TWI725691B - Micro light emitting device display apparatus - Google Patents

Micro light emitting device display apparatus Download PDF

Info

Publication number
TWI725691B
TWI725691B TW108148261A TW108148261A TWI725691B TW I725691 B TWI725691 B TW I725691B TW 108148261 A TW108148261 A TW 108148261A TW 108148261 A TW108148261 A TW 108148261A TW I725691 B TWI725691 B TW I725691B
Authority
TW
Taiwan
Prior art keywords
micro light
emitting element
light emitting
display device
isolation layer
Prior art date
Application number
TW108148261A
Other languages
Chinese (zh)
Other versions
TW202125848A (en
Inventor
吳志凌
陳彥燁
蘇義閔
史詒君
Original Assignee
錼創顯示科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 錼創顯示科技股份有限公司 filed Critical 錼創顯示科技股份有限公司
Priority to TW108148261A priority Critical patent/TWI725691B/en
Priority to US16/862,578 priority patent/US11367713B2/en
Priority to US16/896,226 priority patent/US11302842B2/en
Application granted granted Critical
Publication of TWI725691B publication Critical patent/TWI725691B/en
Publication of TW202125848A publication Critical patent/TW202125848A/en
Priority to US17/744,760 priority patent/US20220285600A1/en

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

A micro light emitting device display apparatus including a substrate, a plurality of micro light emitting devices, an isolation layer and an air gap is provided. The micro light emitting devices are discretely disposed on the substrate. The isolation layer is disposed between the micro light emitting devices. The air gap is disposed between the micro light emitting devices, the isolation layer and the substrate.

Description

微型發光元件顯示裝置Micro light emitting element display device

本發明是有關於一種顯示裝置,且特別是有關於一種微型發光元件顯示裝置。The present invention relates to a display device, and more particularly to a display device of a micro light-emitting element.

近年來,在有機發光二極體(Organic light-emitting diode,OLED)顯示面板的製造成本偏高及其使用壽命無法與現行的主流顯示器相抗衡的情況下,微型發光二極體顯示器(Micro LED Display)逐漸吸引各科技大廠的投資目光。特別是,微型發光二極體顯示器除了具有與有機發光二極體顯示器相當的光學表現,例如高色彩飽和度、應答速度快及高對比,還具有低耗能以及材料使用壽命長的優勢。因此,有望成為下一世代的主流顯示技術。In recent years, when the manufacturing cost of organic light-emitting diode (OLED) display panels is too high and their service life cannot compete with the current mainstream displays, micro LED displays (Micro LED Display) has gradually attracted the investment attention of major technology manufacturers. In particular, in addition to the optical performance equivalent to organic light-emitting diode displays, such as high color saturation, fast response speed, and high contrast, the miniature light-emitting diode display also has the advantages of low energy consumption and long material life. Therefore, it is expected to become the mainstream display technology of the next generation.

然而,以目前的製造技術而言,微型發光二極體顯示器的製造良率仍有待提升。主因在於微型發光二極體顯示器的製造過程包含晶粒轉置的步驟,例如將暫存基板上預先製作完成的微型發光二極體晶粒轉移至顯示器的電路背板上。由於發光二極體在微型化的同時,兩電極接墊之間的距離也勢必縮短。當微型發光二極體被轉移並接合至電路背板上的連接墊時,連接墊(例如導電銲材)需被加熱而呈現熔融狀態。此時,微型發光二極體的兩電極接墊容易因連接墊的溢流而發生短路,造成轉移良率的下降。為了降低微型發光二極體顯示器的製造成本,解決上述的問題已成為相關廠商的當務之急。However, in terms of current manufacturing technology, the manufacturing yield of miniature light-emitting diode displays still needs to be improved. The main reason is that the manufacturing process of the micro light emitting diode display includes the step of die transposition, such as transferring the micro light emitting diode die produced in advance on the temporary storage substrate to the circuit backplane of the display. As the light-emitting diode is miniaturized, the distance between the two electrode pads is bound to be shortened. When the miniature light-emitting diode is transferred and joined to the connection pad on the circuit backplane, the connection pad (such as conductive solder) needs to be heated to present a molten state. At this time, the two electrode pads of the micro light emitting diode are prone to short-circuit due to the overflow of the connection pads, resulting in a decrease in the transfer yield. In order to reduce the manufacturing cost of the miniature light-emitting diode display, solving the above-mentioned problems has become a top priority for related manufacturers.

本發明提供一種微型發光元件顯示裝置,具有較佳的轉移成功率。The present invention provides a micro light emitting element display device, which has a better transfer success rate.

本發明的微型發光元件顯示裝置,包括基板、多個微型發光元件、隔離層以及空氣間隙。多個微型發光元件分散地設置於基板上。隔離層設置於這些微型發光元件之間。空氣間隙設置於這些微型發光元件、隔離層與基板之間。The micro light emitting element display device of the present invention includes a substrate, a plurality of micro light emitting elements, an isolation layer and an air gap. A plurality of micro light-emitting elements are scattered on the substrate. The isolation layer is arranged between these micro light-emitting elements. The air gap is arranged between the micro light emitting elements, the isolation layer and the substrate.

在本發明的一實施例中,上述的微型發光元件顯示裝置的微型發光元件在第一方向上具有第一寬度。空氣間隙位於相鄰的兩個微型發光元件之間的所佔區域在第一方向上具有第二寬度,且第二寬度小於第一寬度。In an embodiment of the present invention, the micro light emitting element of the aforementioned micro light emitting element display device has a first width in the first direction. The area occupied by the air gap between two adjacent micro light-emitting elements has a second width in the first direction, and the second width is smaller than the first width.

在本發明的一實施例中,上述的微型發光元件顯示裝置的第二寬度與第一寬度的比值大於等於0.5。In an embodiment of the present invention, the ratio of the second width to the first width of the above-mentioned micro light-emitting element display device is greater than or equal to 0.5.

在本發明的一實施例中,上述的微型發光元件顯示裝置的隔離層連接微型發光元件的部分在基板的法線方向上具有第一高度。微型發光元件在基板的法線方向上具有第二高度,且第一高度小於第二高度。In an embodiment of the present invention, the part where the isolation layer of the micro light emitting element display device is connected to the micro light emitting element has a first height in the normal direction of the substrate. The micro light emitting element has a second height in the normal direction of the substrate, and the first height is smaller than the second height.

在本發明的一實施例中,上述的微型發光元件顯示裝置的第一高度與第二高度的比值大於等於0.5。In an embodiment of the present invention, the ratio of the first height to the second height of the above-mentioned micro light-emitting element display device is greater than or equal to 0.5.

在本發明的一實施例中,上述的微型發光元件顯示裝置的隔離層位於相鄰的兩個微型發光元件之間的部分的橫截面面積小於微型發光元件的橫截面面積。In an embodiment of the present invention, the cross-sectional area of the isolation layer of the aforementioned micro light-emitting element display device located between two adjacent micro light-emitting elements is smaller than the cross-sectional area of the micro light-emitting element.

在本發明的一實施例中,上述的微型發光元件顯示裝置的隔離層位於相鄰的兩個微型發光元件之間的部分的橫截面面積與微型發光元件的橫截面面積的比值小於1且大於等於0.5。In an embodiment of the present invention, the ratio of the cross-sectional area of the part of the isolation layer of the above-mentioned micro light-emitting element display device between two adjacent micro light-emitting elements to the cross-sectional area of the micro light-emitting element is less than 1 and greater than Equal to 0.5.

在本發明的一實施例中,上述的微型發光元件顯示裝置更包括共電極。共電極覆蓋隔離層且電性連接多個微型發光元件。共電極與空氣間隙分別位於隔離層的相對兩側。In an embodiment of the present invention, the above-mentioned micro light-emitting element display device further includes a common electrode. The common electrode covers the isolation layer and is electrically connected to a plurality of micro light-emitting elements. The common electrode and the air gap are respectively located on opposite sides of the isolation layer.

在本發明的一實施例中,上述的微型發光元件顯示裝置的微型發光元件具有磊晶結構以及設置於磊晶結構相對兩側的第一型電極與第二型電極。共電極包括第一型共電極層與第二型共電極層。第一型共電極層覆蓋隔離層與多個微型發光元件,且直接接觸各微型發光元件的第一型電極。第二型共電極層設置於這些微型發光元件之間,且位於第一型共電極層與隔離層之間。第二型共電極電性連接這些微型發光元件與第一型共電極層。In an embodiment of the present invention, the above-mentioned micro light emitting element of the micro light emitting element display device has an epitaxial structure and a first type electrode and a second type electrode disposed on opposite sides of the epitaxial structure. The common electrode includes a first type common electrode layer and a second type common electrode layer. The first type common electrode layer covers the isolation layer and the plurality of micro light emitting elements, and directly contacts the first type electrode of each micro light emitting element. The second type common electrode layer is arranged between the micro light emitting elements and between the first type common electrode layer and the isolation layer. The second type common electrode electrically connects these micro light-emitting elements and the first type common electrode layer.

在本發明的一實施例中,上述的微型發光元件顯示裝置的第二型共電極層連接第一型共電極層的表面與基板之間具有第一高度。第一型電極連接第一型共電極層的表面與基板之間具有第二高度,且第一高度大於第二高度。In an embodiment of the present invention, the second-type common electrode layer of the above-mentioned micro light-emitting element display device has a first height between the surface of the first-type common electrode layer and the substrate. There is a second height between the surface of the first type electrode connecting the first type common electrode layer and the substrate, and the first height is greater than the second height.

在本發明的一實施例中,上述的微型發光元件顯示裝置更包括設置於第二型共電極層之間的波長轉換層。隔離層具有對應地設置於多個微型發光元件上的多個凹槽,且波長轉換層填入這些凹槽內。In an embodiment of the present invention, the above-mentioned micro light-emitting element display device further includes a wavelength conversion layer disposed between the second-type common electrode layers. The isolation layer has a plurality of grooves correspondingly arranged on the plurality of micro light-emitting elements, and the wavelength conversion layer is filled in the grooves.

在本發明的一實施例中,上述的微型發光元件顯示裝置的微型發光元件在第一方向上的寬度朝遠離基板的方向遞減,且第一方向平行於基板。In an embodiment of the present invention, the width of the micro light emitting element of the micro light emitting element display device in the first direction decreases in a direction away from the substrate, and the first direction is parallel to the substrate.

在本發明的一實施例中,上述的微型發光元件顯示裝置的微型發光元件在第一方向上具有最小寬度與最大寬度,而微型發光元件的最小寬度與最大寬度的比值小於等於0.5且大於等於0.05。In an embodiment of the present invention, the micro light emitting element of the micro light emitting element display device has a minimum width and a maximum width in the first direction, and the ratio of the minimum width to the maximum width of the micro light emitting element is less than or equal to 0.5 and greater than or equal to 0.5. 0.05.

在本發明的一實施例中,上述的微型發光元件顯示裝置的微型發光元件在第一方向上具有最大寬度,相鄰的兩個微型發光元件之間在第一方向上具有最大間距,且最大間距小於微型發光元件的最大寬度。In an embodiment of the present invention, the micro light-emitting element of the micro light-emitting element display device has the largest width in the first direction, and the two adjacent micro light-emitting elements have the largest distance in the first direction, and have the largest width in the first direction. The pitch is smaller than the maximum width of the micro light emitting element.

在本發明的一實施例中,上述的微型發光元件顯示裝置的隔離層定義空氣間隙的表面為朝向隔離層內凹的曲面。In an embodiment of the present invention, the surface defining the air gap of the isolation layer of the above-mentioned micro light-emitting element display device is a curved surface facing the interior of the isolation layer.

在本發明的一實施例中,上述的微型發光元件顯示裝置的隔離層包含反射材料、散射材料或是光阻擋材料。In an embodiment of the present invention, the isolation layer of the above-mentioned micro light emitting device display device includes a reflective material, a scattering material, or a light blocking material.

在本發明的一實施例中,上述的微型發光元件顯示裝置的各微型發光元件包括磊晶結構、第一型電極以及第二型電極。第一型電極與第二型電極設置於磊晶結構的相對兩側。第一型電極電性連接共電極。第二型電極具有朝向基板的表面。隔離層覆蓋第二型電極的表面,且基板的連接墊透過隔離層的開口與第二型電極的表面電性接合。In an embodiment of the present invention, each micro light emitting element of the micro light emitting element display device described above includes an epitaxial structure, a first type electrode, and a second type electrode. The first type electrode and the second type electrode are arranged on opposite sides of the epitaxial structure. The first type electrode is electrically connected to the common electrode. The second type electrode has a surface facing the substrate. The isolation layer covers the surface of the second type electrode, and the connection pad of the substrate is electrically connected to the surface of the second type electrode through the opening of the isolation layer.

在本發明的一實施例中,上述的微型發光元件顯示裝置的隔離層具有對應地設置於多個微型發光元件上的多個凹槽。In an embodiment of the present invention, the isolation layer of the above-mentioned micro light emitting element display device has a plurality of grooves correspondingly provided on the plurality of micro light emitting elements.

在本發明的一實施例中,上述的微型發光元件顯示裝置更包括波長轉換層。波長轉換層設置於隔離層之間,且填入隔離層的多個凹槽內。In an embodiment of the present invention, the above-mentioned micro light-emitting element display device further includes a wavelength conversion layer. The wavelength conversion layer is arranged between the isolation layers and filled in the multiple grooves of the isolation layer.

基於上述,在本發明的一實施例的微型發光元件顯示裝置中,透過設置在多個微型發光元件之間的隔離層,可增加這些微型發光元件的轉移成功率。另一方面,在這些微型發光元件接合至基板的過程中,基板上的連接墊被加熱而呈現熔融狀態。此時,位於隔離層與基板之間的空氣間隙可作為連接墊溢流時的緩衝空間,有助於提升這些微型發光元件的接合良率與平整度。Based on the above, in the micro light-emitting element display device of an embodiment of the present invention, the transfer success rate of the micro light-emitting elements can be increased through the isolation layer disposed between the micro light-emitting elements. On the other hand, in the process of bonding these micro light-emitting elements to the substrate, the connection pads on the substrate are heated to assume a molten state. At this time, the air gap between the isolation layer and the substrate can be used as a buffer space when the connection pad overflows, which helps to improve the bonding yield and flatness of these micro light-emitting elements.

在附圖中,為了清楚起見,放大了層、膜、面板、區域等的厚度。應當理解,當諸如層、膜、區域或基板的元件被稱為在另一元件「上」或「連接到」另一元件時,其可以直接在另一元件上或與另一元件連接,或者中間元件可以也存在。相反,當元件被稱為「直接在另一元件上」或「直接連接到」另一元件時,不存在中間元件。如本文所使用的,「連接」可以指物理及/或電性連接。再者,「電性連接」可為二元件間存在其它元件。In the drawings, the thickness of layers, films, panels, regions, etc., are exaggerated for clarity. It should be understood that when an element such as a layer, film, region, or substrate is referred to as being "on" or "connected to" another element, it can be directly on or connected to the other element, or Intermediate elements can also be present. In contrast, when an element is referred to as being "directly on" or "directly connected to" another element, there are no intervening elements. As used herein, "connection" can refer to physical and/or electrical connection. Furthermore, "electrical connection" can mean that there are other components between the two components.

現將詳細地參考本發明的示範性實施例,示範性實施例的實例說明於所附圖式中。只要有可能,相同元件符號在圖式和描述中用來表示相同或相似部分。Reference will now be made in detail to the exemplary embodiments of the present invention, and examples of the exemplary embodiments are illustrated in the accompanying drawings. Whenever possible, the same component symbols are used in the drawings and descriptions to indicate the same or similar parts.

圖1是本發明的第一實施例的微型發光元件顯示裝置的俯視示意圖。圖2是圖1的微型發光元件顯示裝置的剖面示意圖。圖2對應於圖1的剖線A-A’。特別說明的是,為清楚呈現起見,圖1省略了圖2的連接墊110與共電極130的繪示。FIG. 1 is a schematic top view of a micro light emitting device display device according to a first embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of the micro light emitting device display device of FIG. 1. FIG. Fig. 2 corresponds to the section line A-A' of Fig. 1. In particular, for the sake of clarity, FIG. 1 omits the illustration of the connection pad 110 and the common electrode 130 in FIG. 2.

請參照圖1及圖2,微型發光元件顯示裝置10包括基板100、多個微型發光元件120、共電極130以及隔離層140。這些微型發光元件120分散地設置於基板100上。隔離層140設置於基板100上且位於這些微型發光元件120之間。共電極130覆蓋隔離層140且延伸於這些微型發光元件120之間。更具體地說,本實施例的共電極130是整面性地覆蓋隔離層140與多個微型發光元件120,以電性連接這些微型發光元件120,但不以此為限。共電極130的材質可包括透明金屬氧化物,例如銦錫氧化物(indium tin oxide,ITO)、銦鋅氧化物(indium zinc oxide,IZO)、鋁錫氧化物(aluminum tin oxide,ATO)、鋁鋅氧化物(aluminum zinc oxide,AZO)、或其他合適的氧化物、或者是上述至少兩者的堆疊層。也可包括銀、金、鉻、銅、鉑、錫、鎳、鈦、鋁或是上述金屬的合金。1 and FIG. 2, the micro light emitting device display device 10 includes a substrate 100, a plurality of micro light emitting devices 120, a common electrode 130 and an isolation layer 140. These micro light-emitting elements 120 are dispersedly arranged on the substrate 100. The isolation layer 140 is disposed on the substrate 100 and located between the micro light-emitting elements 120. The common electrode 130 covers the isolation layer 140 and extends between the micro light-emitting elements 120. More specifically, the common electrode 130 of this embodiment covers the isolation layer 140 and the plurality of micro light emitting elements 120 over the entire surface, so as to electrically connect the micro light emitting elements 120, but it is not limited to this. The material of the common electrode 130 may include transparent metal oxides, such as indium tin oxide (ITO), indium zinc oxide (IZO), aluminum tin oxide (ATO), aluminum Aluminum zinc oxide (AZO), or other suitable oxides, or a stacked layer of at least two of the above. It may also include silver, gold, chromium, copper, platinum, tin, nickel, titanium, aluminum, or alloys of the foregoing metals.

在本實施例中,基板100例如是顯示面板的電路背板。也就是說,微型發光元件顯示裝置10可以是顯示面板,但本發明不以此為限。基板100(即電路背板)具有位於顯示面板的顯示區DR的多個連接墊110,且這些微型發光元件120分別接合(bonding)至基板100的這些連接墊110。也就是說,微型發光元件120是透過連接墊110與基板100電性連接。在本實施例中,多個微型發光元件120(或者是連接墊110)是以等間距的方式沿方向X與方向Y排列於基板100上。亦即,這些微型發光元件120可陣列排列於基板100上,但本發明不以此為限。In this embodiment, the substrate 100 is, for example, a circuit backplane of a display panel. In other words, the micro light-emitting element display device 10 may be a display panel, but the present invention is not limited to this. The substrate 100 (ie, the circuit backplane) has a plurality of connection pads 110 located in the display area DR of the display panel, and the micro light-emitting elements 120 are respectively bonded to the connection pads 110 of the substrate 100. In other words, the micro light emitting device 120 is electrically connected to the substrate 100 through the connection pad 110. In this embodiment, a plurality of micro light-emitting elements 120 (or connection pads 110) are arranged on the substrate 100 along the direction X and the direction Y in an equal interval. That is, the micro light-emitting elements 120 can be arrayed on the substrate 100, but the invention is not limited to this.

舉例而言,多個微型發光元件120可以是多個第一微型發光元件120-1、多個第二微型發光元件120-2與多個第三微型發光元件120-3,且第一微型發光元件120-1、第二微型發光元件120-2與第三微型發光元件120-3的發光顏色分別為紅色、綠色與藍色。也就是說,本實施例的第一微型發光元件120-1、第二微型發光元件120-2與第三微型發光元件120-3可構成顯示面板的顯示畫素。然而,本發明不限於此,在其他實施例中,多個微型發光元件120也可發出相同波長的光,例如紫外光或藍光。For example, the plurality of micro light emitting elements 120 may be a plurality of first micro light emitting elements 120-1, a plurality of second micro light emitting elements 120-2, and a plurality of third micro light emitting elements 120-3, and the first micro light emitting elements The light-emitting colors of the element 120-1, the second micro light-emitting element 120-2, and the third micro light-emitting element 120-3 are red, green, and blue, respectively. That is to say, the first micro light emitting element 120-1, the second micro light emitting element 120-2 and the third micro light emitting element 120-3 of this embodiment can constitute the display pixels of the display panel. However, the present invention is not limited to this. In other embodiments, a plurality of micro light emitting elements 120 may also emit light of the same wavelength, such as ultraviolet light or blue light.

另一方面,本實施例的基板100可包括驅動電路層,其中驅動電路層包括電晶體元件、電容、掃描線、資料線以及電源線等,且連接墊110例如是資料線的一部分或連接資料線的導電圖案。也就是說,驅動電路層可以是主動式的驅動電路層,但本發明不以此為限。根據其他實施例,驅動電路層也可不包含電晶體元件。亦即,驅動電路層也可以是被動式的驅動電路層。On the other hand, the substrate 100 of this embodiment may include a driving circuit layer, where the driving circuit layer includes a transistor element, a capacitor, a scan line, a data line, a power line, etc., and the connection pad 110 is, for example, a part of a data line or connection data. Conductive pattern of lines. In other words, the driving circuit layer may be an active driving circuit layer, but the present invention is not limited to this. According to other embodiments, the driving circuit layer may not include a transistor element. That is, the driving circuit layer may also be a passive driving circuit layer.

詳細而言,微型發光元件120包括磊晶結構ESL、第一型電極121與第二型電極122。第一型電極121與第二型電極122設置於磊晶結構ESL的相對兩側表面上,且分別電性連接共電極130與連接墊110。在本實施例中,第一型電極121可以是光穿透式電極,而光穿透式電極的材質可包括金屬氧化物,例如銦錫氧化物、銦鋅氧化物、鋁錫氧化物、鋁鋅氧化物、或其他合適的氧化物、或者是上述至少兩者的堆疊層。第二型電極122的材質可包括鉑、鎳、鈦、金、銀、鉻、上述金屬之合金、上述合金之組合的一高功函數金屬、金屬氧化物、或者是導電高分子、石墨、石墨烯或黑磷等非金屬導電材料。In detail, the micro light emitting element 120 includes an epitaxial structure ESL, a first type electrode 121 and a second type electrode 122. The first type electrode 121 and the second type electrode 122 are disposed on opposite sides of the epitaxial structure ESL, and are electrically connected to the common electrode 130 and the connection pad 110, respectively. In this embodiment, the first type electrode 121 may be a light-transmitting electrode, and the material of the light-transmitting electrode may include metal oxides, such as indium tin oxide, indium zinc oxide, aluminum tin oxide, and aluminum. Zinc oxide, or other suitable oxides, or a stacked layer of at least two of the above. The material of the second electrode 122 may include platinum, nickel, titanium, gold, silver, chromium, alloys of the above metals, a high work function metal, metal oxides, or conductive polymers, graphite, or graphite. Non-metal conductive materials such as olefin or black phosphorus.

進一步而言,磊晶結構ESL包括第一型半導體層123、發光層124與第二型半導體層125。第一型半導體層123位於第一型電極121與發光層124之間,且第一型半導體層123透過第一型電極121與共電極130電性連接。第二型半導體層125位於第二型電極122與發光層124之間,且第二型半導體層125透過第二型電極122與連接墊110電性連接。更具體地說,本實施例的第二型電極122、磊晶結構ESL以及第一型電極121是依序地堆疊於基板100上。亦即,本實施例的微型發光元件120為垂直式微型發光二極體(vertical type micro light emitting diode)。Furthermore, the epitaxial structure ESL includes a first-type semiconductor layer 123, a light-emitting layer 124, and a second-type semiconductor layer 125. The first type semiconductor layer 123 is located between the first type electrode 121 and the light emitting layer 124, and the first type semiconductor layer 123 is electrically connected to the common electrode 130 through the first type electrode 121. The second type semiconductor layer 125 is located between the second type electrode 122 and the light emitting layer 124, and the second type semiconductor layer 125 is electrically connected to the connection pad 110 through the second type electrode 122. More specifically, the second type electrode 122, the epitaxial structure ESL, and the first type electrode 121 of this embodiment are sequentially stacked on the substrate 100. That is, the micro light emitting device 120 of this embodiment is a vertical type micro light emitting diode.

另一方面,本實施例的第一型半導體層123例如是P型半導體層,第二型半導體層125例如是N型半導體層。然而,本發明不限於此,根據其他實施例,第一型半導體層123也可以是N型半導體層,而第二型半導體層125也可以是P型半導體層。舉例而言,第一型半導體層123的厚度可介於0.05微米至0.5微米之間,發光層124的厚度可介於0.1微米至1微米之間,而第二型半導體層125的厚度可介於1微米至5微米之間。據此,磊晶結構ESL的整體厚度可控制在1微米至6微米之間,有助於確保後續製程的良率與終端產品的特性。On the other hand, the first-type semiconductor layer 123 of this embodiment is, for example, a P-type semiconductor layer, and the second-type semiconductor layer 125 is, for example, an N-type semiconductor layer. However, the present invention is not limited to this. According to other embodiments, the first-type semiconductor layer 123 may also be an N-type semiconductor layer, and the second-type semiconductor layer 125 may also be a P-type semiconductor layer. For example, the thickness of the first-type semiconductor layer 123 may be between 0.05 micrometers and 0.5 micrometers, the thickness of the light-emitting layer 124 may be between 0.1 micrometers and 1 micrometer, and the thickness of the second-type semiconductor layer 125 may range from Between 1 micron to 5 microns. Accordingly, the overall thickness of the epitaxial structure ESL can be controlled between 1 μm and 6 μm, which helps to ensure the yield of subsequent processes and the characteristics of the end product.

在本實施例中,位於多個微型發光元件120之間的隔離層140是直接配置於微型發光元件120的磊晶結構ESL的兩側壁,以連接這些微型發光元件120,但本發明不以此為限。特別說明的是,此隔離層140是形成在這些微型發光元件120被轉移至基板100之前,例如:當這些微型發光元件120轉移至暫時基板上時,可於暫時基板上形成連接這些微型發光元件120的隔離層140。據此,透過此隔離層140的配置,可避免這些微型發光元件120在轉移中產生偏移,增加轉移成功率,有助於提升微型發光元件顯示裝置10(或顯示面板)的整體良率。In this embodiment, the isolation layer 140 located between the micro light emitting elements 120 is directly disposed on the two sidewalls of the epitaxial structure ESL of the micro light emitting element 120 to connect the micro light emitting elements 120, but the present invention does not use this Is limited. Specifically, the isolation layer 140 is formed before the micro light emitting elements 120 are transferred to the substrate 100. For example, when the micro light emitting elements 120 are transferred to the temporary substrate, the micro light emitting elements can be formed on the temporary substrate to connect the micro light emitting elements. The isolation layer 140 of 120. Accordingly, the configuration of the isolation layer 140 can prevent the micro light emitting elements 120 from shifting during transfer, increase the transfer success rate, and help improve the overall yield of the micro light emitting element display device 10 (or display panel).

舉例而言,隔離層140連接微型發光元件120的部分在基板100的法線方向(例如方向Z)上具有高度H1,微型發光元件120在方向Z上具有高度H2,且隔離層140的高度H1小於微型發光元件120的高度H2。在本實施例中,隔離層140的高度H1與微型發光元件120的高度H2的比值大於等於0.5。據此,可確保隔離層140與多個微型發光元件120之間能產生足夠的連接力,以提升這些微型發光元件120的轉移成功率。在本實施例中,隔離層140的材質可包括光感材料(例如光阻)、熱感材料(例如高分子膠材)、氧化矽(SiO x)、氧化鋁(Al 2O 3)、氮化鋁(AlN)或氮化矽(SiN x)等的絕緣材料,但不以此為限。 For example, the part of the isolation layer 140 connecting the micro light emitting element 120 has a height H1 in the normal direction of the substrate 100 (for example, direction Z), the micro light emitting element 120 has a height H2 in the direction Z, and the isolation layer 140 has a height H1 It is smaller than the height H2 of the micro light emitting element 120. In this embodiment, the ratio of the height H1 of the isolation layer 140 to the height H2 of the micro light emitting element 120 is greater than or equal to 0.5. Accordingly, it can be ensured that sufficient connection force can be generated between the isolation layer 140 and the plurality of micro light emitting elements 120, so as to improve the transfer success rate of the micro light emitting elements 120. In this embodiment, the material of the isolation layer 140 may include photosensitive materials (such as photoresist), thermal materials (such as polymer glue), silicon oxide (SiO x ), aluminum oxide (Al 2 O 3 ), and nitrogen. Insulating materials such as aluminum (AlN) or silicon nitride (SiN x ), but not limited to this.

從另一觀點來說,隔離層140位於相鄰的兩個微型發光元件120之間的部分的橫截面面積(例如在XZ平面上的垂直投影面積)小於微型發光元件120的橫截面面積(例如在XZ平面上的垂直投影面積)。在本實施例中,隔離層140位於相鄰的兩個微型發光元件120之間的部分的橫截面面積與微型發光元件120的橫截面面積的比值小於1且大於等於0.5。據此,可確保隔離層140與多個微型發光元件120之間能產生足夠的連接力,以提升這些微型發光元件120的轉移成功率。From another point of view, the cross-sectional area (for example, the vertical projection area on the XZ plane) of the isolation layer 140 between two adjacent micro light-emitting elements 120 is smaller than the cross-sectional area of the micro light-emitting element 120 (for example, The vertical projection area on the XZ plane). In this embodiment, the ratio of the cross-sectional area of the portion of the isolation layer 140 between two adjacent micro light-emitting elements 120 to the cross-sectional area of the micro light-emitting element 120 is less than 1 and greater than or equal to 0.5. Accordingly, it can be ensured that sufficient connection force can be generated between the isolation layer 140 and the plurality of micro light emitting elements 120, so as to improve the transfer success rate of the micro light emitting elements 120.

進一步而言,微型發光元件120在方向X上具有最大寬度W L與最小寬度W S,而微型發光元件120的最小寬度W S與最大寬度W L的比值小於等於0.5且大於等於0.05,但不以此為限。在本實施例中,磊晶結構ESL(或第一型半導體層123)與第一型電極121的連接面可定義出微型發光元件120的最小寬度W S,而磊晶結構ESL(或第二型半導體層125)與第二型電極122的連接面可定義出微型發光元件120的最大寬度W L。更具體的是,微型發光元件120的磊晶結構ESL在方向X上的寬度可由第二型電極122往第一型電極121的方向(即朝遠離基板100的方向)縮減,而使磊晶結構ESL的橫截面輪廓呈現上窄下寬的正梯形,有助於增加共電極130於後製程中的製程裕度。 Furthermore, the micro light emitting element 120 has a maximum width W L and a minimum width W S in the direction X, and the ratio of the minimum width W S to the maximum width W L of the micro light emitting element 120 is less than or equal to 0.5 and greater than or equal to 0.05, but not Limit this. In this embodiment, the connection surface between the epitaxial structure ESL (or the first type semiconductor layer 123) and the first type electrode 121 can define the minimum width W S of the micro light emitting element 120, and the epitaxial structure ESL (or second type electrode) The connection surface between the type semiconductor layer 125) and the second type electrode 122 can define the maximum width W L of the micro light emitting element 120. More specifically, the width of the epitaxial structure ESL of the micro light-emitting element 120 in the direction X can be reduced from the second type electrode 122 toward the first type electrode 121 (that is, toward the direction away from the substrate 100), so that the epitaxial structure The cross-sectional profile of the ESL presents a regular trapezoid with a narrow top and a wide bottom, which helps to increase the process margin of the common electrode 130 in the subsequent process.

另一方面,在方向X上排列且相鄰的兩個微型發光元件120之間在方向X上具有最大間距S L,且此最大間距S L可小於微型發光元件120的最大寬度W L。據此,微型發光元件顯示裝置10可具有較高畫素解析度。然而,本發明不限於此,根據其他實施例,相鄰的兩個微型發光元件120的最大間距S L也可大於等於微型發光元件120的最大寬度W LOn the other hand, two adjacent micro light emitting elements 120 arranged in the direction X have a maximum distance S L in the direction X, and the maximum distance S L may be smaller than the maximum width W L of the micro light emitting element 120. Accordingly, the micro light emitting device display device 10 can have a higher pixel resolution. However, the present invention is not limited to this. According to other embodiments, the maximum distance S L between two adjacent micro light-emitting elements 120 may also be greater than or equal to the maximum width W L of the micro light-emitting element 120.

在本實施例中,微型發光元件120的最大寬度W L可以介於1微米到100微米之間,優選地是介於1微米到30微米之間。在一較佳的實施例中,微型發光元件120的最大寬度W L小於10微米。在另一較佳的實施例中,微型發光元件120的最大寬度W L小於5微米。值得一提的是,當微型發光元件120的最大寬度W L小於10微米時,微型發光元件120在經由轉移頭(transfer head;未繪示)的轉移過程中易產生偏移。因此,透過隔離層140與這些微型發光元件120的連接關係,可降低對載板結構上的多個轉移頭與多個微型發光元件120之間的黏著力(或吸附力)的均勻性需求。換句話說,可增加微型發光元件120在轉移時的製程裕度,並避免微型發光元件120產生偏移。 In this embodiment, the maximum width W L of the micro light emitting element 120 may be between 1 micrometer and 100 micrometers, preferably between 1 micrometer and 30 micrometers. In a preferred embodiment, the maximum width W L of the micro light emitting element 120 is less than 10 microns. In another preferred embodiment, the maximum width W L of the micro light emitting element 120 is less than 5 microns. It is worth mentioning that when the maximum width W L of the micro light emitting element 120 is less than 10 μm, the micro light emitting element 120 is prone to offset during the transfer process via a transfer head (not shown). Therefore, through the connection relationship between the isolation layer 140 and the micro light emitting elements 120, the uniformity requirement for the adhesion (or adsorption force) between the plurality of transfer heads and the plurality of micro light emitting elements 120 on the carrier structure can be reduced. In other words, the process margin of the micro light emitting element 120 during transfer can be increased, and the deviation of the micro light emitting element 120 can be avoided.

進一步而言,微型發光元件顯示裝置10更包括設置在基板100、多個微型發光元件120與隔離層140之間的空氣間隙G。特別說明的是,在這些微型發光元件120接合至基板100的過程中,基板100上的連接墊110被加熱而呈現熔融狀態。此時,基板100與隔離層140之間具有的空氣間隙G可作為連接墊110溢流的緩衝空間,有助於提升這些微型發光元件120的接合良率與平整度。在本實施例中,隔離層140具有定義空氣間隙G的表面140s,且此表面140s可以是朝向隔離層140內凹的曲面,以定義出較大的緩衝空間,但本發明不以此為限。在其他實施例中,隔離層定義空氣間隙的表面也可以是凸面,且此凸面可作為緩衝空間中的阻擋結構。Furthermore, the micro light emitting element display device 10 further includes an air gap G disposed between the substrate 100, the plurality of micro light emitting elements 120, and the isolation layer 140. In particular, during the process of joining these micro light-emitting elements 120 to the substrate 100, the connection pads 110 on the substrate 100 are heated to assume a molten state. At this time, the air gap G between the substrate 100 and the isolation layer 140 can be used as a buffer space for the connection pad 110 to overflow, which helps to improve the bonding yield and flatness of the micro light-emitting elements 120. In this embodiment, the isolation layer 140 has a surface 140s defining the air gap G, and this surface 140s may be a concave curved surface facing the isolation layer 140 to define a larger buffer space, but the present invention is not limited to this. . In other embodiments, the surface of the isolation layer defining the air gap may also be a convex surface, and the convex surface may be used as a blocking structure in the buffer space.

另一方面,微型發光元件120在平行於排列方向(例如方向X)上具有寬度W1,空氣間隙G位於相鄰的兩個微型發光元件120之間的所佔區域在方向X上具有寬度W2,且空氣間隙G的寬度W2小於微型發光元件120的寬度W1。在本實施例中,空氣間隙G的寬度W2與微型發光元件120的寬度W1的比值大於0.5,但本發明不以此為限。在其他實施例中,空氣間隙G的寬度W2與微型發光元件120的寬度W1的比值也可實質上等於0.5。據此,可確保隔離層140與多個微型發光元件120之間能產生足夠的連接力,以提升這些微型發光元件120的轉移成功率。同時,還可避免連接墊110的溢流造成相鄰的兩個微型發光元件120的第二型電極122的電性短路。On the other hand, the micro light emitting element 120 has a width W1 parallel to the arrangement direction (for example, the direction X), and the area occupied by the air gap G between two adjacent micro light emitting elements 120 has a width W2 in the direction X. Moreover, the width W2 of the air gap G is smaller than the width W1 of the micro light-emitting element 120. In this embodiment, the ratio of the width W2 of the air gap G to the width W1 of the micro light emitting element 120 is greater than 0.5, but the present invention is not limited to this. In other embodiments, the ratio of the width W2 of the air gap G to the width W1 of the micro light emitting element 120 may also be substantially equal to 0.5. Accordingly, it can be ensured that sufficient connection force can be generated between the isolation layer 140 and the plurality of micro light emitting elements 120, so as to improve the transfer success rate of the micro light emitting elements 120. At the same time, the overflow of the connection pad 110 can also avoid the electrical short circuit of the second-type electrodes 122 of the two adjacent micro light-emitting elements 120.

在本實施例中,基板100可以是一電路基板,例如是顯示基板、發光基板、具薄膜電晶體或積體電路(ICs)等功能元件的基板或其他類型的電路基板,但本發明不以此為限。微型發光元件顯示裝置10還可包括分別設置在基板100上的第一驅動電路150與第二驅動電路160。舉例來說,用以控制顯示畫素(即微型發光元件120)的電晶體元件是透過掃描線(scan line)與資料線(data line)而分別電性連接至第一驅動電路150(例如是一閘極驅動電路)與第二驅動電路160(例如是一源極驅動電路)。另一方面,微型發光元件顯示裝置10還可包括驅動電路板170,且此驅動電路板170可電性接合至基板100的一側以電性連接第一驅動電路150與第二驅動電路160。舉例而言,驅動電路板170可透過軟性電路板(flexible printed circuit board,FPCB;未繪示)而電性連接基板100,但本發明不以此為限。In this embodiment, the substrate 100 may be a circuit substrate, such as a display substrate, a light-emitting substrate, a substrate with functional elements such as thin film transistors or integrated circuits (ICs), or other types of circuit substrates, but the present invention does not This is limited. The micro light emitting element display device 10 may further include a first driving circuit 150 and a second driving circuit 160 respectively provided on the substrate 100. For example, the transistor element used to control the display pixel (ie, the micro light emitting element 120) is electrically connected to the first driving circuit 150 (for example, A gate driving circuit) and a second driving circuit 160 (for example, a source driving circuit). On the other hand, the micro light emitting device display device 10 may further include a driving circuit board 170, and the driving circuit board 170 may be electrically connected to one side of the substrate 100 to electrically connect the first driving circuit 150 and the second driving circuit 160. For example, the driving circuit board 170 may be electrically connected to the substrate 100 through a flexible printed circuit board (FPCB; not shown), but the invention is not limited thereto.

需說明的是,在本實施例中,驅動電路的數量是以兩個為例進行示範性地說明,並不表示本發明以圖式揭示內容為限制。在其他實施例中,微型發光元件顯示裝置還可進一步包括電源控制電路、或其他適於驅動顯示畫素的電路(例如回饋電路、補償電路等)。應可理解的是,微型發光元件顯示裝置還可包括與上述驅動電路電性連接的訊號線。It should be noted that, in this embodiment, the number of driving circuits is exemplified by taking two as an example, which does not mean that the present invention is limited by the content of the drawings. In other embodiments, the micro light-emitting element display device may further include a power control circuit, or other circuits suitable for driving display pixels (for example, a feedback circuit, a compensation circuit, etc.). It should be understood that the micro light-emitting element display device may further include a signal line electrically connected to the above-mentioned driving circuit.

以下將列舉另一些實施例以詳細說明本揭露,其中相同的構件將標示相同的符號,並且省略相同技術內容的說明,省略部分請參考前述實施例,以下不再贅述。Other embodiments will be listed below to describe the disclosure in detail, wherein the same components will be marked with the same symbols, and the description of the same technical content will be omitted. For the omitted parts, please refer to the foregoing embodiments, and will not be repeated hereafter.

圖3是本發明的第二實施例的微型發光元件顯示裝置的剖面示意圖。圖4A及圖4B是圖3的微型發光元件顯示裝置的製造流程的剖面示意圖。圖5是本發明的另一實施例的微型發光元件載板結構的剖面示意圖。請參照圖2及圖3,本實施例的微型發光元件顯示裝置11與圖2的微型發光元件顯示裝置10的主要差異在於:共電極的構型不同。具體而言,相較於微型發光元件顯示裝置10的共電極130,微型發光元件顯示裝置11的共電極130A位於多個微型發光元件120之間的部分在方向Z上具有較大的厚度。據此,可進一步提升微型發光元件顯示裝置11的共電極130A的電流傳導效率。另一方面,在本實施例中,在方向X上排列且相鄰的兩個微型發光元件120之間的最大間距S L大於微型發光元件120的最大寬度W L,但本發明不以此為限。 3 is a schematic cross-sectional view of a micro light emitting device display device according to a second embodiment of the present invention. 4A and 4B are schematic cross-sectional views of the manufacturing process of the micro light emitting device display device of FIG. 3. 5 is a schematic cross-sectional view of a micro light emitting device carrier structure according to another embodiment of the present invention. 2 and 3, the main difference between the micro light emitting element display device 11 of this embodiment and the micro light emitting element display device 10 of FIG. 2 is that the configuration of the common electrode is different. Specifically, compared to the common electrode 130 of the micro light emitting element display device 10, the portion of the common electrode 130A of the micro light emitting element display device 11 located between the plurality of micro light emitting elements 120 has a larger thickness in the direction Z. Accordingly, the current conduction efficiency of the common electrode 130A of the micro light emitting device display device 11 can be further improved. On the other hand, in this embodiment, the maximum distance SL between two adjacent micro light-emitting elements 120 arranged in the direction X is greater than the maximum width W L of the micro light-emitting element 120, but this is not the case in the present invention. limit.

值得一提的是,本實施例的共電極130A是形成在多個微型發光元件120轉移至基板100之前。請參照圖4A及圖4B,舉例來說,形成微型發光元件顯示裝置11的步驟可包括:提供微型發光元件載板結構50(如圖4A所示)以及令微型發光元件載板結構50翻轉並靠近基板100,使多個微型發光元件120接合於基板100的多個連接墊110(如圖4B所示)。也就是說,此處的微型發光元件載板結構50可作為形成微型發光元件顯示裝置10的載板結構。以下將針對上述的步驟進行示例性地說明。It is worth mentioning that the common electrode 130A of this embodiment is formed before the plurality of micro light emitting elements 120 are transferred to the substrate 100. 4A and 4B, for example, the steps of forming the micro light-emitting element display device 11 may include: providing a micro light-emitting element carrier structure 50 (as shown in FIG. 4A) and turning the micro light-emitting element carrier structure 50 and Close to the substrate 100, a plurality of micro light emitting elements 120 are bonded to a plurality of connection pads 110 of the substrate 100 (as shown in FIG. 4B). In other words, the micro light emitting element carrier board structure 50 herein can be used as a carrier structure for forming the micro light emitting element display device 10. The following will exemplify the above-mentioned steps.

首先,請參照圖4A,形成微型發光元件載板結構50的步驟包括提供暫時基板101、將多個微型發光元件120轉移至暫時基板101上、於暫時基板101與多個微型發光元件120之間形成共電極130A以及於多個微型發光元件120之間形成隔離層140。暫時基板101可為一塑膠基板、一玻璃基板或一藍寶石基板等的暫時載板,可不具有電路配置於上,後續使微型發光元件120易轉移到基板101。舉例而言,在本實施例中,共電極130A是形成在微型發光元件120的轉移步驟前,但本發明不以此為限。在一實施例中,共電極也可形成在微型發光元件120轉移至暫時基板101後。在另一實施例中,微型發光元件120轉移至暫時基板101上的載板結構也可不具有共電極,如圖5所示。也就是說,共電極是形成在多個微型發光元件120轉移至基板100後。值得注意的是,由於微型發光元件載板結構51並未形成共電極,隔離層140、微型發光元件120的第一型電極121與暫時基板101之間具有空氣間隙G’,且此空氣間隙G’可作為微型發光元件120被轉移至暫時基板101時時的緩衝空間。First, referring to FIG. 4A, the steps of forming the micro light emitting element carrier structure 50 include providing a temporary substrate 101, transferring a plurality of micro light emitting elements 120 to the temporary substrate 101, between the temporary substrate 101 and the plurality of micro light emitting elements 120 A common electrode 130A is formed and an isolation layer 140 is formed between the plurality of micro light-emitting elements 120. The temporary substrate 101 may be a temporary carrier such as a plastic substrate, a glass substrate, or a sapphire substrate, etc., and may not have a circuit configuration on it, so that the micro light-emitting element 120 can be easily transferred to the substrate 101 later. For example, in this embodiment, the common electrode 130A is formed before the transfer step of the micro light emitting element 120, but the invention is not limited to this. In an embodiment, the common electrode may also be formed after the micro light emitting element 120 is transferred to the temporary substrate 101. In another embodiment, the carrier structure on which the micro light emitting element 120 is transferred to the temporary substrate 101 may not have a common electrode, as shown in FIG. 5. In other words, the common electrode is formed after the multiple micro light-emitting elements 120 are transferred to the substrate 100. It is worth noting that since the micro light emitting element carrier structure 51 does not form a common electrode, there is an air gap G'between the isolation layer 140, the first type electrode 121 of the micro light emitting element 120, and the temporary substrate 101, and this air gap G 'It can be used as a buffer space when the micro light emitting element 120 is transferred to the temporary substrate 101.

請繼續參照圖4A,在形成共電極130A後,於多個微型發光元件120之間形成隔離層140,其中共電極130A位於暫時基板101與隔離層140之間。隔離層140覆蓋共電極130A與磊晶結構ESL的相對兩側壁。值得注意的是,本實施例的隔離層140在遠離暫時基板101的一側表面140s可以是朝隔離層140內凹的曲面。然而,本發明不限於此,根據其他實施例,隔離層140的表面140s也可對應不同的材料選用或製程條件而呈現不同的面形。Please continue to refer to FIG. 4A. After the common electrode 130A is formed, an isolation layer 140 is formed between the plurality of micro light emitting devices 120, wherein the common electrode 130A is located between the temporary substrate 101 and the isolation layer 140. The isolation layer 140 covers the two opposite sidewalls of the common electrode 130A and the epitaxial structure ESL. It is worth noting that the surface 140s of the isolation layer 140 in this embodiment that is away from the temporary substrate 101 may be a curved surface that is concave toward the isolation layer 140. However, the present invention is not limited to this. According to other embodiments, the surface 140s of the isolation layer 140 may also exhibit different surface shapes corresponding to different material selection or process conditions.

請參照圖4B,在微型發光元件載板結構50接合於基板100上的連接墊110的過程中,多個微型發光元件120、隔離層140與基板100之間所形成的空氣間隙G(如圖3所示)可作為連接墊110被加熱而溢流時的緩衝空間,有助於提升這些微型發光元件120的接合良率與平整度。由於隔離層140定義此空氣間隙G的表面140s為朝向隔離層140內凹的曲面,因此可為連接墊110的溢流提供更大的緩衝空間。另一方面,透過隔離層140與這些微型發光元件120的連接關係,可有效增加這些微型發光元件120的轉移成功率。4B, during the process of bonding the micro light emitting element carrier structure 50 to the connection pad 110 on the substrate 100, the air gap G formed between the plurality of micro light emitting elements 120, the isolation layer 140 and the substrate 100 (as shown in FIG. 3) can be used as a buffer space when the connection pad 110 is heated and overflows, which helps to improve the bonding yield and flatness of these micro light-emitting elements 120. Since the isolation layer 140 defines the surface 140s of the air gap G as a concave curved surface facing the isolation layer 140, it can provide a larger buffer space for the overflow of the connection pad 110. On the other hand, the connection relationship between the isolation layer 140 and the micro light emitting elements 120 can effectively increase the transfer success rate of the micro light emitting elements 120.

圖6是本發明的第三實施例的微型發光元件顯示裝置的剖面示意圖。請參照圖6,本實施例的微型發光元件顯示裝置12與圖2的微型發光元件顯示裝置10的主要差異在於:隔離層的組成不同。具體而言,微型發光元件顯示裝置12的隔離層140A具有反射材料、散射材料或是光阻擋材料。在本實施例中,隔離層140A例如是二氧化矽或是氮化鋁等絕緣材料,其中包含有反射粒子145。反射粒子145的材料可包括是金屬粒子。6 is a schematic cross-sectional view of a micro light emitting device display device according to a third embodiment of the invention. Please refer to FIG. 6, the main difference between the micro light emitting device display device 12 of this embodiment and the micro light emitting device display device 10 of FIG. 2 is that the composition of the isolation layer is different. Specifically, the isolation layer 140A of the micro light emitting element display device 12 has a reflective material, a scattering material, or a light blocking material. In this embodiment, the isolation layer 140A is made of insulating materials such as silicon dioxide or aluminum nitride, and includes reflective particles 145 therein. The material of the reflective particles 145 may include metal particles.

舉例而言,當微型發光元件顯示裝置12被致能時,微型發光元件120的磊晶結構ESL(或發光層124)發出的部分光束在入射隔離層140A後,可透過分散於隔離層140A內的反射粒子145的反射而傳遞回磊晶結構ESL,有助於提升微型發光元件120的正向出光量。然而,本發明不限於此,在其他實施例中,隔離層的材質也可以是吸光材料,例如黑色樹脂材料。據此,可避免相鄰的多個微型發光元件120的出光範圍相互重疊,有助於實現高解析度的顯示效果。For example, when the micro light emitting element display device 12 is enabled, part of the light beam emitted by the epitaxial structure ESL (or the light emitting layer 124) of the micro light emitting element 120 can pass through and be dispersed in the isolation layer 140A after being incident on the isolation layer 140A. The reflection of the reflective particles 145 is transferred back to the epitaxial structure ESL, which helps to increase the amount of light emitted from the micro light-emitting element 120 in the forward direction. However, the present invention is not limited to this. In other embodiments, the material of the isolation layer may also be a light-absorbing material, such as a black resin material. Accordingly, it is possible to avoid overlapping of the light output ranges of a plurality of adjacent micro light-emitting elements 120, which helps to achieve a high-resolution display effect.

圖7是本發明的第四實施例的微型發光元件顯示裝置的剖面示意圖。請參照圖7,本實施例的微型發光元件顯示裝置13與圖2的微型發光元件顯示裝置10的主要差異在於:隔離層與連接墊的構型不同。具體而言,微型發光元件顯示裝置13的隔離層140B還覆蓋微型發光元件120的第二型電極122朝向基板100的表面122s,且具有重疊於連接墊110A的開口141。連接墊110A透過隔離層140B的此開口141電性連接微型發光元件120的第二型電極122的表面122s。值得一提的是,在本實施例中,由於隔離層140B與微型發光元件120的接觸面積更大,可使多個微型發光元件120與隔離層140B的連接關係更為穩固,有助於進一步提升這些微型發光元件120的轉移成功率。透過開口的設計也可以使第二型電極122與連接墊110A的接合處位於微型發光元件120的中央區域。若於轉移過程中因加熱加壓而使連接墊110A融化溢流,也不會流到第二型電極122的側面,以避免側漏電的問題。FIG. 7 is a schematic cross-sectional view of a micro light emitting device display device according to a fourth embodiment of the present invention. Please refer to FIG. 7, the main difference between the micro light emitting device display device 13 of this embodiment and the micro light emitting device display device 10 of FIG. 2 is that the configuration of the isolation layer and the connection pad are different. Specifically, the isolation layer 140B of the micro light emitting element display device 13 also covers the surface 122s of the second type electrode 122 of the micro light emitting element 120 facing the substrate 100, and has an opening 141 overlapping the connection pad 110A. The connection pad 110A is electrically connected to the surface 122s of the second type electrode 122 of the micro light emitting device 120 through the opening 141 of the isolation layer 140B. It is worth mentioning that in this embodiment, since the contact area between the isolation layer 140B and the micro light-emitting element 120 is larger, the connection relationship between the multiple micro light-emitting elements 120 and the isolation layer 140B can be made more stable, which is helpful for further The transfer success rate of these micro light emitting elements 120 is improved. Through the design of the opening, the junction between the second-type electrode 122 and the connection pad 110A can also be located in the central area of the micro light-emitting element 120. If the connection pad 110A melts and overflows due to heating and pressure during the transfer process, it will not flow to the side surface of the second electrode 122 to avoid the problem of side leakage.

另一方面,本實施例的連接墊110A相較於圖2的連接墊110在平行於基板100的方向(例如方向X)上具有較小的寬度。換句話說,在方向X上排列且相鄰的兩個連接墊110A之間具有較大的間距S,可避免相鄰的兩個連接墊110A溢流時所造成的電性短路。另一方面,位於隔離層140B與基板100之間的空氣間隙G1可作為連接墊110A溢流時的緩衝空間,有助於提升這些微型發光元件120的接合良率與平整度。On the other hand, the connection pad 110A of this embodiment has a smaller width in a direction parallel to the substrate 100 (for example, the direction X) compared to the connection pad 110 of FIG. 2. In other words, the two adjacent connection pads 110A arranged in the direction X have a larger spacing S between them, which can avoid the electrical short circuit caused by the overflow of the adjacent two connection pads 110A. On the other hand, the air gap G1 between the isolation layer 140B and the substrate 100 can be used as a buffer space when the connection pad 110A overflows, which helps to improve the bonding yield and flatness of these micro light emitting elements 120.

圖8是本發明的第五實施例的微型發光元件顯示裝置的剖面示意圖。請參照圖8,本實施例的微型發光元件顯示裝置14與圖2的微型發光元件顯示裝置10的主要差異在於:隔離層的構型、微型發光元件的組成、共電極的組成以及微型發光元件顯示裝置的組成不同。在本實施例中,隔離層140C具有多個凹槽140Cr,這些凹槽140Cr在方向Z上重疊於多個微型發光元件120A。共電極130B包括彼此電性連接的第一型共電極層131與第二型共電極層132。第一型共電極層131設置於隔離層140C上並延伸至這些凹槽140Cr內以電性連接微型發光元件120A的第一型電極121。第二型共電極層132設置於這些微型發光元件120A之間,且夾設於第一型共電極層131與隔離層140C之間。FIG. 8 is a schematic cross-sectional view of a micro light emitting device display device according to a fifth embodiment of the present invention. 8, the main difference between the micro light emitting element display device 14 of this embodiment and the micro light emitting element display device 10 of FIG. 2 lies in: the configuration of the isolation layer, the composition of the micro light emitting element, the composition of the common electrode and the micro light emitting element The composition of the display device is different. In this embodiment, the isolation layer 140C has a plurality of grooves 140Cr, and the grooves 140Cr overlap the plurality of micro light emitting elements 120A in the direction Z. The common electrode 130B includes a first type common electrode layer 131 and a second type common electrode layer 132 electrically connected to each other. The first-type common electrode layer 131 is disposed on the isolation layer 140C and extends into the grooves 140Cr to electrically connect the first-type electrode 121 of the micro light-emitting element 120A. The second type common electrode layer 132 is disposed between the micro light emitting elements 120A, and is sandwiched between the first type common electrode layer 131 and the isolation layer 140C.

特別說明的是,在本實施例中,第二型共電極層132的導電率可高於第一型共電極層131的導電率。舉例來說,第一型共電極層131的材質可包括透明金屬氧化物,例如銦錫氧化物(indium tin oxide,ITO)、銦鋅氧化物(indium zinc oxide,IZO)、鋁錫氧化物(aluminum tin oxide,ATO)、鋁鋅氧化物(aluminum zinc oxide,AZO)、或其他合適的氧化物、或者是上述至少兩者的堆疊層。第二型共電極層132的材質可包括銀、金、鉻、銅、鉑、錫、鎳、鈦、鋁或是上述金屬的合金。由於共電極130B的第二型共電極層132是由金屬材質製作而成,其導電率與第一型共電極層131的導電率的比值可介於10至100的範圍。據此,可有效降低共電極130B的整體電阻值,有助於提升共電極130B的電流傳導效率。In particular, in this embodiment, the conductivity of the second-type common electrode layer 132 may be higher than the conductivity of the first-type common electrode layer 131. For example, the material of the first type common electrode layer 131 may include transparent metal oxides, such as indium tin oxide (ITO), indium zinc oxide (IZO), aluminum tin oxide ( Aluminum tin oxide (ATO), aluminum zinc oxide (AZO), or other suitable oxides, or a stacked layer of at least two of the foregoing. The material of the second type common electrode layer 132 may include silver, gold, chromium, copper, platinum, tin, nickel, titanium, aluminum, or alloys of the foregoing metals. Since the second-type common electrode layer 132 of the common electrode 130B is made of a metal material, the ratio of its conductivity to that of the first-type common electrode layer 131 may be in the range of 10-100. Accordingly, the overall resistance of the common electrode 130B can be effectively reduced, which helps to improve the current conduction efficiency of the common electrode 130B.

在本實施例中,第二型共電極層132連接第一型共電極層131的表面132s與基板100之間具有高度H1’,微型發光元件120A的第一型電極121連接第一型共電極層131的表面121s與基板100之間具有高度H2’,且第二型共電極層132的高度H1’大於微型發光元件120A的第一型電極121的高度H2’,但本發明不以此為限。透過第二型共電極層132的高度H1’大於第一型電極121的高度H2’,可遮擋微型發光元件120A的大角度出光,進而避免相鄰的多個微型發光元件120A的出光範圍相互重疊,有助於實現高解析度的顯示效果。In this embodiment, the surface 132s of the second type common electrode layer 132 connecting the first type common electrode layer 131 and the substrate 100 have a height H1', and the first type electrode 121 of the micro light emitting element 120A is connected to the first type common electrode. There is a height H2' between the surface 121s of the layer 131 and the substrate 100, and the height H1' of the second-type common electrode layer 132 is greater than the height H2' of the first-type electrode 121 of the micro light-emitting element 120A, but the present invention does not take this as limit. The height H1' of the second-type common electrode layer 132 is greater than the height H2' of the first-type electrode 121, which can block the large-angle light emission of the micro light-emitting element 120A, thereby avoiding the overlapping of the light-emitting ranges of a plurality of adjacent micro light-emitting elements 120A. , Which helps to achieve high-resolution display effects.

另一方面,微型發光元件顯示裝置14更包括填入多個凹槽140Cr內的波長轉換層190,且第一型共電極層131位於隔離層140C與波長轉換層190之間。舉例來說,本實施例的微型發光元件120A用以發出單一波段的激發光(例如藍光或紫外光),而此激發光照射在波長轉換層190上以激發出紅光、綠光、或其他顏色的可見光。然而,本發明不限於此,根據其他實施例,隔離層140C的這些凹槽140Cr內也可設有彩色濾光層,以將微型發光元件120A發出的可見光濾成所需的顏色光。On the other hand, the micro light emitting device display device 14 further includes a wavelength conversion layer 190 filled in the plurality of grooves 140Cr, and the first-type common electrode layer 131 is located between the isolation layer 140C and the wavelength conversion layer 190. For example, the micro light-emitting element 120A of this embodiment is used to emit a single wavelength band of excitation light (such as blue light or ultraviolet light), and the excitation light is irradiated on the wavelength conversion layer 190 to excite red light, green light, or other light. Color of visible light. However, the present invention is not limited to this. According to other embodiments, the grooves 140Cr of the isolation layer 140C may also be provided with a color filter layer to filter the visible light emitted by the micro light emitting element 120A into the desired color light.

在本實施例中,相鄰的兩個微型發光元件120A之間在方向X上的最大間距S L可小於微型發光元件120B在方向X上的最大寬度W L。換句話說,本實施例的微型發光元件顯示裝置14可以是具有較高畫素解析度的微型發光二極體顯示面板。另一方面,微型發光元件120A還可包括設置於隔離層140C與磊晶結構ESL之間的絕緣層180。絕緣層180可直接覆蓋磊晶結構ESL以及部分第一型電極121的側壁。據此,可避免在磊晶結構ESL與隔離層140C的連接面產生漏電流。更具體地說,可確保任兩相鄰的微型發光元件120A的磊晶結構ESL彼此電性獨立。於未繪示出的實施例中,絕緣層也可以僅覆蓋磊晶結構ESL以使第一型電極121與共電極130B有更大的電性連接面積。 In this embodiment, the maximum distance SL between two adjacent micro light emitting elements 120A in the direction X may be smaller than the maximum width W L of the micro light emitting elements 120B in the direction X. In other words, the micro light emitting element display device 14 of this embodiment may be a micro light emitting diode display panel with a higher pixel resolution. On the other hand, the micro light emitting element 120A may further include an insulating layer 180 disposed between the isolation layer 140C and the epitaxial structure ESL. The insulating layer 180 may directly cover the epitaxial structure ESL and part of the sidewalls of the first type electrode 121. Accordingly, leakage current can be avoided at the connection surface between the epitaxial structure ESL and the isolation layer 140C. More specifically, it can be ensured that the epitaxial structure ESL of any two adjacent micro light emitting elements 120A are electrically independent of each other. In an embodiment not shown, the insulating layer may only cover the epitaxial structure ESL so that the first-type electrode 121 and the common electrode 130B have a larger electrical connection area.

圖9是本發明的第六實施例的微型發光元件顯示裝置的剖面示意圖。請參照圖9,本實施例的微型發光元件顯示裝置15與圖1及圖2的微型發光元件顯示裝置10的主要差異在於:共電極的組成與配置方式不同以及隔離層定義空氣間隙的表面的面形不同。在本實施例中,共電極130C包括彼此電性連接的第一型共電極層131C與第二型共電極層132C。第一型共電極層131C直接覆蓋隔離層140D與微型發光元件120的第一型電極121,以電性連接微型發光元件120。第二型共電極層132C設置於這些微型發光元件120之間,且夾設於第一型共電極層131C與隔離層140D之間。9 is a schematic cross-sectional view of a micro light emitting device display device according to a sixth embodiment of the present invention. Referring to FIG. 9, the main difference between the micro light emitting element display device 15 of this embodiment and the micro light emitting element display device 10 of FIGS. 1 and 2 lies in the difference in the composition and configuration of the common electrode and the separation layer defining the surface of the air gap. The face shape is different. In this embodiment, the common electrode 130C includes a first type common electrode layer 131C and a second type common electrode layer 132C that are electrically connected to each other. The first type common electrode layer 131C directly covers the isolation layer 140D and the first type electrode 121 of the micro light emitting element 120 to electrically connect the micro light emitting element 120. The second type common electrode layer 132C is disposed between the micro light emitting elements 120 and sandwiched between the first type common electrode layer 131C and the isolation layer 140D.

在本實施例中,第二型共電極層132C連接第一型共電極層131C的表面132s與基板100之間具有高度H1”,微型發光元件120的第一型電極121連接第一型共電極層131C的表面121s與基板100之間具有高度H2”,且第二型共電極層132C的高度H1”小於微型發光元件120的第一型電極121的高度H2”,但本發明不以此為限。In this embodiment, the surface 132s of the second type common electrode layer 132C connecting the first type common electrode layer 131C and the substrate 100 have a height H1", and the first type electrode 121 of the micro light emitting element 120 is connected to the first type common electrode. There is a height H2" between the surface 121s of the layer 131C and the substrate 100, and the height H1" of the second-type common electrode layer 132C is smaller than the height H2" of the first-type electrode 121 of the micro light-emitting element 120, but this is not the case in the present invention. limit.

另一方面,隔離層140D還可覆蓋微型發光元件120的第一型電極121的部分側壁,且隔離層140D定義空氣間隙G2的表面140s-1可以是平面,但本發明不以此為限。值得注意的是,相較於圖2的空氣間隙G,本實施例的空氣間隙G2在方向X上具有較大的寬度W2’,其中寬度W2’可以大於相鄰的兩個連接墊110之間的間距。空氣間隙G2的容積也可以分別大於基板100的連接墊110和每一微型發光元件120的第二型電極122的體積。據此,在微型發光元件120與基板100的連接墊110的接合過程中,可為連接墊110的溢流提供更大的緩衝空間。On the other hand, the isolation layer 140D can also cover part of the sidewalls of the first type electrode 121 of the micro light emitting element 120, and the surface 140s-1 of the isolation layer 140D defining the air gap G2 can be flat, but the present invention is not limited thereto. It is worth noting that, compared to the air gap G in FIG. 2, the air gap G2 of this embodiment has a larger width W2' in the direction X, wherein the width W2' may be greater than that between two adjacent connection pads 110 Pitch. The volume of the air gap G2 may also be larger than the volume of the connection pad 110 of the substrate 100 and the volume of the second type electrode 122 of each micro light emitting element 120, respectively. Accordingly, during the bonding process of the micro light emitting element 120 and the connection pad 110 of the substrate 100, a larger buffer space can be provided for the overflow of the connection pad 110.

圖10是本發明的第七實施例的微型發光元件顯示裝置的剖面示意圖。請參照圖10,本實施例的微型發光元件顯示裝置16與圖8的微型發光元件顯示裝置14的主要差異在於:隔離層的材質與構型以及微型發光元件顯示裝置的組成不同。在本實施例中,隔離層140E具有多個凹槽140Er,且這些凹槽140Er在方向Z上重疊於多個微型發光元件120A。特別說明的是,隔離層140E的材質可以是具有反射和導電特性的材料,例如包括銀、金、鉻、銅、鉑、錫、鎳、鈦、鋁或是上述金屬的合金。因此,可以避免相鄰的兩微型發光元件120A的出光互相干擾,且隔離層140E還可作為具有良好導電效率的共電極。10 is a schematic cross-sectional view of a micro light emitting device display device according to a seventh embodiment of the invention. 10, the main difference between the micro light emitting device display device 16 of this embodiment and the micro light emitting device display device 14 of FIG. 8 lies in the difference in the material and configuration of the isolation layer and the composition of the micro light emitting device display device. In this embodiment, the isolation layer 140E has a plurality of grooves 140Er, and the grooves 140Er overlap the plurality of micro light-emitting elements 120A in the direction Z. In particular, the material of the isolation layer 140E may be a material with reflective and conductive properties, such as silver, gold, chromium, copper, platinum, tin, nickel, titanium, aluminum, or alloys of the foregoing metals. Therefore, the light emitted from two adjacent micro light-emitting elements 120A can be prevented from interfering with each other, and the isolation layer 140E can also serve as a common electrode with good conductivity.

另一方面,透過位於多個微型發光元件120A之間的隔離層140E電性連接這些微型發光元件120A的第一型電極121,可以避免共電極設置於出光面(例如第一電極121的表面121s)造成正向出光量的降低。然而,本發明不限於此,在未繪示出的一實施例中,亦可透過一第二型共電極層(未繪示)設置於隔離層140E上並延伸至這些凹槽140Er內以電性連接微型發光元件120A的第一型電極121。On the other hand, the isolation layer 140E between the plurality of micro light emitting elements 120A is electrically connected to the first type electrodes 121 of these micro light emitting elements 120A, which can prevent the common electrode from being disposed on the light emitting surface (for example, the surface 121s of the first electrode 121). ) Causes a reduction in the amount of light emitted in the positive direction. However, the present invention is not limited to this. In an embodiment that is not shown, a second-type common electrode layer (not shown) can also be provided on the isolation layer 140E and extended into the grooves 140Er for electricity. The first type electrode 121 of the micro light-emitting element 120A is electrically connected.

在本實施例中,隔離層140E的表面140s-2與基板100之間具有高度H3,且透過隔離層140E的高度H3大於第一型電極121的高度H2’,可遮擋微型發光元件120A的大角度出光,進而避免相鄰的多個微型發光元件120A的出光範圍相互重疊,有助於實現高解析度的顯示效果。In this embodiment, there is a height H3 between the surface 140s-2 of the isolation layer 140E and the substrate 100, and the height H3 passing through the isolation layer 140E is greater than the height H2' of the first type electrode 121, which can shield the micro light emitting element 120A. The light is emitted at an angle, thereby avoiding the overlapping of the light emitting ranges of the plurality of adjacent micro light emitting elements 120A, which helps to achieve a high-resolution display effect.

另一方面,微型發光元件顯示裝置16的波長轉換層190填入多個凹槽140Er內。舉例來說,本實施例的微型發光元件120A用以發出單一波段的激發光(例如藍光或紫外光),而此激發光照射在波長轉換層190上以激發出紅光、綠光、或其他顏色的可見光。然而,本發明不限於此,根據其他實施例,隔離層140E的這些凹槽140Er內也可設有彩色濾光層,以將微型發光元件120A發出的可見光濾成所需的顏色光。On the other hand, the wavelength conversion layer 190 of the micro light emitting element display device 16 is filled in the plurality of grooves 140Er. For example, the micro light-emitting element 120A of this embodiment is used to emit a single wavelength band of excitation light (such as blue light or ultraviolet light), and the excitation light is irradiated on the wavelength conversion layer 190 to excite red light, green light, or other light. Color of visible light. However, the present invention is not limited to this. According to other embodiments, the grooves 140Er of the isolation layer 140E may also be provided with a color filter layer to filter the visible light emitted by the micro light emitting element 120A into the desired color light.

綜上所述,在本發明的一實施例的微型發光元件顯示裝置中,透過設置在多個微型發光元件之間的隔離層,可增加這些微型發光元件的轉移成功率。另一方面,在這些微型發光元件接合至基板的過程中,基板上的連接墊被加熱而呈現熔融狀態。此時,位於隔離層與基板之間的空氣間隙可作為連接墊溢流時的緩衝空間,有助於提升這些微型發光元件的接合良率與平整度。In summary, in the micro light emitting element display device of an embodiment of the present invention, the transfer success rate of the micro light emitting elements can be increased through the isolation layer disposed between the micro light emitting elements. On the other hand, in the process of bonding these micro light-emitting elements to the substrate, the connection pads on the substrate are heated to assume a molten state. At this time, the air gap between the isolation layer and the substrate can be used as a buffer space when the connection pad overflows, which helps to improve the bonding yield and flatness of these micro light-emitting elements.

10、11、12、13、14、15、16:微型發光元件顯示裝置10, 11, 12, 13, 14, 15, 16: Micro light emitting element display device

50、51:微型發光元件載板結構50, 51: Micro light-emitting element carrier board structure

100、101:基板100, 101: substrate

110、110A:連接墊110, 110A: connecting pad

120、120-1、120-2、120-3、120A:微型發光元件120, 120-1, 120-2, 120-3, 120A: micro light emitting element

121:第一型電極121: The first type electrode

121s、122s、132s、140s、140s-1、140s-2:表面121s, 122s, 132s, 140s, 140s-1, 140s-2: surface

122:第二型電極122: The second type electrode

123:第一型半導體層123: The first type semiconductor layer

124:發光層124: Emitting layer

125:第二型半導體層125: Type II semiconductor layer

130、130A、130B、130C:共電極130, 130A, 130B, 130C: common electrode

131、131C:第一型共電極層131, 131C: the first type common electrode layer

132、132C:第二型共電極層132, 132C: Type 2 common electrode layer

132a:第一直線段132a: The first straight line segment

132b:第二直線段132b: The second straight line segment

140、140A、140B、140C、140D、140E:隔離層140, 140A, 140B, 140C, 140D, 140E: isolation layer

140Cr、140Er:凹槽140Cr, 140Er: groove

141:開口141: Open

145:反射粒子145: reflective particles

150:第一驅動電路150: first drive circuit

160:第二驅動電路160: second drive circuit

170:驅動電路板170: drive circuit board

180:絕緣層180: insulating layer

190:波長轉換層190: wavelength conversion layer

DR:顯示區DR: display area

ESL:磊晶結構ESL: epitaxial structure

G、G’、G1、G2:空氣間隙G, G’, G1, G2: air gap

H1、H2、H1’、H2’、H1”、H2”、H3:高度H1, H2, H1’, H2’, H1”, H2”, H3: height

S:間距S: Spacing

S L:最大間距S L : Maximum spacing

W1、W2、W2’:寬度W1, W2, W2’: width

W L:最大寬度W L : Maximum width

W S:最小寬度W S : minimum width

X、Y、Z:方向X, Y, Z: direction

A-A’:剖線A-A’: Sectional line

圖1是本發明的第一實施例的微型發光元件顯示裝置的俯視示意圖。 圖2是圖1的微型發光元件顯示裝置的剖面示意圖。 圖3是本發明的第二實施例的微型發光元件顯示裝置的剖面示意圖。 圖4A及圖4B是圖3的微型發光元件顯示裝置的製造流程的剖面示意圖。 圖5是本發明的另一實施例的微型發光元件載板結構的剖面示意圖。 圖6是本發明的第三實施例的微型發光元件顯示裝置的剖面示意圖。 圖7是本發明的第四實施例的微型發光元件顯示裝置的剖面示意圖。 圖8是本發明的第五實施例的微型發光元件顯示裝置的剖面示意圖。 圖9是本發明的第六實施例的微型發光元件顯示裝置的剖面示意圖。 圖10是本發明的第七實施例的微型發光元件顯示裝置的剖面示意圖。 FIG. 1 is a schematic top view of a micro light emitting device display device according to a first embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of the micro light emitting device display device of FIG. 1. FIG. 3 is a schematic cross-sectional view of a micro light emitting device display device according to a second embodiment of the present invention. 4A and 4B are schematic cross-sectional views of the manufacturing process of the micro light emitting device display device of FIG. 3. 5 is a schematic cross-sectional view of a micro light emitting device carrier structure according to another embodiment of the present invention. 6 is a schematic cross-sectional view of a micro light emitting device display device according to a third embodiment of the invention. FIG. 7 is a schematic cross-sectional view of a micro light emitting device display device according to a fourth embodiment of the present invention. FIG. 8 is a schematic cross-sectional view of a micro light emitting device display device according to a fifth embodiment of the present invention. 9 is a schematic cross-sectional view of a micro light emitting device display device according to a sixth embodiment of the present invention. 10 is a schematic cross-sectional view of a micro light emitting device display device according to a seventh embodiment of the invention.

10:微型發光元件顯示裝置 10: Micro light emitting element display device

100:基板 100: substrate

110:連接墊 110: connection pad

120:微型發光元件 120: micro light emitting element

121:第一型電極 121: The first type electrode

122:第二型電極 122: The second type electrode

123:第一型半導體層 123: The first type semiconductor layer

124:發光層 124: Emitting layer

125:第二型半導體層 125: Type II semiconductor layer

130:共電極 130: common electrode

140:隔離層 140: isolation layer

140s:表面 140s: surface

ESL:磊晶結構 ESL: epitaxial structure

G:空氣間隙 G: Air gap

H1、H2:高度 H1, H2: height

SL:最大間距 S L : Maximum spacing

W1、W2:寬度 W1, W2: width

WL:最大寬度 W L : Maximum width

WS:最小寬度 W S : minimum width

X、Z:方向 X, Z: direction

A-A’:剖線 A-A’: Sectional line

Claims (20)

一種微型發光元件顯示裝置,包括:一電路基板;多個微型發光元件,分散地設置於該電路基板上,並且與該電路基板電性連接;一隔離層,設置於該些微型發光元件之間;以及一空氣間隙,設置於該些微型發光元件、該隔離層與該電路基板之間。 A display device with a micro light-emitting element, comprising: a circuit substrate; a plurality of micro light-emitting elements, which are dispersedly arranged on the circuit substrate and electrically connected to the circuit substrate; and an isolation layer is arranged between the micro light-emitting elements ; And an air gap is provided between the micro light-emitting elements, the isolation layer and the circuit substrate. 如申請專利範圍第1項所述的微型發光元件顯示裝置,其中該微型發光元件在一第一方向上具有一第一寬度,該空氣間隙位於兩相鄰的該些微型發光元件之間的所佔區域在該第一方向上具有一第二寬度,且該第二寬度小於該第一寬度。 According to the micro light emitting element display device described in claim 1, wherein the micro light emitting element has a first width in a first direction, and the air gap is located between two adjacent micro light emitting elements. The occupied area has a second width in the first direction, and the second width is smaller than the first width. 如申請專利範圍第2項所述的微型發光元件顯示裝置,其中該第二寬度與該第一寬度的比值大於等於0.5。 According to the micro light-emitting element display device described in item 2 of the scope of patent application, the ratio of the second width to the first width is greater than or equal to 0.5. 如申請專利範圍第1項所述的微型發光元件顯示裝置,其中該隔離層連接該微型發光元件的部分在該電路基板的法線方向上具有一第一高度,該微型發光元件在該電路基板的法線方向上具有一第二高度,且該第一高度小於該第二高度。 The micro light emitting element display device according to the first item of the scope of patent application, wherein the part of the isolation layer connecting the micro light emitting element has a first height in the normal direction of the circuit substrate, and the micro light emitting element is on the circuit substrate Has a second height in the normal direction, and the first height is smaller than the second height. 如申請專利範圍第4項所述的微型發光元件顯示裝置,其中該第一高度與該第二高度的比值大於等於0.5。 According to the micro light emitting element display device described in item 4 of the scope of patent application, the ratio of the first height to the second height is greater than or equal to 0.5. 如申請專利範圍第1項所述的微型發光元件顯示裝置,其中該隔離層位於兩相鄰的該些微型發光元件之間的部分的橫截面面積小於該微型發光元件的橫截面面積。 According to the micro light emitting element display device described in the first item of the scope of patent application, the cross-sectional area of the part of the isolation layer between the two adjacent micro light emitting elements is smaller than the cross sectional area of the micro light emitting element. 如申請專利範圍第6項所述的微型發光元件顯示裝置,其中該隔離層位於兩相鄰的該些微型發光元件之間的部分的橫截面面積與該微型發光元件的橫截面面積的比值小於1且大於等於0.5。 The micro light-emitting element display device according to item 6 of the scope of patent application, wherein the ratio of the cross-sectional area of the part of the isolation layer between the two adjacent micro light-emitting elements to the cross-sectional area of the micro light-emitting element is less than 1 and greater than or equal to 0.5. 如申請專利範圍第1項所述的微型發光元件顯示裝置,更包括一共電極,覆蓋該隔離層且電性連接該些微型發光元件,該共電極與該空氣間隙分別位於該隔離層的相對兩側。 As described in the first item of the scope of patent application, the micro light-emitting element display device further includes a common electrode covering the isolation layer and electrically connected to the micro light-emitting elements. The common electrode and the air gap are respectively located at two opposite sides of the isolation layer. side. 如申請專利範圍第8項所述的微型發光元件顯示裝置,其中該微型發光元件具有一磊晶結構以及設置於該磊晶結構相對兩側的一第一型電極與一第二型電極,該共電極包括:一第一型共電極層,覆蓋該隔離層與該些微型發光元件,且直接接觸各該微型發光元件的該第一型電極;以及一第二型共電極層,設置於該些微型發光元件之間,且位於該第一型共電極層與該隔離層之間,其中該第二型共電極電性連接該些微型發光元件與該第一型共電極層。 The micro light emitting element display device according to claim 8 of the patent application, wherein the micro light emitting element has an epitaxial structure and a first type electrode and a second type electrode disposed on opposite sides of the epitaxial structure, the The common electrode includes: a first type common electrode layer covering the isolation layer and the micro light emitting elements and directly contacting the first type electrode of each of the micro light emitting elements; and a second type common electrode layer disposed on the Between the micro light emitting elements and between the first type common electrode layer and the isolation layer, wherein the second type common electrode is electrically connected to the micro light emitting elements and the first type common electrode layer. 如申請專利範圍第9項所述的微型發光元件顯示裝置,其中該第二型共電極層連接該第一型共電極層的一表面與該電路基板之間具有一第一高度,該第一型電極連接該第一型共電 極層的一表面與該電路基板之間具有一第二高度,且該第一高度大於該第二高度。 According to the micro light-emitting element display device described in claim 9, wherein a surface of the second-type common electrode layer connecting the first-type common electrode layer and the circuit substrate has a first height, and the first Type electrode connected to the first type common current There is a second height between a surface of the pole layer and the circuit substrate, and the first height is greater than the second height. 如申請專利範圍第10項所述的微型發光元件顯示裝置,更包括:一波長轉換層,設置於該第二型共電極層之間,其中該隔離層具有對應地設置於該些微型發光元件上的多個凹槽,且該波長轉換層填入該些凹槽內。 The micro light-emitting element display device according to item 10 of the scope of patent application further includes: a wavelength conversion layer disposed between the second-type common electrode layers, wherein the isolation layer has correspondingly disposed on the micro light-emitting elements A plurality of grooves on the upper surface, and the wavelength conversion layer is filled in the grooves. 如申請專利範圍第1項所述的微型發光元件顯示裝置,其中該微型發光元件在一第一方向上的寬度朝遠離該電路基板的方向遞減,且該第一方向平行於該電路基板。 According to the micro light emitting element display device described in claim 1, wherein the width of the micro light emitting element in a first direction decreases toward a direction away from the circuit substrate, and the first direction is parallel to the circuit substrate. 如申請專利範圍第12項所述的微型發光元件顯示裝置,其中該微型發光元件在該第一方向上具有一最小寬度與一最大寬度,而該微型發光元件的該最小寬度與該最大寬度的比值小於等於0.5且大於等於0.05。 The micro light-emitting element display device according to claim 12, wherein the micro light-emitting element has a minimum width and a maximum width in the first direction, and the minimum width and the maximum width of the micro light-emitting element are The ratio is less than or equal to 0.5 and greater than or equal to 0.05. 如申請專利範圍第1項所述的微型發光元件顯示裝置,其中該微型發光元件在一第一方向上具有一最大寬度,兩相鄰的該些微型發光元件之間在該第一方向上具有一最大間距,且該最大間距小於該微型發光元件的該最大寬度。 According to the micro light-emitting element display device described in claim 1, wherein the micro light-emitting element has a maximum width in a first direction, and two adjacent micro light-emitting elements have a maximum width in the first direction. A maximum distance, and the maximum distance is smaller than the maximum width of the micro light-emitting element. 如申請專利範圍第1項所述的微型發光元件顯示裝置,其中該隔離層定義該空氣間隙的一表面為朝向該隔離層內凹的曲面。 According to the micro light emitting device display device described in claim 1, wherein a surface of the isolation layer defining the air gap is a concave curved surface facing the isolation layer. 如申請專利範圍第1項所述的微型發光元件顯示裝置,其中該隔離層包含反射材料、散射材料或是光阻擋材料。 According to the micro light-emitting device display device described in claim 1, wherein the isolation layer includes a reflective material, a scattering material, or a light blocking material. 如申請專利範圍第8項所述的微型發光元件顯示裝置,其中各該微型發光元件包括:一磊晶結構;以及一第一型電極與一第二型電極,設置於該磊晶結構的相對兩側,其中該第一型電極電性連接該共電極,該第二型電極具有朝向該電路基板的一表面,其中該隔離層覆蓋該第二型電極的該表面,且該電路基板的一連接墊透過該隔離層的一開口與該第二型電極的該表面電性接合。 The micro light-emitting element display device according to claim 8 of the scope of patent application, wherein each micro light-emitting element includes: an epitaxial structure; and a first type electrode and a second type electrode disposed opposite to the epitaxial structure On both sides, the first type electrode is electrically connected to the common electrode, the second type electrode has a surface facing the circuit substrate, wherein the isolation layer covers the surface of the second type electrode, and a surface of the circuit substrate The connection pad is electrically connected to the surface of the second type electrode through an opening of the isolation layer. 如申請專利範圍第1項所述的微型發光元件顯示裝置,其中該隔離層具有對應地設置於該些微型發光元件上的多個凹槽。 According to the micro light emitting element display device described in the first item of the scope of patent application, the isolation layer has a plurality of grooves correspondingly provided on the micro light emitting elements. 如申請專利範圍第18項所述的微型發光元件顯示裝置,更包括:一波長轉換層,設置於該隔離層之間,且該波長轉換層填入該隔離層的該些凹槽內。 The micro light-emitting element display device described in item 18 of the scope of patent application further includes: a wavelength conversion layer disposed between the isolation layers, and the wavelength conversion layer is filled in the grooves of the isolation layer. 如申請專利範圍第1項所述的微型發光元件顯示裝置,其中各該微型發光元件具有一磊晶結構以及設置於該磊晶結構相對兩側的一第一型電極與一第二型電極,且該第二型電極電性接合該電路基板。According to the micro light emitting element display device described in claim 1, wherein each micro light emitting element has an epitaxial structure and a first type electrode and a second type electrode disposed on opposite sides of the epitaxial structure, And the second type electrode is electrically connected to the circuit substrate.
TW108148261A 2017-08-08 2019-12-30 Micro light emitting device display apparatus TWI725691B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW108148261A TWI725691B (en) 2019-12-30 2019-12-30 Micro light emitting device display apparatus
US16/862,578 US11367713B2 (en) 2017-10-13 2020-04-30 Micro light emitting device display apparatus
US16/896,226 US11302842B2 (en) 2017-08-08 2020-06-09 Micro light emitting diode device and manufacturing method thereof
US17/744,760 US20220285600A1 (en) 2017-10-13 2022-05-16 Micro light emitting device display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108148261A TWI725691B (en) 2019-12-30 2019-12-30 Micro light emitting device display apparatus

Publications (2)

Publication Number Publication Date
TWI725691B true TWI725691B (en) 2021-04-21
TW202125848A TW202125848A (en) 2021-07-01

Family

ID=76604655

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108148261A TWI725691B (en) 2017-08-08 2019-12-30 Micro light emitting device display apparatus

Country Status (1)

Country Link
TW (1) TWI725691B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI784681B (en) * 2021-08-20 2022-11-21 錼創顯示科技股份有限公司 Micro light-emitting diode display device
TWI799929B (en) * 2021-07-29 2023-04-21 錼創顯示科技股份有限公司 Micro light-emitting diode display device and manufacturing method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220238611A1 (en) * 2021-01-28 2022-07-28 Innolux Corporation Light emitting device
US11973068B2 (en) 2021-10-28 2024-04-30 PlayNitride Display Co., Ltd. Micro LED display device and method forming the same
TWI810696B (en) * 2021-10-28 2023-08-01 錼創顯示科技股份有限公司 Micro led display device and method forming the same
US11960684B2 (en) 2022-07-20 2024-04-16 Chicony Power Technology Co., Ltd. Light-emitting touch panel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190189495A1 (en) * 2017-12-19 2019-06-20 PlayNitride Inc. Structure with micro device
TWI671570B (en) * 2015-08-10 2019-09-11 愛爾蘭商艾克斯瑟樂普林特有限公司 Display with micro-led front light
US20190363000A1 (en) * 2017-12-19 2019-11-28 PlayNitride Inc. Structure with micro device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI671570B (en) * 2015-08-10 2019-09-11 愛爾蘭商艾克斯瑟樂普林特有限公司 Display with micro-led front light
US20190189495A1 (en) * 2017-12-19 2019-06-20 PlayNitride Inc. Structure with micro device
US20190363000A1 (en) * 2017-12-19 2019-11-28 PlayNitride Inc. Structure with micro device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI799929B (en) * 2021-07-29 2023-04-21 錼創顯示科技股份有限公司 Micro light-emitting diode display device and manufacturing method thereof
TWI784681B (en) * 2021-08-20 2022-11-21 錼創顯示科技股份有限公司 Micro light-emitting diode display device

Also Published As

Publication number Publication date
TW202125848A (en) 2021-07-01

Similar Documents

Publication Publication Date Title
TWI725691B (en) Micro light emitting device display apparatus
US11367713B2 (en) Micro light emitting device display apparatus
JP5754173B2 (en) Light emitting unit and display device
US20240162392A1 (en) Light source module and backlight unit having the same
US9857526B2 (en) Backlight unit
TWI661575B (en) Micro light emitting device and display apparatus
US20150085527A1 (en) Light source module, fabrication method therefor, and backlight unit including the same
US11289633B2 (en) LED array package and manufacturing method thereof
TW201901947A (en) Miniature LED device and display panel
TWI607558B (en) Micro light-emitting diode chip
TWI533062B (en) Light source module, fabrication method therefor, and backlight unit including the same
US11387387B2 (en) Micro light emitting device display apparatus
WO2021184522A1 (en) Backlight module and manufacturing method therefor, and display device
JP7462402B2 (en) Light Emitting Diode Display
CN111063270B (en) Micro light emitting device display device
US10663794B2 (en) Display devices
TWI709222B (en) Micro light emitting device display apparatus
TW202118081A (en) Micro light-emitting diode device
US20220285600A1 (en) Micro light emitting device display apparatus
CN110957342B (en) Micro light-emitting element display device
TW202226570A (en) Display panel
US11300724B2 (en) Light emitting diode and backlight module using same
KR102246646B1 (en) Light source module and backlight unit having the same
CN110752228B (en) Micro light-emitting diode device
TWI779242B (en) Micro light-emitting diode device