TWI710472B - Plasma erosion resistant thin film coating for high temperature application - Google Patents

Plasma erosion resistant thin film coating for high temperature application Download PDF

Info

Publication number
TWI710472B
TWI710472B TW108112982A TW108112982A TWI710472B TW I710472 B TWI710472 B TW I710472B TW 108112982 A TW108112982 A TW 108112982A TW 108112982 A TW108112982 A TW 108112982A TW I710472 B TWI710472 B TW I710472B
Authority
TW
Taiwan
Prior art keywords
protective layer
plasma
socket
ceramic
hole
Prior art date
Application number
TW108112982A
Other languages
Chinese (zh)
Other versions
TW201932298A (en
Inventor
維希德 菲路茲朵爾
比拉賈P 卡農哥
語南 孫
馬丁J 薩理納斯
傑瑞阿瑪 李
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW201932298A publication Critical patent/TW201932298A/en
Application granted granted Critical
Publication of TWI710472B publication Critical patent/TWI710472B/en

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Glass Compositions (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

An article such as a susceptor includes a body of a thermally conductive semimetal coated by a first protective layer and a second protective layer over a surface of the body. The first protective layer is a thermally conductive ceramic. The second protective layer covers the first protective layer and is a plasma resistant ceramic thin film that is resistant to cracking at temperatures of 650 degrees Celsius.

Description

用於高溫應用的耐電漿腐蝕薄膜塗層Plasma corrosion resistant thin film coating for high temperature applications

此專利申請案依照專利法主張2014年4月25日申請之美國臨時申請案第61/984,691號之利益。This patent application claims the benefits of U.S. Provisional Application No. 61/984,691 filed on April 25, 2014 in accordance with the Patent Law.

一般而言,本發明之實施例關於經常暴露於高溫與直接或遠端電漿環境的保護性腔室部件。Generally speaking, the embodiments of the present invention relate to protective chamber components that are often exposed to high temperatures and direct or remote plasma environments.

在半導體產業中,藉由多數個產生尺寸永遠減小之結構的製程處理來製造元件。某些製程處理(諸如,電漿蝕刻與電漿清潔製程)暴露基板至高速電漿流以蝕刻或清潔基板。電漿可為高度侵蝕性的並可侵蝕製程腔室與其他暴露至電漿的表面。因此,電漿噴塗保護塗層常用來保護製程腔室部件免於侵蝕。In the semiconductor industry, devices are manufactured by a large number of process processes that produce structures that are always reduced in size. Certain process processes (such as plasma etching and plasma cleaning processes) expose the substrate to a high-speed plasma flow to etch or clean the substrate. The plasma can be highly aggressive and can erode the process chamber and other surfaces exposed to the plasma. Therefore, plasma sprayed protective coatings are often used to protect process chamber components from corrosion.

某些製程處理在高溫(例如,超過400℃的溫度)下執行。傳統的電漿噴塗保護塗層可能不適合用於某些用於上述製程的腔室部件。Some process treatments are performed at high temperatures (for example, temperatures exceeding 400°C). Traditional plasma sprayed protective coatings may not be suitable for certain chamber components used in the above processes.

在示範實施例中,物件包括具有熱傳導半金屬的主體。物件更包括主體表面上的第一保護層,第一保護層為熱傳導陶瓷。物件更包括第一保護層上的第二保護層,第二保護層包括可抵抗650℃溫度下之破裂的耐電漿陶瓷薄膜。In an exemplary embodiment, the article includes a body with a thermally conductive semi-metal. The object further includes a first protective layer on the surface of the main body, and the first protective layer is a thermally conductive ceramic. The object further includes a second protective layer on the first protective layer, and the second protective layer includes a plasma resistant ceramic film that can resist cracking at a temperature of 650°C.

在另一示範實施例中,方法包括提供包括熱傳導半金屬主體的物件。方法更包括沉積第一保護層於熱傳導半金屬主體的表面上,第一保護層為熱傳導陶瓷。方法更包括執行離子輔助沉積以沉積第二保護層於第一保護層上,第二保護層包括可抵抗650℃溫度下之破裂的耐電漿陶瓷薄膜。In another exemplary embodiment, a method includes providing an article including a thermally conductive semi-metal body. The method further includes depositing a first protective layer on the surface of the thermally conductive semi-metal body, and the first protective layer is a thermally conductive ceramic. The method further includes performing ion-assisted deposition to deposit a second protective layer on the first protective layer. The second protective layer includes a plasma resistant ceramic film that can resist cracking at a temperature of 650°C.

在另一示範實施例中,原子層沉積腔室的基座包括石墨主體。基座更包括石墨主體之表面上的第一保護層,第一保護層包括碳化矽。基座更包括第一保護層上的第二保護層,第二保護層包括可抵抗650℃溫度下之破裂的耐電漿陶瓷薄膜,其中第二保護層包括選自Er3 Al5 O12 、Y3 Al5 O12 與YF3 所構成之群組的陶瓷。In another exemplary embodiment, the base of the atomic layer deposition chamber includes a graphite body. The base further includes a first protective layer on the surface of the graphite body, and the first protective layer includes silicon carbide. The base further includes a second protective layer on the first protective layer. The second protective layer includes a plasma-resistant ceramic film that can resist cracking at a temperature of 650° C., and the second protective layer includes Er 3 Al 5 O 12 , Y 3 Al 5 O 12 and YF 3 constitute the group of ceramics.

本發明實施例提供具有薄膜保護層於物件的一或多個表面上的物件(例如,用於原子層沉積(ALD)腔室的腔室部件)。保護層可具有低於約50微米的厚度,且可提供電漿侵蝕抗性以保護物件。在晶圓處理過程中可將腔室部件暴露至高溫。舉例而言,可將腔室部件暴露至超過450℃的溫度。以上述方式形成能夠抵抗或有效免疫這些高溫下之破裂的薄膜保護層。薄膜保護層可為利用離子輔助沉積(IAD)沉積於加熱基板上的密集、共形薄膜。薄膜保護層可由Y3 Al5 O12 、Er3 Al5 O12 或YF3 所形成。薄膜保護層所提供的改良腐蝕抗性可改善物件的使用壽命,同時降低維持與製造成本。Embodiments of the present invention provide an object having a thin film protective layer on one or more surfaces of the object (for example, a chamber component used in an atomic layer deposition (ALD) chamber). The protective layer may have a thickness of less than about 50 microns, and may provide plasma erosion resistance to protect the object. The chamber components can be exposed to high temperatures during wafer processing. For example, the chamber components can be exposed to temperatures exceeding 450°C. In the above-mentioned manner, a thin-film protective layer capable of resisting or effectively immune to rupture at these high temperatures is formed. The thin-film protective layer may be a dense, conformal thin film deposited on a heating substrate using ion-assisted deposition (IAD). The thin-film protective layer may be formed of Y 3 Al 5 O 12 , Er 3 Al 5 O 12 or YF 3 . The improved corrosion resistance provided by the thin-film protective layer can improve the service life of the object while reducing maintenance and manufacturing costs.

第1圖是製程腔室100的剖面圖,製程腔室100具有一或多個根據本發明實施例以薄膜保護層塗覆之腔室部件。製程腔室100可為ALD製程腔室。在一個實施例中,製程腔室100利用遠端電漿單元以輸送氟自由基(F*)進入製程腔室100以進行腔室清潔。或者,本文所述之實施例可用於其他類型的製程腔室。FIG. 1 is a cross-sectional view of a process chamber 100. The process chamber 100 has one or more chamber components coated with a thin film protective layer according to an embodiment of the present invention. The process chamber 100 may be an ALD process chamber. In one embodiment, the process chamber 100 utilizes a remote plasma unit to transport fluorine radicals (F*) into the process chamber 100 for chamber cleaning. Alternatively, the embodiments described herein can be used in other types of process chambers.

製程腔室100可用於高溫ALD製程。舉例而言,製程腔室100可被用於氮化鈦(TiN)的沉積。TiN沉積製程通常為執行在450℃或高於450℃之溫度下的ALD製程。另一示範高溫ALD製程是二氯矽烷(DCS)矽化鎢的沉積。DCS矽化鎢製程是藉由WF6 、DCS與SiH4 在約500-600℃溫度下之反應而加以執行。可藉由製程腔室100執行其他高溫ALD製程。The process chamber 100 can be used in a high temperature ALD process. For example, the process chamber 100 can be used for the deposition of titanium nitride (TiN). The TiN deposition process is usually an ALD process performed at a temperature of 450°C or higher. Another exemplary high-temperature ALD process is the deposition of dichlorosilane (DCS) tungsten silicide. The DCS tungsten silicide process is performed by the reaction of WF 6 , DCS and SiH 4 at a temperature of about 500-600°C. Other high temperature ALD processes can be performed by the process chamber 100.

可包括薄膜保護層之腔室部件的實例包括基座134、腔室主體105、噴頭110等等。更詳細描述於下文之薄膜保護層可包括Y3 Al5 O12 (YAG)、Er3 Al5 O12 (EAG)與/或YF3 。在某些實施例中,薄膜保護層亦可包括其他陶瓷。此外,薄膜保護層可為保護層堆疊中的一個層。根據一個實施例所描述,基座134具有薄膜保護層(第二保護層136)。然而,應當理解其他腔室部件任何一者(例如,上列的那些)亦可包括薄膜保護層。Examples of chamber components that may include a thin film protective layer include a base 134, a chamber body 105, a shower head 110, and the like. The thin film protective layer described in more detail below may include Y 3 Al 5 O 12 (YAG), Er 3 Al 5 O 12 (EAG) and/or YF 3 . In some embodiments, the thin-film protective layer may also include other ceramics. In addition, the thin-film protective layer may be one layer in the protective layer stack. According to the description of one embodiment, the base 134 has a thin-film protective layer (the second protective layer 136). However, it should be understood that any of the other chamber components (e.g., those listed above) may also include a thin film protective layer.

在一個實施例中,製程腔室100包括封圍內部空間106的腔室主體105與噴頭110。腔室主體105可由鋁、不銹鋼或其他適當材料所構成。腔室主體105通常包括側壁與底部。噴頭110、側壁與/或底部的任何一者可包括薄膜保護層。In one embodiment, the process chamber 100 includes a chamber body 105 and a shower head 110 enclosing an internal space 106. The chamber body 105 may be made of aluminum, stainless steel or other suitable materials. The chamber body 105 generally includes a side wall and a bottom. Any one of the shower head 110, the sidewalls and/or the bottom may include a thin film protective layer.

腔室排放裝置125與一或多個排放埠137可將廢氣排出腔室的內部空間106。排放埠137可連接至泵浦系統,泵浦系統包括一或多個泵浦160與節流閥156與/或閘閥154,用以排空並調節製程腔室100之內部空間106的壓力。The chamber exhaust device 125 and one or more exhaust ports 137 can exhaust the exhaust gas from the inner space 106 of the chamber. The exhaust port 137 can be connected to a pumping system, which includes one or more pumps 160 and a throttle valve 156 and/or a gate valve 154 for emptying and adjusting the pressure of the internal space 106 of the process chamber 100.

噴頭110可由腔室主體105的側壁所支撐。噴頭110(或蓋)可經開啟以允許進入製程腔室100的內部空間106,並可在關閉時提供密封件給製程腔室100。噴頭110可包括氣體分配板與一或多個噴嘴122、123、124。噴頭110可由鋁、不銹鋼或其他適當材料所製成。或者,在某些實施例中,噴頭110可由蓋與噴嘴所取代。The shower head 110 can be supported by the side wall of the chamber body 105. The shower head 110 (or cover) can be opened to allow access to the inner space 106 of the process chamber 100, and can provide a seal to the process chamber 100 when closed. The shower head 110 may include a gas distribution plate and one or more nozzles 122, 123, and 124. The spray head 110 may be made of aluminum, stainless steel or other suitable materials. Alternatively, in some embodiments, the spray head 110 can be replaced by a cap and a nozzle.

氣體面板152可透過一或多個氣體輸送管線138-146通過噴頭110提供製程與/或清潔氣體至內部空間106。可用於執行CVD操作以沉積層於基板上之製程氣體的實例包括NH3 、TiCl4 、四(二甲胺基)鈦(TDMAT)、WF6 、DCS、SiH4 等等,取決於即將沉積之層。遠端電漿源(RPS)150可在清潔過程中產生氟自由基(F*),並可透過一或多個氣體輸送管線138-146輸送氟自由基。氣體輸送管線138-146、排放埠137與噴頭110可由圓蓋180所覆蓋,圓蓋180可為鋁或另一適當材料。The gas panel 152 can provide process and/or cleaning gas to the internal space 106 through the shower head 110 through one or more gas delivery lines 138-146. Examples of process gases that can be used to perform CVD operations to deposit layers on substrates include NH 3 , TiCl 4 , tetrakis (dimethylamino) titanium (TDMAT), WF 6 , DCS, SiH 4, etc., depending on the type of deposition to be deposited Floor. The remote plasma source (RPS) 150 can generate fluorine radicals (F*) during the cleaning process, and can transport the fluorine radicals through one or more gas delivery lines 138-146. The gas delivery lines 138-146, the discharge port 137, and the nozzle 110 may be covered by a dome 180, which may be aluminum or another suitable material.

腔室部件,諸如腔室主體105的內壁、噴頭110、基座134等等,在處理過程中累積沉積之材料層。為了減緩沉積性質的改變以及微粒污染,可利用遠端電漿清潔製程周期性地自腔室部件清潔上述沉積之層。可用來自腔室部件之表面清潔沉積之材料的清潔氣體實例包括含鹵素氣體(諸如,C2 F6 、SF6 、SiCl4 、HBr、NF3 、CF4 、CHF3 、CH2 F3 、F、NF3 、Cl2 、CCl4 、BCl3 與SiF4 等等)與其他氣體(諸如,O2 或N2 O)。載氣的實例包括N2 、He、Ar與其他對清潔氣體呈現惰性的氣體(例如,非反應性氣體)。在一個實施例中,NF3 與Ar被用來執行電漿清潔製程。The chamber components, such as the inner wall of the chamber body 105, the shower head 110, the base 134, etc., accumulate the deposited material layer during the processing. In order to slow down changes in deposition properties and particle contamination, a remote plasma cleaning process can be used to periodically clean the deposited layers from the chamber components. Examples of cleaning gases that can be used to clean the deposited materials from the surface of the chamber component include halogen-containing gases (such as C 2 F 6 , SF 6 , SiCl 4 , HBr, NF 3 , CF 4 , CHF 3 , CH 2 F 3 , F , NF 3 , Cl 2 , CCl 4 , BCl 3 and SiF 4, etc.) and other gases (such as O 2 or N 2 O). Examples of the carrier gas include N 2 , He, Ar, and other gases that are inert to the cleaning gas (for example, non-reactive gases). In one embodiment, NF 3 and Ar are used to perform the plasma cleaning process.

基座134配置於製程腔室100之內部空間106中且在噴頭110下方並由底座132所支撐。基座134在處理過程中固持一或多個基板。基座134設以在ALD處理過程中圍繞中心旋轉以便確保與一或多個基板相互作用之製程氣體的均勻分佈。上述均勻分佈改善沉積於一或多個基板上之層的厚度均勻性。The base 134 is disposed in the inner space 106 of the process chamber 100 under the shower head 110 and supported by the base 132. The susceptor 134 holds one or more substrates during processing. The susceptor 134 is configured to rotate around the center during the ALD process to ensure uniform distribution of the process gas interacting with one or more substrates. The above-mentioned uniform distribution improves the thickness uniformity of the layers deposited on one or more substrates.

基座134設以在處理過程中被加熱並維持均勻熱遍佈整個基座134。因此,基座134可具有對熱衝擊具有高度抵抗性之熱傳導材料所構成的主體。在一個實施例中,主體是半金屬材料,例如石墨。基座134亦可具有由其他具有高熱衝擊抗性材料(例如,玻璃-碳)所構成的主體。The susceptor 134 is configured to be heated during processing and maintain uniform heat throughout the susceptor 134. Therefore, the base 134 may have a main body composed of a thermally conductive material with high resistance to thermal shock. In one embodiment, the body is a semi-metallic material, such as graphite. The base 134 may also have a main body made of other materials with high thermal shock resistance (for example, glass-carbon).

基座134具有多個凹部。每個凹部約等於被固持於凹部中之基板(例如,晶圓)的尺寸。在處理過程中,基板可被真空附著(夾持)至基座134。The base 134 has a plurality of recesses. Each recess is approximately equal to the size of the substrate (for example, wafer) held in the recess. During the processing, the substrate can be vacuum attached (clamped) to the susceptor 134.

在一個實施例中,基座134的主體具有第一保護層135於至少一表面上以及第一保護層135上方之第二保護層136。在一個實施例中,第一保護層是SiC,而第二保護層是Y3 Al5 O12 (YAG), Er3 Al5 O12 (EAG)或YF3 的一者。在另一個實施例中,基座134僅具有單一保護層,單一保護層是Y3 Al5 O12 (YAG)、Er3 Al5 O12 (EAG)或YF3 的一者。在其他實施例中,亦可應用額外的保護層。參照第2A-2B圖更詳細地圖示一個示範基座。In one embodiment, the main body of the base 134 has a first protective layer 135 on at least one surface and a second protective layer 136 on the first protective layer 135. In one embodiment, the first protective layer is SiC, and the second protective layer is one of Y 3 Al 5 O 12 (YAG), Er 3 Al 5 O 12 (EAG) or YF 3 . In another embodiment, the base 134 has only a single protective layer, and the single protective layer is one of Y 3 Al 5 O 12 (YAG), Er 3 Al 5 O 12 (EAG) or YF 3 . In other embodiments, an additional protective layer can also be applied. Refer to Figures 2A-2B to illustrate an exemplary base in more detail.

在一個實施例中,一或多個加熱元件130配置於基座134下方。一或多個熱遮罩亦可配置在加熱元件130附近以保護不應被加熱至高溫的部件。在一個實施例中,加熱元件130是電阻式或感應式加熱元件。在另一個實施例中,加熱元件是輻射加熱燈泡。在某些實施例中,加熱元件130可加熱基座134至高達700℃或更高的溫度。In one embodiment, one or more heating elements 130 are disposed under the base 134. One or more heat shields may also be arranged near the heating element 130 to protect parts that should not be heated to high temperatures. In one embodiment, the heating element 130 is a resistive or induction heating element. In another embodiment, the heating element is a radiant heating bulb. In some embodiments, the heating element 130 can heat the susceptor 134 to a temperature as high as 700°C or higher.

第2A圖描繪用於ALD腔室的示範基座200。基座200具有薄膜保護塗層。在一個實施例中,薄膜保護塗層僅塗覆基座的上表面。或者,薄膜保護塗層塗覆基座的上表面與下表面。薄膜保護層亦可塗覆基座的側壁。基座200的目的在於支撐並均勻地同時加熱多個晶圓。可利用電阻式加熱元件或燈泡輻射地加熱基座200。在處理過程中,透過原子單層沉積(ALD)或其他CVD製程沿著被支撐之晶圓塗覆基座200。為了增加清潔間平均時間(MTBC),應周期性地清潔基座200以避免塗層由於後續處理過程中發展的內部膜應力而剝落。可藉由熱或遠端電漿製程任一者清潔基座200。在利用NF3 的遠端電漿清潔例子中,遠端地產生氟自由基(F*)並輸送進入製程區域以移除沉積膜。然而,高溫下的F*亦將腐蝕基座材料(例如,CVD的SiC與石墨)。因此,施加對所應用之化學物具有腐蝕抗性的保護塗層。保護塗層亦允許一段時間的「過度蝕刻」以確保移除沉積膜的整體。Figure 2A depicts an exemplary susceptor 200 for an ALD chamber. The base 200 has a thin film protective coating. In one embodiment, the thin film protective coating only coats the upper surface of the base. Alternatively, a thin-film protective coating coats the upper and lower surfaces of the base. The thin film protective layer can also coat the sidewall of the base. The purpose of the susceptor 200 is to support and uniformly heat multiple wafers at the same time. The base 200 may be radiatively heated by a resistive heating element or a bulb. During the processing, the susceptor 200 is coated along the supported wafer through atomic monolayer deposition (ALD) or other CVD processes. In order to increase the mean time between cleaning (MTBC), the susceptor 200 should be cleaned periodically to prevent the coating from peeling off due to internal film stress developed during subsequent processing. The base 200 can be cleaned by either thermal or remote plasma processing. In the remote plasma cleaning example using NF 3 , fluorine radicals (F*) are generated remotely and transported into the process area to remove the deposited film. However, F* at high temperatures will also corrode the base material (for example, CVD SiC and graphite). Therefore, a protective coating that is corrosion resistant to the applied chemicals is applied. The protective coating also allows a period of "over-etching" to ensure removal of the entire deposited film.

在一個實施例中,基座200包括半金屬熱傳導底座,例如石墨。基座200可具有大到足以支撐多個基板(例如,多個晶圓)的類圓盤外形。在一個實施例中,基座的直徑超過1米。In one embodiment, the base 200 includes a semi-metal thermally conductive base, such as graphite. The susceptor 200 may have a disk-like shape large enough to support multiple substrates (for example, multiple wafers). In one embodiment, the diameter of the base exceeds 1 meter.

基座200可包括一或多個凹部(亦稱為凹處)201-206,凹部各自可設以在處理過程中支撐晶圓或其他基板。在描繪實例中,基座200包括6個凹部201-206。然而,其他基座可具有更多或更少的凹部。The susceptor 200 may include one or more recesses (also referred to as recesses) 201-206, each of which may be provided to support wafers or other substrates during processing. In the depicted example, the base 200 includes 6 recesses 201-206. However, other bases may have more or fewer recesses.

凹部201-206各自包括許多表面特徵。凹部201中之表面特徵的實例包括外環208、多個凸丘206以及凸丘206之間的溝槽或氣體通道。在某些實施例中,特徵的高度約為10-80微米。The recesses 201-206 each include a number of surface features. Examples of surface features in the recess 201 include an outer ring 208, a plurality of ridges 206, and grooves or gas passages between the ridges 206. In some embodiments, the height of the feature is about 10-80 microns.

在一個實施例中,基座200更包括熱傳導半金屬底座之一或多個表面上的CVD沉積之SiC或SiN層。凹部201-206與表面特徵(諸如,凸丘206與外環208)可透過基座200中鑽孔之孔洞流體耦接至熱傳送(或背側)氣體源(例如,He)。運作中,可在受控壓力下提供背側氣體進入氣體通道以輔助基座200與基板間的熱傳送。In one embodiment, the base 200 further includes a SiC or SiN layer deposited by CVD on one or more surfaces of the thermally conductive semi-metal base. The recesses 201-206 and surface features (such as the bumps 206 and the outer ring 208) can be fluidly coupled to a heat transfer (or backside) gas source (eg, He) through holes drilled in the base 200. In operation, the backside gas can be provided to enter the gas channel under a controlled pressure to assist the heat transfer between the susceptor 200 and the substrate.

可在沉積第一保護層之前在基座200之主體中形成凹部與表面特徵。或者,可在上方沉積第一保護層後在第一保護層中形成凹部與/或表面特徵。第二保護層可為與凹部及表面特徵共形的共形薄膜保護層。或者,可在第二保護層中形成表面特徵。因此,所有的表面特徵(諸如,凸丘206與外環208)存在於第二保護層之表面。在一個實施例中,第二保護層的厚度約5-50微米。在另一個實施例中,第二保護層的厚度小於20微米。在另一個實施例中,第二保護層的厚度高達1000微米。The recesses and surface features can be formed in the main body of the base 200 before depositing the first protective layer. Alternatively, the recesses and/or surface features may be formed in the first protective layer after the first protective layer is deposited thereon. The second protective layer can be a conformal thin-film protective layer conformal to the recesses and surface features. Alternatively, surface features can be formed in the second protective layer. Therefore, all surface features (such as bumps 206 and outer ring 208) exist on the surface of the second protective layer. In one embodiment, the thickness of the second protective layer is about 5-50 microns. In another embodiment, the thickness of the second protective layer is less than 20 microns. In another embodiment, the thickness of the second protective layer is up to 1000 microns.

基座200額外地包括舉升銷孔210。舉例而言,基座200可包括三個支撐舉升銷(例如,Al2 O3 舉升銷)的舉升銷孔。舉升銷能夠負載晶圓至基座200上並自基座200上卸載晶圓。基座200可包括凹部215,凹部215可用以夾住基座至旋轉軸。凹部215可包括孔220,孔220可被用來機械地固定基座200至旋轉軸。The base 200 additionally includes a lifting pin hole 210. For example, the base 200 may include three lifting pin holes for supporting lifting pins (for example, Al 2 O 3 lifting pins). The lifting pins can load wafers onto the susceptor 200 and unload the wafers from the susceptor 200. The base 200 may include a recess 215, and the recess 215 may be used to clamp the base to the rotating shaft. The recess 215 may include a hole 220, which may be used to mechanically fix the base 200 to the rotating shaft.

第2B圖描繪具有耐電漿插座250***孔之基座200的放大橫剖面圖。IAD與PVD為視線(line of sight)製程。因此,薄膜保護塗層可能並無塗覆基座中之孔(諸如,舉升銷孔210、孔220或氦氣孔)的內部。在一個實施例中,在基座中形成具有過大尺寸的初步孔。可分別地製造耐電漿插座(例如,耐電漿插座250)並***過大尺寸孔中。耐電漿插座250可被按壓安裝(例如,機械地按壓)進入過大尺寸孔中。耐電漿插座250可由燒結耐電漿陶瓷材料塊所形成,諸如AlN、Y2 O3 、包括Y4 Al2 O9 與Y2 O3 -ZrO2 之固體-溶液的陶瓷化合物或另一稀土氧化物。FIG. 2B depicts an enlarged cross-sectional view of the base 200 with the insertion hole of the plasma resistant socket 250. IAD and PVD are line of sight (line of sight) processes. Therefore, the thin film protective coating may not coat the inside of the holes in the base (such as the lifting pin holes 210, the holes 220, or the helium gas holes). In one embodiment, a preliminary hole having an excessively large size is formed in the base. The plasma resistant socket (for example, the plasma resistant socket 250) can be separately manufactured and inserted into the oversized hole. The plasma resistant socket 250 may be press-installed (for example, mechanically pressed) into the oversized hole. The plasma-resistant socket 250 may be formed of a sintered plasma-resistant ceramic material block, such as AlN, Y 2 O 3 , a solid-solution ceramic compound including Y 4 Al 2 O 9 and Y 2 O 3 -ZrO 2 or another rare earth oxide .

耐電漿插座250本身可在耐電漿插座250中心處具有最終孔,其中最終孔具有期望的直徑。CVD沉積之層與/或薄膜保護層可僅塗覆基座,或塗覆基座與耐電漿插座250兩者。在一個實施例中,在***耐電漿插座250之前沉積CVD沉積之層。接著可在***耐電漿插座250之後沉積薄膜保護層。薄膜保護層可填滿與/或橋接插座250的外壁與***插座250之最初孔之間的任何間隙。在某些實例中,薄膜保護層可能不夠厚而無法橋接插座與***插座之最初孔之間的間隙。因此,可在***插座後沉積CVD塗層以橋接任何間隙。接著可在CVD塗層上沉積薄膜保護層。The plasma resistant socket 250 itself may have a final hole at the center of the plasma resistant socket 250, wherein the final hole has a desired diameter. The CVD deposited layer and/or the thin film protective layer may only coat the base, or coat both the base and the plasma resistant socket 250. In one embodiment, the CVD deposited layer is deposited before insertion into the plasma resistant socket 250. Then a thin film protective layer can be deposited after inserting the plasma resistant socket 250. The film protection layer can fill and/or bridge any gap between the outer wall of the socket 250 and the initial hole inserted into the socket 250. In some instances, the protective film layer may not be thick enough to bridge the gap between the socket and the initial hole inserted into the socket. Therefore, a CVD coating can be deposited after insertion into the socket to bridge any gaps. A thin protective layer can then be deposited on the CVD coating.

在一個實施例中,耐電漿插座的底部窄於耐電漿插座的頂部(如圖所示)。這可讓耐電漿插座被按壓安裝進入基座200的預定深度。In one embodiment, the bottom of the plasma resistant socket is narrower than the top of the plasma resistant socket (as shown). This allows the plasma resistant socket to be pressed and installed into the predetermined depth of the base 200.

第3-5圖描繪由一或多個薄膜保護層覆蓋之物件(例如,腔室部件)的橫剖面側視圖。第3圖描繪物件300之一個實施例的橫剖面側視圖,物件300具有第一保護層330與第二保護層308。第一保護層可為SiC、SiN或另一陶瓷材料。可已經藉由CVD製程將第一保護層330沉積至主體305上。第一保護層可具有高達200微米的厚度。在一個實施例中,第一保護層約為5-100微米厚。Figures 3-5 depict a cross-sectional side view of an object (e.g., chamber component) covered by one or more protective film layers. FIG. 3 depicts a cross-sectional side view of an embodiment of the object 300. The object 300 has a first protective layer 330 and a second protective layer 308. The first protective layer may be SiC, SiN or another ceramic material. The first protective layer 330 may have been deposited on the main body 305 by a CVD process. The first protective layer may have a thickness of up to 200 microns. In one embodiment, the first protective layer is about 5-100 microns thick.

第二保護層308可為利用IAD施加至第一保護層330上的陶瓷薄膜保護層。可被用來沉積第二保護層308的兩個示範IAD製程包括電子束IAD (EB-IAD)與離子束濺射IAD (IBS-IAD)。第二保護層308可作為頂塗層,並可作為耐腐蝕阻障層,並密封第一保護層330之暴露表面(例如,密封第一保護層330中的內在表面破裂與孔)。The second protective layer 308 may be a ceramic thin film protective layer applied to the first protective layer 330 using IAD. Two exemplary IAD processes that can be used to deposit the second protective layer 308 include electron beam IAD (EB-IAD) and ion beam sputtering IAD (IBS-IAD). The second protective layer 308 can be used as a top coating, and can be used as a corrosion-resistant barrier layer, and seals the exposed surface of the first protective layer 330 (for example, seals internal surface cracks and holes in the first protective layer 330).

IAD沉積之第二保護層308可具有相當低的膜應力(例如,相對於電漿噴塗或濺射所造成的膜應力)。IAD沉積之第二保護層308可額外地具有低於1%的孔隙率,且孔隙率在某些實施例低於約0.1%。因此,IAD沉積之保護層是密集結構,這具有應用於腔室部件上之執行優點。此外,可在沒有先粗糙化第一保護層330或執行其他耗時表面製備步驟的情況下沉積IAD沉積之第二保護層308。The second protective layer 308 deposited by the IAD may have a relatively low film stress (for example, relative to the film stress caused by plasma spraying or sputtering). The second protective layer 308 deposited by the IAD may additionally have a porosity lower than 1%, and the porosity is lower than about 0.1% in some embodiments. Therefore, the protective layer deposited by the IAD is a dense structure, which has the advantage of being applied to the chamber components. In addition, the second protective layer 308 deposited by IAD can be deposited without first roughening the first protective layer 330 or performing other time-consuming surface preparation steps.

可被用來形成第二保護層308之陶瓷實例包括Y3 Al5 O12 (YAG)、Er3 Al5 O12 (EAG)與YF3 。另一可被應用的示範陶瓷為Y4 Al2 O9 (YAM)。上示陶瓷的任一者可包括微量的其他材料,諸如ZrO2 、Al2 O3 、SiO2 、B2 O3 、Er2 O3 、Nd2 O3 、Nb2 O5 、CeO2 、Sm2 O3 、Yb2 O3 或其他氧化物。Examples of ceramics that can be used to form the second protective layer 308 include Y 3 Al 5 O 12 (YAG), Er 3 Al 5 O 12 (EAG), and YF 3 . Another exemplary ceramic that can be used is Y 4 Al 2 O 9 (YAM). Any of the ceramics shown above may include trace amounts of other materials, such as ZrO 2 , Al 2 O 3 , SiO 2 , B 2 O 3 , Er 2 O 3 , Nd 2 O 3 , Nb 2 O 5 , CeO 2 , Sm 2 O 3 , Yb 2 O 3 or other oxides.

物件300的主體305與/或第一保護層330可包括一或多個表面特徵。對於基座而言,表面特徵可包括凹部、凸丘、密封帶、氣體通道、氦氣孔等等。對於噴頭而言,表面特徵可包括數百或數千個氣體分配孔、圍繞氣體分配孔的凹陷(divot)或凸塊(bump)等等。其他腔室部件可具有其他的表面特徵。The main body 305 and/or the first protective layer 330 of the object 300 may include one or more surface features. For the base, the surface features may include recesses, ridges, sealing tapes, gas channels, helium holes, and so on. For the shower head, the surface features may include hundreds or thousands of gas distribution holes, divots or bumps surrounding the gas distribution holes, and so on. Other chamber components may have other surface features.

第二保護層308可共形至主體305與第一保護層330的表面特徵。舉例而言,第二保護層308可維持第一保護層330之上表面的相對形狀(例如,流露第一保護層330中之特徵的形狀)。此外,第二保護層308可薄到足以不塞住主體305與/或第一保護層330中之孔。第二保護層可具有小於1000微米的厚度。在一個實施例中,第二保護層308的厚度小於約20微米。在進一步實施例中,第二保護層的厚度在約0.5微米至約7微米之間。The second protection layer 308 may conform to the surface features of the main body 305 and the first protection layer 330. For example, the second protective layer 308 can maintain the relative shape of the upper surface of the first protective layer 330 (for example, a shape exposing the features in the first protective layer 330). In addition, the second protective layer 308 may be thin enough not to plug the holes in the main body 305 and/or the first protective layer 330. The second protective layer may have a thickness of less than 1000 microns. In one embodiment, the thickness of the second protective layer 308 is less than about 20 microns. In a further embodiment, the thickness of the second protective layer is between about 0.5 microns and about 7 microns.

在替代實施例中,可省略第一保護層330。因此,可在主體305的一或多個表面上僅沉積單一Y3 Al5 O12 (YAG)、Er3 Al5 O12 (EAG)、YF3 或Y4 Al2 O9 (YAM)保護層。

Figure 108112982-A0304-0001
表1:IAD沉積之YAM、YF3 、YAG與EAG的材料性質In an alternative embodiment, the first protective layer 330 may be omitted. Therefore, only a single Y 3 Al 5 O 12 (YAG), Er 3 Al 5 O 12 (EAG), YF 3 or Y 4 Al 2 O 9 (YAM) protective layer can be deposited on one or more surfaces of the main body 305 .
Figure 108112982-A0304-0001
Table 1: Material properties of YAM, YF 3 , YAG and EAG deposited by IAD

表1顯示IAD沉積之YAM、YF3 、YAG與EAG的材料性質。如表所示,5微米(µm)的IAD沉積之YAM塗層具有695伏(V)的擊穿電壓。5 µm的IAD沉積之YF3 塗層具有522 V的擊穿電壓。5 µm的IAD沉積之YAG塗層具有1080 V的擊穿電壓。5 µm的IAD沉積之EAG塗層具有900 V的擊穿電壓。Table 1 shows the material properties of YAM, YF 3 , YAG and EAG deposited by IAD. As shown in the table, the YAM coating deposited by the 5 micron (µm) IAD has a breakdown voltage of 695 volts (V). The YF 3 coating deposited by the 5 µm IAD has a breakdown voltage of 522 V. The YAG coating deposited by 5 µm IAD has a breakdown voltage of 1080 V. The EAG coating deposited by 5 µm IAD has a breakdown voltage of 900 V.

1.6 mm的氧化鋁上之YF3 的介電常數約為9.2,YAG薄膜的介電常數約為9.76,而EAG薄膜的介電常數約為9.54。1.6 mm的氧化鋁上之YF3 薄膜的約為9E-4,YAG薄膜的損耗正切約為4E-4,而EAG薄膜的損耗正切約為4E-4。YAG薄膜的熱傳導率約為20.1 W/m-K,而EAG薄膜的熱傳導率約為19.2 W/m-K。The dielectric constant of YF 3 on 1.6 mm alumina is about 9.2, the dielectric constant of YAG film is about 9.76, and the dielectric constant of EAG film is about 9.54. The dielectric constant of YF 3 film on 1.6 mm alumina is about For 9E-4, the loss tangent of YAG film is about 4E-4, and the loss tangent of EAG film is about 4E-4. The thermal conductivity of the YAG film is about 20.1 W/mK, while the thermal conductivity of the EAG film is about 19.2 W/mK.

對於各個標示之陶瓷材料而言,薄膜保護層對氧化鋁基板的附著強度可高於27兆帕(MPa)。可藉由測量用於自基板分隔薄膜保護層的力量來測定附著強度。For each marked ceramic material, the adhesion strength of the thin-film protective layer to the alumina substrate can be higher than 27 megapascals (MPa). The adhesion strength can be determined by measuring the force used to separate the thin film protective layer from the substrate.

密封性測量利用薄膜保護層可達成的密封能力。如表所示,利用YF3 可達成每秒約2.6E-9立方公分(cm3 /s)的He滲漏率,利用YAG可達成約4.4E-10的He滲漏率,而利用EAG可達成約9.5E-10的He滲漏率。較低的He滲漏率代表改善的密封。示範薄膜保護層各自具有低於典型Al2 O3 的He滲漏率。Tightness measurement utilizes the sealing ability achievable by the thin film protective layer. As shown in the table, the He leakage rate of about 2.6E-9 cubic centimeters per second (cm 3 /s) can be achieved with YF 3 , the He leakage rate of about 4.4E-10 can be achieved with YAG, and the He leakage rate of about 4.4E-10 can be achieved with EAG. A He leakage rate of about 9.5E-10 is achieved. A lower He leakage rate represents an improved seal. The exemplary thin-film protective layers each have a He leakage rate lower than typical Al 2 O 3 .

Y3 Al5 O12 、Y4 Al2 O9 、Er3 Al5 O12 與YF3 各自具有可抵抗電漿處理過程中磨損的硬度。如表所示,YF3 具有約3.411十億帕(GPa)的維氏(Vickers)硬度(5 Kgf),YAG具有約8.5 GPa的硬度,而EAG具有約9.057 GPa的硬度。YAG的測量磨耗率約為每一射頻時0.28奈米(nm/RFhr),而EAG的磨耗率約為0.176 nm/RFhr。Y 3 Al 5 O 12 , Y 4 Al 2 O 9 , Er 3 Al 5 O 12 and YF 3 each have a hardness that can resist abrasion during plasma treatment. As shown in the table, YF 3 has a Vickers hardness (5 Kgf) of about 3.411 gigapascals (GPa), YAG has a hardness of about 8.5 GPa, and EAG has a hardness of about 9.057 GPa. The measured wear rate of YAG is about 0.28 nanometers per radio frequency (nm/RFhr), while the wear rate of EAG is about 0.176 nm/RFhr.

值得注意的是在某些實施例中,Y3 Al5 O12 、Y4 Al2 O9 、Er3 Al5 O12 與YF3 可經修飾,以致上方飆示之材料性質與特性可變化高達30%。因此,應當理解這些材料性質所描述之數值為示範可達成之數值。本文所述之陶瓷薄膜保護層不應被解讀為受限於提供之數值。It is noted that in certain embodiments, Y 3 Al 5 O 12, Y 4 Al 2 O 9, Er 3 A l5 O 12 and YF 3 may be modified such that the material is shown risen above characteristic properties may vary up to 30%. Therefore, it should be understood that the values described in these material properties are achievable values for demonstration. The ceramic thin film protective layer described herein should not be interpreted as being limited to the values provided.

第4圖描繪物件400之一個實施例的橫剖面側視圖,物件400具有薄膜保護層堆疊406沉積於物件400之主體405上。在替代實施例中,薄膜保護層堆疊406可沉積於SiC或SiN的第一保護層上。FIG. 4 depicts a cross-sectional side view of an embodiment of the object 400. The object 400 has a thin film protective layer stack 406 deposited on the main body 405 of the object 400. In an alternative embodiment, the thin-film protective layer stack 406 may be deposited on the first protective layer of SiC or SiN.

薄膜保護層堆疊406中的一或多個薄膜保護層(諸如,第一層408與/或第二層410)可為YAG、YAM、EAG或YF3 的一者。此外,該些保護層的某些可包括Er2 O3 、Gd2 O3 、Gd3 Al5 O12 或包括Y4 Al2 O9 與Y2 O3 -ZrO2 之固體-溶液(solid-solution)的陶瓷化合物。在一個實施例中,相同的陶瓷材料未用於兩個相鄰的薄膜保護層。然而,在另一個實施例中,相鄰層可由相同的陶瓷所構成。A thin film protection layer stack or a plurality of thin film protection layer 406 (such as the first layer 408 and / or the second layer 410) may be a YAG, YAM, EAG one or YF 3. In addition, some of these protective layers may include Er 2 O 3 , Gd 2 O 3 , Gd 3 Al 5 O 12 or a solid-solution including Y 4 Al 2 O 9 and Y 2 O 3 -ZrO 2 solution) ceramic compound. In one embodiment, the same ceramic material is not used for two adjacent thin film protective layers. However, in another embodiment, adjacent layers may be composed of the same ceramic.

第5圖描繪物件500之另一個實施例的橫剖面側視圖,物件500具有薄膜保護層堆疊506沉積於物件500之主體505上。或者,薄膜保護層堆疊506可沉積於SiC或SiN層上。物件500相似於物件400,除了薄膜保護層堆疊506具有四個薄膜保護層508、510、515、518以外。FIG. 5 depicts a cross-sectional side view of another embodiment of an object 500. The object 500 has a thin-film protective layer stack 506 deposited on the main body 505 of the object 500. Alternatively, the thin film protective layer stack 506 may be deposited on the SiC or SiN layer. The object 500 is similar to the object 400, except that the film protection layer stack 506 has four film protection layers 508, 510, 515, 518.

薄膜保護層堆疊(例如,所述的那些堆疊)可具有任何數目的薄膜保護層。堆疊中的薄膜保護層可均具有相同厚度,或者可具有不同的厚度。薄膜保護層各自可具有低於約50微米的厚度,厚度在某些實施例中低於約10微米。在一實例中,第一層408可具有3微米的厚度,而第二層410可具有3微米的厚度。在另一實例中,第一層508可為具有2微米厚度的YAG層,第二層510可為具有1微米厚度的化合物陶瓷層,第三層515可為具有1微米厚度的YAG層,而第四層518可為具有1微米厚度的化合物陶瓷層。Thin-film protective layer stacks (e.g., those described) can have any number of thin-film protective layers. The thin-film protective layers in the stack may all have the same thickness, or may have different thicknesses. The thin-film protective layers may each have a thickness of less than about 50 microns, and in certain embodiments, the thickness is less than about 10 microns. In an example, the first layer 408 may have a thickness of 3 microns, and the second layer 410 may have a thickness of 3 microns. In another example, the first layer 508 may be a YAG layer with a thickness of 2 micrometers, the second layer 510 may be a compound ceramic layer with a thickness of 1 micrometer, the third layer 515 may be a YAG layer with a thickness of 1 micrometer, and The fourth layer 518 may be a compound ceramic layer having a thickness of 1 micrometer.

陶瓷層數目與陶瓷層所用之組合物的選擇可基於接受塗覆之物件的期望應用與/或類型而定。IAD形成之EAG、YAG與YF3 薄膜保護層通常具有非晶結構。相反地,IAD沉積之化合物陶瓷與Er2 O3 層通常具有結晶或奈米結晶結構。結晶與奈米結晶結構陶瓷層通常可比非晶陶瓷層更能抵抗腐蝕。然而,在某些實例中,具有結晶結構或奈米結晶結構的薄膜陶瓷層可能經歷偶發性垂直破裂(大約在膜厚度方向中且大致上垂直於塗覆表面進行的破裂)。上述垂直破裂可由晶格失配所引發,且可為電漿化學物的攻擊點。每次加熱與冷卻物件,薄膜保護層與薄膜保護層所塗覆之基板間之熱膨脹係數的失配便會造成薄膜保護層上的應力。上述應力會被集中在垂直破裂處。這會造成薄膜保護層最終自薄膜保護層所塗覆之基板剝落。相反地,若沒有垂直破裂,那麼應力大約會均勻地分散整個薄膜上。The selection of the number of ceramic layers and the composition of the ceramic layers can be based on the desired application and/or type of the article to be coated. The EAG, YAG and YF 3 thin film protective layers formed by IAD usually have an amorphous structure. On the contrary, the compound ceramic and Er 2 O 3 layer deposited by IAD usually have a crystalline or nanocrystalline structure. Crystalline and nanocrystalline structured ceramic layers are generally more resistant to corrosion than amorphous ceramic layers. However, in some instances, a thin-film ceramic layer having a crystalline structure or a nanocrystalline structure may experience occasional vertical cracking (cracking that proceeds approximately in the film thickness direction and approximately perpendicular to the coated surface). The above-mentioned vertical fracture can be caused by lattice mismatch, and can be an attack point of plasma chemicals. Each time an object is heated and cooled, the mismatch of the thermal expansion coefficient between the film protection layer and the substrate coated by the film protection layer will cause stress on the film protection layer. The above-mentioned stresses will be concentrated at the vertical fracture. This will cause the thin-film protective layer to finally peel off from the substrate coated by the thin-film protective layer. Conversely, if there is no vertical fracture, the stress will be approximately evenly distributed throughout the film.

因此,在一個實施例中,薄膜保護層堆疊406中之第一層408為非晶陶瓷(諸如,YAG或EAG),而薄膜保護層堆疊406中之第二層410為結晶或奈米結晶陶瓷(諸如,陶瓷化合物或Er2 O3 )。在上述實施例中,第二層410可提供相對於第一層408較大的電漿耐受性。藉由形成第二層410於第一層408上而非直接形成在主體405上(或SiC或SiN保護層上),第一層408作為緩衝以最小化後續層的晶格失配。因此,可增加第二層410的壽命。Therefore, in one embodiment, the first layer 408 in the thin-film protective layer stack 406 is an amorphous ceramic (such as YAG or EAG), and the second layer 410 in the thin-film protective layer stack 406 is a crystalline or nanocrystalline ceramic (Such as ceramic compound or Er 2 O 3 ). In the above embodiment, the second layer 410 can provide greater plasma tolerance than the first layer 408. By forming the second layer 410 on the first layer 408 rather than directly on the body 405 (or SiC or SiN protective layer), the first layer 408 acts as a buffer to minimize the lattice mismatch of subsequent layers. Therefore, the lifetime of the second layer 410 can be increased.

在另一個實例中,主體、Y3 Al5 O12 (YAG)、Y4 Al2 O9 、Er2 O3 、Gd2 O3 、Er3 Al5 O12 、Gd3 Al5 O12 、與包括Y4 Al2 O9 與Y2 O3 -ZrO2 之固體-溶液的陶瓷化合物各自可具有不同的熱膨脹係數。兩個相鄰材料間之熱膨脹係數的失配越大,這些材料中之一者最終破裂、剝離或以其他方式喪失與其他材料之鍵結的可能性便越大。可用上述方式形成保護層堆疊406、506以最小化相鄰層間(或層與主體405、505間)之熱膨脹係數的失配。舉例而言,主體505可為石墨,而EAG可具有最接近石墨之熱膨脹係數的熱膨脹係數,接著為YAG的熱膨脹係數,接著為化合物陶瓷的熱膨脹係數。因此,在一個實施例中,第一層508可為EAG,第二層510可為YAG,而第三層515可為化合物陶瓷。In another example, the main body, Y 3 Al 5 O 12 (YAG), Y 4 Al 2 O 9 , Er 2 O 3 , Gd 2 O 3 , Er 3 Al 5 O 12 , Gd 3 Al 5 O 12 , and The solid-solution ceramic compounds including Y 4 Al 2 O 9 and Y 2 O 3 -ZrO 2 may each have a different thermal expansion coefficient. The greater the mismatch in the coefficient of thermal expansion between two adjacent materials, the greater the possibility that one of these materials will eventually break, peel off, or otherwise lose the bond with the other material. The protective layer stacks 406 and 506 can be formed in the above-mentioned manner to minimize the mismatch of thermal expansion coefficients between adjacent layers (or between the layers and the main body 405 and 505). For example, the main body 505 may be graphite, and the EAG may have a thermal expansion coefficient closest to the thermal expansion coefficient of graphite, followed by the thermal expansion coefficient of YAG, and then the thermal expansion coefficient of the compound ceramic. Therefore, in one embodiment, the first layer 508 may be EAG, the second layer 510 may be YAG, and the third layer 515 may be a compound ceramic.

在另一個實例中,保護層堆疊506中的層可為兩個不同陶瓷的交替層。舉例而言,第一層508與第三層515可為YAG,而第二層510與第四層518可為EAG或YF3 。上述交替層可提供相似於上文所提出的那些優點,實例中用於交替層中的一個材料為非晶而用於交替層中的另一材料為結晶或奈米結晶。In another example, the layers in the protective layer stack 506 may be alternating layers of two different ceramics. For example, the first layer 508 and the third layer 515 may be YAG, and the second layer 510 and the fourth layer 518 may be EAG or YF 3 . The alternating layers described above can provide advantages similar to those mentioned above. In the example, one material used in the alternating layer is amorphous and the other material used in the alternating layer is crystalline or nanocrystalline.

在另一個實例中,可在薄膜保護層堆疊406或506中的位置沉積具有可辨別之顏色的薄膜塗層。舉例而言,可在薄膜堆疊的底部沉積具有可辨別之顏色的薄膜塗層。舉例而言,具有可辨別之顏色的薄膜塗層可為Er2 O3 或SmO2 。當技術員看見可辨別之顏色時,可警覺到應當替換或刷新基座。In another example, a thin film coating having a distinguishable color can be deposited at a location in the thin film protective layer stack 406 or 506. For example, a thin film coating with a distinguishable color can be deposited on the bottom of the thin film stack. For example, the thin film coating with a distinguishable color can be Er 2 O 3 or SmO 2 . When the technician sees the distinguishable color, he can be alert that the base should be replaced or refreshed.

在某些實施例中,薄膜保護層堆疊406、506中的一或多個層為利用熱處理形成的過渡層。若主體405、505為陶瓷主體,那麼可執行高溫熱處理以促進薄膜保護層與主體間的相互擴散。此外,可執行熱處理以促進相鄰薄膜保護層間、或厚保護層與薄膜保護層間的相互擴散。值得注意的是過渡層可為非多孔層。過渡層可作為兩個陶瓷間的擴散鍵結,並可提供相鄰陶瓷間的改良附著力。這可有助於在電漿處理過程中避免保護層破裂、剝落或剝除。In certain embodiments, one or more of the thin-film protective layer stacks 406, 506 are transition layers formed by heat treatment. If the main bodies 405 and 505 are ceramic main bodies, high-temperature heat treatment can be performed to promote the mutual diffusion between the thin film protective layer and the main body. In addition, heat treatment may be performed to promote interdiffusion between adjacent thin-film protective layers, or between thick protective layers and thin-film protective layers. It is worth noting that the transition layer can be a non-porous layer. The transition layer can be used as a diffusion bond between two ceramics and can provide improved adhesion between adjacent ceramics. This can help avoid cracking, peeling, or peeling of the protective layer during plasma processing.

熱處理可為在高達約1400-1600℃下持續高達約24小時週期(例如,在一個實施例中,3-6小時)的熱處理。這可產生第一薄膜保護層與相鄰陶瓷主體、厚保護層或第二薄膜保護層的一或多者之間的相互擴散層。The heat treatment may be a heat treatment at up to about 1400-1600°C for a period of up to about 24 hours (for example, in one embodiment, 3-6 hours). This can create an interdiffusion layer between the first thin-film protective layer and one or more of the adjacent ceramic body, thick protective layer, or second thin-film protective layer.

第6圖描繪形成一或多個保護層於物件上之製程600的一個實施例。製程600的文字塊605處,提供基座。基座可用於ALD製程腔室。在一個實施例中,基座具有熱傳導半金屬主體(具有良好熱傳導率的半金屬主體)。在一個實施例中,熱傳導半金屬主體是石墨主體。或者,可提供非熱傳導基座。非熱傳導基座可具有碳-玻璃構成之主體。在其他實施例中,可提供基座以外的物件。舉例而言,可提供用於ALD製程腔室的鋁噴頭。Figure 6 depicts an embodiment of a process 600 for forming one or more protective layers on an object. The text block 605 of the process 600 provides a base. The base can be used in an ALD process chamber. In one embodiment, the base has a thermally conductive semi-metal body (a semi-metal body with good thermal conductivity). In one embodiment, the thermally conductive semi-metal body is a graphite body. Alternatively, a non-thermally conductive base can be provided. The non-thermally conductive base may have a body composed of carbon-glass. In other embodiments, objects other than the base may be provided. For example, an aluminum shower head for an ALD process chamber can be provided.

在一個實施例中,文字塊608處,將耐電漿陶瓷插座***基座中之孔中。耐電漿陶瓷插座可被按壓安裝進入孔中。在替代實施例中,在文字塊610之後將耐電漿陶瓷插座***基座中之孔中。在另一個實施例中,沒有耐電漿陶瓷插座被***基座中之孔中。In one embodiment, at the text block 608, insert the plasma resistant ceramic socket into the hole in the base. The plasma resistant ceramic socket can be pressed into the hole. In an alternative embodiment, the plasma resistant ceramic socket is inserted into the hole in the base after the text block 610. In another embodiment, no plasma resistant ceramic socket is inserted into the hole in the base.

文字塊610處,執行CVD製程以沉積第一保護層於所提供之基座上。在一個實施例中,第一保護層僅覆蓋基座的面對電漿表面。在另一個實施例中,第一保護層覆蓋基座的正面與背面。在另一個實施例中,第一保護層覆蓋基座的正面、背面與側邊。在一個實施例中,第一保護層是SiC。或者,第一保護層可為SiN或另一適當材料。第一保護層可具有高達約200微米的厚度。可將基座的表面特徵加工進入石墨中。在一個實施例中,在沉積之後研磨第一保護層。At block 610, a CVD process is performed to deposit a first protective layer on the provided susceptor. In one embodiment, the first protective layer only covers the surface of the base facing the plasma. In another embodiment, the first protective layer covers the front and back of the base. In another embodiment, the first protective layer covers the front, back and sides of the base. In one embodiment, the first protective layer is SiC. Alternatively, the first protective layer may be SiN or another suitable material. The first protective layer may have a thickness up to about 200 microns. The surface features of the base can be processed into graphite. In one embodiment, the first protective layer is ground after deposition.

文字塊615處,加熱基座至高於200 ℃的溫度。舉例而言,可將基座加熱至200-400 ℃的溫度。在一個實施例中,基座被加熱至300 ℃的溫度。At block 615, heat the base to a temperature higher than 200°C. For example, the susceptor can be heated to a temperature of 200-400°C. In one embodiment, the susceptor is heated to a temperature of 300°C.

文字塊620處,在加熱基座時,執行IAD以沉積第二保護層於第一保護層的一或多個表面上。在一個實施例中,第二保護層僅覆蓋第一保護層的面對電漿表面。在另一個實施例中,第二保護層覆蓋基座之正面與背面上的第一保護層。在另一個實施例中,第二保護層覆蓋第一保護層的每個表面。在一個實施例中,在IAD沉積之前藉由離子槍將氧與/或氬離子引導至基座。氧與氬離子可燒掉第一保護層上的任何表面有機污染物並驅散任何殘餘微粒。At the text block 620, when the susceptor is heated, an IAD is performed to deposit the second protective layer on one or more surfaces of the first protective layer. In one embodiment, the second protective layer only covers the plasma-facing surface of the first protective layer. In another embodiment, the second protective layer covers the first protective layer on the front and back of the base. In another embodiment, the second protective layer covers each surface of the first protective layer. In one embodiment, the oxygen and/or argon ions are guided to the susceptor by an ion gun before the deposition of the IAD. Oxygen and argon ions can burn off any surface organic contaminants on the first protective layer and disperse any residual particles.

可執行的兩種IAD類型包括EB-IAD與IBS-IAD。可藉由蒸鍍來執行EB-IAD。可藉由濺射固體靶材材料來執行IBS-IAD。第二保護層可為Y3 Al5 O12 、Y4 Al2 O9 、Er3 Al5 O12 或YF3 。第二保護層可為非晶的並可抵抗450℃溫度下的破裂。在一個實施例中,在高達550℃的重覆熱循環後,保護層可能未經歷任何破裂。在進一步實施例中,第二保護層抵抗高達650℃溫度下的破裂。第二保護層可抵抗破裂,雖然第二保護層沉積於第一保護層與基座上,第一保護層與基座兩者具有與第二保護層不同的熱膨脹係數。The two types of IAD that can be performed include EB-IAD and IBS-IAD. EB-IAD can be implemented by vapor deposition. IBS-IAD can be performed by sputtering solid target material. The second protective layer can be Y 3 Al 5 O 12 , Y 4 Al 2 O 9 , Er 3 Al 5 O 12 or YF 3 . The second protective layer can be amorphous and can resist cracking at 450°C. In one embodiment, the protective layer may not experience any cracking after repeated thermal cycles up to 550°C. In a further embodiment, the second protective layer resists cracking at temperatures up to 650°C. The second protective layer can resist cracking. Although the second protective layer is deposited on the first protective layer and the base, both the first protective layer and the base have different thermal expansion coefficients from the second protective layer.

第二保護層的沉積速率每秒可約為1-8埃,並可藉由調整沉積參數而加以改變。在一個實施例中,沉積速率為每秒1-2埃(A/s)。沉積速率亦可在沉積過程中改變。在一個實施例中,約0.25-1 A/s的初始沉積速率被用來達成基板上的共形良好附著塗層。接著,2-10 A/s的沉積速率被用來在較短且較具成本效益的塗層進行中達成較厚的塗層。The deposition rate of the second protective layer can be about 1-8 angstroms per second, and can be changed by adjusting the deposition parameters. In one embodiment, the deposition rate is 1-2 Angstroms per second (A/s). The deposition rate can also be changed during the deposition process. In one embodiment, an initial deposition rate of about 0.25-1 A/s is used to achieve a conformal good adhesion coating on the substrate. Next, a deposition rate of 2-10 A/s is used to achieve a thicker coating in a shorter and more cost-effective coating process.

第二保護層可為非常共形、厚度均勻且良好附著至沉積之材料上的薄膜保護層。在一個實施例中,第二保護層的厚度低於1000微米。在進一步實施例中,第二保護層的厚度為5-50微米。在又進一步實施例中,第二保護層的厚度低於20微米。The second protective layer can be a thin-film protective layer that is very conformal, uniform in thickness, and well attached to the deposited material. In one embodiment, the thickness of the second protective layer is less than 1000 microns. In a further embodiment, the thickness of the second protective layer is 5-50 microns. In a further embodiment, the thickness of the second protective layer is less than 20 microns.

文字塊625處,進行是否沉積任何額外保護層(例如,任何額外薄膜保護層)的決定。若即將沉積額外保護層,製程持續進行至文字塊630。文字塊630處,利用IAD在第二保護層上形成另一保護層。At block 625, a decision is made whether to deposit any additional protective layer (for example, any additional thin-film protective layer). If an additional protective layer is about to be deposited, the process continues to block 630. At the text block 630, another protective layer is formed on the second protective layer by using IAD.

在一個實施例中,另一保護層由不同於第二保護層之陶瓷的陶瓷所構成。在一個實施例中,另一保護層是Y3 Al5 O12 、Y4 Al2 O9 、Er2 O3 、Gd2 O3 、Er3 Al5 O12 、Gd3 Al5 O12 、YF3 或Y4 Al2 O9 與Y2 O3 -ZrO2 之固體-溶液的陶瓷化合物的一者。In one embodiment, the other protective layer is composed of a ceramic that is different from the ceramic of the second protective layer. In one embodiment, the other protective layer is Y 3 Al 5 O 12 , Y 4 Al 2 O 9 , Er 2 O 3 , Gd 2 O 3 , Er 3 Al 5 O 12 , Gd 3 Al 5 O 12 , YF 3 or one of the solid-solution ceramic compounds of Y 4 Al 2 O 9 and Y 2 O 3 -ZrO 2 .

在另一個實施例中,另一保護層由與第二保護層之陶瓷相同的陶瓷所構成。舉例而言,可在第二保護層形成之後將遮罩配置於基座上。此遮罩可具有開口,其中特徵(諸如凸丘與密封)將形成於基座上(例如,基座中之凹部中)。接著可沉積額外保護層以形成這些特徵。在一個實施例中,特徵(例如,凸丘)的高度為10-20微米。In another embodiment, the other protective layer is composed of the same ceramic as the ceramic of the second protective layer. For example, the mask can be disposed on the base after the second protective layer is formed. This mask may have openings where features (such as bumps and seals) will be formed on the base (e.g., in recesses in the base). An additional protective layer can then be deposited to form these features. In one embodiment, the height of the feature (e.g., bump) is 10-20 microns.

方法接著返回文字塊625。若文字塊625處無施加額外薄膜保護層,則製程終止。The method then returns to the text block 625. If no additional film protection layer is applied at the text block 625, the process is terminated.

第7A圖描繪適用於多種利用能量微粒之沉積技術(例如,離子輔助沉積(IAD))的沉積機制。示範性IAD方法包括併入離子轟擊的沉積製程,諸如在離子轟擊存在下的蒸鍍(諸如,活性反應蒸鍍(activated reactive evaporation, ARE)或EB-IAD)與濺射(例如,IBS-IAD)以形成本文所述之耐電漿塗層。可在反應性氣體物種(諸如,O2 、N2 、鹵素等等)存在下執行IAD方法的任一者。Figure 7A depicts the deposition mechanism applicable to a variety of energy particle deposition techniques (for example, ion assisted deposition (IAD)). Exemplary IAD methods include deposition processes that incorporate ion bombardment, such as evaporation in the presence of ion bombardment (such as activated reactive evaporation (ARE) or EB-IAD) and sputtering (eg, IBS-IAD). ) To form the plasma resistant coating described herein. Any of the IAD methods can be performed in the presence of reactive gas species (such as O 2 , N 2 , halogen, etc.).

如圖所示,藉由在能量微粒703(例如,離子)存在下累積沉積材料702來形成薄膜保護層715。沉積材料702包括原子、離子、自由基或上述之混合物。能量微粒703可碰撞並在薄膜保護層715形成時壓緊薄膜保護層715。As shown in the figure, the thin-film protective layer 715 is formed by accumulating the deposition material 702 in the presence of energy particles 703 (eg, ions). The deposition material 702 includes atoms, ions, radicals, or a mixture of the foregoing. The energy particles 703 can collide and compress the film protection layer 715 when the film protection layer 715 is formed.

在一個實施例中,如先前描述於本文各處般利用IAD來形成薄膜保護層715。第7B圖描繪IAD沉積設備的示意圖。如圖所示,材料源752 (亦稱為靶材主體)提供沉積材料702流量,同時能量微粒源755提供能量微粒703流量,兩者在IAD製程整個過程中碰撞物件750。能量微粒源755可為氧或其他離子源。能量微粒源755亦可提供其他類型的能量微粒,諸如惰性自由基、中子原子與來自微粒產生源的奈米尺寸微粒(諸如,來自電漿、反應性氣體或來自提供沉積材料的材料源)。用於提供沉積材料702之材料源(例如,靶材主體)752可為陶瓷燒結塊,陶瓷燒結塊對應至即將構成薄膜保護層715的相同陶瓷。舉例而言,材料源可為陶瓷化合物燒結塊,或YAG、Er2 O3 、Gd2 O3 、Er3 Al5 O12 、YF3 或Gd3 Al5 O12 燒結塊。IAD可利用一或多個電漿或束來提供材料源與能量離子源。或者,材料源可為金屬。In one embodiment, the thin film protective layer 715 is formed using IAD as previously described throughout this document. Figure 7B depicts a schematic diagram of the IAD deposition equipment. As shown in the figure, the material source 752 (also referred to as the target body) provides the flow rate of the deposition material 702, while the energy particle source 755 provides the flow rate of the energy particles 703, and the two collide with the object 750 during the entire process of the IAD process. The energy particle source 755 may be oxygen or other ion sources. The energy particle source 755 can also provide other types of energy particles, such as inert radicals, neutron atoms, and nano-sized particles from particle generating sources (such as from plasma, reactive gas or from a material source that provides deposition materials) . The material source (for example, the target body) 752 for providing the deposition material 702 may be a ceramic sintered block, which corresponds to the same ceramic that will form the thin-film protective layer 715. For example, the material source may be a ceramic compound sintered block, or a YAG, Er 2 O 3 , Gd 2 O 3 , Er 3 Al 5 O 12 , YF 3, or Gd 3 Al 5 O 12 sintered block. The IAD can use one or more plasmas or beams to provide a source of material and a source of energy ions. Alternatively, the material source may be metal.

亦可在耐電漿塗層的沉積過程中提供反應性物種。在一個實施例中,能量微粒703包括非反應性物種(例如,Ar)或反應性物種(例如,O)的至少一者。在進一步實施例中,在耐電漿塗層形成過程中,亦可導入反應性物種,諸如CO與鹵素(Cl、F、Br等等),以進一步增加選擇性移除大部分虛弱地鍵結至薄膜保護層715之沉積材料的傾向。It is also possible to provide reactive species during the deposition process of the plasma resistant coating. In one embodiment, the energy particles 703 include at least one of a non-reactive species (for example, Ar) or a reactive species (for example, O). In a further embodiment, during the formation of the plasma resistant coating, reactive species, such as CO and halogens (Cl, F, Br, etc.) can also be introduced to further increase the selective removal of most weakly bonded to The tendency of the deposition material of the thin film protective layer 715.

以IAD製程可獨立於其他沉積參數藉由能量離子(或其他微粒)源755來控制能量微粒703。可調整能量離子通量的能量(例如,速率)、密度與入射角來控制薄膜保護層的組成、結構、結晶方向與晶粒尺寸。可調整的額外參數為沉積過程中物件的溫度以及沉積週期。With the IAD process, the energy particles 703 can be controlled by the energy ion (or other particles) source 755 independently of other deposition parameters. The energy (for example, rate), density, and incident angle of the energy ion flux can be adjusted to control the composition, structure, crystal orientation, and grain size of the thin film protective layer. The additional parameters that can be adjusted are the temperature of the object during the deposition process and the deposition cycle.

利用離子輔助能量來致密塗層並加速基板之表面上的材料沉積。可利用離子源的電壓與電流兩者來改變離子輔助能量。可調整電壓與電流以達成高與低塗層密度、操控塗層的應力以及塗層的結晶度。離子輔助能量的範圍約為50-500 V且約為1-50安培(A)。亦可利用離子輔助能量以故意地改變塗層的化學計量。舉例而言,可在沉積過程中應用金屬靶材並轉化成金屬氧化物。Use ion-assisted energy to compact the coating and accelerate the deposition of materials on the surface of the substrate. Both the voltage and current of the ion source can be used to change the ion assist energy. The voltage and current can be adjusted to achieve high and low coating density, control the stress of the coating and the crystallinity of the coating. The range of ion assist energy is about 50-500 V and about 1-50 amperes (A). Ion assist energy can also be used to deliberately change the stoichiometry of the coating. For example, a metal target can be applied during the deposition process and converted into a metal oxide.

可藉由利用加熱器來加熱沉積腔室與/或基板並藉由調整沉積速率來控制塗層溫度。沉積過程中之基板(物件)溫度可粗略地分成低溫(約為120-150℃,在一個實施例中為典型室溫)與高溫(在一個實施例中,約為270℃或更高)。在一個實施例中,使用約為300℃的沉積溫度。或者,可應用較高(例如,高達450℃)或較低(例如,低至室溫)的沉積溫度。可應用沉積溫度來調整膜應力、結晶度與其他塗層性質。A heater can be used to heat the deposition chamber and/or the substrate and the deposition rate can be adjusted to control the coating temperature. The substrate (object) temperature during the deposition process can be roughly divided into low temperature (about 120-150°C, in one embodiment, typical room temperature) and high temperature (about 270°C or higher in one embodiment). In one embodiment, a deposition temperature of about 300°C is used. Alternatively, higher (e.g., up to 450°C) or lower (e.g., as low as room temperature) deposition temperature can be applied. The deposition temperature can be applied to adjust the film stress, crystallinity and other coating properties.

工作距離為電子束(或離子束)槍與基板之間的距離。可改變工作距離以達成具有最高均勻性的塗層。此外,工作距離可影響塗層的沉積速率與密度。The working distance is the distance between the electron beam (or ion beam) gun and the substrate. The working distance can be changed to achieve the highest uniformity coating. In addition, the working distance can affect the deposition rate and density of the coating.

沉積角度為電子束(或離子束)與基板之間的角度。可藉由改變基板的位置與/或方向來改變沉積角度。藉由最佳化沉積角度,可達成三維幾何學的均勻塗層。The deposition angle is the angle between the electron beam (or ion beam) and the substrate. The deposition angle can be changed by changing the position and/or direction of the substrate. By optimizing the deposition angle, a uniform coating with three-dimensional geometry can be achieved.

EB-IAD與IBS-IAD沉積適用於廣大範圍的表面條件。然而,研磨表面是較佳的,以達成均勻塗層覆蓋。在IAD沉積過程中可使用多種固定裝置來固持基板。EB-IAD and IBS-IAD deposition are suitable for a wide range of surface conditions. However, it is preferable to polish the surface to achieve uniform coating coverage. A variety of fixing devices can be used to hold the substrate during the IAD deposition process.

第8圖描繪根據本發明實施例形成之薄膜保護層的腐蝕速率。第8圖顯示薄膜保護層暴露至NF3 電漿化學物時的腐蝕速率。如圖所示,相較於SiC而言,IAD沉積之薄膜保護層顯示更加改良的腐蝕抗性。舉例而言,SiC顯示每射頻小時超過2.5 µm(µm/RFHr)的腐蝕速率。相反地,IAD沉積之EAG、YAG與YF3 薄膜保護層皆顯示低於0.2 µm/RFHr的腐蝕速率。Figure 8 depicts the corrosion rate of the thin film protective layer formed according to an embodiment of the present invention. Figure 8 shows the corrosion rate of the thin film protective layer when exposed to NF 3 plasma chemistry. As shown in the figure, compared to SiC, the thin film protective layer deposited by IAD shows more improved corrosion resistance. For example, SiC shows a corrosion rate exceeding 2.5 µm (µm/RFHr) per RF hour. On the contrary, the EAG, YAG and YF 3 thin film protective layers deposited by IAD all showed corrosion rates below 0.2 µm/RFHr.

前文描述提出多種特定細節(諸如,特定系統、部件、方法等等的實施例)以提供本發明多個實施例的良好理解。然而,本領域具有通常知識者可理解可在不具有這些特定細節的情況下執行本發明的至少某些實施例。在其他實例中,習知部件或方法並未詳細描述或存在於簡單的文字塊圖格式中以避免非必要地干擾本發明。因此,提出的特定細節僅為示範性的。特定的實施方式可有別於這些示範性細節,並仍然被視為位於本發明的範圍中。The foregoing description proposes various specific details (such as embodiments of specific systems, components, methods, etc.) to provide a good understanding of the various embodiments of the present invention. However, a person having ordinary knowledge in the art can understand that at least some embodiments of the present invention can be carried out without these specific details. In other instances, the conventional components or methods are not described in detail or exist in a simple text block diagram format to avoid unnecessary interference with the present invention. Therefore, the specific details presented are only exemplary. Specific implementations may differ from these exemplary details and still be considered to be within the scope of the present invention.

本說明書通篇提及「一個實施例」或「一實施例」意指參照實施例描述之一特定特徵、結構或特性被包含於至少一個實施例中。因此,此說明書通篇不同地方出現詞句「在一個實施例中」或「在一實施例中」並非必然皆指向相同實施例。此外,詞彙「或」意圖表示包括性「或」而非排他性「或」。當本文使用詞彙「約」或「大致」時,這意圖表示所呈現的名義上數值準確地位在±30%之中。Reference throughout this specification to "one embodiment" or "an embodiment" means that a particular feature, structure, or characteristic described with reference to the embodiment is included in at least one embodiment. Therefore, the words "in one embodiment" or "in an embodiment" appearing in different places throughout this specification do not necessarily all refer to the same embodiment. In addition, the term "or" is intended to mean an inclusive "or" rather than an exclusive "or". When the word "about" or "approximately" is used in this article, it is intended to mean that the nominal value presented is accurate within ±30%.

雖然以特定順序來圖示與描述本文方法的操作,但各個方法之操作順序可經改變以致可在相反順序中執行某些操作或者至少一部分的某些操作可與其他操作共同執行。在另一個實施例中,獨特操作的指令或子操作可為間歇性與/或交替性方式。Although the operations of the methods herein are illustrated and described in a specific order, the order of operations of each method may be changed so that certain operations can be performed in the reverse order or at least a part of certain operations can be performed together with other operations. In another embodiment, the instructions or sub-operations of the unique operation may be intermittent and/or alternating.

可理解上方描述意圖為描述性,而非限制性。那些熟悉技術人士在閱讀與理解上方描述後可得知許多其他實施例。因此,本發明的範圍應參照隨附之申請專利範圍以及上述申請專利範圍給予之等效物的完整範圍而加以確定。It is understood that the above description is intended to be descriptive and not restrictive. Those skilled in the art can learn many other embodiments after reading and understanding the above description. Therefore, the scope of the present invention should be determined with reference to the attached patent application scope and the full scope of equivalents given by the above-mentioned patent application scope.

100‧‧‧製程腔室 105‧‧‧腔室主體 106‧‧‧內部空間 110‧‧‧噴頭 122、123、124‧‧‧噴嘴 125‧‧‧腔室排放裝置 130‧‧‧加熱元件 132‧‧‧底座 134、200‧‧‧基座 135、330‧‧‧第一保護層 136、308‧‧‧第二保護層 137‧‧‧排放埠 138、140、142、144、146‧‧‧氣體輸送管線 150‧‧‧遠端電漿源 152‧‧‧氣體面板 154‧‧‧閘閥 156‧‧‧節流閥 160‧‧‧泵浦 201、202、203、204、205、206、215‧‧‧凹部 208‧‧‧外環 210‧‧‧舉升銷孔 220‧‧‧孔 250‧‧‧耐電漿插座 300、400、500、750‧‧‧物件 305、405、505‧‧‧主體 406、506‧‧‧薄膜保護層堆疊 408、508‧‧‧第一層 410、510‧‧‧第二層 515‧‧‧第三層 518‧‧‧第四層 600‧‧‧製程 605、608、610、615、620、625、630‧‧‧文字塊 702‧‧‧沉積材料 703‧‧‧能量微粒 715‧‧‧薄膜保護層 752‧‧‧材料源 755‧‧‧能量微粒源100‧‧‧Processing chamber 105‧‧‧Chamber body 106‧‧‧Internal space 110‧‧‧Nozzle 122、123、124‧‧‧Nozzle 125‧‧‧ Chamber discharge device 130‧‧‧Heating element 132‧‧‧Base 134、200‧‧‧Base 135、330‧‧‧First protective layer 136、308‧‧‧Second protective layer 137‧‧‧Drain port 138, 140, 142, 144, 146‧‧‧Gas transmission pipeline 150‧‧‧Remote plasma source 152‧‧‧Gas panel 154‧‧‧Gate Valve 156‧‧‧Throttle valve 160‧‧‧Pump 201, 202, 203, 204, 205, 206, 215‧‧‧Concave 208‧‧‧Outer Ring 210‧‧‧Lift pin hole 220‧‧‧hole 250‧‧‧Plasma resistant socket 300, 400, 500, 750‧‧‧ objects 305、405、505‧‧‧Main body 406、506‧‧‧Thin film protection layer stack 408、508‧‧‧First floor 410, 510‧‧‧ second floor 515‧‧‧The third floor 518‧‧‧Fourth floor 600‧‧‧Process 605, 608, 610, 615, 620, 625, 630‧‧‧ text block 702‧‧‧Deposition material 703‧‧‧Energy Particle 715‧‧‧Thin film protective layer 752‧‧‧Material source 755‧‧‧Energy Particle Source

藉由隨附圖式中的圖來舉例(而非限制)來描述本發明,隨附圖示中的相似元件符號指向相似元件。應當注意指向此揭露中「一」或「一個」實施例的不同元件符號並非必然指向相同實施例,且上述元件符號意指至少一者。The present invention is described by way of examples (not limitation) in the accompanying drawings, and similar component symbols in the accompanying drawings refer to similar components. It should be noted that different component symbols referring to "a" or "one" embodiment in this disclosure do not necessarily refer to the same embodiment, and the above component symbols mean at least one.

第1圖描繪製程腔室之一個實施例的剖面圖。Figure 1 depicts a cross-sectional view of an embodiment of the process chamber.

第2A圖描繪用於原子層沉積(ALD)且一表面上具有薄膜保護塗層的基座。Figure 2A depicts a susceptor used for atomic layer deposition (ALD) with a thin-film protective coating on one surface.

第2B圖描繪用於原子層沉積腔室且具有耐電漿插座嵌入孔中之基座的放大橫剖面圖。Figure 2B depicts an enlarged cross-sectional view of a pedestal used in an atomic layer deposition chamber with a plasma resistant socket embedded in the hole.

第3-5圖描繪一表面上具有保護層堆疊之示範物件的橫剖面側視圖。Figures 3-5 depict a cross-sectional side view of an exemplary object with a stack of protective layers on the surface.

第6圖描述形成一或多個保護層於物件上之製程的一個實施例。Figure 6 depicts an embodiment of the process of forming one or more protective layers on an object.

第7A圖描繪適用於多種利用能量粒子之沉積技術(例如,離子輔助沉積(IAD))的沉積機制。FIG. 7A depicts the deposition mechanism applicable to various deposition techniques that utilize energy particles (for example, ion-assisted deposition (IAD)).

第7B圖描繪IAD沉積設備的示意圖。Figure 7B depicts a schematic diagram of the IAD deposition equipment.

第8圖描述根據本發明實施例形成之薄膜保護層的腐蝕速率。Figure 8 depicts the corrosion rate of the thin film protective layer formed according to an embodiment of the present invention.

國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無Domestic hosting information (please note in the order of hosting organization, date and number) no

國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無Foreign hosting information (please note in the order of hosting country, institution, date and number) no

600‧‧‧製程 600‧‧‧Process

605、608、610、615、620、625、630‧‧‧文字塊 605, 608, 610, 615, 620, 625, 630‧‧‧ text block

Claims (20)

一種用於一製程腔室的物件,包括:一主體,該主體包括一熱傳導材料,其中該主體包括一孔;一耐電漿插座,該耐電漿插座***該孔中;一第一保護層,該第一保護層位於該主體的一表面上,該第一保護層為一熱傳導陶瓷;及一第二保護層,該第二保護層位於該第一保護層上,該第二保護層包括一耐電漿陶瓷薄膜,該耐電漿陶瓷薄膜抵抗高達650℃之溫度下的破裂。 An object for a process chamber includes: a main body, the main body including a thermally conductive material, wherein the main body includes a hole; a plasma resistant socket into which the plasma resistant socket is inserted; a first protective layer, the The first protective layer is located on a surface of the main body, the first protective layer is a thermally conductive ceramic; and a second protective layer, the second protective layer is located on the first protective layer, the second protective layer includes an electric resistant Plasma ceramic film, the plasma resistant ceramic film resists rupture at temperatures up to 650°C. 如請求項1所述之物件,其中該熱傳導材料包括石墨。 The article according to claim 1, wherein the thermally conductive material includes graphite. 如請求項1所述之物件,其中該熱傳導材料包括一熱傳導半金屬,而該第一保護層包括碳化矽。 The article according to claim 1, wherein the thermally conductive material includes a thermally conductive semi-metal, and the first protective layer includes silicon carbide. 如請求項1所述之物件,其中該物件為一用於一原子層沉積腔室的基座。 The article according to claim 1, wherein the article is a base for an atomic layer deposition chamber. 如請求項1所述之物件,其中該第二保護層包括一選自Er3Al5O12、Y3Al5O12與YF3所構成之群組的陶瓷。 The article according to claim 1, wherein the second protective layer includes a ceramic selected from the group consisting of Er 3 Al 5 O 12 , Y 3 Al 5 O 12 and YF 3 . 如請求項1所述之物件,其中該第二保護層的厚度為5-50微米。 The article according to claim 1, wherein the thickness of the second protective layer is 5-50 microns. 如請求項1所述之物件,其中該耐電漿插座 是由一燒結陶瓷所構成,該燒結陶瓷包括AlN、Y2O3或一包括Y4Al2O9與一Y2O3-ZrO2固體-溶液之陶瓷化合物的至少一者。 The article according to claim 1, wherein the plasma resistant socket is composed of a sintered ceramic, the sintered ceramic includes AlN, Y 2 O 3 or a Y 4 Al 2 O 9 and a Y 2 O 3 -ZrO 2 At least one of solid-solution ceramic compounds. 如請求項1所述之物件,其中該孔的一第一直徑對應該耐電漿插座的一外直徑,且其中該耐電漿插座包括一第二孔,該第二孔具有一小於該第一直徑的一第二直徑。 The article according to claim 1, wherein a first diameter of the hole corresponds to an outer diameter of the plasma resistant socket, and wherein the plasma resistant socket includes a second hole, the second hole having a diameter smaller than the first diameter Of a second diameter. 如請求項1所述之物件,其中:該第一保護層不覆蓋該耐電漿插座;及該第二保護層覆蓋該耐電漿插座。 The article according to claim 1, wherein: the first protective layer does not cover the plasma resistant socket; and the second protective layer covers the plasma resistant socket. 如請求項1所述之物件,其中:該耐電漿插座的一底部具有比該耐電漿插座的一頂部小的外直徑。 The article according to claim 1, wherein: a bottom of the plasma resistant socket has an outer diameter smaller than a top of the plasma resistant socket. 如請求項1所述之物件,其中:該耐電漿插座的一外壁與***該該耐電漿插座的該孔的一壁之間有一間隙;及該第一保護層覆蓋該耐電漿插座並至少部分地填充該孔之該壁與該耐電漿插座的該外壁之間的該間隙。 The article according to claim 1, wherein: there is a gap between an outer wall of the plasma resistant socket and a wall of the hole inserted into the plasma resistant socket; and the first protective layer covers the plasma resistant socket and at least partially Ground filling the gap between the wall of the hole and the outer wall of the plasma resistant socket. 一種用於形成一耐電漿薄膜的方法,包括以下步驟:在一熱傳導主體中鑽出一孔;將一耐電漿插座***該孔中; 沉積一第一保護層於該熱傳導主體的一表面上,該第一保護層是一熱傳導陶瓷;及執行離子輔助沉積以沉積一第二保護層於該第一保護層上,該第二保護層包括一耐電漿陶瓷薄膜,該耐電漿陶瓷薄膜抵抗高達650℃之溫度下的破裂。 A method for forming a plasma-resistant film includes the following steps: drilling a hole in a thermally conductive body; inserting a plasma-resistant socket into the hole; Depositing a first protective layer on a surface of the thermally conductive body, the first protective layer being a thermally conductive ceramic; and performing ion-assisted deposition to deposit a second protective layer on the first protective layer, the second protective layer Including a plasma-resistant ceramic film, the plasma-resistant ceramic film resists cracking at temperatures up to 650°C. 如請求項12所述之方法,進一步包括以下步驟:加熱該熱傳導主體至一約200-400℃的溫度;及當該熱傳導主體與該第一保護層被加熱時,執行該離子輔助沉積。 The method according to claim 12, further comprising the steps of: heating the thermally conductive body to a temperature of about 200-400° C.; and when the thermally conductive body and the first protective layer are heated, performing the ion-assisted deposition. 如請求項12所述之方法,其中沉積該第一保護層的步驟包括以下步驟:執行一化學氣相沉積製程。 The method according to claim 12, wherein the step of depositing the first protective layer includes the following steps: performing a chemical vapor deposition process. 如請求項12所述之方法,其中該熱傳導主體包括一用於一原子層沉積腔室的基座,該熱傳導主體包括石墨,該第一保護層包括碳化矽,而該第二保護層包括一選自Er3Al5O12、Y3Al5O12與YF3所構成之群組的陶瓷。 The method of claim 12, wherein the thermally conductive body includes a base for an atomic layer deposition chamber, the thermally conductive body includes graphite, the first protective layer includes silicon carbide, and the second protective layer includes a Ceramics selected from the group consisting of Er 3 Al 5 O 12 , Y 3 Al 5 O 12 and YF 3 . 如請求項12所述之方法,其中該第二保護層的厚度為5-50微米。 The method according to claim 12, wherein the thickness of the second protective layer is 5-50 microns. 如請求項12所述之方法,其中在沉積該第一保護層之後且在執行該離子輔助沉積步驟之前,將 該耐電漿插座***該孔中。 The method according to claim 12, wherein after depositing the first protective layer and before performing the ion-assisted deposition step, The plasma resistant socket is inserted into the hole. 如請求項12所述之方法,其中該耐電漿插座是由一燒結陶瓷所構成,該燒結陶瓷包括AlN、Y2O3或一包括Y4Al2O9與一Y2O3-ZrO2固體-溶液之陶瓷化合物的至少一者,且其中該耐電漿插座包括一額外孔,該額外孔具有一小於***該該耐電漿插座的該孔的直徑。 The method according to claim 12, wherein the plasma resistant socket is composed of a sintered ceramic, the sintered ceramic includes AlN, Y 2 O 3, or a Y 4 Al 2 O 9 and a Y 2 O 3 -ZrO 2 At least one of the solid-solution ceramic compound, and wherein the plasma resistant socket includes an additional hole having a diameter smaller than the hole inserted into the plasma resistant socket. 如請求項12所述之方法,其中在沉積該第一保護層之前將該耐電漿插座***該孔中,其中該耐電漿插座的一外壁與***該該耐電漿插座的該孔的一壁之間有一間隙,且其中該第一保護層覆蓋該耐電漿插座並至少部分地填充該孔之該壁與該耐電漿插座的該外壁之間的該間隙。 The method of claim 12, wherein the plasma-resistant socket is inserted into the hole before depositing the first protective layer, wherein an outer wall of the plasma-resistant socket and a wall of the hole inserted into the plasma-resistant socket are There is a gap therebetween, and the first protective layer covers the plasma resistant socket and at least partially fills the gap between the wall of the hole and the outer wall of the plasma resistant socket. 一種用於一原子層沉積腔室的部件,包括:一石墨主體;該石墨主體中的複數個孔;複數個耐電漿插座,其中該複數個耐電漿插座各自***該複數個孔的一者;一第一保護層,該第一保護層位於該石墨主體的一表面上,該第一保護層包括碳化矽;及一第二保護層,該第二保護層位於該第一保護層上, 該第二保護層包括一耐電漿陶瓷薄膜,該耐電漿陶瓷薄膜抵抗高達650℃之溫度下的破裂,其中該第二保護層包括一選自Er3Al5O12、Y3Al5O12與YF3所構成之群組的陶瓷;其中該第一保護層或該第二保護層的至少一者覆蓋該複數個耐電漿插座。 A component for an atomic layer deposition chamber, comprising: a graphite body; a plurality of holes in the graphite body; a plurality of plasma resistant sockets, wherein the plurality of plasma resistant sockets are inserted into one of the plurality of holes; A first protective layer on a surface of the graphite body, the first protective layer including silicon carbide; and a second protective layer on the first protective layer, the The second protective layer includes a plasma-resistant ceramic film that resists cracking at temperatures up to 650°C, wherein the second protective layer includes a layer selected from Er 3 Al 5 O 12 , Y 3 Al 5 O 12 and YF 3 is a group of ceramics; wherein at least one of the first protective layer or the second protective layer covers the plurality of plasma resistant sockets.
TW108112982A 2014-04-25 2015-04-23 Plasma erosion resistant thin film coating for high temperature application TWI710472B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461984691P 2014-04-25 2014-04-25
US61/984,691 2014-04-25

Publications (2)

Publication Number Publication Date
TW201932298A TW201932298A (en) 2019-08-16
TWI710472B true TWI710472B (en) 2020-11-21

Family

ID=55641464

Family Applications (3)

Application Number Title Priority Date Filing Date
TW108112982A TWI710472B (en) 2014-04-25 2015-04-23 Plasma erosion resistant thin film coating for high temperature application
TW104113078A TWI659853B (en) 2014-04-25 2015-04-23 Plasma erosion resistant thin film coating for high temperature application
TW109135477A TWI798594B (en) 2014-04-25 2015-04-23 Plasma erosion resistant thin film coating for high temperature application

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW104113078A TWI659853B (en) 2014-04-25 2015-04-23 Plasma erosion resistant thin film coating for high temperature application
TW109135477A TWI798594B (en) 2014-04-25 2015-04-23 Plasma erosion resistant thin film coating for high temperature application

Country Status (1)

Country Link
TW (3) TWI710472B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190136372A1 (en) * 2017-08-14 2019-05-09 Applied Materials, Inc. Atomic layer deposition coatings for high temperature heaters
US11562890B2 (en) * 2018-12-06 2023-01-24 Applied Materials, Inc. Corrosion resistant ground shield of processing chamber
CN113539771B (en) * 2020-04-16 2024-04-12 中微半导体设备(上海)股份有限公司 Component, method for forming coating on surface of component, and plasma reaction device
TW202302910A (en) * 2020-04-30 2023-01-16 日商Toto股份有限公司 Composite structure and semiconductor manufacturing apparatus including the same
US20230064070A1 (en) * 2021-08-30 2023-03-02 Auo Crystal Corporation Semiconductor processing equipment part and method for making the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080066683A1 (en) * 2006-09-19 2008-03-20 General Electric Company Assembly with Enhanced Thermal Uniformity and Method For Making Thereof
US20100129670A1 (en) * 2008-11-12 2010-05-27 Applied Materials, Inc. Protective coatings resistant to reactive plasma processing
US20120024449A1 (en) * 2010-07-27 2012-02-02 Lam Research Corporation Parasitic plasma prevention in plasma processing chambers

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110136583A (en) * 2010-06-15 2011-12-21 삼성엘이디 주식회사 Susceptor and chemical vapor deposition apparatus comprising the same
US9245761B2 (en) * 2013-04-05 2016-01-26 Lam Research Corporation Internal plasma grid for semiconductor fabrication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080066683A1 (en) * 2006-09-19 2008-03-20 General Electric Company Assembly with Enhanced Thermal Uniformity and Method For Making Thereof
US20100129670A1 (en) * 2008-11-12 2010-05-27 Applied Materials, Inc. Protective coatings resistant to reactive plasma processing
US20120024449A1 (en) * 2010-07-27 2012-02-02 Lam Research Corporation Parasitic plasma prevention in plasma processing chambers

Also Published As

Publication number Publication date
TW202128428A (en) 2021-08-01
TWI659853B (en) 2019-05-21
TW201932298A (en) 2019-08-16
TW201601937A (en) 2016-01-16
TWI798594B (en) 2023-04-11

Similar Documents

Publication Publication Date Title
US11773479B2 (en) Plasma erosion resistant thin film coating for high temperature application
US11680308B2 (en) Plasma erosion resistant rare-earth oxide based thin film coatings
US20230167540A1 (en) Ion beam sputtering with ion assisted deposition for coatings on chamber components
US9711334B2 (en) Ion assisted deposition for rare-earth oxide based thin film coatings on process rings
TWI710472B (en) Plasma erosion resistant thin film coating for high temperature application