TWI720459B - 濾心與使用其濾心的淨水系統 - Google Patents

濾心與使用其濾心的淨水系統 Download PDF

Info

Publication number
TWI720459B
TWI720459B TW108113205A TW108113205A TWI720459B TW I720459 B TWI720459 B TW I720459B TW 108113205 A TW108113205 A TW 108113205A TW 108113205 A TW108113205 A TW 108113205A TW I720459 B TWI720459 B TW I720459B
Authority
TW
Taiwan
Prior art keywords
filter element
carrier
water
activated carbon
accommodating space
Prior art date
Application number
TW108113205A
Other languages
English (en)
Other versions
TW201942066A (zh
Inventor
李東峯
徐盟貴
Original Assignee
友達晶材股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達晶材股份有限公司 filed Critical 友達晶材股份有限公司
Priority to TW108113205A priority Critical patent/TWI720459B/zh
Publication of TW201942066A publication Critical patent/TW201942066A/zh
Application granted granted Critical
Publication of TWI720459B publication Critical patent/TWI720459B/zh

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本發明提供一種濾心,是用於淨水並產製含有矽酸及氫氣的生物用水組成,其包括一載座及一濾材。該載座界定一容置空間,並具有與該容置空間相通的一進水口及一出水口。該濾材填充於該載座的該容置空間中,且包括一載體及複數吸附於該載體之一表面的活性矽材。該載體選自一多孔性材料、一非多孔性材料,或前述載體的一組合。本發明亦提供一種使用前述濾心的淨水系統。

Description

濾心與使用其濾心的淨水系統
本發明是有關於一種濾心,特別是指一種用於淨水並產製含有矽酸(silicic acid)與氫氣的生物用水組成(water for organism)的濾心與使用其濾心的淨水系統。
有鑑於溶氫飲用水於人體飲用後有利於與存在於體內之致病性活性氧或自由基團中和,以減緩器官損害。因此,溶氫飲用水的相關研究已成為近幾年來的熱門研究主題。
訪間常見的溶氫飲用水多半是將高純度氫氣直接溶於水中,或是以鎂粉或鎂錠來與純水反應生成氫氣,並以此稱為溶氫飲用水。然而,前者之方法,存在著高純度氫氣取得不易、氫氣溶解困難以及安全性之問題。後者之方法,則因為殘留在純水中的氫氧化鎂是被歸類為藥品,其與部分心血管疾病的藥品會產生衝突,一旦含量過高時,也容易引發急性藥物中毒、急性腎衰竭或高血鎂症等問題。
經上述說明可知,使飲用水可以溶氫並提供安全的溶氫飲用水,是本發明相關技術領域的技術人員所待突破的課題。
因此,本發明的第一目的,即在提供一種用於淨水並產製含有矽酸及氫氣的生物用水組成的濾心。
於是,本發明濾心,是用於淨水並產製含有矽酸及氫氣的生物用水組成,其包括一載座,及一濾材。該載座界定出一容置空間,並包括與該容置空間相通的一進水口及一出水口。該濾材填充於該載座的該容置空間中,且該濾材包括一載體,及複數活性矽材。該載體選自一多孔性材料、一非多孔性材料,或前述載體的一組合。該等活性矽材吸附於該載體的一表面。
本發明的第二目的,即在提供一種產製含有矽酸及氫氣的生物用水組成的淨水系統。
於是,本發明淨水系統,是用於與一產製且容置有一生物用水的生物用水單元連接並產製含有矽酸及氫氣的生物用水組成,該淨水系統沿一水流方向包括至少一第一濾心。該第一濾心是使用如上所述的濾心。
本發明的功效在於:利用形成於載體表面的活性矽材與生物用水反應生成矽酸與氫氣,使生物用水內的溶氫量提升並提供安全的生物用水組成,且含有對人體有益的溶解性矽。
在本發明被詳細描述的前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。
參閱圖1與圖2,本發明濾心4之一第一實施例,是用於淨水並產製一含有矽酸及氫氣921的生物用水組成92(見圖13),其包括一載座41,及一濾材42。
該載座41界定出一容置空間40,並包括相反設置且與該容置空間40相通的一進水口401及一出水口402,且該進水口401的位置是低於該出水口402的位置。
該濾心4之濾材42填充於該載座41的該容置空間40中,且包括一載體421,及複數活性矽材422。該載體421選自一多孔性材料、一非多孔性材料,或前述載體421的一組合。該等活性矽材422吸附於該載體421的一表面。
在本發明中,所謂的生物用水,是被定義為可在動物、植物等生物內服或外用後受生物所吸收的水,且矽酸與氫氣氣泡921是經如圖13所示之一生物用水9與一預定量的活性矽材422混合所反應生成。
該載體421的目的主要是在於,攔截該等活性矽材422,舉凡可以攔截該等活性矽材422的材料皆適用。因此,較佳地,適用於本發明之載體421是選自由下列所構成之群組:如圖2所示的活性碳4211、如圖5所示的中空絲膜(hollow fiber membrane filter)4212、竹炭(bamboo-charcoal)、麥飯石(porphyritic andesites)、石英砂(quartz sand)、纖維(fiber)、陶瓷(ceramics),及前述載體421的一組合;該等活性矽材422是選自粒徑介於50 nm至300 nm間的奈米矽材、多孔性矽材(porous silicon)、造粒矽材(granulated silicon),或矽奈米線(Si nanowires)。舉例來說,奈米矽材可以是如矽晶圓長晶廠經矽晶錠(Si ingot)的開方(squaring)與切片(slicing)後所廢棄不用的奈米矽粉等廢料;多孔性矽材可以是如經酸蝕刻後的矽晶圓、矽粉等材料;造粒矽材例如可以是矽粉經噴霧造粒(spray granulation)所得;矽奈米線例如可以是矽材經溶液蝕刻所得。
此處須說明的是,基於經奈米化的矽材(即,奈米矽材)本質上具有高度的活性,其有利於與水分子快速地進行反應生成矽酸及氫氣。需進一步說明的是,一般奈米矽材的粒徑越小,活性越大,奈米矽材與該生物用水9兩者間的反應速率通常就越快,反應生成矽酸與氫氣的速度也就越快。為避免活性矽材422因粒徑過小而劇烈且迅速地與生物用水9反應用盡;因此,較佳地,該奈米矽材的表面具有氧化矽薄膜。
如圖2所示,本發明該第一實施例之濾心4的第一種濾材42,該載體421是表面分布有複數微孔洞4210的活性碳4211,且該等活性矽材422是粒徑介於100 nm至250 nm間的奈米矽材,該等吸附於該載體421表面的活性矽材422是部分位於活性碳4211的微孔洞4210中。
較佳地,以該濾材42的重量百分比計,該載體421的含量是小於等於90 wt%,該等活性矽材422的含量是大於等於10 wt%。更佳地,該等活性矽材422的含量是介於10 wt%~40wt%,再更佳地,該等活性矽材422的含量是介於15 wt%~30wt%(即,該等活性矽材422的含量是20 wt%以上,該載體421的含量是80 wt%以下),如此可令濾材42更能兼顧過濾與生物用水組成92的產製。需說明的是,活性矽材422含量越高,達到設計的溶氫量與溶矽量的所需載體421就可以越少。因此,在其他實施例中,活性矽材422亦可單獨做為該濾材42使用。換句話說,活性矽材422並非一定要搭配活性碳4211等載體421一起使用。
參閱圖3,本發明該第一實施例之濾心4之第一種濾材42的製法,是於一具有攪拌功能的容器內加入由溶劑(例如:酒精4222)與該等活性矽材(例如:奈米矽材)422所形成的一奈米矽漿料(slurry)4220,並於該奈米矽漿料4220內混入活性碳4211予以均勻攪拌,令活性矽材422得以透過該奈米矽漿料4220於攪拌時所造成的擾流嵌入活性碳4211的微孔洞4210中以吸附於活性碳4211的表面。待活性碳4211均勻攪拌至奈米矽漿料4220後進行烘乾以移除酒精4222,從而製得如圖2所示之該第一實施例的第一種濾材42。
參閱圖4,本發明該第一實施例之濾心4的一第二種濾材42大致上是相同於該第一種濾材42,其不同處是在於,該第二種濾材42還包括一黏結材(binder)423。該黏結材423結合奈米矽材(即,活性矽材422)與活性碳4211令部分活性矽材422附著於活性碳4211上,且該黏結材423與活性碳4211共同構成一燒結活性碳(sintered activated carbon)。詳細地來說,該第二種濾材42是將活性碳4211、奈米矽材(即,活性矽材422)與黏結材423混合後,再透過一模具熱壓以形成一生胚(green body),最後燒結該生胚成該濾材42。在其他實施例中,亦可將該第一實施例的第一種濾材42與黏結材423混合後再壓合燒結。值得一提的是,燒結後的該黏結材423會形成多個孔道(圖未示)供生物用水流過。
參閱圖5,本發明該第一實施例之濾心4的一第三種濾材42,大致上是相同於該第一種濾材42,其不同處是在於,該載體421是呈一管狀結構並具有貫穿其管狀結構之微孔洞4210的中空絲膜4212,且該等微孔洞4210的孔徑是介於10 nm至100 nm間。該等活性矽材(例如:奈米矽材)422是吸附於各中空絲膜4212的表面。本發明該第一實施例之濾心4之第三種濾材42的製法,是令該等活性矽材422混於一流體(圖未示)中,以使該等活性矽材422透過該流體的一流向被引導至各中空絲膜4212的表面並吸附於各中空絲膜4212的表面,且該流體亦順著該流向流進各微孔洞4210內以朝各中空絲膜4212的一出口(圖未示)行進。當然,在其他衍生實施例中,活性矽材422也可以不透過流體的手段固定設置在中空絲膜4212上,例如:透過黏結材固定,或是在中空絲膜4212的製作過程中添加活性矽材422。
本發明該第一實施例之濾心4還包括一分散水流單元,及一阻擋單元。
該分散水流單元是位於該載座41的容置空間40中並鄰近該進水口處401,且該阻擋單元是位於該載座41的容置空間40中並鄰近該出水口處402。在本發明該第一實施例之濾心4中,該載體421是均勻分布在該載座41之容置空間40中的活性碳4211,且該等活性矽材422是奈米矽材;換句話說,該第一實施例之濾心4是使用該第一種濾材42,且是填充於該載座41的該容置空間40中。
此處值得一提的是,本發明該第一實施例之濾心4內所使用的第一種濾材42,可因被嵌入於該等微孔洞4210內的活性矽材422,使生物用水(圖未示)與該等活性矽材422在反應生成氫氣(圖未示)與矽酸時,藉由微孔洞4210使溶有氫氣的生物用水組成在濾材42中流動時有更多的接觸面積,以藉此提升溶氫量。又,該進水口401的位置低於該出水口402的位置,則有助於減緩活性矽材422被生物用水沖刷而流失,亦可提升溶氫量。
又,需附帶說明的是,本發明圖1所揭示之第一實施例的濾心4,除了可以直接採用上述第一種濾材42外,在其他的衍生實施例中,也可只單獨在該載座41的容置空間40中填充活性矽材422作為濾材42,如此同樣可產製含有矽酸及氫氣的生物用水組成。
本發明顯示於圖1之第一實施例的濾心4除了可以直接採用該第一種濾材42外,另外也可於使用前,於該載座41之容置空間40內自其進水口401朝其出水口402依序填入部分載體421(如,活性碳4211)、該等活性矽材422與剩餘載體421(如,活性碳4211)。於實際使用以自該載座41之進水口401引入如圖13所示之該生物用水9時,該生物用水可因鄰近進水口401處的部分活性碳421使生物用水分散,以利生物用水實質填滿該容置空間40並令該等活性矽材422隨著生物用水的流動方向移動以附著於該載體421上,而鄰近該出水口402處的剩餘活性碳4211則可降低水量衝擊並阻擋活性矽材422。因此,在本發明該第一實施例之濾心4中,是以位處於該載座41之容置空間40中並鄰近該進水口401處的載體421做為該分散水流單元,並以位處於該載座41之容置空間40中並鄰近該出水口402處的載體421做為該阻擋單元。
基於該分散水流單元的目的是避免水流方向集中在進水口401處,並使生物用水均勻分散至該載座41的容置空間40中。因此,適用於本發明之分散水流單元並不限於上述活性碳4211,舉凡具有分散水流功能的玻璃珠、帶有孔洞的隔板或不織布等,均可適用。又,基於阻擋單元的目的是在於攔下活性矽材422,以降低活性矽材422自該出水口402被生物用水的水流方向帶出該容置空間40的機率。因此,適用於本發明之阻擋單元並不限於上述活性碳4211,舉凡能攔下鄰近該出水口402處的活性矽材422的竹炭、麥飯石、中空絲膜、纖維或石英砂等,亦均可適用。
又,值得一提的是,引入至該濾心4之容置空間40內的生物用水亦可與其他可釋放微量元素(例如:鉀、鍶、硒)及/或礦物質的濾材反應,以在生物用水與活性矽材422反應生成矽酸與氫氣的同時釋放微量元素到生物用水組成內。
參閱圖6,本發明濾心4之一第二實施例大致上是相同於該第一實施例,其不同處是在於,該濾材42是使用該第一實施例所述的第二種濾材42。值得一提的是,透過該濾材42之黏結材423結合活性碳4211與活性矽材422,可令活性矽材422更能有效地附著/固定於活性碳4211上,以防止該濾心4於實際使用時,活性矽材422遭生物用水沖刷並帶往該載座41的出水口402處。
參閱圖7、8,本發明濾心4之一第三實施例大致上相同於該第一實施例,不同處在於,該載體421是活性碳4211與中空絲膜4212的組合,且該等活性矽材422是奈米矽材;也就是說,本發明該第三實施例之濾心4除了使用該第一實施例之第一種濾材42外,亦使用該第一實施例之第三種濾材42。在本發明該第三實施例之濾心4中,活性碳4211是均勻分布在該載座41之容置空間40中,並相對中空絲膜4212靠近該進水口401;中空絲膜4212是分布在該載座41之容置空間40中,並相對活性碳4211靠近該出水口402。
詳細地來說,本發明該第三實施例之濾心4除了可以直接採用上述第一與第三種濾材42外,另外也可於使用前(見圖7),於該載座41之容置空間40內自其進水口401朝其出水口402依序填入部分載體421(如,活性碳4211)、該等活性矽材422、剩餘活性碳4211與該等中空絲膜4212。再參閱圖8,於實際使用以自該載座41之進水口401引入該生物用水(圖未示)時,該生物用水可因應其自身的流動方向實質填滿該容置空間40並令該等活性矽材422隨著生物用水的流動方向移動。經移動後的部分活性矽材422可嵌入該等活性碳4211的微孔洞4210內,以藉由微孔洞4210使溶出有氫氣的生物用水組成在濾材42中流動時有更多的接觸面積來藉此提升溶氫量,而未被嵌入於微孔洞4210內的活性矽材422仍可隨著生物用水的流動方向被帶往中空絲膜4212以吸附於中空絲膜4212的表面,使生物用水組成在中空絲膜4212繼續與活性矽材422反應,並於該處發生類似曝氣(aeration)的效果以藉此再進一步提升溶氫量。此外,中空絲膜4212還可以攔截可能產生的矽酸聚合或沉澱,令因過飽和所致的矽酸聚合或沉澱可再因為繼續引入至該濾心4之容置空間40內的生物用水降低其生物用水內的矽酸濃度並繼續溶解。簡單地來說,本發明該第三實施例之濾心4是一體式的濾心。
參閱圖9,本發明濾心4之一第四實施例大致上是相同於該第三實施例(亦為一體式濾心),其不同處是在於,該濾材42於本發明該濾心4之載座41之容置空間40中的配置關係。同樣地,該載體421是活性碳4211與中空絲膜4212的組合,且該等活性矽材422是奈米矽材。活性碳4211是均勻分布在該載座41之容置空間40中,並相對中空絲膜4212靠近該進水口401,中空絲膜4212是位在該載座41之容置空間40中,以圍繞活性碳4211並相對活性碳4211靠近該出水口402。
詳細地來說,在本發明該第四實施例之濾心4中,該容置空間40中是填充有該第一實施例之第一種濾材42(即,活性矽材422嵌於活性碳4211之微孔洞4210中者),並令該第一實施例之第三種濾材42(即,活性矽材422吸附於該等中空絲膜4212表面者)圍繞該第一實施例之第一種濾材42。
圖9是顯示出使用後的狀態。同樣地,當本發明該第四實施例之濾心4在使用前,其活性碳4211與活性矽材422於該容置空間40內的配置關係是雷同於該第一或第三實施例。因此,當該第四實施例之濾心4於實際使用以自該載座41之進水口401輸入該生物用水(圖未示)時,該等活性矽材422同樣能隨著生物用水的流動方向流經活性碳4211及中空絲膜4212,以提升溶氫量,細節不再加以贅述。
參閱圖10,本發明濾心4之一第五實施例大致上是相同於該第四實施例(亦為一體式濾心),其不同處是在於,該濾材42於本發明該濾心4之載座41之容置空間40中的配置關係,以及該進水口401與該出水口402的配置關係。同樣地,該載體421是活性碳4211與中空絲膜4212的組合,且該等活性矽材422是奈米矽材。在本發明該第五實施例之濾心4中,該進水口401與該出水口402位於該載座41之同一側,中空絲膜4212是位在該載座41之容置空間40中,且相對活性碳4211靠近該出水口402;活性碳4211是位在該載座41之容置空間40中以圍繞中空絲膜4212,且相對中空絲膜4212靠近進水口401。換句話說,中空絲膜4212是配置在該容置空間40中央,活性碳4211是與活性矽材422圍繞中空絲膜4212設置。
本發明該第五實施例之濾心4於實際使用時,該生物用水(圖未示)會先由該進水口401引入且順著該生物用水的流動方向流經過吸附於活性碳4211表面的活性矽材422並與活性矽材422反應生成矽酸與氫氣,以在形成溶出有矽酸與氫氣的生物用水組成後,再順著生物用水組成的流動方向經由中空絲膜4212的微孔洞4210流入中空絲膜4212內以朝該出水口402流出;其中,活性矽材422也可隨著該生物用水的流動方向被帶往中空絲膜4212以吸附於中空絲膜4212的表面。
值得一提的是,上述第一至第四實施例之濾心4的進水口401與出水口402,在其他實施例中,也可以是位於該載座41之同一側的配置關係。
參閱圖11,本發明濾心4的一第六實施例大致上是相同於該第三實施例,其不同處是在於,該第六實施例之濾心4還包括一拆卸式開關構件43,以及該載座41的細部結構及該濾材42的配置關係。
詳細地來說,該載座41具有彼此間隔設置的一第一部件411及一第二部件412。該第一部件411與該第二部件412分別對應包括該進水口401與該出水口402,且各部件411、412具有一接口段4111、4121;其中,該等接口段4111、4121彼此相向且相通。該拆卸式開關構件43是連接於該第一部件411與該第二部件412間,且該載座41的容置空間40是由該第一部件411、該第二部件412與該拆卸式開關構件43所共同定義而成。同樣地,該載體421是活性碳4211與中空絲膜4212的組合,且該等活性矽材422是奈米矽材,活性碳4211是位在該載座41之第一部件411內,中空絲膜4212是位在該載座41的第二部件412內。換句話說,該第一實施例之第一種濾材42[即,活性矽材(如奈米矽材)422嵌於活性碳4211之微孔洞4210中者]是被填置於該第一部件411內,該第一實施例之第三種濾材42[即,活性矽材422(如奈米矽材)吸附於該等中空絲膜4212表面者]是被填置於該第二部件412內。
在本發明該第六實施例之濾心4中,該拆卸式開關構件43是一旋轉式連接組件,且該載座41之第一部件411的接口段4111與第二部件412的接口段4121分別對應形成有一外螺紋4112、4122,及一彼此相向的環槽4113、4123。該旋轉式連接組件包括一形成有一內螺紋4310的貫孔螺帽431,及兩彈性的外止漏環432。該螺帽431具有反向凹陷的一上環槽4311與一下環槽4312,且該等外止漏環432是分別對應設置於該上環槽4311與該下環槽4312內。具體來說,本發明該第六實施例之載座41的第一部件411與第二部件412的環槽4113、4123是彼此相向設置,以透過一設置於該等環槽4113、4123內的內止漏環44來間隔設置,並透過設置有該等外止漏環432的貫孔螺帽431的內螺紋4310來螺接至該等部件411、412的外螺紋4112、4122,從而定義出該載座41的容置空間40,並密封該容置空間40以避免該容置空間40內的生物用水(圖未示)外洩。
本發明該第六實施例之濾心4雖然是以該旋轉式連接組件的態樣來實施該可拆式開關構件43,但在其他實施例中,該旋轉式連接組件亦可替換為其他已知的可拆卸式開關構件,例如利用卡掣結構進行非旋轉式的卡合連接。
圖11所顯示的態樣是該生物用水尚未被輸入至該載座41的第二部件412內。一旦該第六實施例之濾心4於實際使用時,該等活性矽材422同樣能隨著該生物用水的流動方向被帶往位在該第二部件412內以吸附於該等中空絲膜4212表面。
此外,值得補充說明的是,本發明該第六實施例之濾心4是一可分離式的濾心。簡單地來說,當被填置於該第一部件411中之該第一實施例之濾材42內的活性矽材422已無法再與該生物用水反應生成出矽酸與氫氣時,僅需鬆開該旋轉式連接組件的貫孔螺帽431以分離該第一部件411與該第二部件412,並更換第一部件411內部的濾材42,便可再透過該旋轉連接組件的貫孔螺帽431接合該第一部件411與該第二部件412的接口段4111、4121以重複使用該第六實施例之濾心4,從而達到節省費用的目的。
參閱圖12與圖13,本發明淨水系統(或稱生物用水產製系統)的一第一實施例,是用以與一產製且容置有該生物用水9的生物用水單元2連接,並產製該含有矽酸(圖未示)及氫氣氣泡921的生物用水組成92,且該淨水系統是沿一水流方向F包括至少一第一濾心4,並選擇性地包括一具有至少一沿該水流方向F延伸的輸送管路72的管路單元7、一脫氣單元3、至少一第二濾心5,及/或一紫外光殺菌單元6;其中,該第一濾心4是使用如該第一實施例至該第六實施例中任一實施例所述的濾心4。該生物用水單元2包括一進水口201及一出水口202。適合做為該生物用水單元2的設備,可以是市售的逆滲透(reverse osmosis;以下簡稱R.O.)純水機或是其他淨水設備。當然,亦可直接取用自然水、地下水等其他未經過濾處理的生物用水。具體來說,本發明之淨水系統於適當條件下(如,以R.O.純水機作為該生物用水單元2),僅需單一個第一濾心4即可產製該生物用水組成92。
選擇性所包括的該脫氣單元3是沿該流水方向設置於該第一濾心4的一上游位置,並藉該管路單元7的輸送管路72沿該流水方向依序連接該脫氣單元的與該第一濾心4,並用以除去水中的氣體。具體來說,該脫氣單元3包括一界定出一容置空間30的載座31,及一填充於該容置空間30中的脫氣構件32。該脫氣單元3是用以使原本溶於該生物用水9內的溶解氣體,例如二氧化碳(CO2 )、氧氣(O2 )與氮氣(N2 )脫除,以藉此提升該等第一濾心4中之生物用水9內的溶氫量。適用於本發明該實施例之淨水系統的脫氣單元3可以是膜脫氣機(Filter-type Air Extractor),或是其他可吸附氣體的濾心。
選擇性所包括的該第二濾心5在未包括有該脫氣單元3的實施狀態下,是沿該水流方向F設置於該第一濾心4的一下游位置,並包括一界定出一容置空間50的載座51,及複數填充於該載座51的容置空間50中的多孔性材料52。該第二濾心5的載座51具有相反設置並與其容置空間50相通的一進水口501及一出水口502。該第二濾心5內的多孔性材料52是選自活性碳521、中空絲膜522,或前述多孔性材料52的一組合。該管路單元7的輸送管路72是沿該水流方向F依序連接該第一濾心4及該第二濾心5。
選擇性所包括的紫外光殺菌單元6在未包括有該脫氣單元3與該第二濾心5的實施狀態下,是沿該水流方向F設置於該第一濾心4的一下游位置。該紫外光殺菌單元6是藉該管路單元7的輸送管路72沿該水流方向F依序連接該第一濾心4與該紫外光殺菌單元6,並用以對該生物用水組成92進行殺菌。具體來說,該紫外光殺菌單元6包括一界定出一容置空間60的載座61,及一紫外光燈組62。該載座61具有與其容置空間60相通且相反設置的一進水口601及一出水口602。在其他實施例中,亦可採用一紫外光燈柱(圖未示)軸向設置於該容置空間60中之結構態樣。
在本發明該第一實施例之淨水系統中,是透過一進水管路71與該生物用水單元2連接,並產製該含有矽酸(圖未示)及氫氣氣泡921的生物用水組成92,以透過一出水管路73送出該生物用水組成92;其中,該第一實施例之淨水系統沿該水流方向F依序包括該脫氣單元3、該第一濾心4、該第二濾心5,及該紫外光殺菌單元6,且該管路單元7之輸送管路72的數量是五個;該第一濾心4的數量是兩個,且是使用如該第一實施例所述的濾心4;該第二濾心5的數量是一個,且是呈直立式擺放,該第二濾心5內的多孔性材料52是中空絲膜522。
換句話說,該進水管路71連接該生物用水單元2的進水口201;該等輸送管路72沿該水流方向F依序連接該生物用水單元2的出水口202與該脫氣單元3的進水口301、該脫氣單元3的出水口302與位於上游之該第一濾心4的進水口401、位於上游之該第一濾心4的出水口402與位於下游之該第一濾心4的進水口401、位於下游之該第一濾心4的出水口402與該第二濾心5的進水口501,及該第二濾心5的出水口502與該紫外光殺菌單元6的進水口601;而該出水管路73是連接該紫外光殺菌單元6之出水口602。
需補充說明的是,基於該生物用水組成92本身及其沿該流水方向F移動時,本質上便會產生擾動現象。然而,此擾動現象會逐漸於該生物用水組成92內累積氣體以影響流體的流量。因此,該第二濾心5採直立擺放的用意在於,令第二濾心5之載座51容置空間50中的中空絲膜5212能在其容置空間50中呈垂直擺放,使累積在該第二濾心5之載座51容置空間50中的氣體易於自其出水口502排出流往連通該出水口502處的輸送管路72。
再參閱圖12與圖13,經使用本發明該第一實施例之淨水系統來實施該生物用水組成92的製法,其包括以下步驟:自該脫氣單元3的進水口301輸入該生物用水單元2所產製的生物用水9,以脫除該生物用水9內的CO2 、O2 與N2 ,並使經脫除前述氣體的生物用水9自該脫氣單元3的出水口302流經該管路單元7至位於上游的該第一濾心4;自位於上游的該第一濾心4的進水口401輸入該生物用水9,以令該生物用水9沿該水流方向F流經其濾材42並與其濾材42之活性矽材422反應生成矽酸與氫氣,從而在該生物用水9內溶出矽酸與氫氣氣泡921,並令該含有該生物用水9、矽酸、氫氣氣泡921與一部分活性矽材422的生物用水組成92自位於上游的該第一濾心4的出水口402流經該管路單元7的輸送管路72(見圖13)至位於下游的該第一濾心4;自位於下游的該第一濾心4的進水口401輸入該生物用水組成92,令該生物用水組成92與位於下游的該第一濾心4內的活性矽材422繼續反應生成矽酸與氫氣氣泡921,以藉此提升該生物用水組成92的溶氫量,並自位於下游的該第一濾心4的出水口402流經該管路單元7至該第二濾心5;自該第二濾心5的進水口501輸入該生物用水組成92,以令該生物用水組成92沿該水流方向F流經該第二濾心5的該等中空絲膜522並局部或全部過濾該生物用水組成92中的該部分活性矽材422,且令該經局部或全部過濾的生物用水組成92自該第二濾心5的出水口502流經該管路單元7至該紫外光殺菌單元6;及自該紫外光殺菌單元6的進水口601輸入該生物用水組成92至其容置空間60中,透過該紫外光燈組62對該生物用水組成92進行殺菌程序,以進一步地透過該出水管路73令該生物用水組成92自該紫外光殺菌單元6的出水口602輸出該生物用水組成92。
值得一提的是,該第一濾心4的數量可以變更,越多的第一濾心4,ORP值通常就越低。另外,若下游的第一濾心4採用圖8至圖11之具有中空絲膜4212的濾心4,就可選擇性地省去該第二濾心5。
參閱圖14與圖15,本發明淨水系統的一第二實施例大致上是相同於該第一實施例,其不同處是在於,該第二實施例之淨水系統還包括一排出單元74及兩總溶解固體量(total dissolved solids;簡稱TDS)量測單元75,且該第二實施例之淨水系統未包括該脫氣單元3,該第一濾心4的數量是一個,該第二濾心5的數量是複數個,且該等第二濾心5之容置空間50中的內容物是有別於該第一實施例之第二濾心5。在本發明該第二實施例之淨水系統中,該管路單元7之輸送管路72的數量是四個,該第二濾心5的數量是兩個,填充於該等第二濾心5之載座51的容置空間50中的多孔性材料52沿該水流方向F依序是活性碳521與中空絲膜522(也就是,位於上游位置處的第二濾心5的載座51的容置空間50內填充有活性碳521,位於下游位置處的第二濾心5的載座51的容置空間50內填充有中空絲膜522),且位於上游位置處的第二濾心5還包括填充於其容置空間50中的奈米銀53。
該排出單元74是設置於該管路單元7上,且沿該水流方向F位於下游位置處的該第二濾心5後。具體來說,該排出單元74是一設置在連接該下游位置處的第二濾心5的出水口502與該紫外光殺菌單元6的進水口601間的輸送管路72上的洩壓閥門(valve),以連通該管路單元7的輸送管路72並用以排出液體、氣體,或液體與氣體的一組合。需補充說明的是,礙於該生物用水9沿著該流水方向F引入至該等濾心4、5的過程中,會不斷地因自身及其所產生的擾流而累積氣體,使得該等輸送管路72內的壓力值過高從而影響液體流量。因此,該第二實施例之淨水系統內的排出單元(即,洩壓閥門)74主要用意是在於,排除流體在該等輸送管路內72因累積過多的氣體所增加的壓力值,以藉此提升液體的流量。
該等總溶解固體量量測單元75是沿該水流方向F分別設置於該第一濾心4的一上游位置與一下游位置。具體來說,位在上游位置處的該總溶解固體量量測單元75是設置在連接該生物用水單元2的出水口202與該第一濾心4的進水口401間的輸送管路72上,且位在下游位置處的該總溶解固體量量測單元75是設置在連接該下游位置處的第二濾心5的出水口502與該紫外光殺菌單元6的進水口601間的輸送管路72上,並沿該水流方向F位在該排除單元74的下游位置。須說明的是,位在下游位置處的該總溶解固體量量測單元75所測得的總溶解固體量(以下稱Vt ),會大於位在上游位置處的該總溶解固體量量測單元75所測得的總溶解固體量(以下稱V0 ),其兩者間會有一總溶解固體量差值(∆V)。因此,本發明該第二實施例之淨水系統增設該等總溶解固體量量測單元75的目的在於,利用該等總溶解固體量量測單元75來取得該總溶解固體量差值(∆V),一旦該總溶解固體量差值(∆V)小於使用者所設定的預定數值時,代表該生物用水組成92內可溶出矽酸與氫氣氣泡921的量已逐漸下降,有更換該第一濾心4之濾材42的需求。
參閱圖16,本發明淨水系統之一第三實施例大致上是相同於該第二實施例,其不同處是在於,該第三實施例之淨水系統還包括一流量計76,且該排出單元74是設置於該管路單元7上且位於該第一濾心4與該等第二濾心5間。該流量計76是沿該水流方向F設置於該第一濾心4的上游位置。
具體來說,本發明該第三實施例之淨水系統的排出單元74是設置在連接位於上游位置處的第二濾心5的出水口502與位於下游位置處的第二濾心5的進水口501間的輸送管路72上,且位於上游位置處的第二濾心5的進水口501是低於其出水口502,而位於下游位置處的第二濾心5的進水口501是高於其出水口502。須說明的是,本發明該第三實施例之淨水系統將該排出單元(洩氣閥門)74設置在下游位置處之第二濾心5的進水口501前,並令其進水口501高於其出水口502的目的是在於,提升排氣效果,並令下游位置處之濾心5的容置空間50內的氣體容易因上進下出而有利於氣體的排出並減少所累積的氣體。
此外,在本發明該第三實施例之淨水系統中,該流量計76是設置在連接該生物用水單元2的出水口202與該第一濾心4的進水口401間的輸送管路72上,並沿該水流方向F位在該上游位置處的總溶解固體量量測單元75的上游位置。此處須說明的是,當下游位置處的排出單元74未適時地打開洩氣閥門以排出所累積的氣體,或是各濾心4、5有阻塞時,位於上游處的流量計76所檢測到的水流速度會由初始的0.9~2 L/min下降至0.4 L/min左右,嚴重影響產製該生物用水組成92的速度與品質(如細菌滋生、口感變化等問題)。因此,本發明該第三實施例之淨水系統增設該流量計76的目的是在於,適時地在水流速度下降時利用該排出單元74排除累積於輸送管路72內的氣體,及/或搭配總溶解固體量差值(∆V)與濾心4、5的使用時間以藉此告知使用者更換濾心4、5。
<生物用水組成及其製法之具體例1>
本發明生物用水組成92及其製法之一具體例1是使用上述第二實施例之濾心4[也就是如圖6所示的濾心4,黏結材423結合活性矽材(如,奈米矽材)422與活性碳4211,令部分活性矽材422附著於活性碳4211上]來實施,其濾心4內的濾材42、由其濾心4所產製之生物用水組成及其生物用水組成的製法簡單說明於下。
再參閱圖6,自該濾心4的進水口401引入飲用水,令該飲用水與該濾材42中的活性矽材422反應生成矽酸(圖未示)與氫氣,從而製得溶有矽酸與氫氣氣泡921之生物用水組成92(見圖13),並令該具體例1之生物用水組成自該出水口402流出。在本發明該具體例1中,活性矽材422的規格與出處是純度與粒徑D50各為99.35%與約200 nm的奈米矽材,且前述奈米矽材是經研磨細化純度9N的矽晶圓所取得,活性碳4211是購自高仕達炭科技股份有限公司的椰殼活性碳,且活性碳的粒徑約介於150至380 μm間,黏結材423是購自Tinoca 型號為GUR2122的超高分子量聚乙烯(polyethylene,簡稱PE)。
經本發明該具體例1之製法所產製的生物用水組成92的矽酸濃度與ORP值是經產自JAQUA之型號為EO221之電極與產自Horiba的氧化還原電位分析主機分析取得其氧化還原電位(ORP),並經Merck比色法藥品量測其矽酸濃度,其分析結果彙整於下列 表1.。
表1.
Figure 108113205-A0304-0001
<第一種濾材及其製法之具體例>
本發明第一種濾材及其製法之一具體例是根據該第一實施例之濾心之第一種濾材的製法來實施,其所使用的奈米矽材的出處與規格是相同於上述具體例1,且活性碳的出處與規格是Haycarb之型號為RWAP 10742的活性碳(粒徑約介於1.7 mm至0.425 mm間,下稱HB活性碳)。有關於該第一種濾材之具體例的詳細製作條件,說明於下。
首先,在一攪拌器內加入80 g的奈米矽材與純度為99.5%的酒精以均勻攪拌成一固含量為20%的奈米矽漿料。接著,於該奈米矽漿料內添加270 g的活性碳並均勻攪拌,以令該奈米矽漿料內的奈米矽材得以嵌入活性碳的微孔洞中。最後,烘乾並去除奈米矽漿料中的酒精,從而製得該具體例之第一種濾材。以該具體例之第一種濾材的重量百分比計,活性碳與奈米矽材各為77.1 wt%與22.9 wt%。
<濾心及其製法之具體例>
再參閱圖1,本發明濾心之一具體例是根據上述第一實施例之濾心4來實施,其所使用的奈米矽材的出處與規格是相同於上述第一種濾材及其製法的具體例。有關於該具體例之濾心的詳細製作條件,是說明於下。
首先,自本發明該具體例之濾心之一載座的一出水口依序於其一容置空間中填入50 g的活性碳(底層)、100 g的奈米矽材(中段),與230 g的活性碳(上層),以作為該具體例之濾心的濾材;其中,以該具體例之濾心之濾材的重量百分比計,活性碳與奈米矽材的含量各為73.7 wt%與26.3 wt%。接著,於該載座之一進水口與該出水口分別接上一輸送管路。最後,自該載座之進水口輸入飲用水至該容置空間內令該飲用水朝向該出水口的一流動方向帶動奈米矽材四處流動,以使奈米矽材得以嵌入活性碳的微孔洞內;其中,在該飲用水被輸入至該容置空間以接觸到奈米矽材時,是同時反應生成矽酸與氫氣,且活性碳之微孔洞內所嵌入的奈米矽材有利於提升溶氫量,其有利於提升溶氫量的原因已載明於前述發明詳細說明中,於此不再多加贅述。
<生物用水組成及其製法之具體例2>
本發明生物用水組成及其製法之一具體例2是使用該第一實施例之該淨水系統來實施);換句話說,本發明具體例2之生物用水組成及其製法中所使用的兩個第一濾心,是根據上面所載之具體例之濾心的製法來實施;其中,該具體例2所使用的奈米矽材的出處與規格亦是相同於上述第一種濾材及其製法的具體例。有關於本發明具體例2之生物用水組成及其製法的詳細製作條件,是說明於下。
首先,自一產自ADD且型號為400P的R.O.純水機產製一飲用水,以令該飲用水自該R.O.純水機的一出水口流經一管路單元至一膜脫氣機。
接著,自該膜脫氣機的一進水口輸入該飲用水以脫除該飲用水內的CO2 、O2 與N2 ,並使經脫除前述氣體的飲用水自該膜脫氣機的一出水口流經該管路單元至位於上游位置處的該第一濾心。
接續,是自位於上游位置處的該第一濾心的一進水口輸入該飲用水以令該飲用水沿其一水流方向流經其濾材並與其濾材之奈米矽材反應生成矽酸與氫氣,從而在該飲用水內溶出矽酸與氫氣,並令一含有該飲用水、矽酸、氫氣與一部分奈米矽材的生物用水組成,且自位於上游位置處的該第一濾心的一出水口流經該管路單元的一輸送管路至位於下游位置處的一第一濾心,以進一步於下游位置處的該第一濾心的一進水口輸入該生物用水組成,令該生物用水組成與位於下游位置處的該第一濾心內的奈米矽材繼續反應生成矽酸與氫氣以藉此提升溶氫量,並自位於下游的該第一濾心的一出水口流經該管路單元至一第二濾心。
後續,自該第二濾心的一進水口輸入該生物用水組成以令該生物用水組成沿其水流方向流經該第二濾心的複數中空絲膜(購自SAMPO,且型號為FJ-V1203BL),並局部或全部過濾該生物用水組成中的該部分奈米矽材,且令該經局部或全部過濾的生物用水組成自該第二濾心的一出水口流經該管路單元至一紫外光殺菌機(購自KC-FLOW,且型號為16W-2GPM)。
最後,自該紫外光殺菌機的一進水口輸入該生物用水組成以進行殺菌程序,並進一步地令該生物用水組成自該紫外光殺菌機的一出水口輸出該生物用水組成。此處需補充說明的是,雖然本發明該具體例2之生物用水組成及其製法中所用之淨水系統的該兩第一濾心是如上述。然而,本發明該具體例2之生物用水組成及其製法中所使用的該兩第一濾心中的濾材,亦可以是根據上面所載該具體例之第一種濾材的製法來實施。
在本發明生物用水組成及其製法的具體例2中,自位於上游的該第一濾心之進水口輸入該飲用水至該生物用水組成流出該紫外光殺菌機之出水口為止持續生產15天所製得的生物用水組成,其氧化還原電位(ORP)與矽酸濃度,是簡單地彙整於以下 表2.。
表2.
Figure 108113205-A0304-0002
值得一提的是,若使用新的第一濾心,則上述數據會更佳,ORP值可低於-670 mV。
此外,參閱圖17,由本發明該具體例2之生物用水組成於開瓶後測試經不同的填充率所取得的氧化還原電位(ORP)顯示可知,當瓶內的填充率僅為23%左右時,其經432分鐘的穩定性測試後的ORP值雖然是從-570 mV左右提升至-100 mV,但其經60分鐘的穩定性測試後的ORP值卻仍可維持在-500 mV左右。再者,當瓶內的填充為90%時,其經432分鐘的穩定性測試後的ORP值仍可維持在-450 mV以下;又,當瓶內的填充提升至93.48%時,其經432分鐘的穩定性測試後的ORP值則可維持在-530 mV左右。由前述穩定性分析結果顯示,本發明該具體例2之生物用水組成的氧化還原電位(ORP)穩定性佳。
<應用例>
為了進一步證實本發明該具體例2之生物用水組成添加於物品內具有減緩氧化速度的功效,申請人是於兩個容量皆為0.2 L的玻璃瓶內填入100 c.c.的蘋果汁後,並於該兩玻璃瓶內分別填入100 c.c.的該具體例2之生物用水組成(以下稱應用例)與一般的飲用水(以下稱比較例),且封閉該兩玻璃瓶以進行氧化速度比較測試。參閱圖18同時配合參閱附件所顯示的彩色影像可知,該比較例(右側玻璃瓶)之蘋果汁經過約3小時後,其顏色已經自黃橙色轉變成暗橙色,證實該比較例之蘋果之已明顯氧化。反觀本發明該應用例(左側玻璃瓶)之蘋果汁經過約3小時後,其顏色仍維持在黃橙色的狀態,證實本發明該具體例2之生物用水組成添加於蘋果汁內可減緩其氧化的問題。
綜上所述,本發明之濾心4與使用其濾心4的淨水系統,利用形成於該載體(如,活性碳4211、中空絲膜4212等多孔性材料)的表面的活性矽材422與生物用水9反應生成矽酸與氫氣氣泡921,使生物用水9內的溶氫量及溶矽量兩者均獲得提升並提供安全的生物用水組成92,故確實能達成本發明的目的。
惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。
2‧‧‧生物用水單元 50‧‧‧容置空間 201‧‧‧進水口 501‧‧‧進水口 202‧‧‧出水口 502‧‧‧出水口 3‧‧‧脫氣單元 51‧‧‧載座 30‧‧‧容置空間 52‧‧‧多孔性材料 301‧‧‧進水口 521‧‧‧活性碳 302‧‧‧出水口 522‧‧‧中空絲膜 31‧‧‧載座 53‧‧‧奈米銀 32‧‧‧脫氣構件 6‧‧‧紫外光殺菌單元 4‧‧‧濾心、第一濾心 60‧‧‧容置空間 40‧‧‧容置空間 601‧‧‧進水口 401‧‧‧進水口 602‧‧‧出水口 402‧‧‧出水口 61‧‧‧載座 41‧‧‧載座 62‧‧‧紫外光燈組 411‧‧‧第一部件 7‧‧‧管路單元 4111‧‧‧接口段 71‧‧‧進水管路 4112‧‧‧外螺紋 72‧‧‧輸送管路 4113‧‧‧環槽 73‧‧‧出水管路 412‧‧‧第二部件 74‧‧‧排出單元 4121‧‧‧接口段 75‧‧‧總溶解固體量量測單元 4122‧‧‧外螺紋 76‧‧‧流量計 4123‧‧‧環槽 42‧‧‧濾材 421‧‧‧載體 4210‧‧‧微孔洞 4211‧‧‧活性碳 4212‧‧‧中空絲膜 422‧‧‧活性矽材 9‧‧‧生物用水 4220‧‧‧奈米矽漿料 4222‧‧‧酒精 423‧‧‧黏結材 43‧‧‧拆卸式開關構件 431‧‧‧貫孔螺帽 4310‧‧‧內螺紋 92‧‧‧生物用水組成 4311‧‧‧上環槽 921‧‧‧氫氣氣泡 4312‧‧‧下環槽 432‧‧‧外止漏環 F‧‧‧流水方向 44‧‧‧內止漏環 5‧‧‧第二濾心
本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一局部剖視示意圖,說明本發明濾心的一第一實施例; 圖2是一正視示意圖,說明本發明該第一實施例之濾心的一第一種濾材; 圖3是一正視示意圖,說明本發明該第一實施例之濾心之第一種濾材的製法; 圖4是一局部剖視示意圖,說明本發明該第一實施例之濾心的一第二種濾材; 圖5是一正視示意圖,說明本發明該第一實施例之濾心的一第三種濾材及其製法; 圖6是一局部剖視示意圖,說明本發明濾心的一第二實施例; 圖7是一局部剖視示意圖,說明本發明濾心的一第三實施例於使用前的狀態; 圖8是一局部剖視示意圖,說明本發明該第三實施例之濾心於使用後的狀態; 圖9是一局部剖視示意圖,說明本發明濾心的一第四實施例; 圖10是一局部剖視示意圖,說明本發明濾心的一第五實施例; 圖11是一局部剖視示意圖,說明本發明濾心的一第六實施例; 圖12是一局部剖視示意圖,說明本發明淨水系統的一第一實施例; 圖13是一局部剖視圖,說明經本發明該第一實施例之淨水系統所製得的生物用水組成; 圖14是一局部剖視示意圖,說明本發明淨水系統的一第二實施例; 圖15是圖14的一局部放大示意圖,說明本發明該第二實施例的淨水系統的一第二濾心的細部結構; 圖16是一局部剖視示意圖,說明本發明淨水系統的一第三實施例; 圖17是一氧化還原電位(oxidation-reduction potential;簡稱ORP)對時間曲線圖,說明經本發明該第一實施例之淨水系統所製得之生物用水組成在不同填充率之條件下的穩定性;及 圖18是一灰階影像,說明經本發明生物用水組成之一具體例2之減緩氧化速度的測試結果。
2‧‧‧飲用水單元
201‧‧‧進水口
202‧‧‧出水口
3‧‧‧脫氣單元
30‧‧‧容置空間
301‧‧‧進水口
302‧‧‧出水口
31‧‧‧載座
32‧‧‧脫氣構件
4‧‧‧濾心、第一濾心
401‧‧‧進水口
501‧‧‧進水口
502‧‧‧出水口
51‧‧‧載座
52‧‧‧多孔性材料
522‧‧‧中空絲膜
6‧‧‧紫外光殺菌單元
60‧‧‧容置空間
601‧‧‧進水口
602‧‧‧出水口
61‧‧‧載座
62‧‧‧紫外光燈組
402‧‧‧出水口
42‧‧‧濾材
4211‧‧‧活性碳
422‧‧‧活性矽材
5‧‧‧第二濾心
50‧‧‧容置空間
7‧‧‧管路單元
71‧‧‧進水管路
72‧‧‧輸送管路
73‧‧‧出水管路
9‧‧‧生物用水
F‧‧‧水流方向

Claims (30)

  1. 一種濾心,是用於淨水並產製含有矽酸及氫氣的生物用水組成,其包含:一載座,界定出一容置空間,並包括與該容置空間相通的一進水口及一出水口;及一濾材,填充於該載座的該容置空間中,且該濾材包括:一載體,選自一多孔性材料、一非多孔性材料或前述載體的一組合,及複數活性矽材,吸附於該載體的一表面,其中,以該濾材的重量百分比計,該載體的含量是小於等於90wt%,該等活性矽材的含量是大於等於10wt%。
  2. 如請求項1所述的濾心,其中,該載體是一選自由下列所構成之群組:活性碳、中空絲膜、竹炭、麥飯石、石英砂,及前述載體的一組合;該等活性矽材是選自粒徑介於50nm至300nm間的奈米矽材、多孔性矽材,或造粒矽材。
  3. 如請求項1所述的濾心,其中,該載體是一選自由下列所構成之群組:活性碳、中空絲膜、竹炭、麥飯石、石英砂、纖維、陶瓷,及前述載體的一組合;該等活性矽材是選自粒徑介於50nm至300nm間的奈米矽材、多孔性矽材、造粒矽材,或矽奈米線。
  4. 如請求項2所述的濾心,其中,該載體是表面分布有複數微孔洞的活性碳,該等吸附於該載體表面的活性矽材是位 於活性碳的微孔洞中。
  5. 如請求項4所述的濾心,其中,該濾材還包括一黏結材,該黏結材結合奈米矽材與活性碳,且該黏結材與活性碳共同構成一燒結活性碳。
  6. 如請求項2所述的濾心,其中,該載體是呈一管狀結構並具有複數貫穿其管狀結構之微孔洞的中空絲膜。
  7. 如請求項1所述的濾心,其中,以該濾材的重量百分比計,該載體的含量是80wt%以下,該等活性矽材的含量是20wt%以上。
  8. 如請求項1所述的濾心,其中,該進水口的位置是低於該出水口的位置。
  9. 如請求項1所述的濾心,還包含一分散水流單元,該分散水流單元是位於該載座的容置空間中並鄰近該進水口處。
  10. 如請求項9所述的濾心,其中,是以位處於該載座之容置空間中並鄰近該進水口處的載體做為該分散水流單元。
  11. 如請求項1所述的濾心,還包含一阻擋單元,該阻擋單元是位於該載座的容置空間中並鄰近該出水口處。
  12. 如請求項11所述的濾心,其中,是以位處於該載座之容置空間中並鄰近該出水口處的載體做為該阻擋單元。
  13. 如請求項1所述的濾心,其中,該載體是均勻分布在該載座之容置空間中的活性碳,且該等活性矽材是奈米矽材。
  14. 如請求項1所述的濾心,其中,該載體是活性碳與中空絲膜的組合,且該等活性矽材是奈米矽材,活性碳是均勻分布在該載座之容置空間中並相對中空絲膜靠近該進水 口,中空絲膜是分布在該載座之容置空間中並相對活性碳靠近該出水口。
  15. 如請求項1所述的濾心,其中,該載體是活性碳與中空絲膜的組合,且該等活性矽材是奈米矽材,活性碳是均勻分布在該載座之容置空間中並相對中空絲膜靠近該進水口,中空絲膜是位在該載座之容置空間中以圍繞活性碳並相對活性碳靠近該出水口。
  16. 如請求項1所述的濾心,其中,該載體是活性碳與中空絲膜的組合,且該等活性矽材是奈米矽材,中空絲膜是位在該載座之容置空間中且相對活性碳靠近該該出水口,活性碳是位在該載座之容置空間中以圍繞中空絲膜且相對中空絲膜靠近該進水口。
  17. 如請求項1所述的濾心,還包含一拆卸式開關構件,該載座具有彼此間隔設置的一第一部件及一第二部件,該第一部件與該第二部件分別對應包括該進水口與該出水口,該拆卸式開關構件是連接於該第一部件與該第二部件間,且該載座的容置空間是由該第一部件、該第二部件與該拆卸式開關構件所共同定義而成;該載體是活性碳與中空絲膜的組合,且該等活性矽材是奈米矽材,活性碳是位在該載座之第一部件內,中空絲膜是位在該載座的第二部件內。
  18. 一種淨水系統,是用於與一產製且容置有一生物用水的生物用水單元連接並產製含有矽酸及氫氣的生物用水組成,該淨水系統沿一水流方向包含:至少一第一濾心,是使用如請求項1所述的濾心。
  19. 如請求項18所述的淨水系統,還包含一管路單元,及至少一第二濾心;該第二濾心是沿該水流方向設置於該第一濾心的一下游位置,並包括一界定出一容置空間的載座,及複數填充於該載座的容置空間中的多孔性材料,該第二濾心的載座具有與其容置空間相通的一進水口及一出水口;及該管路單元具有至少一沿該水流方向依序連接該第一濾心及該第二濾心的輸送管路。
  20. 如請求項19所述的淨水系統,其中,該第二濾心之載座的容置空間內的多孔性材料是選自活性碳、中空絲膜,或前述多孔性材料的一組合。
  21. 如請求項19所述的淨水系統,其中,該第二濾心的數量是複數個,且填充於該等第二濾心之載座的容置空間中的多孔性材料沿該水流方向依序是活性碳與中空絲膜。
  22. 如請求項20或21所述的淨水系統,其中,所述第二濾心還包括填充於各自所對應之容置空間中的奈米銀。
  23. 如請求項19所述的淨水系統,還包含一排出單元,該排出單元是設置於該管路單元上且沿該水流方向位於該第二濾心後,該排出單元連通該管路單元並用以排出液體、氣體,或液體與氣體的一組合。
  24. 如請求項19所述的淨水系統,還包含一排出單元,該排出單元是設置於該管路單元上且位於該第一濾心與該第二濾心間,該排出單元連通該管路單元並用以排出液體、氣體,或液體與氣體的一組合。
  25. 如請求項19、23或24所述的淨水系統,其中,該第二濾心是呈直立式擺放。
  26. 如請求項19、23或24所述的淨水系統,其中,該第二濾心的進水口是高於其出水口。
  27. 如請求項18所述的淨水系統,還包含一脫氣單元,該脫氣單元是沿該水流方向設置於該第一濾心的一上游位置,且是藉一管路單元的一輸送管路沿該流水方向依序連接該脫氣單元的與該第一濾心,並用以除去水中的氣體。
  28. 如請求項18所述的淨水系統,還包含一紫外光殺菌單元,該紫外光殺菌單元是沿該水流方向設置於該第一濾心的一下游位置,且是藉一管路單元的一輸送管路沿該水流方向依序連接該第一濾心與該紫外光殺菌單元,並用以對該生物用水組成進行殺菌。
  29. 如請求項18所述的淨水系統,還包含兩總溶解固體量量測單元,該等總溶解固體量量測單元是沿該水流方向分別設置於該第一濾心的一上游位置與一下游位置。
  30. 如請求項18所述的淨水系統,還包含一流量計,該流量計是沿該水流方向設置於該第一濾心的一上游位置。
TW108113205A 2018-04-03 2018-04-03 濾心與使用其濾心的淨水系統 TWI720459B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108113205A TWI720459B (zh) 2018-04-03 2018-04-03 濾心與使用其濾心的淨水系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108113205A TWI720459B (zh) 2018-04-03 2018-04-03 濾心與使用其濾心的淨水系統

Publications (2)

Publication Number Publication Date
TW201942066A TW201942066A (zh) 2019-11-01
TWI720459B true TWI720459B (zh) 2021-03-01

Family

ID=69184578

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108113205A TWI720459B (zh) 2018-04-03 2018-04-03 濾心與使用其濾心的淨水系統

Country Status (1)

Country Link
TW (1) TWI720459B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101925540A (zh) * 2007-12-21 2010-12-22 3M创新有限公司 液体过滤***
CN202478694U (zh) * 2011-07-20 2012-10-10 林祥利 一种滤芯的安装结构以及含有这种滤芯的***

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101925540A (zh) * 2007-12-21 2010-12-22 3M创新有限公司 液体过滤***
CN202478694U (zh) * 2011-07-20 2012-10-10 林祥利 一种滤芯的安装结构以及含有这种滤芯的***

Also Published As

Publication number Publication date
TW201942066A (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
CN109126268B (zh) 生物用水组成、其集合体、滤材、其滤芯与其净水***
CN104649456B (zh) 一种饮用水终端杀菌***
CN106477824A (zh) 一种去除水中残留抗生素的方法及***
CN107051227A (zh) 一种平板陶瓷膜***及其净化工艺
JP6783841B2 (ja) フィルターの製造方法及びそのフィルター
JP2004230358A (ja) 卓上型浄水器
CN102079591A (zh) 微污染原水的双级膜处理***及处理方法
CN105688674A (zh) 一种膜处理工艺装置及其处理方法
CN106904756A (zh) 重力式超滤膜过滤与粉末活性炭吸附联用的净水装置
TWI720459B (zh) 濾心與使用其濾心的淨水系統
CN207581525U (zh) 一种新型的超滤设备
CN101613134B (zh) 一种***用水处理材料及其使用方法
CN108640309A (zh) 一种新型复合纯净水滤芯
CN105600973A (zh) 一种饮用水终端杀菌***
CN202136921U (zh) 滤水器
CN206308193U (zh) 化妆品生产用水的制备***
TWI670236B (zh) 濾材
US20200188825A1 (en) Filter, filter assembly, filter device and water purification system
CN207347312U (zh) 净水机复合滤芯
CN207546245U (zh) 一种平板陶瓷膜***
TWI720695B (zh) 濾材、濾水裝置、淨水系統及生物用水組成
CN206375766U (zh) 一种饮用多层水净化器
CN106630391A (zh) 一种去除水中内分泌干扰物的方法及***
CN210855643U (zh) 一种新型过滤装置
CN205974035U (zh) 一种阻筛过滤式反渗透直饮机