OA (as the reciprocal of the curvature listed in Table 1) . k is the quadric coefficient (conic), Y is the height of the aspheric surface, which is the height from the center of the lens to the edge of the lens, and the coefficients A2, A4, A6, A8, A10, A12, A14, and A16 are the aspheric coefficients. ). In this embodiment, the coefficient A2 is zero. Table 12 below lists the parameter values of the surface of each lens.

Figure 109110420-A0305-02-0028-20
Figure 109110420-A0305-02-0028-20
Figure 109110420-A0305-02-0029-21
Figure 109110420-A0305-02-0029-21

圖12A是圖11的光學鏡頭的像散場曲(field curvature)圖及畸變圖。圖12B是圖11的光學鏡頭的橫向色差圖,其是以波長465奈米(nm)、525奈米、620奈米的光所作出的模擬數據圖,縱座標為像高。圖12C是圖11的光學鏡頭的光程差圖。圖12A至圖12C所顯示出的圖形均在標準的範圍內,由此可驗證本實施例的光學鏡頭110能夠達到良好的成像效果。此外,由圖12C可知,在影像產生器150的主動表面上,影像光束IM具有OPD的範圍是-2.0 λ<OPD<2.0 λ,其中OPD為在各視場角的光程差,λ為各色光的波長,且影像光束IM包括紅色光、綠色光、藍色光。影像產生器150的主動表面是影像光束IM出射的表面。進一步說明,此光程差的設計,熟知此技術領域的人員容易可知道在設計光學鏡頭時,透過光學模擬的方式從物平面反推回在影像源需提供的影像光束在各視場角的光程差。在本實施例中,設計優化視場角FOV可達48.29度,可擁有較佳的視野涵蓋。單位截面積所達視場角比值高,比值可達0.71(度/平方毫米),使得光學鏡頭110在體積上較為輕薄短小,空間有效利用率高。參考圖12B至圖12C,在本實施例中,影像產生器150的主動表面上形成最大影像高度 為3.34mm,且光學鏡頭110的設計符合預先設定的規範,可以解析至少111 lp/mm解析度的影像,因此光學鏡頭110的尺寸小、重量輕、視角大且具有高解析度。 FIG. 12A is an astigmatic field curvature diagram and a distortion diagram of the optical lens of FIG. 11. Fig. 12B is a lateral chromatic aberration diagram of the optical lens of Fig. 11, which is a simulation data diagram of light with wavelengths of 465 nanometers (nm), 525 nanometers, and 620 nanometers, and the ordinate is the image height. Fig. 12C is an optical path difference diagram of the optical lens of Fig. 11. The graphs shown in FIGS. 12A to 12C are all within the standard range, so it can be verified that the optical lens 110 of this embodiment can achieve a good imaging effect. In addition, it can be seen from FIG. 12C that on the active surface of the image generator 150, the image beam IM has an OPD in the range of -2.0 λ<OPD<2.0 λ, where OPD is the optical path difference at each angle of view, and λ is each color The wavelength of light, and the image beam IM includes red light, green light, and blue light. The active surface of the image generator 150 is the surface from which the image beam IM exits. To further explain, the design of the optical path difference, those familiar with this technical field can easily know that when designing an optical lens, the optical simulation method is used to reverse the object plane back to the image source to provide the image beam at each field of view angle. Optical path difference. In this embodiment, the design optimized FOV can reach 48.29 degrees, which can have better coverage. The ratio of the angle of view achieved by the unit cross-sectional area is high, and the ratio can reach 0.71 (degrees/square millimeter), which makes the optical lens 110 lighter, thinner, shorter, and more efficient in space utilization. Referring to FIGS. 12B to 12C, in this embodiment, the maximum image height is formed on the active surface of the image generator 150 It is 3.34mm, and the design of the optical lens 110 meets the preset specifications, and can resolve images with a resolution of at least 111 lp/mm. Therefore, the optical lens 110 has a small size, light weight, large viewing angle, and high resolution.

第八實施例的光學鏡頭的架構可降低熱漂移的問題,說明如下。圖13A、圖13B、圖13C、圖13D分別繪示第八實施例的光學鏡頭在環境溫度20℃、0℃、25℃、40℃的熱平衡的調制轉換函數(MTF)的概要示意圖。光學鏡頭110的各項光學參數例如是以環境溫度20℃為參考所設計的,因此,圖13A所繪示的熱平衡的調制轉換函數(MTF)可作為光學鏡頭110是產生否熱漂移的參考值。由圖13B、圖13C、圖13D可知,當環境溫度從0℃變化至40℃,光學鏡頭110經過此熱效應(Thermal effect)之後,其MTF仍大於45%。 The structure of the optical lens of the eighth embodiment can reduce the problem of thermal drift, as described below. 13A, FIG. 13B, FIG. 13C, and FIG. 13D are schematic diagrams of the thermal equilibrium modulation transfer function (MTF) of the optical lens of the eighth embodiment at an ambient temperature of 20°C, 0°C, 25°C, and 40°C, respectively. The optical parameters of the optical lens 110 are designed with reference to an ambient temperature of 20°C. Therefore, the thermal balance modulation transfer function (MTF) shown in FIG. 13A can be used as a reference value for whether the optical lens 110 generates thermal drift. . It can be seen from FIGS. 13B, 13C, and 13D that when the ambient temperature changes from 0°C to 40°C, after the thermal effect of the optical lens 110, the MTF of the optical lens 110 is still greater than 45%.

表十三中列出各個透鏡(包括第一透鏡112至第四透鏡118)的在不同環境溫度的透鏡溫度。 Table 13 lists the lens temperature of each lens (including the first lens 112 to the fourth lens 118) at different environmental temperatures.

Figure 109110420-A0305-02-0030-22
Figure 109110420-A0305-02-0030-22

圖14繪示本發明第九實施例之頭戴式顯示裝置的概要示 意圖。請參考圖14,在本實施例中,第一透鏡112為玻璃非球面透鏡、第二透鏡114為塑膠非球面透鏡、第三透鏡116為玻璃非球面透鏡。第四透鏡118為塑膠非球面透鏡。 FIG. 14 shows a schematic diagram of a head-mounted display device according to a ninth embodiment of the present invention intention. Please refer to FIG. 14. In this embodiment, the first lens 112 is a glass aspheric lens, the second lens 114 is a plastic aspheric lens, and the third lens 116 is a glass aspheric lens. The fourth lens 118 is a plastic aspheric lens.

在本實施例中,其中一種情況為光學鏡頭110符合B×D<170,其中B為光學鏡頭110的鏡頭總長,在本實施例中,例如B為在光軸OA上表面S1至表面S8的距離,且D為光學鏡頭110中最大透鏡的通光口徑(Clear aperture),在本實施例中,例如為第四透鏡118的通光口徑。在本實施例中,另一種情況為光學鏡頭110符合A+C<25,其中A為光欄ST與光學鏡頭110的表面S1在光軸OA上的距離,也就是光欄ST與第一透鏡112的出光面的距離,且C為光學鏡頭110的表面S8與影像產生器150的表面在光軸OA上的距離。在本實施例中,又另一種情況為光學鏡頭110符合FOV/(B×D)>0.2,其中FOV為光學鏡頭110的視場角。在本實施例中,又另一種情況為光學鏡頭110符合FOV>40。在本實施例中,又另一種情況為光學鏡頭110同時符合B×D<170,A+C<25,FOV/(B×D)>0.2,FOV>40。上述參數A、B、C、D、FOV的定義同上所述。在本實施例中,上述參數A、B、C、D例如分別是5.5毫米(millimeters)、7.95毫米、5.1毫米、8.1毫米。上述參數A+C、B×D、FOV/(B×D)、FOV例如分別是10.6毫米(millimeters)、64.495毫米、0.74毫米、47.7毫米。這些參數的數值不用以限定本發明。 In this embodiment, one of the cases is that the optical lens 110 meets B×D<170, where B is the total lens length of the optical lens 110. In this embodiment, for example, B is the distance from the upper surface S1 to the surface S8 on the optical axis OA. The distance, and D is the clear aperture of the largest lens in the optical lens 110. In this embodiment, for example, it is the clear aperture of the fourth lens 118. In this embodiment, another situation is that the optical lens 110 meets A+C<25, where A is the distance between the stop ST and the surface S1 of the optical lens 110 on the optical axis OA, that is, the stop ST and the first lens The distance from the light-emitting surface of 112, and C is the distance between the surface S8 of the optical lens 110 and the surface of the image generator 150 on the optical axis OA. In this embodiment, another situation is that the optical lens 110 conforms to FOV/(B×D)>0.2, where FOV is the angle of view of the optical lens 110. In this embodiment, another situation is that the optical lens 110 conforms to FOV>40. In this embodiment, another situation is that the optical lens 110 simultaneously meets B×D<170, A+C<25, FOV/(B×D)>0.2, and FOV>40. The definitions of the above parameters A, B, C, D, FOV are the same as described above. In this embodiment, the aforementioned parameters A, B, C, and D are, for example, 5.5 millimeters, 7.95 millimeters, 5.1 millimeters, and 8.1 millimeters, respectively. The above-mentioned parameters A+C, B×D, FOV/(B×D), and FOV are, for example, 10.6 millimeters, 64.495 millimeters, 0.74 millimeters, and 47.7 millimeters, respectively. The values of these parameters are not to limit the present invention.

以下內容將舉出光學鏡頭110之一實施例。需注意的是, 以下內容所列的數據資料並非用以限定本發明,任何所屬技術領域中具有通常知識者在參照本發明之後,當可對其參數或設定作適當的更動,惟其仍應屬於本發明之範疇內。 The following content will cite an embodiment of the optical lens 110. It should be noted that The data listed in the following content are not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make appropriate changes to its parameters or settings after referring to the present invention, but they should still fall within the scope of the present invention. .

Figure 109110420-A0305-02-0032-23
Figure 109110420-A0305-02-0032-23

請參照圖14及表十四,表十四中列出各個透鏡(包括第一透鏡112至第四透鏡118)的表面。舉例而言,表面S1為第一透鏡112面向出光側ES的表面,而表面S2為第一透鏡112面向入光側IS的表面,以此類推。另外,間距是指兩相鄰表面之間於光軸OA上的直線距離。舉例來說,對應表面S1的間距,即表面S1至表面S2間於光軸OA上的直線距離,而對應表面S2的間距,即表面S2至表面S3間於光軸OA上的直線距離,以此類推。 Please refer to FIG. 14 and Table 14. Table 14 lists the surfaces of each lens (including the first lens 112 to the fourth lens 118). For example, the surface S1 is the surface of the first lens 112 facing the light-emitting side ES, and the surface S2 is the surface of the first lens 112 facing the light-incident side IS, and so on. In addition, the pitch refers to the linear distance between two adjacent surfaces on the optical axis OA. For example, the distance corresponding to the surface S1 is the linear distance between the surface S1 and the surface S2 on the optical axis OA, and the distance corresponding to the surface S2 is the linear distance between the surface S2 and the surface S3 on the optical axis OA. And so on.

在本實施例中,第一透鏡112、第二透鏡114、第三透鏡116及第四透鏡118可為非球面透鏡。非球面透鏡的公式如下所示:

Figure 109110420-A0305-02-0032-24
In this embodiment, the first lens 112, the second lens 114, the third lens 116, and the fourth lens 118 may be aspheric lenses. The formula of aspheric lens is as follows:
Figure 109110420-A0305-02-0032-24

上式中,X為光軸OA方向的偏移量(sag),R是密切球面(osculating sphere)的半徑,也就是接近光軸OA處的曲率半徑(如表一所列的曲率的倒數)。k是二次曲面係數(conic),Y是非球面高度,即為從透鏡中心往透鏡邊緣的高度,而係數A2、A4、A6、A8、A10、A12、A14、A16為非球面係數(aspheric coefficient)。在本實施例中,係數A2為0。以下表十五所列出的是各透鏡的表面的參數值。 In the above formula, X is the offset in the direction of the optical axis OA (sag), and R is the radius of the osculating sphere, which is the radius of curvature close to the optical axis OA (as the reciprocal of the curvature listed in Table 1) . k is the quadric coefficient (conic), Y is the height of the aspheric surface, which is the height from the center of the lens to the edge of the lens, and the coefficients A2, A4, A6, A8, A10, A12, A14, and A16 are the aspheric coefficients. ). In this embodiment, the coefficient A2 is zero. Table 15 below lists the parameter values of the surface of each lens.

Figure 109110420-A0305-02-0033-25
Figure 109110420-A0305-02-0033-25

圖15A是圖14的光學鏡頭的像散場曲(field curvature)圖及畸變圖。圖15B是圖14的光學鏡頭的橫向色差圖,其是以波長465奈米(nm)、525奈米、620奈米的光所作出的模擬數據圖,縱座標為像高。圖15C是圖14的光學鏡頭的光程差圖。圖15A至圖15C所顯示出的圖形均在標準的範圍內,由此可驗證本實施例的光學鏡頭110能夠達到良好的成像效果。此外,由圖15C可知,在影像產生器150的主動表面上,影像光束IM具有OPD的範圍是-2.0 λ<OPD<2.0 λ,其中OPD為在各視場角的光程差,λ 為各色光的波長,且影像光束IM包括紅色光、綠色光、藍色光。影像產生器150的主動表面是影像光束IM出射的表面。進一步說明,此光程差的設計,熟知此技術領域的人員容易可知道在設計光學鏡頭時,透過光學模擬的方式從物平面反推回在影像源需提供的影像光束在各視場角的光程差。在本實施例中,設計優化視場角可達47.7度FOV,可擁有較佳的視野涵蓋。單位截面積所達視場角比值高,比值可達0.74(度/平方毫米),使得光學鏡頭110在體積上較為輕薄短小,空間有效利用率高。參考圖15B至圖15C,在本實施例中,影像產生器150的主動表面上形成最大影像高度為3.34mm,且光學鏡頭110的設計符合預先設定的規範,可以解析至少111 lp/mm解析度的影像,因此光學鏡頭110的尺寸小、重量輕、視角大且具有高解析度。 FIG. 15A is an astigmatic field curvature diagram and a distortion diagram of the optical lens of FIG. 14. Fig. 15B is a lateral chromatic aberration diagram of the optical lens of Fig. 14, which is a simulation data diagram of light with wavelengths of 465 nanometers (nm), 525 nanometers, and 620 nanometers, and the ordinate is the image height. FIG. 15C is an optical path difference diagram of the optical lens of FIG. 14. The graphs shown in FIGS. 15A to 15C are all within the standard range, so it can be verified that the optical lens 110 of this embodiment can achieve a good imaging effect. In addition, it can be seen from FIG. 15C that on the active surface of the image generator 150, the image beam IM has an OPD in the range of -2.0 λ<OPD<2.0 λ, where OPD is the optical path difference at each angle of view, λ It is the wavelength of each color light, and the image light beam IM includes red light, green light, and blue light. The active surface of the image generator 150 is the surface from which the image beam IM exits. To further explain, the design of the optical path difference, those familiar with this technical field can easily know that when designing an optical lens, the optical simulation method is used to reverse the object plane back to the image source to provide the image beam at each field of view angle. Optical path difference. In this embodiment, the design-optimized field of view angle can reach 47.7 degrees FOV, which can have a better field of view coverage. The ratio of the angle of view achieved by the unit cross-sectional area is high, and the ratio can reach 0.74 (degrees/square millimeter), which makes the optical lens 110 lighter, thinner, shorter, and more efficient in space utilization. Referring to FIGS. 15B to 15C, in this embodiment, the maximum image height formed on the active surface of the image generator 150 is 3.34mm, and the design of the optical lens 110 meets the preset specifications, which can resolve at least 111 lp/mm resolution Therefore, the optical lens 110 has a small size, a light weight, a large viewing angle, and a high resolution.

第九實施例的光學鏡頭的架構可降低熱漂移的問題,說明如下。圖16A、圖16B、圖16C、圖16D分別繪示第九實施例的光學鏡頭在環境溫度20℃、0℃、25℃、40℃的熱平衡的調制轉換函數(MTF)的概要示意圖。光學鏡頭110的各項光學參數例如是以環境溫度20℃為參考所設計的,因此,圖16A所繪示的熱平衡的調制轉換函數(MTF)可作為光學鏡頭110是產生否熱漂移的參考值。由圖16B、圖16C、圖16D可知,當環境溫度從0℃變化至40℃,光學鏡頭110經過此熱效應(Thermal effect)之後,其MTF仍大於40%。 The structure of the optical lens of the ninth embodiment can reduce the problem of thermal drift, which is described as follows. 16A, FIG. 16B, FIG. 16C, and FIG. 16D are schematic diagrams of the thermal equilibrium modulation transfer function (MTF) of the optical lens of the ninth embodiment at ambient temperatures of 20°C, 0°C, 25°C, and 40°C, respectively. The optical parameters of the optical lens 110 are designed with reference to an ambient temperature of 20°C. Therefore, the thermal balance modulation transfer function (MTF) shown in FIG. 16A can be used as a reference value for whether the optical lens 110 has thermal drift. . It can be seen from FIGS. 16B, 16C, and 16D that when the ambient temperature changes from 0° C. to 40° C., after the thermal effect (thermal effect) of the optical lens 110, the MTF of the optical lens 110 is still greater than 40%.

表十六中列出各個透鏡(包括第一透鏡112至第四透鏡 118)的在不同環境溫度的透鏡溫度。 Table 16 lists each lens (including the first lens 112 to the fourth lens 118) The lens temperature at different ambient temperatures.

Figure 109110420-A0305-02-0035-26
Figure 109110420-A0305-02-0035-26

由上述可知,第七至第九實施例的光學鏡頭的架構的背焦距(BFL)的熱漂移(thermal drift)小於0.015毫米,可降低熱漂移的問題。 It can be seen from the above that the thermal drift of the back focal length (BFL) of the optical lens architecture of the seventh to ninth embodiments is less than 0.015 mm, which can reduce the problem of thermal drift.

綜上所述,本發明的第四至第九實施例至少具有以下其中一個優點或功效。在本發明的示範實施例中,光學鏡頭的設計符合預先設定的規範,因此光學鏡頭的尺寸小、重量輕、視角大、解析度高且可降低熱漂移的問題。 In summary, the fourth to ninth embodiments of the present invention have at least one of the following advantages or effects. In the exemplary embodiment of the present invention, the design of the optical lens complies with the preset specifications, so the optical lens is small in size, light in weight, large in viewing angle, high in resolution, and can reduce the problem of thermal drift.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。另外本發明的任一實施例或申請專利範圍不須達成本發明所揭露之全部目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利檔案搜尋之用,並非用來限制本發明之權利範圍。此外,本說明書或申請專利範圍中提及的“第一”、“第二”等用 語僅用以命名元件(element)的名稱或區別不同實施例或範圍,而並非用來限制元件數量上的上限或下限。 However, the above are only preferred embodiments of the present invention, and should not be used to limit the scope of implementation of the present invention, that is, simple equivalent changes and modifications made in accordance with the scope of the patent application of the present invention and the description of the invention, All are still within the scope of the invention patent. In addition, any embodiment of the present invention or the scope of the patent application does not have to achieve all the objectives or advantages or features disclosed in the present invention. In addition, the abstract part and the title are only used to assist the search of patent files, not to limit the scope of rights of the present invention. In addition, the “first” and “second” mentioned in this specification or the scope of the patent application are used The term is only used to name the name of an element or to distinguish different embodiments or ranges, and is not used to limit the upper or lower limit of the number of elements.

110:光學鏡頭 110: Optical lens

112、114、116、118:透鏡 112, 114, 116, 118: lens

120:傳遞稜鏡、第二稜鏡 120: Passing 稜鏡, second 稜鏡

140:玻璃蓋 140: glass cover

150:影像產生器 150: image generator

230:波導元件 230: Waveguide element

232:耦合入口 232: Coupling Entrance

234:耦合出口 234: Coupling Outlet

300:頭戴式顯示裝置 300: Head-mounted display device

900:目標 900: target

IM:影像光束 IM: image beam

ST:光欄 ST: light barrier

OA:光軸 OA: Optical axis

Claims (22)

一種光學鏡頭,包括:從一出光側往一入光側依序排列的一第一透鏡、一第二透鏡、一第三透鏡及一第四透鏡,該第一透鏡、該第二透鏡、該第三透鏡及該第四透鏡的屈光度依序為正、負、正及正,其中該光學鏡頭用於接收一影像產生器所提供的一影像光束,該影像產生器設置於該入光側,以及該影像光束在該出光側形成一光欄,該光欄具有該影像光束的光束縮束的一最小截面積。 An optical lens comprising: a first lens, a second lens, a third lens, and a fourth lens arranged in sequence from a light exit side to a light entrance side, the first lens, the second lens, and the The refractive powers of the third lens and the fourth lens are positive, negative, positive, and positive in order, wherein the optical lens is used to receive an image beam provided by an image generator, and the image generator is arranged on the light incident side, And the image light beam forms an aperture on the light exit side, and the aperture has a minimum cross-sectional area of the light beam of the image light beam. 如請求項1所述的光學鏡頭,其中該光學鏡頭符合B×D<130mm2,其中B為該光學鏡頭的鏡頭總長,且D為該光學鏡頭中一最大透鏡的一通光口徑。 The optical lens according to claim 1, wherein the optical lens conforms to B×D<130mm 2 , where B is the total length of the optical lens, and D is a clear aperture of a largest lens in the optical lens. 如請求項1所述的光學鏡頭,其中該光學鏡頭符合A+C<20mm,其中A為該光欄與該光學鏡頭在一光軸上的距離,且C為該光學鏡頭與該影像產生器在該光軸上的距離。 The optical lens according to claim 1, wherein the optical lens conforms to A+C<20mm, where A is the distance between the diaphragm and the optical lens on an optical axis, and C is the optical lens and the image generator The distance on the optical axis. 如請求項1所述的光學鏡頭,其中該光學鏡頭符合FOV/(B×D)>0.4°/mm2,其中B為該光學鏡頭的鏡頭總長,D為該光學鏡頭中一最大透鏡的一通光口徑,且FOV為該光學鏡頭的一視場角。 The optical lens according to claim 1, wherein the optical lens conforms to FOV/(B×D)>0.4°/mm 2 , wherein B is the total length of the optical lens, and D is a pass of a largest lens in the optical lens The optical aperture, and FOV is a field of view of the optical lens. 如請求項1所述的光學鏡頭,其中該光學鏡頭符合FOV>50°,其中FOV為該光學鏡頭的一視場角。 The optical lens according to claim 1, wherein the optical lens conforms to FOV>50°, wherein FOV is a field of view of the optical lens. 如請求項1所述的光學鏡頭,其中該第一透鏡為雙凸透鏡,該第二透鏡為凸凹透鏡且具有一朝向該入光側的凸面,該 第三透鏡為雙凸透鏡,且該第四透鏡為凹凸透鏡且具有一朝向該入光側的凹面。 The optical lens according to claim 1, wherein the first lens is a biconvex lens, the second lens is a convex-concave lens and has a convex surface facing the light incident side, the The third lens is a biconvex lens, and the fourth lens is a meniscus lens and has a concave surface facing the light incident side. 如請求項1所述的光學鏡頭,其中該第一透鏡、該第二透鏡、該第三透鏡及該第四透鏡為玻璃非球面透鏡。 The optical lens according to claim 1, wherein the first lens, the second lens, the third lens, and the fourth lens are glass aspheric lenses. 如請求項1所述的光學鏡頭,其中該光學鏡頭符合B×D<170mm2,其中B為該光學鏡頭的鏡頭總長,且D為該光學鏡頭中一最大透鏡的一通光口徑。 The optical lens according to claim 1, wherein the optical lens conforms to B×D<170mm 2 , where B is the total length of the optical lens, and D is a clear aperture of a largest lens in the optical lens. 如請求項1所述的光學鏡頭,其中該光學鏡頭符合A+C<25mm,其中A為該光欄與該光學鏡頭在一光軸上的距離,且C為該光學鏡頭與該影像產生器在該光軸上的距離。 The optical lens according to claim 1, wherein the optical lens conforms to A+C<25mm, where A is the distance between the diaphragm and the optical lens on an optical axis, and C is the optical lens and the image generator The distance on the optical axis. 如請求項1所述的光學鏡頭,其中該光學鏡頭符合FOV/(B×D)>0.2°/mm2,其中B為該光學鏡頭的鏡頭總長,D為該光學鏡頭中一最大透鏡的一通光口徑,且FOV為該光學鏡頭的一視場角。 The optical lens according to claim 1, wherein the optical lens conforms to FOV/(B×D)>0.2°/mm 2 , where B is the total length of the optical lens, and D is a pass of a largest lens in the optical lens The optical aperture, and FOV is a field of view of the optical lens. 如請求項1所述的光學鏡頭,其中該光學鏡頭符合FOV>40°,其中FOV為該光學鏡頭的一視場角。 The optical lens according to claim 1, wherein the optical lens conforms to FOV>40°, wherein FOV is a field of view of the optical lens. 如請求項1所述的光學鏡頭,其中該第一透鏡與該第二透鏡為塑膠非球面透鏡,該第三透鏡及該第四透鏡為玻璃非球面透鏡。 The optical lens according to claim 1, wherein the first lens and the second lens are plastic aspheric lenses, and the third lens and the fourth lens are glass aspheric lenses. 如請求項1所述的光學鏡頭,其中該第二透鏡與該第三透鏡為塑膠非球面透鏡,該第一透鏡與該第四透鏡為玻璃非球面透鏡。 The optical lens according to claim 1, wherein the second lens and the third lens are plastic aspheric lenses, and the first lens and the fourth lens are glass aspheric lenses. 如請求項1所述的光學鏡頭,其中該第二透鏡與該第四透鏡為塑膠非球面透鏡,該第一透鏡及該第三透鏡為玻璃非球面透鏡。 The optical lens according to claim 1, wherein the second lens and the fourth lens are plastic aspheric lenses, and the first lens and the third lens are glass aspheric lenses. 如請求項1所述的光學鏡頭,其中該第一透鏡與該第二透鏡與該第三透鏡為塑膠非球面透鏡,該第四透鏡為玻璃非球面透鏡。 The optical lens according to claim 1, wherein the first lens, the second lens, and the third lens are plastic aspheric lenses, and the fourth lens is a glass aspheric lens. 如請求項1所述的光學鏡頭,還包括一第一稜鏡設置在該光學鏡頭與該光欄之間,該影像光束離開該光學鏡頭,通過該第一稜鏡,並且會聚至該光欄,以及該影像光束在通過該光欄之後發散。 The optical lens according to claim 1, further comprising a first lens arranged between the optical lens and the diaphragm, the image beam leaves the optical lens, passes through the first lens, and converges to the diaphragm , And the image beam diverges after passing through the diaphragm. 如請求項1所述的光學鏡頭,其中該光欄形成在一波導元件的一耦合入口,該影像光束通過該光欄經由該耦合入口進入該波導元件,並且傳遞至該波導元件的一耦合出口,再投射到一目標。 The optical lens according to claim 1, wherein the diaphragm forms a coupling entrance of a waveguide element, and the image beam enters the waveguide element through the diaphragm through the coupling entrance, and is transmitted to a coupling exit of the waveguide element , And then project to a target. 如請求項1所述的光學鏡頭,其中該光學鏡頭符合以下條件:B×D<130mm2,A+C<20mm,FOV/(B×D)>0.4°/mm2,FOV>50°,其中A為該光欄與該光學鏡頭在一光軸上的距離,B為該光學鏡頭的鏡頭總長,C為該光學鏡頭與該影像產生器在該光軸上的距 離,D為該光學鏡頭中一最大透鏡的一通光口徑,且FOV為該光學鏡頭的一視場角,其中該光欄的形狀為圓形。 The optical lens described in claim 1, wherein the optical lens meets the following conditions: B×D<130mm 2 , A+C<20mm, FOV/(B×D)>0.4°/mm 2 , FOV>50°, Where A is the distance between the diaphragm and the optical lens on an optical axis, B is the total length of the optical lens, C is the distance between the optical lens and the image generator on the optical axis, and D is the optical lens One of the largest lens has a clear aperture, and FOV is a field of view of the optical lens, wherein the shape of the diaphragm is a circle. 如請求項1所述的光學鏡頭,其中該光學鏡頭符合以下條件:B×D<170mm2,A+C<25mm,FOV/(B×D)>0.2°/mm2,FOV>40°,其中A為該光欄與該光學鏡頭在一光軸上的距離,B為該光學鏡頭的鏡頭總長,C為該光學鏡頭與該影像產生器在該光軸上的距離,D為該光學鏡頭中一最大透鏡的一通光口徑,且FOV為該光學鏡頭的一視場角,其中該光欄的形狀為圓形。 The optical lens described in claim 1, wherein the optical lens meets the following conditions: B×D<170mm 2 , A+C<25mm, FOV/(B×D)>0.2°/mm 2 , FOV>40°, Where A is the distance between the diaphragm and the optical lens on an optical axis, B is the total length of the optical lens, C is the distance between the optical lens and the image generator on the optical axis, and D is the optical lens One of the largest lens has a clear aperture, and FOV is a field of view of the optical lens, wherein the shape of the diaphragm is a circle. 一種頭戴式顯示裝置,包括:一光學鏡頭,包括從一出光側往一入光側依序排列的一第一透鏡、一第二透鏡、一第三透鏡及一第四透鏡,該第一透鏡、該第二透鏡、該第三透鏡及該第四透鏡的屈光度依序為正、負、正及正,其中一影像產生器設置於該入光側,且該光學鏡頭用於接收該影像產生器所提供的一影像光束,以及該影像光束在該出光側形成一光欄,該光欄具有該影像光束的光束縮束的一最小截面積;以及一波導元件,其中該光欄形成在一波導元件的一耦合入口,該影像光束通過該光欄經由該耦合入口進入該波導元件,並 且傳遞至該波導元件的一耦合出口,再投射到一目標。 A head-mounted display device includes: an optical lens, including a first lens, a second lens, a third lens, and a fourth lens arranged in sequence from a light exit side to a light entrance side. The refractive powers of the lens, the second lens, the third lens, and the fourth lens are positive, negative, positive, and positive in order, and an image generator is arranged on the light incident side, and the optical lens is used to receive the image An image light beam provided by the generator, and the image light beam forms an aperture on the light exit side, the aperture having a minimum cross-sectional area of the image light beam reduced by the beam; and a waveguide element, wherein the aperture is formed on the A coupling entrance of a waveguide element, the image beam enters the waveguide element through the coupling entrance through the diaphragm, and It is transmitted to a coupling outlet of the waveguide element, and then projected to a target. 如請求項20所述的頭戴式顯示裝置,還包括一第一稜鏡設置在該光學鏡頭與該光欄之間,該影像光束離開該光學鏡頭,通過該第一稜鏡,並且會聚至該光欄,以及該影像光束在通過該光欄之後發散。 The head-mounted display device according to claim 20, further comprising a first lens arranged between the optical lens and the diaphragm, the image beam leaves the optical lens, passes through the first lens, and converges to The diaphragm and the image beam diverge after passing through the diaphragm. 如請求項20所述的頭戴式顯示裝置,其中該波導元件包括一光學微結構,設置在該耦合出口處,且該光學微結構將傳遞至該耦合出口的該影像光束投射到該目標。 The head-mounted display device according to claim 20, wherein the waveguide element includes an optical microstructure disposed at the coupling exit, and the optical microstructure projects the image beam transmitted to the coupling exit to the target.
TW109110420A 2019-06-26 2020-03-27 Optical lens and head-mounted display TWI732503B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962866634P 2019-06-26 2019-06-26
US62/866,634 2019-06-26
CN202010155853.8A CN112147758B (en) 2019-06-26 2020-03-09 Optical lens and head-mounted display device
CN202010155853.8 2020-03-09

Publications (2)

Publication Number Publication Date
TW202101064A TW202101064A (en) 2021-01-01
TWI732503B true TWI732503B (en) 2021-07-01

Family

ID=73891887

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109110420A TWI732503B (en) 2019-06-26 2020-03-27 Optical lens and head-mounted display

Country Status (4)

Country Link
US (1) US20200409034A1 (en)
JP (1) JP7474124B2 (en)
CN (1) CN112147758B (en)
TW (1) TWI732503B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107861247B (en) * 2017-12-22 2020-08-25 联想(北京)有限公司 Optical component and augmented reality device
CN114236864B (en) * 2021-11-23 2024-07-16 青岛歌尔声学科技有限公司 Optical module and head-mounted display device
CN114839767A (en) * 2022-03-31 2022-08-02 歌尔光学科技有限公司 Low-distortion optical imaging adjustment method and system and head-mounted display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM390465U (en) * 2010-04-30 2010-10-11 E-Pin Optical Industry Co Ltd Four-piece projection lens system and the projection apparatus using the same
US20190064527A1 (en) * 2017-08-31 2019-02-28 Coretronic Corporation Head mounted display apparatus and imaging lens
CN109932806A (en) * 2017-12-18 2019-06-25 中强光电股份有限公司 Optical lens

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319724A (en) * 1988-06-22 1989-12-26 Canon Inc Variable power finder optical system
IL116131A (en) * 1995-11-24 1998-09-24 Vectop Ltd Adapter for extracting a portion of an image from an optical system or device
US20040108971A1 (en) * 1998-04-09 2004-06-10 Digilens, Inc. Method of and apparatus for viewing an image
DE19931949A1 (en) * 1999-07-09 2001-01-11 Leica Microsystems DUV-compatible microscope lens with parfocal IR focus
JP2004341013A (en) 2003-05-13 2004-12-02 Olympus Corp Imaging optical system and imaging device using the same
JP4549661B2 (en) 2003-12-03 2010-09-22 学校法人早稲田大学 3D image presentation device
WO2009117870A1 (en) * 2008-03-26 2009-10-01 深圳航天科技创新研究院 Spectacles type display device using single display chip
TWI410692B (en) * 2010-10-20 2013-10-01 Largan Precision Co Ltd Photographing optical lens assembly
JP5795363B2 (en) * 2011-04-19 2015-10-14 富士フイルム株式会社 Projection lens and projection display device using the same
TWM504249U (en) * 2015-01-23 2015-07-01 Min Aik Technology Co Ltd Head mounted display and optical lens thereof
WO2018117025A1 (en) 2016-12-21 2018-06-28 キヤノン株式会社 Observation optical system and observation device having same
TWI781947B (en) * 2017-07-19 2022-11-01 揚明光學股份有限公司 Optical lens
WO2019054358A1 (en) * 2017-09-15 2019-03-21 株式会社ニコン Eyepiece optical system, optical device, and method for producing eyepiece optical system
FI129113B (en) * 2017-12-22 2021-07-15 Dispelix Oy Waveguide display and display element with novel grating configuration
KR20230155027A (en) * 2018-11-09 2023-11-09 스냅 인코포레이티드 Projection lens with four spherical glass elements
CN111610631B (en) * 2019-02-22 2021-08-17 京东方科技集团股份有限公司 Optical system and near-to-eye display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM390465U (en) * 2010-04-30 2010-10-11 E-Pin Optical Industry Co Ltd Four-piece projection lens system and the projection apparatus using the same
US20190064527A1 (en) * 2017-08-31 2019-02-28 Coretronic Corporation Head mounted display apparatus and imaging lens
CN109932806A (en) * 2017-12-18 2019-06-25 中强光电股份有限公司 Optical lens

Also Published As

Publication number Publication date
CN112147758A (en) 2020-12-29
US20200409034A1 (en) 2020-12-31
CN112147758B (en) 2023-07-28
TW202101064A (en) 2021-01-01
JP7474124B2 (en) 2024-04-24
JP2021005079A (en) 2021-01-14

Similar Documents

Publication Publication Date Title
TWI671559B (en) Display
TWI732503B (en) Optical lens and head-mounted display
TWI671564B (en) Optical lens
US10558022B2 (en) Optical lens and fabrication method thereof
TWI651564B (en) Fixed focus lens
JP2019185015A (en) Fixed-focus lens
TWI797438B (en) Optical lens
US20160077319A1 (en) Projection-type video display device
TWI768313B (en) Optical lens and head-mounted display
TWI631366B (en) Optical lens
TWI699550B (en) An optical lens
TWI530710B (en) Projection apparatus and projection lens
TW202030514A (en) Fixed focus lens and fabrication method thereof
EP3757646A1 (en) Optical lens and head-mounted display device
TWI738354B (en) Optical imaging lens
TWI810955B (en) Optical lens and display device
TWI838385B (en) Projection lens and projector optical engine
TW202422195A (en) Optical lens module, optical engine and head mounted display