TWI731596B - Virtual reality display apparatus - Google Patents

Virtual reality display apparatus Download PDF

Info

Publication number
TWI731596B
TWI731596B TW109105619A TW109105619A TWI731596B TW I731596 B TWI731596 B TW I731596B TW 109105619 A TW109105619 A TW 109105619A TW 109105619 A TW109105619 A TW 109105619A TW I731596 B TWI731596 B TW I731596B
Authority
TW
Taiwan
Prior art keywords
lens
user
virtual reality
optical
optical component
Prior art date
Application number
TW109105619A
Other languages
Chinese (zh)
Other versions
TW202132861A (en
Inventor
邱奕榮
黃士挺
李彥賢
塗宗偉
石維國
Original Assignee
宏星技術股份有限公司
宏碁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宏星技術股份有限公司, 宏碁股份有限公司 filed Critical 宏星技術股份有限公司
Priority to TW109105619A priority Critical patent/TWI731596B/en
Application granted granted Critical
Publication of TWI731596B publication Critical patent/TWI731596B/en
Publication of TW202132861A publication Critical patent/TW202132861A/en

Links

Images

Abstract

A virtual reality display apparatus including at least one display and at least one optical assembly and an imaging distance adjuster is provided. The display provides an image beam to a user’s left eye or right eye. The optical assembly is disposed on the transmission path of the image beam and between the display and the user's left or right eye. The at least one display has an active area, which faces the at least one optical component and the left eye or the right eye of the user, and is inclined with respect to the connection direction of the user's eyes. The at least one optical component is also inclined with respect to the connection direction of the user's eyes. The imaging distance adjuster is connected to the optical component and adapted to adjust the distance of the virtual image displayed by the image beam relative to the user.

Description

虛擬實境顯示裝置Virtual reality display device

本發明是有關於一種顯示裝置,且特別是有關於一種虛擬實境顯示裝置。The present invention relates to a display device, and more particularly to a virtual reality display device.

隨著顯示技術的進步,為了追求身歷其境的感受,使用者已無法滿足於只觀看平面的影像。為了提供使用者更具有現實感與立體感的視覺娛樂,虛擬實境(virtual reality, VR)成為目前顯示技術的新潮流。虛擬實境可利用模擬出一個三維空間的虛擬場景,提供使用者關於視覺等感官體驗,可即時觀看三維空間或二維空間的影像,甚至進一步能與虛擬影像進行互動。With the advancement of display technology, in order to pursue an immersive experience, users can no longer be satisfied with only viewing flat images. In order to provide users with more realistic and three-dimensional visual entertainment, virtual reality (VR) has become a new trend in current display technology. Virtual reality can simulate a virtual scene in a three-dimensional space to provide users with sensory experiences such as vision, and can view images in three-dimensional or two-dimensional space in real time, and even further interact with virtual images.

常見的虛擬實境顯示裝置例如有頭戴式顯示器(head mounted display, HMD),其可配戴在使用者的頭部。此時,虛擬實境顯示裝置中的顯示器相當靠近人眼。為了讓人眼在近距離下也能看清楚顯示器所顯示的影像,也就是讓顯示器所顯示的影像成像在人眼的視網膜上,顯示器與人間之間設有光學元件(例如透鏡),並藉由其屈光度(refractive power)改變光的行進路徑,而使影像成像在人間的視網膜上。如此一來,使用者便會看到眼睛前方的虛像,而有身歷其境的感覺。A common virtual reality display device is, for example, a head mounted display (HMD), which can be worn on the head of a user. At this time, the display in the virtual reality display device is quite close to the human eye. In order for the human eye to see the image displayed on the display clearly at a close distance, that is, the image displayed on the display is imaged on the retina of the human eye, an optical element (such as a lens) is installed between the display and the human room and borrows Its refractive power changes the path of light, and the image is imaged on the human retina. In this way, the user will see the virtual image in front of the eyes and feel like being in the realm.

然而,多數的虛擬實境顯示裝置中的光學組件之間的距離是固定不變的,無法調整焦距,因此無法適合所有人觀看,具有近視或遠視的使用者仍需另外配戴矯正視力的眼鏡或隱形眼鏡才能清楚地觀看呈現於眼前的影像。除此之外,虛擬實境顯示裝置中的光學組件為了配戴舒適度,希望能減輕所使用的光學組件的重量與體積,因此會使用菲涅耳透鏡(Fresnel lens)取代傳統透鏡,但菲涅耳透鏡的表面是鋸齒狀的微結構,側面其中一邊是光學成像用的有效區,另一邊是能提供脫模方便的非光學有效區,當光線打到非光學有效區的時候會產生雜散光,造成觀看品質下降。However, the distance between the optical components in most virtual reality display devices is fixed, and the focal length cannot be adjusted. Therefore, it cannot be suitable for everyone to watch. Users with nearsightedness or hyperopia still need to wear eye-correcting glasses. Or contact lenses can clearly see the image presented in front of the eyes. In addition, for the wearing comfort of the optical components in the virtual reality display device, it is hoped that the weight and volume of the optical components used can be reduced. Therefore, Fresnel lenses are used instead of traditional lenses. The surface of the Nel lens is a jagged microstructure. One side of the side is the effective area for optical imaging, and the other side is the non-optical effective area that can provide convenient demolding. When the light hits the non-optical effective area, it will produce noise. Astigmatism, causing degradation of viewing quality.

本發明提供一種虛擬實境顯示裝置,能廣泛適用於具有不同視力條件的不同使用者。The invention provides a virtual reality display device, which can be widely applied to different users with different vision conditions.

本發明的虛擬實境顯示裝置包括至少一顯示器、至少一光學組件以及一成像距離調整器。至少一顯示器適於提供一影像光束至一使用者的左眼或右眼。至少一光學組件設置在影像光束的傳遞路徑上,且位於顯示器與使用者的左眼或右眼之間,以使影像光束於使用者的左眼或右眼中顯示一虛像。至少一顯示器具有一主動顯示面,主動顯示面朝向至少一光學組件以及使用者的左眼或右眼,且相對於使用者雙眼連線方向傾斜。至少一光學組件亦相對於使用者雙眼連線方向傾斜。成像距離調整器連接於至少一光學組件,適於調整影像光束所顯示的虛像相對於使用者的距離。The virtual reality display device of the present invention includes at least one display, at least one optical component, and an imaging distance adjuster. At least one display is suitable for providing an image beam to the left or right eye of a user. At least one optical component is arranged on the transmission path of the image light beam and is located between the display and the left or right eye of the user, so that the image light beam displays a virtual image in the left or right eye of the user. The at least one display has an active display surface, and the active display surface faces the at least one optical component and the left eye or the right eye of the user, and is inclined with respect to the connection direction of the user's eyes. At least one optical component is also inclined with respect to the connection direction of the user's eyes. The imaging distance adjuster is connected to at least one optical component, and is suitable for adjusting the distance of the virtual image displayed by the image beam relative to the user.

在本發明的一實施例中,上述的光學組件相對於使用者雙眼連線方向具有一夾角,夾角的範圍是大於0度,並且小於等於45度。In an embodiment of the present invention, the above-mentioned optical component has an included angle with respect to the connecting direction of the user's eyes, and the range of the included angle is greater than 0 degrees and less than or equal to 45 degrees.

在本發明的一實施例中,上述的成像距離調整器為一間距調整器,以及至少一光學組件為二光學組件,至少一顯示器為二顯示器,其中間距調整器用以分別調整位於影像光束傳遞到使用者左眼路徑上的顯示器與光學組件之間的間距,以及位於影像光束傳遞到使用者右眼的路徑上的顯示器與光學組件之間的間距。In an embodiment of the present invention, the above-mentioned imaging distance adjuster is a distance adjuster, at least one optical component is two optical components, at least one display is two displays, and the distance adjuster is used to adjust the distance between the image beams and the The distance between the display and the optical component on the path of the user's left eye, and the distance between the display and the optical component on the path where the image beam is transmitted to the user's right eye.

在本發明的一實施例中,上述的各光學組件包括一可動透鏡以及一固定透鏡,間距調整器分別使各可動透鏡相對各顯示器移動。In an embodiment of the present invention, each of the above-mentioned optical components includes a movable lens and a fixed lens, and the pitch adjuster respectively moves each movable lens relative to each display.

在本發明的一實施例中,上述的間距調整器分別使各顯示器相對各光學組件移動。In an embodiment of the present invention, the above-mentioned pitch adjuster respectively moves each display relative to each optical component.

在本發明的一實施例中,上述的光學組件包括至少一可變焦透鏡,可變焦透鏡適於動態調整影像光束所顯示的虛像相對於使用者的左眼或右眼的距離。In an embodiment of the present invention, the above-mentioned optical assembly includes at least one zoom lens, and the zoom lens is adapted to dynamically adjust the distance of the virtual image displayed by the image beam relative to the left eye or the right eye of the user.

在本發明的一實施例中,上述的可變焦透鏡為液晶透鏡,且成像距離調整器為一電壓施加器,適於施加電壓於可變焦透鏡以控制可變焦透鏡的液晶轉動方向,而調整可變焦透鏡的有效焦距。In an embodiment of the present invention, the aforementioned variable focus lens is a liquid crystal lens, and the imaging distance adjuster is a voltage applicator, which is adapted to apply a voltage to the variable focus lens to control the liquid crystal rotation direction of the variable focus lens, and adjust the The effective focal length of the zoom lens.

在本發明的一實施例中,上述的光學組件包括至少一菲涅耳透鏡,菲涅耳透鏡包括多個環繞其光軸的環狀結構,每一環狀結構具有相連接的且排列於徑向上的一有效折射面及一非光學有效面,且菲涅耳透鏡的每一個環形齒的非光學有效側面塗覆有一光吸收材料。In an embodiment of the present invention, the above-mentioned optical component includes at least one Fresnel lens, and the Fresnel lens includes a plurality of ring structures surrounding its optical axis, and each ring structure is connected and arranged in a diameter. An upward effective refraction surface and a non-optical effective surface, and the non-optical effective side surface of each ring tooth of the Fresnel lens is coated with a light absorbing material.

在本發明的一實施例中,上述的菲涅耳透鏡為凸透鏡,且菲涅耳透鏡的每一個環形齒的非光學有效側面為環形齒之靠近菲涅耳透鏡的光軸的內側面。In an embodiment of the present invention, the aforementioned Fresnel lens is a convex lens, and the non-optically effective side surface of each ring tooth of the Fresnel lens is the inner side surface of the ring tooth close to the optical axis of the Fresnel lens.

在本發明的一實施例中,上述的菲涅耳透鏡為凹透鏡,且菲涅耳透鏡的每一個環形齒的非光學有效側面為環形齒之遠離菲涅耳透鏡的光軸的外側面。In an embodiment of the present invention, the aforementioned Fresnel lens is a concave lens, and the non-optically effective side surface of each ring tooth of the Fresnel lens is the outer surface of the ring tooth away from the optical axis of the Fresnel lens.

基於上述,本發明的實施例的虛擬實境顯示裝置藉由光學組件與顯示器皆相對於使用者雙眼連線方向傾斜的配置,可以擴大虛擬實境顯示裝置的可視角範圍,而可無死角覆蓋使用者雙眼全視野的可視範圍,而提供更寫實的虛擬實境的感官體驗。並且,虛擬實境顯示裝置藉由成像距離調整器的配置,適於調整影像光束所顯示的虛像相對於使用者的距離,因此能配合使用者的視力狀況進行視力地矯正,具有近視或遠視的使用者不需另外配戴矯正視力的眼鏡或隱形眼鏡即能清楚地觀看呈現於眼前的影像,而可廣泛適用於具有不同視力條件的不同使用者。另一方面,本發明的實施例的虛擬實境顯示裝置藉由在光學組件的菲涅耳透鏡的非光學有效區塗覆光吸收材料,以阻止光線由非光學有效區通過光學組件,可以改善雜散光問題,提升虛擬實境的觀賞品質。Based on the above, the virtual reality display device of the embodiment of the present invention can expand the viewing angle range of the virtual reality display device without dead angles through the arrangement of the optical components and the display that are inclined relative to the connection direction of the user's eyes. Covers the visual range of the user's full field of vision, and provides a more realistic sensory experience of virtual reality. In addition, the virtual reality display device is adapted to adjust the distance of the virtual image displayed by the image light beam relative to the user through the configuration of the imaging distance adjuster, so that it can be corrected visually according to the user's vision condition, with nearsightedness or hyperopia The user does not need to wear glasses or contact lenses for correcting vision to be able to clearly view the image presented in front of the eyes, and it can be widely applied to different users with different vision conditions. On the other hand, in the virtual reality display device of the embodiment of the present invention, the non-optical effective area of the Fresnel lens of the optical component is coated with a light absorbing material to prevent light from passing through the optical component from the non-optically effective area, which can improve The stray light problem improves the viewing quality of virtual reality.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

圖1是依照本發明的一實施例的一種虛擬實境顯示裝置的架構示意圖。請參照圖1,在本實施例中,虛擬實境顯示裝置100包括至少一顯示器120、至少一光學組件110以及一成像距離調整器130,並可適用於頭戴式裝置。顯示器120適於提供影像光束IL至使用者的眼睛EY,讓使用者觀賞虛擬影像,例如三維的虛擬影像。舉例而言,在本實施例中,顯示器120可以是液晶顯示器(LCD)、有機發光二極體顯示器(OLED)、可撓式類型顯示器或是其它的顯示器等,用以提供左右眼影像畫面。FIG. 1 is a schematic structural diagram of a virtual reality display device according to an embodiment of the present invention. 1, in this embodiment, the virtual reality display device 100 includes at least one display 120, at least one optical component 110, and an imaging distance adjuster 130, and is suitable for head-mounted devices. The display 120 is adapted to provide the image light beam IL to the user's eyes EY, so that the user can watch a virtual image, such as a three-dimensional virtual image. For example, in this embodiment, the display 120 may be a liquid crystal display (LCD), an organic light emitting diode display (OLED), a flexible type display, or other displays, etc., to provide left and right eye images.

具體而言,如圖1所示,在本實施例中,光學組件110則設置在影像光束IL的傳遞路徑上,且位於顯示器120與使用者的左眼EYL或右眼EYR之間,以使影像光束IL於使用者的左眼EYL或右眼EYR中顯示一虛像。舉例而言,在本實施例中,至少一顯示器120為二顯示器120R與120L,而可以是分別提供給使用者左右眼EY觀看的兩個顯示器120,至少一光學組件110為二光學組件110R與110L,並分別對應顯示器120R與120L而設置。如圖1所示,在本實施例中,顯示器120R提供影像光束IL1至使用者的右眼EYR,顯示器120L提供影像光束IL2至使用者的左眼EYL。光學組件110R位在影像光束IL1到使用者的右眼EYR的傳遞路徑上,而光學組件110L位在影像光束IL2到使用者的左眼EYL的傳遞路徑上。Specifically, as shown in FIG. 1, in this embodiment, the optical component 110 is disposed on the transmission path of the image light beam IL, and is located between the display 120 and the user's left eye EYL or right eye EYR, so that The image beam IL displays a virtual image in the user's left eye EYL or right eye EYR. For example, in this embodiment, the at least one display 120 is two displays 120R and 120L, but may be two displays 120 provided for the user's left and right eyes EY to view respectively, and at least one optical component 110 is two optical components 110R and 110L, and set corresponding to the displays 120R and 120L respectively. As shown in FIG. 1, in this embodiment, the display 120R provides the image light beam IL1 to the user's right eye EYR, and the display 120L provides the image light beam IL2 to the user's left eye EYL. The optical component 110R is located on the transmission path of the image light beam IL1 to the user's right eye EYR, and the optical component 110L is located on the transmission path of the image light beam IL2 to the user's left eye EYL.

進一步而言,如圖1所示,在本實施例中,顯示器120具有一主動顯示面S120,主動顯示面S120朝向至少一光學組件110以及使用者的左眼EYL或右眼EYR,且相對於使用者雙眼連線方向EL傾斜。另一方面,光學組件110亦相對於使用者雙眼連線方向EL傾斜。如此,虛擬實境顯示裝置100藉由顯示器120與光學組件110皆相對於使用者的雙眼連線方向EL傾斜的配置,而能夠擴展使用者在水平視線平面的視野,進而能在維持立體視覺效果的狀況下,提升使用者的視野範圍。以下將搭配圖2A至圖2C進行進一步地解說。Furthermore, as shown in FIG. 1, in this embodiment, the display 120 has an active display surface S120, which faces at least one optical component 110 and the user's left eye EYL or right eye EYR, and is opposite to The direction EL of the user's eyes is inclined. On the other hand, the optical component 110 is also inclined with respect to the connecting direction EL of the user's eyes. In this way, the virtual reality display device 100 can extend the user's field of view in the horizontal line of sight plane by the arrangement of the display 120 and the optical component 110 that are inclined relative to the user's binocular connection direction EL, thereby maintaining stereoscopic vision. Under the condition of effect, the user's field of view is improved. The following will be further explained in conjunction with FIG. 2A to FIG. 2C.

圖2A是一般人眼的立體視野示意圖。圖2B是習知的虛擬實境顯示裝置於人眼中的立體視野示意圖。圖2C是圖1的虛擬實境顯示裝置於人眼中的立體視野示意圖。請參照圖2A,一般而言,人的雙眼重合視域有124度,而在人眼觀看到的範圍內,只有這124度視角內的物體才有立體感。換句話說,只有這雙眼重合視域的124度內觀看到的物體截面,才能讓人類的雙眼感受到立體視覺。Fig. 2A is a schematic diagram of the stereoscopic visual field of the general human eye. FIG. 2B is a schematic diagram of a stereoscopic view of a conventional virtual reality display device in the eyes of humans. FIG. 2C is a schematic diagram of a stereoscopic view of the virtual reality display device of FIG. 1 in the eyes of humans. Please refer to FIG. 2A. Generally speaking, the overlapping field of view of human eyes is 124 degrees, and within the range that the human eye can see, only objects within the 124 degrees viewing angle have a three-dimensional effect. In other words, only the cross-section of the object viewed within 124 degrees of the overlap of the eyes can make the human eyes feel stereoscopic vision.

然而,如圖2B所示,當光學組件110平行雙眼連線方向EL擺放(平行紙面的水平方向),即光學組件110相對於使用者雙眼連線方向EL具有的夾角是0度時,使用者可以獲得最好的立體效果,此時,對雙眼重合視域而言,虛擬實境顯示裝置100所提供的可視角θ的範圍約有132度。但是此時虛擬實境顯示裝置100的全範圍的可視角範圍並不足使用者的全視野範圍,亦即小於180度。However, as shown in FIG. 2B, when the optical assembly 110 is placed parallel to the binocular connection direction EL (parallel to the horizontal direction of the paper), that is, the included angle of the optical assembly 110 with respect to the user's binocular connection direction EL is 0 degrees , The user can obtain the best three-dimensional effect. At this time, the range of the viewing angle θ provided by the virtual reality display device 100 is about 132 degrees for the overlapped field of view. However, at this time, the full view angle range of the virtual reality display device 100 is not enough for the user's full view range, that is, less than 180 degrees.

因此,如圖1與圖2C所示,在本實施例中,顯示器120與光學組件110皆相對於使用者的雙眼連線方向EL傾斜,而分別相對於使用者雙眼連線方向EL具有夾角θ1、θ2。舉例而言,在本實施例中,光學組件110相對於使用者雙眼連線方向EL具有的夾角θ2的範圍是大於0度,並且小於等於45度。並且,如圖1所示,在本實施例中,對應於使用者左眼EYL的光學組件110與對應於使用者右眼EYR的光學組件110之間具有一夾角θ3。Therefore, as shown in FIGS. 1 and 2C, in this embodiment, the display 120 and the optical assembly 110 are both inclined with respect to the user's binocular connection direction EL, and respectively have a relationship with the user's binocular connection direction EL. The included angle θ1, θ2. For example, in this embodiment, the range of the included angle θ2 of the optical assembly 110 with respect to the connecting direction EL of the user's eyes is greater than 0 degrees and less than or equal to 45 degrees. Moreover, as shown in FIG. 1, in this embodiment, there is an included angle θ3 between the optical assembly 110 corresponding to the user's left eye EYL and the optical assembly 110 corresponding to the user's right eye EYR.

如此,如圖2C所示,在本實施例中,當相對於使用者雙眼連線方向EL具有的夾角θ2為45度左右時,對雙眼重合視域而言,虛擬實境顯示裝置100所提供的可視角θ範圍約為64度左右,而仍可獲得基本的立體視覺效果。但虛擬實境顯示裝置100的可視角範圍此時明顯大於180度,而可無死角覆蓋使用者雙眼EY全視野的可視範圍,而提供更寫實的虛擬實境的感官體驗。In this way, as shown in FIG. 2C, in this embodiment, when the angle θ2 with respect to the connecting direction EL of the user's eyes is about 45 degrees, the virtual reality display device 100 is The provided viewing angle θ range is about 64 degrees, and the basic stereo vision effect can still be obtained. However, the viewing angle range of the virtual reality display device 100 is obviously greater than 180 degrees at this time, and there is no dead angle to cover the visual range of the user's eyes EY, thereby providing a more realistic sensory experience of virtual reality.

另一方面,在本實施例中,虛擬實境顯示裝置100的成像距離調整器130適於調整影像光束IL所顯示的虛像相對於使用者的距離,而能配合使用者的視力狀況進行視力地矯正,而可廣泛適用於具有不同視力的不同使用者。以下將搭配圖3至圖5進行進一步地解說。On the other hand, in this embodiment, the imaging distance adjuster 130 of the virtual reality display device 100 is adapted to adjust the distance of the virtual image displayed by the image light beam IL with respect to the user, so as to match the user's vision condition to perform visual observation. Correction, and can be widely applied to different users with different eyesight. The following will be further explained in conjunction with Figures 3 to 5.

圖3是圖1的一種光學組件的架構示意圖。圖4A與圖4B是圖3的光學組件的不同菲涅耳透鏡的架構示意圖。如圖1與圖3所示,在本實施例中,虛擬實境顯示裝置100的成像距離調整器130為一間距調整器130S,連接光學組件110與顯示器120,並能用以調整光學組件110與顯示器120彼此的間距。間距調整器130S可以包括齒輪或是其他的間距調整器130S會用到的機械元件,例如齒條、滑軌、螺絲、彈簧等,或是上述元件或其他適當機械元件的組合。此外,本發明的實施例所繪示的間距調整器130S的配置位置僅為示意,任何所屬技術領域中具有通常知識者可依據需要做適當變化,本發明對此並不限制。FIG. 3 is a schematic structural diagram of an optical component of FIG. 1. 4A and 4B are schematic diagrams of different Fresnel lenses of the optical assembly of FIG. 3. As shown in FIGS. 1 and 3, in this embodiment, the imaging distance adjuster 130 of the virtual reality display device 100 is a distance adjuster 130S, which connects the optical assembly 110 and the display 120, and can be used to adjust the optical assembly 110 The distance from the display 120 to each other. The spacing adjuster 130S may include gears or other mechanical elements used by the spacing adjuster 130S, such as racks, sliding rails, screws, springs, etc., or a combination of the above elements or other appropriate mechanical elements. In addition, the arrangement position of the spacing adjuster 130S shown in the embodiment of the present invention is only for illustration, and any person with ordinary knowledge in the technical field can make appropriate changes as needed, and the present invention is not limited thereto.

具體來說,請參照圖1與圖3,位於影像光束IL1傳遞到使用者右眼EYR路徑上的顯示器120R與光學組件110R之間的間距為SP1,而位於影像光束IL2傳遞到使用者左眼EYL路徑上的顯示器120L與光學組件110L之間的間距為SP2。舉例來說,SP1可以是沿著光學組件110R的光軸方向上顯示器120R與光學組件110R之間的距離,SP2可以是沿著光學組件110L的光軸方向上顯示器120L與光學組件110L之間的距離,本發明對光學組件110與顯示器120彼此間距的量測方式並不加以限制。Specifically, referring to FIGS. 1 and 3, the distance between the display 120R and the optical assembly 110R on the path where the image beam IL1 passes to the user's right eye EYR is SP1, and the image beam IL2 passes to the user's left eye. The distance between the display 120L and the optical assembly 110L on the EYL path is SP2. For example, SP1 may be the distance between the display 120R and the optical assembly 110R along the optical axis direction of the optical assembly 110R, and SP2 may be the distance between the display 120L and the optical assembly 110L along the optical axis direction of the optical assembly 110L. For the distance, the present invention does not limit the measurement method of the distance between the optical component 110 and the display 120.

在本實施例中,間距調整器130S可分別調整顯示器120R與光學組件110R的間距SP1與顯示器120L與光學組件110L的間距SP2,而改變間距SP1與SP2可分別調整光學組件110R與110L的成像距離,即影像光束IL所顯示的虛像相對於使用者的距離。舉例而言,間距調整器130S調整間距SP1與SP2的方式可為使各顯示器120相對各光學組件110移動,但本發明不以此為限。在本實施例中,各光學組件110亦可具有一可動透鏡111M以及一固定透鏡111F的配置,而間距調整器130S亦可透過分別使各可動透鏡111M相對各顯示器120移動的方式,來調整間距SP1與SP2。此外,間距調整器130S亦可依據使用者左右眼的視力狀況來調整成像距離,以適應雙眼視力不同的使用者。In this embodiment, the spacing adjuster 130S can adjust the spacing SP1 between the display 120R and the optical component 110R and the spacing SP2 between the display 120L and the optical component 110L, and changing the spacing SP1 and SP2 can adjust the imaging distance of the optical components 110R and 110L, respectively. , That is, the distance between the virtual image displayed by the image beam IL and the user. For example, the spacing adjuster 130S can adjust the spacing SP1 and SP2 by moving each display 120 relative to each optical component 110, but the invention is not limited to this. In this embodiment, each optical component 110 may also have a configuration of a movable lens 111M and a fixed lens 111F, and the pitch adjuster 130S may also adjust the pitch by moving each movable lens 111M relative to each display 120 respectively. SP1 and SP2. In addition, the spacing adjuster 130S can also adjust the imaging distance according to the vision conditions of the left and right eyes of the user to adapt to users with different binocular vision.

具體而言,在本實施例中,虛擬實境顯示裝置100適於調整影像光束IL所顯示的虛像相對於使用者的距離的範圍。舉例而言,在間距調整器130S透過分別使各可動透鏡111M相對各顯示器120移動的方式來調整間距SP1與SP2的實施例中,如圖1與圖3所示,當間距SP1或間距SP2為36毫米,成像距離(即影像光束IL所顯示的虛像相對於使用者的距離)的範圍約為0.5公尺,而可適用於近視度數為200度左右的使用者;而當間距SP1或間距SP2被調整為35、34或33毫米,成像距離(即影像光束IL所顯示的虛像相對於使用者的距離)的範圍也會對應地改為至約為0.4、0.333或0.285公尺,而可適用於近視度數為250、300或350度左右的使用者。應注意的是,此處的數值範圍皆僅是作為例示說明之用,其並非用以限定本發明。Specifically, in this embodiment, the virtual reality display device 100 is adapted to adjust the distance range of the virtual image displayed by the image light beam IL relative to the user. For example, in an embodiment in which the spacing adjuster 130S adjusts the spacing SP1 and SP2 by moving each movable lens 111M relative to each display 120, as shown in FIGS. 1 and 3, when the spacing SP1 or the spacing SP2 is 36 mm, the imaging distance (that is, the distance between the virtual image displayed by the image beam IL and the user) is about 0.5 meters, which is suitable for users with a myopia of about 200 degrees; and when the distance is SP1 or SP2 Adjusted to 35, 34 or 33 mm, the imaging distance (that is, the distance between the virtual image displayed by the image beam IL and the user) will be changed to approximately 0.4, 0.333 or 0.285 meters accordingly, which is applicable For users whose myopia is around 250, 300 or 350 degrees. It should be noted that the numerical ranges here are for illustrative purposes only, and are not intended to limit the present invention.

如此,虛擬實境顯示裝置100即可藉由成像距離調整器130(即間距調整器130S)的配置,而能適於調整影像光束IL所顯示的虛像相對於使用者的距離,進而能配合使用者的視力狀況進行視力地矯正,具有近視或遠視的使用者不需另外配戴矯正視力的眼鏡或隱形眼鏡即能清楚地觀看呈現於眼前的影像,而可廣泛適用於具有不同視力條件的不同使用者。In this way, the virtual reality display device 100 can be adapted to adjust the distance of the virtual image displayed by the image beam IL relative to the user through the configuration of the imaging distance adjuster 130 (ie, the spacing adjuster 130S), and thus can be used in conjunction The vision condition of the user can be corrected visually. Users with myopia or hyperopia can clearly view the image presented in front of them without wearing additional glasses or contact lenses for correcting vision, and it can be widely applied to different vision conditions. user.

此外,請參照圖4A與圖4B,圖4A與圖4B是圖3的光學組件110的不同菲涅耳透鏡的架構示意圖。圖4A繪示了圖3的實施例的光學組件中的菲涅耳透鏡的凸透鏡形式的剖面示意圖,圖4B繪示了圖3的實施例的光學組件中的菲涅耳透鏡的凹透鏡形式的剖面示意圖。在圖3的實施例中,光學組件110可以是由一片菲涅耳透鏡(Fresnel lens)或由多片菲涅耳透鏡組合而成,也可以是由其它具有類似功能光學透鏡組合而成,或是這些光學透鏡的組合,本發明對此並不限制。在本實施例中,光學組件110包括至少一個菲涅耳透鏡FL1。舉例來說,光學組件110的菲涅耳透鏡FL1的微結構表面S可以是背對使用者的眼睛EY而面向顯示器120。在本實施例中,菲涅耳透鏡FL1的表面S具有鋸齒狀的微結構,具有多個環形齒RT,每一個環形齒RT的側面,其中一邊是光學成像用的光學有效側面ES,另一邊是非光學有效側面NS。本實施例中菲涅耳透鏡FL1的每一個環形齒RT的非光學有效側面NS塗覆有光吸收材料BM。光線L1入射到光學有效側面ES,經過菲涅耳透鏡FL1折射而通過光學組件110變成光線L2,另一方面,光線L3入射到非光學有效側面NS,會被光吸收材料BM吸收而無法通過光學組件110。也就是說在本實施例中,菲涅耳透鏡FL1的這些非光學有效側面NS形成非光學有效區NR,並且菲涅耳透鏡FL1的非光學有效區NR塗覆有光吸收材料BM。In addition, please refer to FIGS. 4A and 4B. FIGS. 4A and 4B are schematic diagrams of different Fresnel lenses of the optical assembly 110 in FIG. 3. 4A shows a schematic cross-sectional view of the convex lens form of the Fresnel lens in the optical assembly of the embodiment of FIG. 3, and FIG. 4B shows a cross section of the concave lens form of the Fresnel lens in the optical assembly of the embodiment of FIG. 3 Schematic. In the embodiment of FIG. 3, the optical component 110 may be composed of one Fresnel lens or a combination of multiple Fresnel lenses, or may be composed of other optical lenses with similar functions, or It is a combination of these optical lenses, and the present invention is not limited to this. In this embodiment, the optical assembly 110 includes at least one Fresnel lens FL1. For example, the microstructure surface S of the Fresnel lens FL1 of the optical assembly 110 may be facing away from the user's eyes EY and facing the display 120. In this embodiment, the surface S of the Fresnel lens FL1 has a serrated microstructure with a plurality of ring teeth RT. The side surface of each ring tooth RT, one of which is the optically effective side surface ES for optical imaging, and the other side It is the non-optical effective side NS. In this embodiment, the non-optically effective side surface NS of each ring tooth RT of the Fresnel lens FL1 is coated with a light absorbing material BM. The light L1 is incident on the optically effective side ES, is refracted by the Fresnel lens FL1 and then becomes the light L2 by the optical component 110. On the other hand, the light L3 is incident on the non-optical effective side NS, will be absorbed by the light absorbing material BM and cannot pass through the optics. Component 110. That is to say, in this embodiment, these non-optically effective side surfaces NS of the Fresnel lens FL1 form a non-optically effective area NR, and the non-optically effective area NR of the Fresnel lens FL1 is coated with a light absorbing material BM.

光吸收材料BM例如是黑色油墨、摻有黑色碳粉的樹脂或其他適當的材料。舉例而言,在本實施例中,這些光吸收材料BM可藉由旋塗製程或微影製程塗覆於菲涅耳透鏡FL1的非光學有效側面NS上。然而,本發明並不限制光吸收材料BM的材料種類或塗覆方式,其可由本領域具有通常知識者依據實際應用情況作適當選擇。The light absorbing material BM is, for example, black ink, resin mixed with black carbon powder, or other suitable materials. For example, in this embodiment, these light absorbing materials BM can be coated on the non-optically effective side surface NS of the Fresnel lens FL1 by a spin coating process or a lithography process. However, the present invention does not limit the material type or coating method of the light absorbing material BM, which can be appropriately selected by a person with ordinary knowledge in the art according to the actual application.

具體來說,本實施例的菲涅耳透鏡FL可以是凸透鏡,例如圖2A所示,菲涅耳透鏡FL1是凸透鏡,具有多個環形齒RT,且菲涅耳透鏡FL1的每一個環形齒RT的非光學有效側面NS屬於非光學有效區NR,其中非光學有效側面NS為環形齒RT之靠近該菲涅耳透鏡FL1的光軸O的內側面。然而,如圖4B所示,本發明另一實施例的菲涅耳透鏡FL也可以是凹透鏡,菲涅耳透鏡FL2是凹透鏡,具有多個環形齒RT,且菲涅耳透鏡FL2的每一個環形齒RT的非光學有效側面NS屬於該非光學有效區NR,其中非光學有效側面NS為環形齒RT之遠離菲涅耳透鏡FL2的光軸O的外側面。本發明對菲涅耳透鏡FL的形式並不加以限制。Specifically, the Fresnel lens FL of this embodiment may be a convex lens. For example, as shown in FIG. 2A, the Fresnel lens FL1 is a convex lens with a plurality of ring teeth RT, and each ring tooth RT of the Fresnel lens FL1 The non-optically effective side surface NS belongs to the non-optically effective area NR, where the non-optically effective side surface NS is the inner side surface of the ring tooth RT close to the optical axis O of the Fresnel lens FL1. However, as shown in FIG. 4B, the Fresnel lens FL of another embodiment of the present invention may also be a concave lens. The Fresnel lens FL2 is a concave lens and has a plurality of ring teeth RT, and each of the Fresnel lens FL2 is ring-shaped. The non-optically effective side surface NS of the tooth RT belongs to the non-optically effective area NR, where the non-optically effective side surface NS is the outer side surface of the ring tooth RT away from the optical axis O of the Fresnel lens FL2. The present invention does not limit the form of the Fresnel lens FL.

因此在本實施例中,藉由在菲涅耳透鏡FL的非光學有效區NR上塗覆光吸收材料BM,以阻止光線由非光學有效區通過光學組件110,進而能改善雜散光問題,而提升虛擬實境的觀賞品質。Therefore, in this embodiment, the non-optical effective area NR of the Fresnel lens FL is coated with a light absorbing material BM to prevent light from passing through the optical component 110 from the non-optically effective area, thereby improving the stray light problem and improving The viewing quality of virtual reality.

另一方面,請參照圖5,圖5是圖1的另一種光學組件的架構示意圖,而繪示了圖1的實施例的光學組件中的液晶透鏡的剖面示意圖。具體而言,如圖5所示,在本實施例中,光學組件510包括至少一可變焦透鏡512Z。舉例而言,在本實施例中,可變焦透鏡512Z可為液晶透鏡,而光學組件510可以是由一片液晶透鏡或由多片液晶透鏡組合而成,也可以是由其它具有類似功能光學透鏡組合而成,或是這些光學透鏡的組合,本發明對此並不限制。On the other hand, please refer to FIG. 5. FIG. 5 is a schematic structural diagram of another optical assembly of FIG. 1, and illustrates a cross-sectional schematic diagram of a liquid crystal lens in the optical assembly of the embodiment of FIG. 1. Specifically, as shown in FIG. 5, in this embodiment, the optical assembly 510 includes at least one variable focus lens 512Z. For example, in this embodiment, the variable focus lens 512Z may be a liquid crystal lens, and the optical assembly 510 may be composed of a liquid crystal lens or a combination of multiple liquid crystal lenses, or a combination of other optical lenses with similar functions. The present invention is not limited to this, or a combination of these optical lenses.

具體而言,在本實施例中,成像距離調整器530為一電壓施加器530E,並連接於該至少一光學組件510的可變焦透鏡512Z,且適於施加電壓於可變焦透鏡512Z以控制可變焦透鏡512Z的液晶轉動方向,而調整可變焦透鏡512Z的有效焦距,如此,可變焦透鏡512Z適於動態調整影像光束IL所顯示的虛像相對於使用者的左眼EYL或右眼EYR的距離。Specifically, in this embodiment, the imaging distance adjuster 530 is a voltage applicator 530E, and is connected to the zoom lens 512Z of the at least one optical component 510, and is adapted to apply a voltage to the zoom lens 512Z to control the zoom lens 512Z. The liquid crystal rotation direction of the zoom lens 512Z adjusts the effective focal length of the zoom lens 512Z. In this way, the zoom lens 512Z is suitable for dynamically adjusting the distance of the virtual image displayed by the image beam IL relative to the left eye EYL or right eye EYR of the user.

更詳細而言,如圖5所示,液晶透鏡的運作原理為當未施加電壓於液晶透鏡時,液晶透鏡的液晶分子的長軸方向依照配向膜(alignment layer)的配向方向排列。此時,當光線通過液晶層時,光線的相位將不受影響。然而,如圖5所示,當施加電壓於液晶透鏡時,液晶分子受到液晶透鏡內的上下電極層之間的電場驅動而偏轉,其中位於電極層邊緣位置的電場因為邊緣效應而具有梯度變化。並且,由於液晶分子的長軸方向依電場方向排列,因此當光線通過液晶層時,光線的相位將隨液晶層中的液晶分子偏轉而產生折射,而且隨著不同位置的液晶分子的偏轉角度不同而產生折射率變化,其相位變化如同漸變式折射率透鏡。In more detail, as shown in FIG. 5, the operating principle of the liquid crystal lens is that when no voltage is applied to the liquid crystal lens, the long axis direction of the liquid crystal molecules of the liquid crystal lens is arranged in accordance with the alignment direction of the alignment layer. At this time, when the light passes through the liquid crystal layer, the phase of the light will not be affected. However, as shown in FIG. 5, when a voltage is applied to the liquid crystal lens, the liquid crystal molecules are driven by the electric field between the upper and lower electrode layers in the liquid crystal lens to be deflected, and the electric field at the edge of the electrode layer has a gradient change due to the edge effect. In addition, since the long axis of the liquid crystal molecules are arranged in the direction of the electric field, when light passes through the liquid crystal layer, the phase of the light will be refracted as the liquid crystal molecules in the liquid crystal layer deflect, and the deflection angles of the liquid crystal molecules in different positions are different. The refractive index change occurs, and the phase change is like a graded refractive index lens.

如此,如圖5所示,在本實施例中,光學組件510可藉由施加適當的電壓在液晶透鏡(即可變焦透鏡512Z)上來控制液晶轉動方向,以改變液晶透鏡的不同位置的折射率變化,進而能調整液晶透鏡(即可變焦透鏡512Z)的有效焦距,而適於動態調整影像光束IL所顯示的虛像相對於使用者的左眼EYL或右眼EYR的距離。Thus, as shown in FIG. 5, in this embodiment, the optical assembly 510 can control the rotation direction of the liquid crystal by applying an appropriate voltage on the liquid crystal lens (that is, the zoom lens 512Z), so as to change the refractive index of the liquid crystal lens at different positions. The change can then adjust the effective focal length of the liquid crystal lens (that is, the zoom lens 512Z), and is suitable for dynamically adjusting the distance of the virtual image displayed by the image beam IL relative to the user's left eye EYL or right eye EYR.

如此一來,由於圖5的光學組件510適於動態調整影像光束IL所顯示的虛像相對於使用者的左眼EYL或右眼EYR的距離,因此當圖5的光學組件510應用至前述圖1的虛擬實境顯示裝置100時,亦能使虛擬實境顯示裝置100達到類似的效果與優點,在此就不再贅述。In this way, since the optical assembly 510 of FIG. 5 is suitable for dynamically adjusting the distance of the virtual image displayed by the image beam IL with respect to the left eye EYL or the right eye EYR of the user, when the optical assembly 510 of FIG. 5 is applied to the aforementioned FIG. 1 When the virtual reality display device 100 is used, the virtual reality display device 100 can also achieve similar effects and advantages, which will not be repeated here.

如此一來,虛擬實境顯示裝置100即可藉由成像距離調整器530(即電壓施加器530E)的配置來調整液晶透鏡(即可變焦透鏡512Z)的有效焦距,而能動態調整影像光束IL所顯示的虛像相對於使用者的左眼EYL或右眼EYR的距離,進而能配合使用者的視力狀況進行視力地矯正,具有近視或遠視的使用者不需另外配戴矯正視力的眼EY鏡或隱形眼EY鏡即能清楚地觀看呈現於眼EY前的影像,而可廣泛適用於具有不同視力條件的不同使用者。In this way, the virtual reality display device 100 can adjust the effective focal length of the liquid crystal lens (that is, the zoom lens 512Z) through the configuration of the imaging distance adjuster 530 (ie, the voltage applicator 530E), and can dynamically adjust the position of the image beam IL. The distance between the displayed virtual image and the user’s left eye EYL or right eye EYR can be corrected visually according to the user’s visual acuity. Users with myopia or hyperopia do not need to wear additional eye EY glasses or eye glasses for correcting vision. The invisible eye EY lens can clearly view the image presented in front of the eye EY, and it can be widely used for different users with different vision conditions.

綜上所述,本發明的實施例的虛擬實境顯示裝置藉由光學組件與顯示器皆相對於使用者雙眼連線方向傾斜的配置,可以擴大虛擬實境顯示裝置的可視角範圍,而可無死角覆蓋使用者雙眼全視野的可視範圍,而提供更寫實的虛擬實境的感官體驗。並且,虛擬實境顯示裝置藉由成像距離調整器的配置,適於調整影像光束所顯示的虛像相對於使用者的距離,因此能配合使用者的視力狀況進行視力地矯正,具有近視或遠視的使用者不需另外配戴矯正視力的眼鏡或隱形眼鏡即能清楚地觀看呈現於眼前的影像,而可廣泛適用於具有不同視力條件的不同使用者。另一方面,本發明的實施例的虛擬實境顯示裝置藉由在光學組件的菲涅耳透鏡的非光學有效區塗覆光吸收材料,以阻止光線由非光學有效區通過光學組件,可以改善雜散光問題,提升虛擬實境的觀賞品質。To sum up, the virtual reality display device of the embodiment of the present invention can expand the viewing angle range of the virtual reality display device through the arrangement of the optical components and the display that are inclined relative to the connection direction of the user's eyes. No dead ends cover the visual range of the user's full field of vision, and provide a more realistic sensory experience of virtual reality. In addition, the virtual reality display device is adapted to adjust the distance of the virtual image displayed by the image light beam relative to the user through the configuration of the imaging distance adjuster, so that it can be corrected visually according to the user's vision condition, with nearsightedness or hyperopia The user does not need to wear glasses or contact lenses for correcting vision to be able to clearly view the image presented in front of the eyes, and it can be widely applied to different users with different vision conditions. On the other hand, in the virtual reality display device of the embodiment of the present invention, the non-optical effective area of the Fresnel lens of the optical component is coated with a light absorbing material to prevent light from passing through the optical component from the non-optically effective area, which can improve The stray light problem improves the viewing quality of virtual reality.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the relevant technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be subject to those defined by the attached patent application scope.

100:虛擬實境顯示裝置100: Virtual reality display device

110、110R、110L、510:光學組件110, 110R, 110L, 510: optical components

111M:可動透鏡111M: movable lens

111F:固定透鏡111F: fixed lens

120、120R、120L:顯示器120, 120R, 120L: display

130、530:成像距離調整器130, 530: imaging distance adjuster

130S:間距調整器130S: Spacing adjuster

512Z:可變焦透鏡512Z: Variable zoom lens

530E:電壓施加器530E: Voltage Applicator

BM:光吸收材料BM: light absorbing material

EL:雙眼連線方向EL: Binocular connection direction

ES:光學有效側面ES: Optical effective side

EY、EYL、EYR:眼睛EY, EYL, EYR: eyes

FL1、FL2:菲涅耳透鏡FL1, FL2: Fresnel lens

IL、IL1、IL2:影像光束IL, IL1, IL2: image beam

L1、L2、L3:光線L1, L2, L3: light

NR:非光學有效區NR: Non-optical effective area

NS:非光學有效側面NS: Non-optical effective side

O:光軸O: Optical axis

RT:環形齒RT: ring tooth

S:表面S: surface

S120:主動顯示面S120: Active display surface

SP1、SP2:間距SP1, SP2: Spacing

θ1、θ2、θ3:夾角θ1, θ2, θ3: included angle

圖1是依照本發明的一實施例的一種虛擬實境顯示裝置的架構示意圖。 圖2A是一般人眼的立體視野示意圖。 圖2B是習知的虛擬實境顯示裝置於人眼中的立體視野示意圖。 圖2C是圖1的虛擬實境顯示裝置於人眼中的立體視野示意圖。 圖3是圖1的一種光學組件的架構示意圖。 圖4A與圖4B是圖3的光學組件的不同菲涅耳透鏡的架構示意圖。 圖5是圖1的另一種光學組件的架構示意圖。 FIG. 1 is a schematic structural diagram of a virtual reality display device according to an embodiment of the present invention. Fig. 2A is a schematic diagram of the stereoscopic visual field of the general human eye. FIG. 2B is a schematic diagram of a stereoscopic view of a conventional virtual reality display device in the eyes of humans. FIG. 2C is a schematic diagram of a stereoscopic view of the virtual reality display device of FIG. 1 in the eyes of humans. FIG. 3 is a schematic structural diagram of an optical component of FIG. 1. 4A and 4B are schematic diagrams of different Fresnel lenses of the optical assembly of FIG. 3. FIG. 5 is a schematic structural diagram of another optical component of FIG. 1.

100:虛擬實境顯示裝置 100: Virtual reality display device

110、110R、110L:光學組件 110, 110R, 110L: optical components

111M:可動透鏡 111M: movable lens

111F:固定透鏡 111F: fixed lens

120、120R、120L:顯示器 120, 120R, 120L: display

130:成像距離調整器 130: imaging distance adjuster

EL:雙眼連線方向 EL: Binocular connection direction

EY、EYL、EYR:眼睛 EY, EYL, EYR: eyes

IL、IL1、IL2:影像光束 IL, IL1, IL2: image beam

S120:主動顯示面 S120: Active display surface

SP1、SP2:間距 SP1, SP2: Spacing

θ1、θ2、θ3:夾角 θ1, θ2, θ3: included angle

Claims (9)

一種虛擬實境顯示裝置,包括:至少一顯示器,適於提供一影像光束至一使用者的左眼或右眼;至少一光學組件,包括至少一可變焦透鏡,該至少一光學組件設置在該影像光束的傳遞路徑上,且位於該至少一顯示器與該使用者的左眼或右眼之間,以使該影像光束於該使用者的左眼或右眼中顯示一虛像,其中該至少一顯示器具有一主動顯示面,該主動顯示面朝向該至少一光學組件以及該使用者的左眼或右眼,且相對於該使用者雙眼連線方向傾斜,該至少一光學組件亦相對於該使用者雙眼連線方向傾斜,該可變焦透鏡適於動態調整該影像光束所顯示的虛像相對於使用者的左眼或右眼的距離;以及一成像距離調整器,連接於該至少一光學組件,適於調整該影像光束所顯示的該虛像相對於使用者的距離。 A virtual reality display device, including: at least one display, adapted to provide an image beam to the left or right eye of a user; at least one optical component, including at least one zoom lens, and the at least one optical component is arranged on the The image beam is on the transmission path and is located between the at least one display and the left or right eye of the user, so that the image beam displays a virtual image in the left or right eye of the user, wherein the at least one display There is an active display surface, the active display surface faces the at least one optical component and the left or right eye of the user, and is inclined with respect to the connecting direction of the user's eyes, and the at least one optical component is also relative to the use The connecting direction of the eyes is inclined, the zoom lens is suitable for dynamically adjusting the distance of the virtual image displayed by the image beam relative to the left or right eye of the user; and an imaging distance adjuster connected to the at least one optical component , Suitable for adjusting the distance of the virtual image displayed by the image beam relative to the user. 如申請專利範圍第1項所述的虛擬實境顯示裝置,其中該至少一光學組件相對於該使用者雙眼連線方向具有一夾角,該夾角的範圍是大於0度,並且小於等於45度。 The virtual reality display device described in claim 1, wherein the at least one optical component has an included angle with respect to the connecting direction of the user's eyes, and the range of the included angle is greater than 0 degrees and less than or equal to 45 degrees . 如申請專利範圍第1項所述的虛擬實境顯示裝置,其中該成像距離調整器為一間距調整器,以及該至少一光學組件為二光學組件,該至少一顯示器為二顯示器,其中該間距調整器用以分別調整位於該影像光束傳遞到該使用者左眼路徑上的顯示器與 光學組件之間的間距,以及位於該影像光束傳遞到該使用者右眼的路徑上的顯示器與光學組件之間的間距。 The virtual reality display device according to claim 1, wherein the imaging distance adjuster is a spacing adjuster, and the at least one optical component is two optical components, the at least one display is two displays, and the spacing is The adjuster is used to respectively adjust the display and the display on the path where the image beam is transmitted to the left eye of the user The distance between the optical components, and the distance between the display and the optical components on the path where the image beam is transmitted to the right eye of the user. 如申請專利範圍第3項所述的虛擬實境顯示裝置,其中該至少一光學組件包括一可動透鏡以及一固定透鏡,該間距調整器分別使各該可動透鏡相對該至少一顯示器移動。 According to the virtual reality display device described in item 3 of the scope of patent application, the at least one optical component includes a movable lens and a fixed lens, and the pitch adjuster respectively moves each of the movable lenses relative to the at least one display. 如申請專利範圍第3項所述的虛擬實境顯示裝置,其中該間距調整器分別調整該至少一顯示器相對該至少一光學組件移動。 According to the virtual reality display device described in item 3 of the scope of patent application, the spacing adjuster respectively adjusts the movement of the at least one display relative to the at least one optical component. 如申請專利範圍第1項所述的虛擬實境顯示裝置,其中該可變焦透鏡為液晶透鏡,該成像距離調整器為一電壓施加器,適於施加電壓於該可變焦透鏡以控制該可變焦透鏡的液晶轉動方向,而調整該可變焦透鏡的有效焦距。 The virtual reality display device described in the first item of the scope of patent application, wherein the variable focus lens is a liquid crystal lens, and the imaging distance adjuster is a voltage applicator adapted to apply a voltage to the variable focus lens to control the zoom The liquid crystal rotation direction of the lens is used to adjust the effective focal length of the variable focus lens. 如申請專利範圍第1項所述的虛擬實境顯示裝置,其中該至少一光學組件包括至少一菲涅耳透鏡,該菲涅耳透鏡包括多個環繞其光軸的環狀結構,每一環狀結構具有相連接的且排列於徑向上的一有效折射面及一非光學有效面,且該菲涅耳透鏡的每一個環形齒的非光學有效側面塗覆有一光吸收材料。 The virtual reality display device according to claim 1, wherein the at least one optical component includes at least one Fresnel lens, and the Fresnel lens includes a plurality of ring structures surrounding its optical axis, and each ring The shape structure has an effective refractive surface and a non-optical effective surface connected and arranged in the radial direction, and the non-optical effective side surface of each ring tooth of the Fresnel lens is coated with a light absorbing material. 如申請專利範圍第7項所述的虛擬實境顯示裝置,其中該菲涅耳透鏡為凸透鏡,且該菲涅耳透鏡的每一個環形齒的非光學有效側面為該環形齒之靠近該菲涅耳透鏡的光軸的內側面。 The virtual reality display device according to item 7 of the scope of patent application, wherein the Fresnel lens is a convex lens, and the non-optically effective side of each ring tooth of the Fresnel lens is the edge of the ring tooth close to the Fresnel The inner surface of the optical axis of the ear lens. 如申請專利範圍第8項所述的虛擬實境顯示裝置,其中該菲涅耳透鏡為凹透鏡,且該菲涅耳透鏡的每一個環形齒的非光學有效側面為該環形齒之遠離該菲涅耳透鏡的光軸的外側面。The virtual reality display device according to item 8 of the scope of patent application, wherein the Fresnel lens is a concave lens, and the non-optically effective side of each ring tooth of the Fresnel lens is the distance of the ring tooth away from the Fresnel The outer surface of the optical axis of the ear lens.
TW109105619A 2020-02-21 2020-02-21 Virtual reality display apparatus TWI731596B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109105619A TWI731596B (en) 2020-02-21 2020-02-21 Virtual reality display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109105619A TWI731596B (en) 2020-02-21 2020-02-21 Virtual reality display apparatus

Publications (2)

Publication Number Publication Date
TWI731596B true TWI731596B (en) 2021-06-21
TW202132861A TW202132861A (en) 2021-09-01

Family

ID=77517040

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109105619A TWI731596B (en) 2020-02-21 2020-02-21 Virtual reality display apparatus

Country Status (1)

Country Link
TW (1) TWI731596B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150370074A1 (en) * 2014-06-24 2015-12-24 Fakespace Labs, Inc. Head Mounted Augmented Reality Display
CN105807429A (en) * 2016-05-20 2016-07-27 成都理想境界科技有限公司 Near-to-eye display system for virtual reality
TW201830089A (en) * 2017-02-08 2018-08-16 宏碁股份有限公司 Virtual reality display apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150370074A1 (en) * 2014-06-24 2015-12-24 Fakespace Labs, Inc. Head Mounted Augmented Reality Display
CN105807429A (en) * 2016-05-20 2016-07-27 成都理想境界科技有限公司 Near-to-eye display system for virtual reality
TW201830089A (en) * 2017-02-08 2018-08-16 宏碁股份有限公司 Virtual reality display apparatus

Also Published As

Publication number Publication date
TW202132861A (en) 2021-09-01

Similar Documents

Publication Publication Date Title
US8384999B1 (en) Optical modules
JP6539672B2 (en) Immersive compact display glass
TWI710797B (en) Eye projection system
US7952059B2 (en) Viewing system for augmented reality head mounted display with rotationally symmetric aspheric lenses
KR20170105095A (en) Imaging optics tuned to human eye resolution
US20160320623A1 (en) Transmission-type display
JP7269326B2 (en) System and method for ambient light management
TWI641869B (en) Virtual reality display apparatus
CN107771297A (en) For virtual and augmented reality near-to-eye free form surface type nanostructured surface
US11054639B2 (en) Eye projection system
JP2017511500A (en) Multifocal spectacle lens configured to output an auxiliary image
WO2020079906A1 (en) Head-mounted display and method for designing wide-focus lens used in same
CN113495361A (en) Virtual reality display device
KR101590825B1 (en) Composite lens for Head Mounted Display and Device comprising the same
KR101118839B1 (en) Pin hall lens for correct sight and glasses using the pin hall lens
CN108459412B (en) Virtual reality display device
JP2018063393A (en) Varifocal lens, varifocal spectacles, and image display device
TWI731596B (en) Virtual reality display apparatus
GB2274727A (en) Optical display system
KR20160033926A (en) Apparatus for focus adjustment of head mounted display
CN112394509B (en) Head-mounted display device
KR102380713B1 (en) Smart Display
TWI688791B (en) Head-mounted display device
JP2019049724A (en) Projection system for eyes
TWI841258B (en) Optical assembly for head wearable displays