TWI702783B - 無橋式功因修正轉換器之方法,經封裝積體電路及系統 - Google Patents

無橋式功因修正轉換器之方法,經封裝積體電路及系統 Download PDF

Info

Publication number
TWI702783B
TWI702783B TW108111845A TW108111845A TWI702783B TW I702783 B TWI702783 B TW I702783B TW 108111845 A TW108111845 A TW 108111845A TW 108111845 A TW108111845 A TW 108111845A TW I702783 B TWI702783 B TW I702783B
Authority
TW
Taiwan
Prior art keywords
terminal
input
coupled
output
winding
Prior art date
Application number
TW108111845A
Other languages
English (en)
Other versions
TW201946362A (zh
Inventor
尼克利許 S 卡瑪
Original Assignee
美商半導體組件工業公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商半導體組件工業公司 filed Critical 美商半導體組件工業公司
Publication of TW201946362A publication Critical patent/TW201946362A/zh
Application granted granted Critical
Publication of TWI702783B publication Critical patent/TWI702783B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4266Arrangements for improving power factor of AC input using passive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本發明係關於無橋式PFC轉換器之方法、經封裝IC及系統。至少某些實例性實施例係操作一功率轉換器之方法,該方法包含在一交流(AC)源之一頻率之一正半線循環期間藉由以下方式操作該功率轉換器:以具有一第一極性之一充電電流給一多繞組升壓電感器之一初級繞組充電;及然後將該初級繞組放電;藉助於該多繞組升壓電感器之一次級繞組而感測一開關節點處之一電壓之一下降邊緣;及在該正半線循環期間基於該下降邊緣而觸發該初級繞組之一後續充電。在線頻率之一負半線循環期間藉由以下方式操作該功率轉換器:藉助於該次級繞組而感測該開關節點處之該電壓之一上升邊緣;及觸發該初級繞組之一後續充電。

Description

無橋式功因修正轉換器之方法,經封裝積體電路及系統
本申請案係關於無橋式功因修正(PFC)轉換器及其操作方法之技術領域。
對具有較佳效率及較小佔用面積之功率轉換器之需求不斷增加。最近在滿足所述需求方面之注意力已集中於整流橋,及無橋式功因修正(PFC)轉換器中之特定發展。此類設計中之困難之一係:以減小切換損失之一方式進行偵測及切換。改良偵測及切換之任一方法或系統在市場中將提供一競爭優勢。
本發明係關於無橋式PFC轉換器之方法及系統。一項實例性實施例係一種操作一功率轉換器之一方法,該方法包括:在一交流(AC)源之一正半線循環期間操作該功率轉換器;及在該AC源之頻率之一負半線循環期間操作該功率轉換器。在該AC源之該正半線循環期間操作該功率轉換器可包括:以具有一第一極性之一充電電流給一多繞組升壓電感器之一初級繞組充電;及然後以具有該第一極性之一第一放電電流將該初級繞組放電;藉助於耦合至一比較器的該多繞組升壓電感器之一次級繞 組而感測一開關節點處之一電壓之一下降邊緣;及在該正半線循環期間基於該下降邊緣而觸發該初級繞組之一後續充電。在該AC源之該頻率之該負半線循環期間操作該功率轉換器可包括:以具有與該第一極性相反之一第二極性之一充電電流給該多繞組升壓電感器之該初級繞組充電;及然後以具有該第二極性之一第二放電電流將該初級繞組放電;藉助於耦合至該比較器的該多繞組升壓電感器之該次級繞組而感測該開關節點處之該電壓之一上升邊緣;及在該負半線循環中基於該上升邊緣而觸發該初級繞組之一後續充電。
在該實例性方法中,感測該下降邊緣可進一步包括:感測耦合至一參考電壓之該次級繞組之一第一引線及該次級繞組之一第二引線上之一電壓。在該實例性方法中,感測該上升邊緣可進一步包括:感測耦合至該參考電壓之該次級繞組之該第一引線及該次級繞組之該第二引線上之一電壓。
在該實例性方法中,感測該下降邊緣可進一步包括:由具有一遲滯電壓之該比較器進行感測。在該實例性方法中,感測該上升邊緣可進一步包括:由具有該遲滯電壓之該比較器進行感測。
在該實例性方法中,感測該下降邊緣可進一步包括:由具有介於100毫伏(mV)與500mV之間且包含100毫伏(mV)及500mV之一遲滯電壓之該比較器進行感測。在該實例性方法中,感測該上升邊緣可進一步包括:由具有介於100mV與500mV之間且包含100mV及500mV之該遲滯電壓之該比較器進行感測。
在該實例性方法中,在該正半線循環期間觸發該後續充電循環可進一步包括:當跨越一第一電控制開關之電壓低於一預定電壓臨限 值時使該第一電控制開關導通。在該實例性方法中,在該負半線循環期間觸發該後續充電循環可進一步包括:當跨越一第二電控制開關之電壓低於該預定電壓臨限值時使該第二電控制開關導通。
其他實例性實施例包含一種用於控制一無橋式功因修正(PFC)轉換器之經封裝積體電路(IC)裝置,該IC裝置包括:一繞組感測端子、一慢支線高側端子、一慢支線低側端子、一高端子、一低端子及一回饋端子;一線路側控制器,其耦合至該慢支線高側端子及該慢支線低側端子,該線路側控制器經組態以感測一交流(AC)信號之極性,且該線路側控制器經組態以在該極性為正時確證該慢支線低側端子且撤銷確證該慢支線高側端子,且該線路側控制器經組態以在該極性為負時確證該慢支線高側端子且撤銷確證該慢支線低側端子;及一轉換器側控制器,其耦合至該高端子、該低端子及該繞組感測端子。該轉換器側控制器可包括:一比較器,其定義一第一輸入、一第二輸入、一非反相輸出及一反相輸出,該第一輸入耦合至該繞組感測端子,且該第二輸入耦合至一參考電壓;一遮罩電路,其定義一遮罩輸入、一非反相輸入、一反相輸入及一遮罩輸出,該非反相輸入耦合至該比較器之該非反相輸出,且該反相輸入耦合至該比較器之該反相輸出,該遮罩電路經組態以在確證該遮罩輸入時遮蔽該非反相輸入,且該遮罩電路經組態以在撤銷確證該遮罩輸入時遮蔽該反相輸入;及一充電控制器,其定義一回饋輸入及一轉變輸入,該回饋輸入耦合至該回饋端子,且該轉變輸入耦合至該遮罩輸出。該充電控制器可經組態以在該極性為正之時間週期期間回應於該遮罩輸出之確證而確證該低端子。該充電控制器可經組態以在該極性為負之時間週期期間回應於該遮罩輸出之確證而確證該高端子。
在該極性為正之時間週期期間,該實例性經封裝IC之該充電控制器可進一步經組態以回應於該遮罩輸出之確證而:確證該低端子;及然後監測指示該繞組感測端子上之電感器電流之一信號;及當指示電感器電流之該信號達到一預定臨限值時確證該高端子且撤銷確證該低端子。
在該極性為負之時間週期期間,該實例性經封裝IC之該充電控制器可進一步經組態以回應於該遮罩輸出之確證而:確證該高端子;及然後監測指示該繞組感測端子上之電感器電流之該信號;及當指示電感器電流之該信號達到該預定臨限值時撤銷確證該高端子且確證該低端子。
在該極性為正之時間週期期間,該實例性經封裝IC之該充電控制器可進一步經組態以回應於該遮罩輸出之確證及對該回饋端子上之輸出電壓之一指示而確證該低端子。在該極性為負之時間週期期間,該充電控制器可進一步經組態以回應於該遮罩輸出之確證及對該回饋端子上之輸出電壓之一指示而確證該高端子。
在該極性為正之時間週期期間,該實例性經封裝IC之該充電控制器可進一步經組態以回應於該遮罩輸出之預定數目次確證及對該回饋端子上之輸出電壓之一指示而確證該低端子。在該極性為負之時間週期期間,該充電控制器可進一步經組態以回應於該遮罩輸出之該預定數目次確證及對該回饋端子上之輸出電壓之一指示而確證該高端子。
該經封裝IC可進一步經組態使得該繞組感測端子、該高端子、該低端子、該慢支線高側端子、該慢支線低側端子及該回饋端子電暴露於該經封裝IC之一外部表面上。
又其他實例性實施例包含一種無橋式PFC轉換器,該無橋式PFC轉換器包括:一第一線路輸入及一第二線路輸入;一慢支線高側場 效電晶體(FET),其定義一閘極、耦合至該第一線路輸入之一源極及耦合至該轉換器之一正輸出之一汲極;一慢支線低側FET,其定義一閘極、耦合至該第一線路輸入之一汲極及耦合至該轉換器之一負輸出之一源極;一多繞組升壓電感器,其定義具有耦合至該第二線路輸入之一第一引線及定義一開關節點之一第二引線之一初級繞組;一快支線高側FET,其定義一閘極、耦合至該開關節點之一源極及耦合至該轉換器之該正輸出之一汲極;一快支線低側FET,其定義一閘極、耦合至該轉換器之該負輸出之一源極及耦合至該開關節點之一汲極;一PFC控制器,其經組態以在耦合至該第一線路輸入及該第二線路輸入之一交流(AC)源之一頻率之一正半線循環期間操作該轉換器。該PFC控制器可經組態以致使該轉換器:透過該快支線低側FET以具有一第一極性之一充電電流給該多繞組升壓電感器之該初級繞組充電;及然後透過該快支線高側FET以具有該第一極性之一第一放電電流將該初級繞組放電;藉助於一比較器而感測該開關節點處之一電壓之一下降邊緣;及在該正半線循環期間基於該下降邊緣而觸發該初級繞組之一後續充電。該PFC控制器可進一步經組態以在該AC源之該頻率之一負半線循環期間藉由致使該轉換器進行以下操作而操作該轉換器:透過該快支線高側FET以具有與該第一極性相反之一第二極性之一充電電流給該多繞組升壓電感器之該初級繞組充電;及然後透過該快支線低側FET以具有該第二極性之一第二放電電流將該初級繞組放電;藉助於該比較器而感測該開關節點處之該電壓之一上升邊緣;及在該負半線循環中基於感測該上升邊緣而觸發該初級繞組之一後續充電。
該無橋式PFC轉換器之該多繞組升壓電感器可進一步包括具有一第一引線及一第二引線之一次級繞組,該第二引線耦合至一參考電 壓。當該PFC控制器感測到該下降邊緣時,該PFC控制器可進一步經組態以感測該次級繞組之該第一引線上之一電壓,該次級繞組之該第一引線耦合至該比較器。且感測該無橋式PFC轉換器之該上升邊緣可進一步包括:藉助於該比較器而感測該次級繞組之該第一引線上之一電壓。
當該無橋式PFC轉換器之該PFC控制器感測到該下降邊緣時,該PFC控制器可進一步經組態以由具有一遲滯電壓之該比較器進行感測。當該無橋式PFC轉換器之該PFC控制器感測到該上升邊緣時,該PFC控制器可進一步經組態以由具有該遲滯電壓之該比較器進行感測。
當該無橋式PFC轉換器之該PFC控制器感測到該下降邊緣時,該PFC控制器可進一步經組態以由具有介於100毫伏(mV)與500mV之間且包含100毫伏(mV)及500mV之一遲滯電壓之該比較器進行感測。當該PFC控制器感測到該上升邊緣時,該PFC控制器可進一步經組態以由具有介於100毫伏(mV)與500mV之間且包含100毫伏(mV)及500mV之遲滯電壓之該比較器進行感測。
當該無橋式PFC轉換器之該PFC控制器在該正半線循環期間觸發該後續充電循環時,該PFC控制器可進一步經組態以在跨越該快支線低側FET之電壓低於一第一預定臨限值電壓時使該快支線低側FET導通。當該PFC控制器在該負半線循環期間觸發該後續充電循環時,該PFC控制器可進一步經組態以在跨越該快支線高側FET之電壓低於一第二預定臨限值時使該快支線高側FET導通。
該無橋式PFC轉換器之該PFC控制器可進一步包括:該多繞組升壓電感器進一步包括具有一第一引線及一第二引線之一次級繞組,該第二引線耦合至一參考電壓;耦合至該次級繞組之該第一引線之一繞組 感測端子、耦合至該快支線高側FET之該閘極之一高端子、耦合至該快支線低側FET之該閘極之一低端子、耦合至該慢支線高側FET之該閘極之一慢支線高側端子、耦合至該慢支線低側FET之該閘極之一慢支線低側端子及耦合至該轉換器之該正輸出之一回饋端子;一線路側控制器,其耦合至該慢支線高側端子及該慢支線低側端子,該線路側控制器經組態以感測該AC源之極性,且該線路側控制器經組態以在該極性為正時確證該慢支線低側端子且撤銷確證該慢支線高側端子,且該線路側控制器經組態以在該極性為負時確證該慢支線高側端子且撤銷確證該慢支線低側端子;一轉換器側控制器,其耦合至該高端子、該低端子及該繞組感測端子。該轉換器側控制器可包括:該比較器,其定義一第一輸入、一第二輸入、一非反相輸出及一反相輸出,該第一輸入耦合至該繞組感測端子,且該第二輸入耦合至一參考電壓;一遮罩電路,其定義一遮罩輸入、一非反相輸入、一反相輸入及一遮罩輸出,該非反相輸入耦合至該比較器之該非反相輸出,且該反相輸入耦合至該比較器之該反相輸出,該遮罩電路經組態以在確證該遮罩輸入時遮蔽該非反相輸入,且該遮罩電路經組態以在撤銷確證該遮罩輸入時遮蔽該反相輸入;一充電控制器,其定義一回饋輸入及一轉變輸入,該回饋輸入耦合至該回饋端子,且該轉變輸入耦合至該遮罩輸出;該充電控制器經組態以在該極性為正之時間週期期間回應於該遮罩輸出之確證而確證該低端子;且該充電控制器經組態以在該極性為負之時間週期期間回應於該遮罩輸出之確證而確證該高端子。
在該極性為正之時間週期期間,該無橋式PFC轉換器之該充電控制器可進一步經組態以回應於該遮罩輸出之確證而:確證該低端子;及然後監測指示該繞組感測端子上之電感器電流之一信號;及當指示 電感器電流之該信號達到一預定臨限值時確證該高端子且撤銷確證該低端子。在該極性為負之時間週期期間,該充電控制器可進一步經組態以回應於該遮罩輸出之確證而:確證該高端子;及然後監測指示該繞組感測端子上之電感器電流之該信號;及當指示電感器電流之該信號達到該預定臨限值時撤銷確證該高端子且確證該低端子。
定義
各種術語用於指稱特定系統組件。不同公司可以不同名稱來指稱組件-此文件不意欲將名稱而非功能不同之一組件區分開。在以下論述中及在申請專利範圍中,術語「包含」及「包括」係以一開放式方式使用的,且因此應解釋為意指「包含但不限於…」。此外,術語「耦合(couple或couples)」意欲意指一間接或直接連接。因此,若一第一裝置耦合至一第二裝置,則彼連接可係透過一直接連接或透過經由其他裝置及連接之一間接連接而做出。
「控制器」應意指經組態以讀取信號且回應於此類信號而採取行動之個別電路組件、所構造之一特殊應用積體電路(ASIC)、一微控制器(具有控制軟體)、一場可程式化閘陣列(FPGA)或其組合。
關於電裝置,術語「輸入」及「輸出」係指與電裝置之電連接,且不應被解讀為需要動作之動詞。舉例而言,一控制器可具有一閘極輸出及一或多個感測輸入。
100:無橋式功因修正轉換器/轉換器/實例性無橋式功因修正轉換器
102:第一線路輸入/線路輸入
104:第二線路輸入/線路輸入
106:交流源
108:慢支線高側場效電晶體/場效電晶體
110:閘極
112:源極
114:汲極
116:正輸出
118:慢支線低側場效電晶體/場效電晶體
120:閘極
122:汲極
124:源極
126:負輸出
128:電感
130:第一引線
132:第二引線
134:開關節點/實例性開關節點
136:快支線高側場效電晶體/場效電晶體
138:閘極
140:源極
142:汲極
144:快支線低側場效電晶體/場效電晶體
146:閘極
148:源極
150:汲極
152:平滑或輸出電容器
154:電阻器
400:曲線圖
402:曲線圖
404:曲線圖
406:曲線圖
408:第一谷值
410:第四個谷值
600:返回電流
700:曲線圖
702:曲線圖
704:曲線圖
706:曲線圖
708:第一峰值/峰值
710:第四個峰值
800:功因修正控制器/實例性功因修正控制器
802:第一線路感測端子/端子
804:第二線路感測端子/端子
806:繞組感測端子
808:回饋端子
810:高端子/端子
812:低端子/端子
814:慢支線低側端子/端子
816:慢支線高側端子/端子
818:基板
820:線路側控制器/實例性線路側控制器
822:轉換器側控制器/實例性轉換器側控制器
824:正極性輸出/極性輸出
826:負極性輸出/極性輸出
828:閘極驅動器/實例性閘極驅動器
830:慢支線高側輸入
832:慢支線低側輸入
834:高閘極輸出
836:低閘極輸出
838:多繞組升壓電感器
840:初級繞組
842:次級繞組
844:第一引線
846:第二引線
848:第一引線
850:第二引線
852:閘極驅動器/實例性閘極驅動器
854:高輸入
856:低輸入
858:高閘極輸出
860:低閘極輸出
900:比較器/實例性比較器
902:第一輸入
904:第二輸入
906:非反相輸出
908:反相輸出
910:遮罩電路/實例性遮罩電路
912:第一遮罩輸入
914:第二遮罩輸入
916:非反相輸入
918:反相輸入
920:遮罩輸出
922:充電控制器
924:回饋輸入
926:轉變輸入/實例性轉變輸入
928:繞組感測輸入
930:高驅動輸出
932:低驅動輸出
934:極性輸入
936:「及」閘
938:「及」閘
940:「或」閘
942:第一輸入
944:第二輸入
946:輸出
948:第二輸入
950:第一輸入
952:輸出
954:第一輸入
956:第二輸入
958:輸出
960:「反」閘
1000:曲線圖
1002:曲線圖
1100:曲線圖
1102:曲線圖
1200:方塊
1202:方塊
1204:方塊
1206:方塊
1208:方塊
1210:方塊
1212:方塊
1214:方塊
1216:方塊
1218:方塊
1220:方塊
1222:方塊
ICHARGE:充電電流
IDISCHARGE:放電電流
t:時間
t1:時間
t2:時間
t3:時間
t6:時間
t7:時間
t8:時間
t10:時間
t11:時間
t12:時間
t14:時間
t16:時間
t18:時間
t20:時間
t21:時間
t22:時間
t24:時間
t26:時間
t28:時間
VOUT:輸出電壓
為詳細闡述實例性實施例,現在將參考附圖,其中:圖1展示根據至少某些實施例之一無橋式功因修正(PFC)轉換器;圖2展示根據至少某些實施例之在一正半線循環期間且在電感之充電期間之一無橋式PFC轉換器之一電示意圖;圖3展示根據至少某些實施例之在一正半線循環期間且在電感之放電期間之一無橋式PFC轉換器之一電示意圖;圖4展示根據至少某些實施例之一時序圖;圖5展示在一負半線循環期間且在電感之充電期間之一無橋式PFC轉換器之一電示意圖;圖6展示根據至少某些實施例之在一負半線循環期間且在電感之放電期間之一無橋式PFC轉換器之一電示意圖;圖7展示根據至少某些實施例之一時序圖;圖8展示根據至少某些實施例之一無橋式PFC控制器之一部分示意性部分方塊圖;圖9展示根據至少某些實施例之一轉換器側控制器之一方塊圖; 圖10展示根據至少某些實施例之一時序圖;圖11展示根據至少某些實施例之一時序圖;且圖12展示根據至少某些實施例之一方法。
相關申請案之交叉參考
本申請案主張於2018年4月10日提出申請之標題為「用於圖騰柱無橋式PFC之谷值偵測(Valley Detection for Totem Pole Bridgeless PFC)」之美國臨時申請案第62/655,592號之權益。該臨時申請案如同在下文完全複製般地以引用方式併入本文中。
以下論述針對於本發明之各種實施例。雖然此等實施例中之一或多者可為較佳的,但所揭示之實施例不應被解釋為或以其他方式用於限制包含申請專利範圍的本發明之範疇。另外,熟習此項技術者將理解,以下說明具有廣泛應用,且對任何實施例之論述僅意欲為對彼實施例之示範,且不意欲暗示將包含申請專利範圍的本發明之範疇限制於彼實施例。
各種實例性實施例針對於無橋式功因修正(PFC)轉換器(有時被稱為圖騰柱無橋式PFC)之方法及系統。更特定而言,實例性實施例針對於以減小切換損失之方式操作無橋式PFC之方法,減小切換損失係藉由用一組簡化且一致之組件偵測一開關節點處之一振盪電壓中之峰值及谷值而實現。舉例而言,在一交流(AC)源之正半線循環期間,藉由一比較器而感測一開關節點上之振盪電壓中之谷值。在AC源之負半線循環期間,使用同一比較器來感測振盪電壓之峰值。又更特定而言,在實例性實施例中,使用一單個比較器及一多繞組升壓電感器之一次級繞組來偵測振盪電壓之下降邊緣(針對谷值偵測)及振盪電壓之上升邊緣(針對峰值偵測)兩者。所偵測到之下降及上升邊緣用於觸發該轉換器之經減小電壓切換。說明書首先轉至一實例性無橋式PFC轉換器以引導讀者。
圖1展示根據至少某些實施例之一無橋式PFC轉換器。特定而言,圖1展示定義一第一線路輸入102及一第二線路輸入104之一無橋式PFC轉換器100。一AC源106耦合至線路輸入102及104。在某些情形中,該AC源具有50赫茲或60赫茲之一線頻率以及介於自約85 VRMS至約265 VRMS之範圍內之均方根(RMS)電壓。無橋式PFC轉換器100進一步定義一慢支線高側場效電晶體(FET)108,慢支線高側場效電晶體(FET)108定義 一閘極110、耦合至第一線路輸入102之一源極112及耦合至轉換器100之一正輸出116之一汲極114。無橋式PFC轉換器100進一步定義一慢支線低側FET 118,慢支線低側FET 118定義一閘極120、耦合至第一線路輸入102之一汲極122及耦合至一負輸出126之一源極124。慢支線高側FET 108係基於以下各項而命名:慢支線高側FET 108在圖式中之位置(例如,上部分);慢支線高側FET 108基於AC源106之線頻率而切換之事實;及使慢支線高側FET 108完全導通可涉及將閘極110驅動至稍微高於轉換器之一輸出電壓VOUT之一電壓之事實。慢支線低側FET 118係基於以下各項而命名:慢支線低側FET 118在圖式內與慢支線高側FET 108相對之位置(例如,下部分);及慢支線低側FET 118基於AC源106之線頻率而切換之事實。FET 108及118為在諸多情形中使用之實例;然而,FET代表可用作一電控制開關之任何裝置(例如,電晶體、接面電晶體、其他類型之FET及矽控制之整流器)。在實例性系統中,正輸出116及負輸出126定義無橋式PFC轉換器100之輸出電壓VOUT
實例性無橋式PFC轉換器100進一步包括一電感128,電感128定義耦合至第二線路輸入104之一第一引線130及定義一開關節點134之一第二引線132。如下文將更加詳細地論述,根據至少某些實施例,電感128為一多繞組升壓電感器之初級繞組。
實例性無橋式PFC轉換器100進一步包括一快支線高側FET 136,快支線高側FET 136定義一閘極138、耦合至開關節點134之一源極140及耦合至正輸出116之一汲極142。亦包含一快支線低側FET 144,快支線低側FET 144定義一閘極146、耦合至負輸出126之一源極148及耦合至開關節點134之一汲極150。快支線高側FET 136係基於以下各項而命 名:快支線高側FET 136在圖式中之位置(例如,上部分);快支線高側FET 136以高於AC源106之線頻率之一切換頻率進行切換之事實;及使快支線高側FET 136完全導通可涉及將閘極138驅動至稍微高於轉換器之VOUT之一電壓之事實。快支線低側FET 144係基於以下各項而命名:快支線低側FET 144在圖式內之位置與快支線高側FET 136相對(例如,下部分);及快支線低側FET 144以高於AC源106之線頻率之一切換頻率進行切換之事實。FET 136及144為在大部分情形中使用之實例;然而,FET 136及144代表可用作一電控制開關之任何裝置(例如,電晶體、接面電晶體、其他類型之FET及矽控制之整流器)。
實例性無橋式PFC控制器100定義跨越正輸出116及負輸出126耦合之一平滑或輸出電容器152。輸出電容器152使輸出電壓變平滑,並且在電感128處於充電模式中之時間週期期間儲存且提供電荷(下文更多地論述)。在某些情形中,輸出電壓VOUT可為跨越85 VRMS至265 VRMS之整個實例性AC源電壓範圍之400伏特DC,但其他輸出電壓亦係可能的。無橋式PFC轉換器100因此將電力供應至跨越正輸出116及負輸出126耦合之一負載,其中一實例性負載經展示為電阻器154。然而,在某些情形中,該負載可為另一功率轉換器,諸如經設計且經構造以將由無橋式PFC轉換器形成之400 VDC轉換為適合用於下游電子器件之一較低電壓(例如,20伏特、12伏特或5伏特)之一返馳式轉換器。
實例性無橋式PFC轉換器100之操作可在概念上劃分成兩個廣義類別:AC源106之一正半線循環;及AC源106之一負半線循環。在正半線循環中,AC源106具有使得第二線路輸入104處之電壓高於第一線路輸入102之一極性。相反地,在負半線循環中,AC源106具有使得第一 線路輸入102處之電壓高於第二線路輸入104處之電壓之一極性。為「正」或「負」之指定係任意的,但前後一致地被選擇且使用以避免混淆。
在正半線循環期間,慢支線高側FET 108係非導通的且慢支線低側FET 118係導通的。假定AC源106具有60赫茲之一線頻率,則慢支線高側FET 108在1/120秒之正半線循環中保持非導通且慢支線低側FET 118在同一1/120秒內保持導通。在負半線循環期間,慢支線高側FET 108係導通的且慢支線低側FET 118係非導通的。再次假定AC源106具有60赫茲之一線頻率,則慢支線高側FET 108在1/120秒之負半線循環中保持導通且慢支線低側FET 118在同一1/120秒內保持非導通。因此,FET 108及118之導通及非導通狀態隨AC源106之電壓之每一極性改變而來回交換。
在每一概念劃分(例如,正半線循環及負半線循環)內,無橋式PFC轉換器100具有兩種可能狀態:給電感128充電(有時被稱為充電模式);及將電感128放電(有時被稱為一放電模式)。說明書現在藉助於一系列圖轉至無橋式PFC轉換器100之操作。在每一圖中,導通之FET被展示為短路,且非導通之FET被展示為開路。
圖2展示根據至少某些實施例之在一正半線循環期間且在電感之充電期間之一無橋式PFC轉換器之一電示意圖。特定而言,在正半線循環期間,慢支線高側FET 108係非導通的(展示為一開路),且慢支線低側FET 118係導通的(展示為一短路)。圖2之實例性無橋式PFC轉換器100被展示為給電感128充電,且因此快支線高側FET 136係非導通的(展示為一開路),且快支線低側FET 144係導通的(展示為一短路)。所展示之組態產生流動穿過電感128之一充電電流ICHARGE,該充電電流具有一第一 極性(例如,在第一引線130處相對於開關節點134產生一正電壓)。假定穩態操作,在電感128之充電期間,由輸出電容器152供應輸出電壓VOUT。該充電電流產生能量且將能量儲存於環繞電感128之場中。又在實例性正半線循環期間,無橋式PFC轉換器100然後轉變為將電感128放電。
圖3展示根據至少某些實施例之在一正半線循環期間且在電感之放電期間之一無橋式PFC轉換器之一電示意圖。特定而言,再次在正半線循環期間,慢支線高側FET 108係非導通的,且慢支線低側FET 118係導通的。圖2之實例性無橋式PFC轉換器100被展示為將電感128放電,且因此快支線高側FET 136係導通的(展示為一短路),且快支線低側FET 144係非導通的(展示為一開路)。由於穿過電感之電流無法即時地改變,因此當無橋式PFC轉換器100轉變為將電感128放電時,一放電電流IDISCHARGE流動穿過電感128,且該放電電流具有第一極性。更特定而言,放電電流IDISCHARGE流動至輸出電容器152之第一引線及/或輸出電壓VOUT之正輸出116。因此,在放電模式期間,放電電流IDISCHARGE供應輸出電壓及電流,且將輸出電容器152再充電。
在實例性正半線循環期間,無橋式PFC轉換器100在充電模式與放電模式之間來回切換以供應輸出電壓VOUT。更特定而言,實例性實施例以其中放電電流IDISCHARGE在下一充電模式開始之前達到零之一模式操作無橋式PFC轉換器100。在某些情形中,該模式為其中穿過電感器之電流可處於零達一延長之時間週期之一不連續導通模式(DCM),且在其他情形中,該模式為其中放電電流IDISCHARGE一達到零便開始一後續充電模式之一臨界導通模式(CRM)。當以一不連續導通模式操作時,與充電模式與放電模式之間的切換相關聯之切換頻率係取決於供應至負載之電力 量(因為切換發生處之谷值隨負載而變化),且可介於自約50千赫(kHz)至約500kHz之範圍內。當無橋式PFC轉換器100正供應較高功率(例如,300瓦至500瓦或更多)時,可以其中不使用谷值偵測之一連續導通模式操作電感。連續導通模式中之切換頻率係固定的且經調整以達到一設定點之工作循環使充電電流ICHARGE達到峰值。
仍考量圖2及圖3之實例性正半線循環,電感128、快支線高側FET 136及快支線低側FET 144因此形成一非隔離升壓轉換器,從而使AC源106之電壓升高以形成輸出電壓VOUT
圖4展示根據至少某些實施例之一時序圖。圖4中之時間尺度未必係按比例繪製。特定而言,曲線圖400展示在切換頻率之約1.5個循環內(且在實例性正半線循環期間)施加至快支線低側FET 144(圖1)之閘極146之一信號。曲線圖402展示在一對應時間期間開關節點134處之電壓。曲線圖404展示在一對應時間期間穿過電感之電流。曲線圖406展示在一對應時間期間施加至快支線高側FET 136(圖1)之閘極138之一信號。特定而言,圖4採用穿過電感128(圖2、圖3)之電流之一不連續電流模式,且因此在時間t1之前,電感器電流實際上為零。然而,在其他情形中,無橋式PFC轉換器以一臨界導通模式工作。在時間t1之前,開關節點電壓正振盪(下文更多地論述)。
在時間t1處,實例性無橋式PFC轉換器(在實例性正半線循環中)藉由確證快支線低側FET 144之閘極146(曲線圖400)而進入充電模式。在快支線高側FET 136非導通且快支線低側FET 144導通之情況下,開關節點134電壓變為大致零(曲線圖402),且具有一第一極性之一充電電流ICHARGE在電感128中流動(曲線圖404)。充電電流ICHARGE以線性方式進 行構建。當充電電流ICHARGE在時間t2處達到一預定電流臨限值(其可被量測或估計)時,實例性無橋式PFC轉換器轉變至放電模式。因此,實例性充電模式因此定義於時間t1與t2之間。
在時間t2處,無橋式PFC轉換器(仍在實例性正半線循環中)藉由撤銷確證快支線低側FET 144之閘極146(曲線圖400)且同時確證快支線高側FET 136之閘極138(曲線圖406)而進入放電模式。實際上,為避免穿過FET 136及144之交叉導通(因此使輸出電壓VOUT短路),快支線低側FET 144之閘極146之撤銷確證後續接著一短遮沒時間,之後確證快支線高側FET 136之閘極138。在快支線高側FET 136導通且快支線低側FET 144非導通之情況下,開關節點134上升至輸出電壓(曲線圖402),且具有第一極性之一放電電流IDISCHARGE再次在電感128中流動(曲線圖404)。放電電流IDISCHARGE線性地下降。放電電流IDISCHARGE供應輸出電壓及電流,且將輸出電容器152再充電。當放電電流IDISCHARGE在時間t3處達到零時,藉由撤銷確證閘極138而使快支線高側FET 136非導通。
在實例性實施例中,放電電流IDISCHARGE在下一充電模式開始之前便達到零。在圖4中,放電電流IDISCHARGE在時間t3處達到零。在放電電流IDISCHARGE達到零之時間點處,開關節點134處之電壓基於電感128與開關節點134處之電容之相互作用而開始振盪(曲線圖402)。穿過電感128之電流類似地開始振盪(曲線圖404)。為清晰起見而放大圖4中所展示之振盪頻率,但應注意,開關節點電壓(曲線圖402)在介於零伏特與輸出電壓VOUT之間的一電壓範圍內振盪。如下文將更加詳細地論述,實例性無橋式PFC轉換器經操作(在實例性正半線循環中)使得當跨越快支線低側FET 144之電壓低於一預定電壓臨限值時,一緊接後續充電模式在一電壓 谷值開始。以等效方式來陳述,實例性無橋式PFC轉換器經操作(在實例性正半線循環中)使得當跨越快支線低側FET 144之電壓處於一經減小電壓(其可出現在開關節點134處之電壓振盪中之一最小值處)時,一緊接後續充電模式開始。在其中無橋式PFC轉換器正供應高功率(例如,500瓦特或更多)之情景中,緊接後續充電模式可在開關節點134之電壓之振盪之第一谷值408開始(曲線圖402)。在其中無橋式PFC轉換器正供應低功率(例如,小於300瓦特)之情景中,所進行之緊接後續充電可在第N個谷值(例如,第四個谷值410)開始,其中N係基於指示提供至負載之功率之一值而選擇。
圖2、圖3及圖4全部係關於AC源106之頻率之正半線循環。更確切而言,在由AC源106外加於第二線路輸入104上之電壓高於外加於第一線路輸入102上之電壓之時間週期期間。說明書現在轉至負半線循環;或更確切而言,說明書現在轉至由AC源106外加於第一線路輸入102上之電壓高於外加於第二線路輸入104上之電壓之時間週期。
圖5展示根據至少某些實施例之在一負半線循環期間且在電感之充電期間之一無橋式PFC轉換器之一電示意圖。特定而言,在負半線循環期間,慢支線高側FET 108係導通的(展示為一短路),且慢支線低側FET 118係非導通的(展示為一開路)。圖5之實例性無橋式PFC轉換器100被展示為給電感128充電(亦即,充電模式),且因此快支線高側FET 136係導通的(展示為一短路),且快支線低側FET 144係非導通的(展示為一開路)。所展示之組態產生流動穿過電感128、AC源106、慢支線高側FET 108及快支線高側FET 136之一充電電流ICHARGE。該充電電流具有一第二極性(例如,在第一引線130處相對於開關節點134產生一負電壓),且 因此該第二極性與第一極性相反。假定穩態操作,在所展示之電感128之充電期間,輸出電壓VOUT由輸出電容器152供應。該充電電流產生能量且將能量儲存於環繞電感128之場中。無橋式PFC轉換器100然後轉變為將電感128放電(亦即,放電模式)。
圖6展示根據至少某些實施例之在一負半線循環期間且在電感之放電期間之一無橋式PFC轉換器之一電示意圖。特定而言,再次在負半線循環期間,慢支線高側FET 108係導通的,且慢支線低側FET 118係非導通的。圖6之實例性無橋式PFC轉換器100被展示為將電感128放電(亦即,放電模式),且因此快支線高側FET 136係非導通的,且快支線低側FET 144係導通的。由於穿過電感之電流無法即時地改變,因此當無橋式PFC轉換器100轉變為將電感128放電時,一放電電流IDISCHARGE流動穿過電感128、AC源106、慢支線高側FET 108及負載,其中返回電流流動穿過快支線低側FET 144(返回電流由600展示)。因此,該放電電流具有第二極性。更特定而言,放電電流IDISCHARGE流動至輸出電容器152之第一引線及/或輸出電壓VOUT之正輸出116。因此,在放電期間,放電電流IDISCHARGE供應輸出電壓及電流,且將輸出電容器152再充電。
在實例性負半線循環期間,無橋式PFC轉換器100在充電模式與放電模式之間來回切換以供應輸出電壓VOUT。在某些實例性實施例中,關聯於充電模式與放電模式之間的切換之切換頻率與在正半線循環期間相同,除了在負半線循環中,實例性實施例偵測用於切換之峰值而非谷值。
又考量圖5及圖6之實例性負半線循環,電感128、快支線高側FET 136及快支線低側FET 144因此形成一非隔離升壓轉換器,從而 使AC源106之電壓升高以在負半線循環期間形成輸出電壓VOUT
圖7展示根據至少某些實施例之一時序圖。圖7中之時間尺度未必係按比例繪製。特定而言,曲線圖700展示在切換頻率之約1.5個循環內(且在實例性負半線循環期間)施加至快支線低側FET 144(圖1)之閘極146之一信號。曲線圖702展示在一對應時間期間開關節點134處之電壓。曲線圖704展示在一對應時間期間穿過電感之電流。曲線圖706展示在一對應時間期間施加至快支線高側FET 136(圖1)之閘極138之一信號。特定而言,圖7採用穿過電感128(圖5及圖6)之電流之一不連續電流模式,且因此在時間t6之前,電感器電流實際上為零。然而,在其他情形中,無橋式PFC轉換器可以一臨界導通模式操作。在時間t6之前,開關節點電壓正振盪(下文更多地論述)。
在時間t6處,實例性無橋式PFC轉換器(在實例性負半線循環中)藉由確證快支線高側FET 136之閘極138(曲線圖706)而進入充電模式。在快支線高側FET 136導通且快支線低側FET 144非導通之情況下,開關節點134之電壓變為輸出電壓VOUT(曲線圖702),且具有第二極性之一充電電流ICHARGE在電感128中流動(曲線圖704)。充電電流ICHARGE以線性方式進行構建。當充電電流ICHARGE在時間t7處達到一預定電流臨限值(其可被量測或估計)時,實例性無橋式PFC轉換器轉變至放電模式。在負半線循環期間之實例性充電模式因此定義於時間t6與t7之間。
在時間t7處,無橋式PFC轉換器(在實例性負半線循環中)藉由撤銷確證快支線高側FET 136之閘極138(曲線圖706)且同時確證快支線低側FET 144之閘極146(曲線圖700)而進入放電模式。再次實務上,可實施一短遮沒時間以避免交叉導通。在快支線高側FET 136非導通且快支 線低側FET 144導通之情況下,開關節點134上之電壓下降至接地,且具有第二極性之一放電電流IDISCHARGE再次在電感128中流動(曲線圖704)。放電電流IDISCHARGE線性地下降。放電電流IDISCHARGE供應輸出電壓及電流,且將輸出電容器152再充電。當放電電流IDISCHARGE在時間t8處達到零時,藉由撤銷確證閘極146而使快支線低側FET 144非導通。
在實例性實施例中,放電電流IDISCHARGE在下一充電模式開始之前便達到零。在圖7中,放電電流IDISCHARGE在時間t8處達到零。在放電電流IDISCHARGE達到零之時間點處,開關節點134處之電壓基於電感128與開關節點134處之電容之相互作用而開始振盪(曲線圖702)。類似地,穿過電感128之電流開始振盪(曲線圖704)。為清晰起見而放大圖7中所展示之振盪頻率,但應注意,開關節點電壓(曲線圖702)在介於輸出電壓與零伏特之間的一電壓範圍中振盪。如下文將更加詳細地論述,實例性無橋式PFC轉換器經操作(在實例性負半線循環中)使得當跨越快支線高側FET 136之電壓低於一預定電壓臨限值時,一緊接後續充電模式在一峰值開始。以等效方式來陳述,實例性無橋式PFC轉換器經操作(在實例性負半線循環中)使得當跨越快支線高側FET 136之電壓處於一經減小電壓(其可出現在開關節點134處之電壓振盪中之一最大值處)時,一緊接後續充電模式開始。亦即,當開關節點134處之電壓最接近於輸出電壓VOUT時,跨越快支線高側FET 136之電壓最低。在其中無橋式PFC轉換器正供應高功率(例如,500瓦特或更多)之情景中,緊接後續充電模式可在開關節點134之電壓之振盪之第一峰值708處開始(曲線圖702)。在其中無橋式PFC轉換器正供應低功率(例如,小於300瓦特)之情景中,所進行之緊接後續充電模式可在第N個峰值(例如,第四個峰值710)處開始,其中N係基於指示提供 至負載之功率之一值而選擇。
圖5、圖6及圖7全部係關於AC源106之頻率之負半線循環。更確切而言,在由AC源106外加於第二線路輸入104上之電壓低於外加於第一線路輸入102上之電壓之時間週期期間。
在這點上所論述之無橋式PFC轉換器之各種實施例已假定但未明確地展示控制各種FET且監測各種信號之一PFC控制器之存在。說明書現在轉至包含一PFC控制器之一無橋式PFC轉換器之一更詳細說明。
圖8展示根據至少某些實施例之一無橋式PFC轉換器之一部分示意性部分方塊圖。特定而言,圖8展示圖1中所介紹之相同組件中之諸多組件,且彼等組件帶有相同參考編號且關於圖8將不重新介紹。圖8明確地展示在總體無橋式PFC轉換器100內之PFC控制器800。實例性PFC控制器800係一經封裝積體電路(IC),該經封裝積體電路(IC)具有電暴露於經封裝IC之一外部表面上之複數個端子。在某些實例性系統中,經封裝IC係一20接腳雙直插封裝(DIP),但可使用任何適合封裝。實例性PFC控制器800定義一第一線路感測端子802、一第二線路感測端子804、一繞組感測端子806、一回饋端子808、一高端子810、一低端子812、一慢支線低側端子814及慢支線高側端子816。將存在額外端子(例如,功率、接地或共同點),但省略該額外端子以便不使圖過度複雜化。
在實例性實施例中,電感128由一多繞組升壓電感器838提供。多繞組升壓電感器838定義以磁性方式耦合至一次級繞組842之一初級繞組840。初級繞組840定義耦合至第二線路輸入104之一第一引線844。初級繞組840定義一第二引線846,第二引線846耦合至開關節點134 且定義開關節點134。因此,電感128為初級繞組840之電感。次級繞組842定義一第一引線848及一第二引線850。第一引線848耦合至繞組感測端子806。第二引線850耦合至一參考電壓,諸如接地或共同點。雖然第一引線848被展示為直接耦合至繞組感測端子806,但在其他情形中可包含額外電阻器-分壓器網路以減少電壓。在實例性實施例中,電壓之極性由多繞組升壓電感器之符號內之同名端定義。因此,在初級繞組840之第一引線844處相對於第二引線846產生一正電壓之一電流會在次級繞組842之第一引線848處相對於第二引線850產生一負電壓,且反之亦然。然而,以適合方式經調整,PFC控制器800可在多繞組升壓電感器838具有相反極性關係之情況下為可操作的。
儘管在某些情形中PFC控制器800可能能夠直接驅動FET之閘極,實例性實施例相對於慢支線高側FET 108及慢支線低側FET 118使用一閘極驅動器828來執行該任務。實例性實施例亦相對於快支線高側FET 136及快支線低側FET 144使用一閘極驅動器852來執行該任務。實例性閘極驅動器828定義一慢支線高側輸入830、一慢支線低側輸入832、一高閘極輸出834及一低閘極輸出836。慢支線高側輸入830耦合至慢支線高側端子816。慢支線低側輸入832耦合至慢支線低側端子814。高閘極輸出834耦合至慢支線高側FET 108之閘極110。低閘極輸出836耦合至慢支線低側FET 118之閘極120。閘極驅動器828回應於驅動至PFC控制器800之端子814及816之信號而使FET 108及118導通及非導通。實例性閘極驅動器852定義一高輸入854、一低輸入856、一高閘極輸出858及一低閘極輸出860。高輸入854耦合至高端子810。低輸入856耦合至低端子812。高閘極輸出858耦合至快支線高側FET 136之閘極138。低閘極輸出860耦合至 快支線低側FET 144之閘極146。閘極驅動器852回應於驅動至PFC控制器800之端子810及812之信號而使FET 136及144導通及非導通。
根據至少某些實施例,PFC控制器800包含在封裝內定義於一基板818上之一積體電路;然而,PFC控制器800之功能性可體現於共同封裝於封裝內且電耦合至彼此及各種端子之多個基板上。PFC控制器800之功能性可在概念上(儘管未必實際上)劃分成一線路側控制器820及一轉換器側控制器822。實例性線路側控制器820耦合至第一線路感測端子802、第二線路感測端子804、慢支線高側端子816及慢支線低側端子814。第一線路感測端子802耦合至AC源106之第一線路輸入102。第二線路感測端子804耦合至AC源106之第二線路輸入104。雖然圖8展示分別直接耦合至線路輸入102及104之端子802及804,但實務上,連接可包含分壓器以降低自AC源106施加至PFC控制器800之電壓。實例性線路側控制器820亦耦合至慢支線高側端子816及慢支線低側端子814。線路側控制器820經組態以藉助於第一線路感測端子802及第二線路感測端子804而感測AC源106之極性,且線路側控制器820經組態以在極性為正(例如,第二線路輸入104上之電壓高於第一線路輸入102)時確證慢支線低側端子814且撤銷確證慢支線高側端子816。此外,線路側控制器820經組態以在極性為負(例如,第一線路輸入102上之電壓高於第二線路輸入104)時確證慢支線高側端子816且撤銷確證慢支線低側端子814。關聯性地,實例性線路側控制器820定義兩個輸出:正極性輸出824及負極性輸出826。在實例性實施例中,線路側控制器820在AC源106之極性為正時確證正極性輸出824且撤銷確證負極性輸出826,且在AC源106之極性為負時撤銷確證正極性輸出824且確證負極性輸出826。
實例性PFC控制器800進一步包含轉換器側控制器822。轉換器側控制器822耦合至繞組感測端子806、回饋端子808、高端子810及低端子812。在正半線循環期間,轉換器側控制器822使轉換器100處於充電及放電模式以供應輸出電壓VOUT。亦即,轉換器側控制器822藉由確證低端子812且撤銷確證高端子810而透過快支線低側FET 144給多繞組升壓電感器838之初級繞組840充電。轉換器側控制器822使轉換器處於放電模式且藉由確證高端子810且撤銷確證低端子812而透過快支線高側FET 136將初級繞組840放電。在放電模式之後,轉換器側控制器822經組態以藉助於繞組感測端子806而感測開關節點134處之一電壓之一下降邊緣,該下降邊緣指示開關節點134之振盪電壓中之一谷值。一旦判定一適合下降邊緣,轉換器側控制器822便經組態以基於該下降邊緣(且再次在正半線循環期間)而觸發初級繞組840之一後續充電模式。
在一負半線循環期間,轉換器側控制器822使轉換器100處於充電及放電模式以供應輸出電壓VOUT。亦即,轉換器側控制器822藉由確證高端子810且撤銷確證低端子812而透過快支線高側FET 136給多繞組升壓電感器838之初級繞組840充電。轉換器側控制器822使轉換器處於放電模式且透過快支線低側FET 144將初級繞組840放電。在放電模式之後,轉換器側控制器822經組態以藉助於繞組感測端子806感測開關節點134處之電壓之一上升邊緣,該上升邊緣指示開關節點134之振盪電壓中之一峰值。一旦判定一適合上升邊緣,轉換器側控制器822便經組態以基於該上升邊緣(且再次在負半線循環期間)而觸發初級繞組840之一後續充電模式。
在轉至對轉換器側控制器822之一更詳細論述之前,應注 意,實例性PFC控制器800在正半線循環期間藉由感測多繞組升壓電感器838之次級繞組842之第一引線848上之電壓而感測開關節點134上之電壓振盪之下降邊緣。類似地,實例性PFC控制器800在負半線循環期間藉由感測多繞組升壓電感器838之次級繞組842之第一引線848上之電壓而感測開關節點134上之電壓振盪之上升邊緣。在兩種情形中,第一引線耦合至且保持耦合至繞組感測端子。類似地,在兩種情形中,次級繞組842之第二引線850耦合至且保持耦合至一參考電壓(例如,接地或共同點)。因此,在PFC控制器800外部在PFC控制器800與多繞組升壓電感器838之間未實施開關網路。
圖9展示根據至少某些實施例之一轉換器側控制器之一方塊圖。特定而言,轉換器側控制器822包括一比較器900,比較器900定義一第一輸入902、一第二輸入904、一非反相輸出906及一反相輸出908。第一輸入902耦合至繞組感測端子806(圖8),且第二輸入904耦合至一參考電壓。轉換器側控制器822進一步包括一遮罩電路910,遮罩電路910定義一第一遮罩輸入912、一第二遮罩輸入914、一非反相輸入916、一反相輸入918及一遮罩輸出920。非反相輸入916耦合至比較器900之非反相輸出906。反相輸入918耦合至比較器900之反相輸出908。第一遮罩輸入912耦合至線路側控制器820(圖8)之正極性輸出824(圖8)。第二遮罩輸入914耦合至線路側控制器820之負極性輸出826(圖8)。
出於基於下文論述將變得更清晰之原因,實例性比較器900可經設計且經構造以實施一遲滯函數,如由比較器900內之施密特(Schmidt)觸發符號所指示。該遲滯函數暗示比較器900取決於輸入上之相對電壓而在施加至輸入之不同電壓下改變其輸出之狀態。在某些實例性情 形中,觸發點中之差可為100毫伏(mV),且在其他情形中,該差可為500mV。更確切而言,當感測到下降邊緣時,比較器900可在比感測上升電壓時低之電壓(例如,低500mV)下改變。在第一輸入902處感測到之電壓係指示由多繞組升壓電感器838之次級繞組842形成之開關節點電壓之一電壓。
遮罩電路910經組態以在確證第一遮罩輸入912時遮蔽反相輸入918上之一信號。類似地,遮罩電路910經組態以在確證第二遮罩輸入914時遮蔽非反相輸入916上之信號。在下文更多地論述用以實施遮蔽之一實例性電路;然而,在其他情形中,可使用一單個遮罩輸入(例如,僅第一遮罩輸入912),且在此等情形中,遮罩電路910可經組態以在確證第一遮罩輸入912時遮蔽非反相輸入916上之一信號且展露反相輸入918上之信號,且經組態以在撤銷確證第一遮罩輸入912時展露非反相輸入916上之信號且遮蔽反相輸入918上之信號。
圖9展示經設計且經構造以執行遮蔽功能之一實例性遮罩電路910。特定而言,實例性遮罩電路910包括兩個「及」閘936及938以及一「或」閘940。「及」閘936具有耦合至第一遮罩輸入912之一第一輸入942、耦合至比較器900之非反相輸出906之一第二輸入944,及一輸出946。「及」閘938具有耦合至第二遮罩輸入914之一第一輸入950、耦合至比較器900之反相輸出908之一第二輸入948,及一輸出952。「或」閘940具有耦合至輸出946之一第一輸入954、耦合至輸出952之一第二輸入956及透過一「反」閘960耦合至遮罩輸出920之一輸出958。在第一遮罩輸入912具有一高電壓且第二遮罩輸入914具有一低電壓之時間週期(例如,正半線循環)期間,允許比較器900之非反相輸出906上之信號傳播穿過到達 遮罩輸出920。在第一遮罩輸入912具有一低電壓且第二遮罩輸入914具有一高電壓之時間週期(例如,負半線循環)期間,允許比較器900之反相輸出908上之信號傳播穿過到達遮罩輸出920。因此,特定信號之遮蔽發生於各別遮罩信號為一低電壓(其可被稱為經確證為低)時。在受益於本發明且現在理解遮罩電路910之功能性之情況下,熟習此項技術者可形成諸多等效電路以執行選擇性遮蔽功能,包含交換經確證狀態。
仍參考圖9,實例性轉換器側控制器822進一步包括一充電控制器922,充電控制器922定義一回饋輸入924、一轉變輸入926、一繞組感測輸入928、一高驅動輸出930、一低驅動輸出932及一極性輸入934。回饋輸入924耦合至回饋端子808(圖8)。轉變輸入926耦合至遮罩輸出920。繞組感測輸入928耦合至繞組感測端子806(圖8)。高驅動輸出930耦合至高端子810(圖8)。低驅動輸出932耦合至低端子812(圖8)。且極性輸入934耦合至極性輸出824或826中之一者(如所展示,正極性輸出824)。
充電控制器922經組態以(諸如)藉由讀取極性輸入934上之一信號而判定AC源106之極性。在極性為正之時間週期期間,為進入充電模式,充電控制器922經組態以回應於由遮罩輸出920對轉變輸入926之確證而確證低驅動輸出932(及因此低端子812)。在一實例性臨界導通模式中,充電控制器922可在轉變輸入926之第一次確證時進入充電模式。亦即,可在第一谷值408(圖4)中進入充電模式。在不連續導通模式期間,充電控制器922可在轉變輸入926之第N次轉變時進入充電模式。亦即,可在第N個谷值(例如,第四個谷值410(圖4))時進入充電模式。因此,轉變輸入926之確證在正半線循環中開始充電模式。
在極性為負之時間週期期間,為進入充電模式,充電控制器922經組態以回應於由遮罩輸出920對轉變輸入926之確證而確證高驅動輸出930(及因此高端子810)。在一實例性臨界導通模式中,充電控制器922可在轉變輸入926之第一次確證時進入充電模式。亦即,可在峰值708(圖7)中進入充電模式。在不連續導通模式期間,充電控制器922可在轉變輸入926之第N次轉變時進入充電模式。亦即,可在第N個峰值(例如,第四個峰值710(圖7))時進入充電模式。因此,轉變輸入926之確證在負半線循環中開始充電模式。
圖10展示根據至少某些實施例之一時序圖(例如,臨界或不連續導通模式)。特定而言,曲線圖1000展示在一正半線循環期間之一實例性開關節點134(圖1)電壓,且曲線圖1002展示在同一時間週期期間到達充電控制器922之轉變輸入926(圖9)電壓。在時間t10處,實例性無橋式PFC控制器進入充電模式,且因此使開關節點134上之電壓接地。在實例性實施例中,轉變輸入926在充電模式期間變高。在時間t11處,充電模式結束,且放電模式開始。實例性轉變輸入926在放電模式期間變低。在放電模式結束時,電感器電流下降且因此開關節點134上之電壓下降。同時參考圖9及圖10,在實例性系統中,開關節點134上之下降電壓由比較器900感測(透過多繞組升壓電感器之次級繞組而感測),且當開關節點134上之電壓之所感測版本下降至比參考電壓低遲滯量時,撤銷確證非反相輸出906。由於無橋式PFC轉換器處於正半線循環,因此第一遮罩輸入912將具有一高電壓,且非反相輸出906之轉變穿過「及」閘936、「或」閘940,且到達轉變輸入926,如在時間t12處所展示。當開關節點134上之電壓正振盪時,電壓再次開始上升,且當開關節點134上之電壓之所感 測版本上升至比參考電壓高遲滯量時,確證非反相輸出906。該循環針對開關節點電壓之每一振盪而繼續,其中在開關節點134電壓之每一下降邊緣上(諸如在時間t14、t16及t18處)確證轉變輸入926。取決於無橋式PFC轉換器之負載及電感器導通模式,充電控制器922可回應於轉變輸入926之確證中之任一者而開始下一充電模式。
圖11展示根據至少某些實施例之一時序圖。特定而言,曲線圖1100展示在一負半線循環期間之一實例性開關節點134電壓(圖1),且曲線圖1102展示在相同時間週期期間到達充電控制器922之轉變輸入926(圖9)。在時間t20處,實例性無橋式PFC控制器進入充電模式,且因此將開關節點134上之電壓拉動至輸出電壓VOUT。在實例性實施例中,轉變輸入926在充電模式期間變高,儘管可存在額外遮蔽,使得在充電模式期間遮蔽或忽略轉變輸入926(不管半線循環之極性如何)。
在時間t21處,充電模式結束,且放電模式開始。在放電模式結束時,電感器電流下降且因此開關節點134上之電壓上升。同時參考圖9及圖11,在實例性系統中,開關節點134上之上升電壓由比較器900感測(透過多繞組升壓電感器之次級繞組而感測),且當開關節點134上之電壓之所感測版本上升至比參考電壓高遲滯量時,撤銷確證反相輸出908。由於無橋式PFC轉換器處於負半線循環,因此第二遮罩輸入914將具有一高電壓,且反相輸出908之轉變穿過「及」閘938、「或」閘940,且到達轉變輸入926,如在時間t22處所展示。當開關節點134上之電壓正振盪時,電壓再次開始下降,且當開關節點134上之電壓之所感測版本下降至比參考電壓低遲滯量時,確證反相輸出908。該循環針對開關節點電壓之每一振盪而繼續,其中在開關節點134電壓之每一上升邊緣上(諸如在時間 t24、t26及t28處)確證轉變輸入926。取決於無橋式PFC轉換器之負載及電感器導通模式,充電控制器922可回應於轉變輸入926之確證中之任一者而開始下一充電模式。
同時參考圖10及圖11。某些實例性實施例使用一單個比較器來執行觸發以在正半線循環及負半線循環兩者中轉變至充電模式。雖然在某些情形中僅一個比較器可不實施遲滯,但實例性比較器之遲滯使觸發點移動為更靠近於谷值(在正半線循環期間)及更靠近於峰值(在負半線循環期間)。遲滯量可在設計階段期間選擇以將用於進入一充電模式之一觸發事件與各別FET可被驅動為完全導通時之間的傳播延遲考量在內。在其他情形中,可藉助於在PFC控制器800外部之裝置(諸如藉由外部電阻及/或電容)而調整遲滯之寬度以考量到外部態樣(諸如穿過閘極驅動器852之傳播延遲,以及慢及快支線低側FET之回應性)而調諧轉換器從而減少切換損失。
圖12展示根據至少某些實施例之一方法。特定而言,該方法開始(方塊1200)且包含:在一輸入AC電壓頻率之一正半線循環期間藉由以下方式操作功率轉換器(1202):以具有一第一極性之一充電電流給一多繞組升壓電感器之一初級繞組充電(方塊1204);及然後以具有該第一極性之一放電電流將該初級繞組放電,該放電電流流動至一平滑電容器之一第一引線(方塊1206);藉助於耦合至一比較器的該多繞組升壓電感器之一次級繞組而感測一開關節點處之一電壓之一下降邊緣(方塊1208);及在該正半線循環期間基於該下降邊緣而觸發該初級繞組之一後續充電(方塊1210)。該方法進一步包含在該AC源之頻率之一負半線循環期間藉由以下方式操作該功率轉換器(方塊1212):以具有與該第一極性相反之一第二極 性之一充電電流將該多繞組升壓電感器之該初級繞組充電(方塊1214);及然後以具有該第二極性之一放電電流將該初級繞組放電,該放電電流流動至該平滑電容器之該第一引線(方塊1216);藉助於耦合至該比較器的該多繞組升壓電感器之該次級繞組而感測該開關節點處之該電壓之一上升邊緣(方塊1218);及在該負半線循環中基於該上升邊緣而觸發該初級繞組之一後續充電(方塊1220)。此後,該方法結束(方塊1222)。
以上論述旨在圖解說明本發明之原理及各種實施例。一旦完全瞭解以上揭示內容,熟習此項技術者便將明瞭眾多變化及修改形式。舉例而言,多繞組升壓電感器可係一變壓器。意欲將隨附申請專利範圍解釋為囊括所有此類變化及修改形式。
822‧‧‧轉換器側控制器/實例性轉換器側控制器
900‧‧‧比較器/實例性比較器
902‧‧‧第一輸入
904‧‧‧第二輸入
906‧‧‧非反相輸出
908‧‧‧反相輸出
910‧‧‧遮罩電路/實例性遮罩電路
912‧‧‧第一遮罩輸入
914‧‧‧第二遮罩輸入
916‧‧‧非反相輸入
918‧‧‧反相輸入
920‧‧‧遮罩輸出
922‧‧‧充電控制器
924‧‧‧回饋輸入
926‧‧‧轉變輸入/實例性轉變輸入
928‧‧‧繞組感測輸入
930‧‧‧高驅動輸出
932‧‧‧低驅動輸出
934‧‧‧極性輸入
936‧‧‧「及」閘
938‧‧‧「及」閘
940‧‧‧「或」閘
942‧‧‧第一輸入
944‧‧‧第二輸入
946‧‧‧輸出
948‧‧‧第二輸入
950‧‧‧第一輸入
952‧‧‧輸出
954‧‧‧第一輸入
956‧‧‧第二輸入
958‧‧‧輸出
960‧‧‧「反」閘

Claims (11)

  1. 一種操作一功率轉換器之方法,其包括: 在一交流(AC)源之一正半線循環期間藉由以下方式操作該功率轉換器: 以具有一第一極性之一充電電流給一多繞組升壓電感器之一初級繞組充電;及然後 以具有該第一極性之一第一放電電流將該初級繞組放電; 藉助於耦合至一比較器的該多繞組升壓電感器之一次級繞組而感測一開關節點處之一電壓之一下降邊緣;及 在該正半線循環期間基於該下降邊緣而觸發該初級繞組之一後續充電; 在該AC源之頻率之一負半線循環期間藉由以下方式操作該功率轉換器: 以具有與該第一極性相反之一第二極性之一充電電流給該多繞組升壓電感器之該初級繞組充電;及然後 以具有該第二極性之一第二放電電流將該初級繞組放電; 藉助於耦合至該比較器的該多繞組升壓電感器之該次級繞組而感測該開關節點處之該電壓之一上升邊緣;及 在該負半線循環中基於該上升邊緣而觸發該初級繞組之一後續充電。
  2. 如請求項1之方法: 其中感測該下降邊緣進一步包括感測耦合至一參考電壓之該次級繞組之一第一引線及該次級繞組之一第二引線上之一電壓;且 其中感測該上升邊緣進一步包括感測耦合至該參考電壓之該次級繞組之該第一引線及該次級繞組之該第二引線上之一電壓。
  3. 如請求項1之方法: 其中感測該下降邊緣進一步包括由具有一遲滯電壓之該比較器進行感測;且 其中感測該上升邊緣進一步包括由具有該遲滯電壓之該比較器進行感測。
  4. 一種用於控制一無橋式功因修正(PFC)轉換器之經封裝積體電路(IC)裝置,其包括: 一繞組感測端子、一慢支線高側端子、一慢支線低側端子、一高端子、一低端子及一回饋端子; 一線路側控制器,其耦合至該慢支線高側端子及該慢支線低側端子,該線路側控制器經組態以感測一交流(AC)信號之極性,且該線路側控制器經組態以在該極性為正時確證該慢支線低側端子且撤銷確證該慢支線高側端子,且該線路側控制器經組態以在該極性為負時確證該慢支線高側端子且撤銷確證該慢支線低側端子; 一轉換器側控制器,其耦合至該高端子、該低端子及該繞組感測端子,該轉換器側控制器包括: 一比較器,其定義一第一輸入、一第二輸入、一非反相輸出及一反相輸出,該第一輸入耦合至該繞組感測端子,且該第二輸入耦合至一參考電壓; 一遮罩電路,其定義一遮罩輸入、一非反相輸入、一反相輸入及一遮罩輸出,該非反相輸入耦合至該比較器之該非反相輸出,且該反相輸入耦合至該比較器之該反相輸出,該遮罩電路經組態以在確證該遮罩輸入時遮蔽該非反相輸入,且該遮罩電路經組態以在撤銷確證該遮罩輸入時遮蔽該反相輸入; 一充電控制器,其定義一回饋輸入及一轉變輸入,該回饋輸入耦合至該回饋端子,且該轉變輸入耦合至該遮罩輸出; 該充電控制器經組態以在該極性為正之時間週期期間回應於該遮罩輸出之確證而確證該低端子;且 該充電控制器經組態以在該極性為負之時間週期期間回應於該遮罩輸出之確證而確證該高端子。
  5. 如請求項4之經封裝IC,其中在該極性為正之時間週期期間,該充電控制器進一步經組態以回應於該遮罩輸出之確證而: 確證該低端子;及然後 監測指示該繞組感測端子上之電感器電流之一信號;及在指示電感器電流之該信號達到一預定臨限值時 確證該高端子且撤銷確證該低端子。
  6. 如請求項5之經封裝IC,其中在該極性為負之時間週期期間,該充電控制器進一步經組態以回應於該遮罩輸出之確證而: 確證該高端子;及然後 監測指示該繞組感測端子上之電感器電流之該信號;及當指示電感器電流之該信號達到該預定臨限值時 撤銷確證該高端子且確證該低端子。
  7. 如請求項4之經封裝IC,其中在該極性為正之時間週期期間,該充電控制器進一步經組態以回應於該遮罩輸出之確證及對該回饋端子上之輸出電壓之一指示而確證該低端子。
  8. 如請求項4之經封裝IC,其中在該極性為正之時間週期期間,該充電控制器進一步經組態以回應於該遮罩輸出之預定數目次確證及對該回饋端子上之輸出電壓之一指示而確證該低端子。
  9. 一種無橋式功因修正(PFC)轉換器,其包括: 一第一線路輸入及一第二線路輸入; 一慢支線高側場效電晶體(FET),其定義一閘極、耦合至該第一線路輸入之一源極及耦合至該轉換器之一正輸出之一汲極; 一慢支線低側FET,其定義一閘極、耦合至該第一線路輸入之一汲極及耦合至該轉換器之一負輸出之一源極; 一多繞組升壓電感器,其定義一初級繞組,該初級繞組具有耦合至該第二線路輸入之一第一引線及定義一開關節點之一第二引線; 一快支線高側FET,其定義一閘極、耦合至該開關節點之一源極及耦合至該轉換器之該正輸出之一汲極; 一快支線低側FET,其定義一閘極、耦合至該轉換器之該負輸出之一源極及耦合至該開關節點之一汲極; 一PFC控制器,其經組態以在耦合至該第一線路輸入及該第二線路輸入之一交流(AC)源之一頻率之一正半線循環期間操作該轉換器,該操作係藉由致使該轉換器進行以下步驟而實現: 透過該快支線低側FET以具有一第一極性之一充電電流給該多繞組升壓電感器之該初級繞組充電;及然後 透過該快支線高側FET以具有該第一極性之一第一放電電流將該初級繞組放電; 藉助於一比較器而感測該開關節點處之一電壓之一下降邊緣;及 在該正半線循環期間基於該下降邊緣而觸發該初級繞組之一後續充電; 該PFC控制器經組態以在該AC源之該頻率之一負半線循環期間藉由致使該轉換器進行以下操作而操作該轉換器: 透過該快支線高側FET以具有與該第一極性相反之一第二極性之一充電電流給該多繞組升壓電感器之該初級繞組充電;及然後 透過該快支線低側FET以具有該第二極性之一第二放電電流將該初級繞組放電; 藉助於該比較器而感測該開關節點處之該電壓之一上升邊緣;及 在該負半線循環中基於感測該上升邊緣而觸發該初級繞組之一後續充電。
  10. 如請求項9之無橋式PFC轉換器: 該多繞組升壓電感器進一步包括具有一第一引線及一第二引線之一次級繞組,該第二引線耦合至一參考電壓; 其中當該PFC控制器感測到該下降邊緣時,該PFC控制器進一步經組態以感測該次級繞組之該第一引線上之一電壓,該次級繞組之該第一引線耦合至具有一遲滯電壓之該比較器;且 其中感測該上升邊緣進一步包括藉助於具有該遲滯電壓之該比較器而感測該次級繞組之該第一引線上之一電壓。
  11. 如請求項9之無橋式PFC轉換器,其中該PFC控制器進一步包括: 該多繞組升壓電感器進一步包括具有一第一引線及一第二引線之一次級繞組,該第二引線耦合至一參考電壓; 耦合至該次級繞組之該第一引線之一繞組感測端子、耦合至該快支線高側FET之該閘極之一高端子、耦合至該快支線低側FET之該閘極之一低端子、耦合至該慢支線高側FET之該閘極之一慢支線高側端子、耦合至該慢支線低側FET之該閘極之一慢支線低側端子及耦合至該轉換器之該正輸出之一回饋端子; 一線路側控制器,其耦合至該慢支線高側端子及該慢支線低側端子,該線路側控制器經組態以感測該AC源之極性,且該線路側控制器經組態以在該極性為正時確證該慢支線低側端子且撤銷確證該慢支線高側端子,且該線路側控制器經組態以在該極性為負時確證該慢支線高側端子且撤銷確證該慢支線低側端子; 一轉換器側控制器,其耦合至該高端子、該低端子及該繞組感測端子,該轉換器側控制器包括: 該比較器,其定義一第一輸入、一第二輸入、一非反相輸出及一反相輸出,該第一輸入耦合至該繞組感測端子,且該第二輸入耦合至一參考電壓; 一遮罩電路,其定義一遮罩輸入、一非反相輸入、一反相輸入及一遮罩輸出,該非反相輸入耦合至該比較器之該非反相輸出,且該反相輸入耦合至該比較器之該反相輸出,該遮罩電路經組態以在確證該遮罩輸入時遮蔽該非反相輸入,且該遮罩電路經組態以在撤銷確證該遮罩輸入時遮蔽該反相輸入; 一充電控制器,其定義一回饋輸入及一轉變輸入,該回饋輸入耦合至該回饋端子,且該轉變輸入耦合至該遮罩輸出; 該充電控制器經組態以在該極性為正之時間週期期間回應於該遮罩輸出之確證而確證該低端子;且 該充電控制器經組態以在該極性為負之時間週期期間回應於該遮罩輸出之確證而確證該高端子。
TW108111845A 2018-04-10 2019-04-03 無橋式功因修正轉換器之方法,經封裝積體電路及系統 TWI702783B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862655592P 2018-04-10 2018-04-10
US62/655,592 2018-04-10
US16/359,426 2019-03-20
US16/359,426 US10432086B1 (en) 2018-04-10 2019-03-20 Methods and systems of bridgeless PFC converters

Publications (2)

Publication Number Publication Date
TW201946362A TW201946362A (zh) 2019-12-01
TWI702783B true TWI702783B (zh) 2020-08-21

Family

ID=68063821

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108111845A TWI702783B (zh) 2018-04-10 2019-04-03 無橋式功因修正轉換器之方法,經封裝積體電路及系統

Country Status (4)

Country Link
US (1) US10432086B1 (zh)
CN (1) CN110365233B (zh)
DE (1) DE102019002201A1 (zh)
TW (1) TWI702783B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112019074B (zh) * 2019-05-31 2023-06-20 台达电子工业股份有限公司 整流控制模块、主动式桥式整流控制装置及其操作方法
CN115242076A (zh) * 2021-04-25 2022-10-25 华为数字能源技术有限公司 图腾柱功率因数校正电路的控制***、方法及电源适配器
US12003171B2 (en) * 2021-04-27 2024-06-04 Semiconductor Components Industries, Llc Output overvoltage protection for a totem pole power factor correction circuit
WO2023056613A1 (en) * 2021-10-08 2023-04-13 Abb Schweiz Ag Bidirectional bridgeless pfc circuit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130257392A1 (en) * 2012-03-29 2013-10-03 Delta Electronics, Inc. Power factor correction circuit
US20140035541A1 (en) * 2012-08-06 2014-02-06 Delta Electronics, Inc. Control circuit, control method used in pfc circuit and power source system thereof
CN103683895A (zh) * 2012-09-11 2014-03-26 群光电能科技股份有限公司 具有单一电感元件的无桥式功率因数校正器及其操作方法
TW201534030A (zh) * 2014-02-17 2015-09-01 Lite On Electronics Guangzhou 非線性轉換比功率因數轉換器
TW201806297A (zh) * 2016-08-05 2018-02-16 林景源 功率因數修正電路及其修正器
US20180062504A1 (en) * 2016-08-31 2018-03-01 Murata Manufacturing Co., Ltd. Power factor correction device and controlling method thereof, and electronic device
CN107820667A (zh) * 2015-06-24 2018-03-20 维洛发动机控制*** 用于对电能存储单元充电的方法和电压转换器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI436563B (zh) * 2009-04-09 2014-05-01 Delta Electronics Inc 用於臨界連續電流模式之無橋功率因數校正電路及其方法
CN102299649B (zh) * 2010-06-24 2015-11-25 盛飞 电源变换器
CN102185504A (zh) * 2011-05-17 2011-09-14 成都芯源***有限公司 电源电路及控制电源电路的方法
US9263968B2 (en) * 2011-06-22 2016-02-16 Eetrex, Inc. Bidirectional inverter-charger
US9654024B2 (en) * 2013-05-30 2017-05-16 Texas Instruments Incorporated AC-DC converter having soft-switched totem-pole output
TWI547079B (zh) * 2015-07-29 2016-08-21 台達電子工業股份有限公司 高效率無橋功率因數校正轉換器
CN107070195A (zh) * 2017-03-22 2017-08-18 哈尔滨工业大学深圳研究生院 半工频周期谐振软开关结构的图腾柱功率因数校正电路
US10193437B1 (en) * 2017-10-26 2019-01-29 Semiconductor Components Industries, Llc Bridgeless AC-DC converter with power factor correction and method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130257392A1 (en) * 2012-03-29 2013-10-03 Delta Electronics, Inc. Power factor correction circuit
US20140035541A1 (en) * 2012-08-06 2014-02-06 Delta Electronics, Inc. Control circuit, control method used in pfc circuit and power source system thereof
CN103683895A (zh) * 2012-09-11 2014-03-26 群光电能科技股份有限公司 具有单一电感元件的无桥式功率因数校正器及其操作方法
TW201534030A (zh) * 2014-02-17 2015-09-01 Lite On Electronics Guangzhou 非線性轉換比功率因數轉換器
CN107820667A (zh) * 2015-06-24 2018-03-20 维洛发动机控制*** 用于对电能存储单元充电的方法和电压转换器
TW201806297A (zh) * 2016-08-05 2018-02-16 林景源 功率因數修正電路及其修正器
US20180062504A1 (en) * 2016-08-31 2018-03-01 Murata Manufacturing Co., Ltd. Power factor correction device and controlling method thereof, and electronic device

Also Published As

Publication number Publication date
DE102019002201A1 (de) 2019-10-10
CN110365233B (zh) 2021-03-16
US20190312508A1 (en) 2019-10-10
TW201946362A (zh) 2019-12-01
CN110365233A (zh) 2019-10-22
US10432086B1 (en) 2019-10-01

Similar Documents

Publication Publication Date Title
TWI702783B (zh) 無橋式功因修正轉換器之方法,經封裝積體電路及系統
US9461558B2 (en) Control device of a switching power supply
JP6338867B2 (ja) 同期フライバック変換器における使用のための二次コントローラ、電力変換器、および同期フライバック変換器を制御する方法
KR101411000B1 (ko) 컨버터 및 그 구동방법
US9154030B2 (en) Control device of a switching power supply
US11955894B2 (en) Quasi-resonant auto-tuning controller
JP2005261128A (ja) スイッチング電源装置
US9768701B2 (en) Synchronous rectifier control using sensing of alternating current component
US10890608B2 (en) System and method to determine a capacitance of a capacitor
CN112187023A (zh) 驱动电力转换器电子开关的方法、控制电路和电力转换器
CN109921627B (zh) 用于限制开关转换器中的电磁干扰的装置和方法
US6867634B2 (en) Method for detecting the null current condition in a PWM driven inductor and a relative driving circuit
US10924000B2 (en) DC-DC converter with reduced ripple
CN110620513B (zh) 谐振电源转换器以及用于控制谐振电源转换器的方法和集成电路控制器
CN117155073A (zh) 开关变换器及其控制电路
US9397575B2 (en) Switching power supply device
JP4543021B2 (ja) 電源装置及びその制御回路並びに制御方法
JP2002300777A (ja) スイッチング電源装置
JP5130664B2 (ja) スイッチング電源
JP2001211642A (ja) スイッチング電源装置
JP4919858B2 (ja) スイッチング電源
RU2687055C2 (ru) Импульсный источник питания
TWI407668B (zh) 電源供應器以及抑制電源供應器之輸出電壓波動的方法
Zou et al. A new rectifier with combined power flow control capability for a series-tuned inductive-power-transfer receiver
JP2004328982A (ja) スイッチング電源