TWI698034B - Magnetoresistive device and method for forming the same - Google Patents

Magnetoresistive device and method for forming the same Download PDF

Info

Publication number
TWI698034B
TWI698034B TW108137375A TW108137375A TWI698034B TW I698034 B TWI698034 B TW I698034B TW 108137375 A TW108137375 A TW 108137375A TW 108137375 A TW108137375 A TW 108137375A TW I698034 B TWI698034 B TW I698034B
Authority
TW
Taiwan
Prior art keywords
magnetoresistance
layer
stress relief
magnetoresistive device
forming
Prior art date
Application number
TW108137375A
Other languages
Chinese (zh)
Other versions
TW202118102A (en
Inventor
巫建勳
張正平
李建輝
楊岱宜
陳永祥
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW108137375A priority Critical patent/TWI698034B/en
Application granted granted Critical
Publication of TWI698034B publication Critical patent/TWI698034B/en
Publication of TW202118102A publication Critical patent/TW202118102A/en

Links

Images

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

A magnetoresistive device includes a magnetoresistor disposed over a substrate, a stress release structure covering a side surface of the magnetoresistor, an electrical connection structure disposed over the magnetoresistor, and a passivation layer disposed over the electrical connection structure and the stress release structure.

Description

磁阻裝置及其形成方法Magnetoresistive device and its forming method

本發明實施例是有關於磁阻裝置,且特別是有關於包含應力釋放結構的磁阻裝置。The embodiment of the present invention relates to a magnetoresistive device, and particularly relates to a magnetoresistive device including a stress relief structure.

磁阻裝置已廣泛地使用於各種電子產品中,舉例而言,諸如個人電腦、手機、以及數位相機等。磁阻裝置包含由磁阻材料構成的磁阻,而磁阻的磁矩排列方向會受到外加磁場改變,使得磁阻的電阻值發生改變。常見的磁阻包含異向性磁阻(anisotropic magnetoresistor,AMR)、巨磁阻(giant magnetoresistor,GMR)、以及穿隧磁阻(tunneling magnetoresistor,TMR)。舉例異向性磁阻(AMR),一般其磁矩的排列方向會平行於磁阻的長度方向;當磁矩的排列方向與流通於磁阻的電流方向平行時,磁阻具有最大的電阻值;當磁矩的排列方向與流通於磁阻的電流方向垂直時,磁阻具有最小的電阻值。Magnetoresistive devices have been widely used in various electronic products, such as personal computers, mobile phones, and digital cameras, for example. The magnetoresistive device includes a magnetoresistance composed of a magnetoresistive material, and the magnetic moment arrangement direction of the magnetoresistance is changed by an external magnetic field, which changes the resistance value of the magnetoresistance. Common magnetoresistance includes anisotropic magnetoresistor (AMR), giant magnetoresistor (GMR), and tunneling magnetoresistor (TMR). For example, anisotropic magnetoresistance (AMR), generally the arrangement direction of the magnetic moment will be parallel to the length direction of the magnetoresistance; when the arrangement direction of the magnetic moment is parallel to the direction of the current flowing in the magnetoresistance, the magnetoresistance has the largest resistance value ; When the arrangement direction of the magnetic moment is perpendicular to the direction of the current flowing in the magnetic resistance, the magnetic resistance has the smallest resistance value.

舉例包含異向性磁阻AMR的磁阻裝置,其電性連接一般是在AMR上形成導電結構的接線,而對於用於感測磁場方向與大小的應用,則會在AMR上形成具有類似理髮店招牌(BarBer Pole)圖案的BBP導電結構,理想的設計是使流通於AMR的電流方向在介於BBP導電結構之間是沿BBP導電結構之間的最短距離。一般設計是使BBP導電結構的長度方向與AMR的長度方向呈夾角45度,使AMR的電阻值對於外加磁場的變化呈最佳的線性反應。For example, a magnetoresistive device including an anisotropic magnetoresistance AMR. The electrical connection is generally a wire forming a conductive structure on the AMR. For applications used to sense the direction and size of the magnetic field, the AMR will have a similar haircut. The ideal design of the BBP conductive structure with the BarBer Pole pattern is that the direction of current flowing in the AMR is between the BBP conductive structures and along the shortest distance between the BBP conductive structures. The general design is that the length direction of the BBP conductive structure and the length direction of the AMR form an angle of 45 degrees, so that the resistance value of the AMR has the best linear response to the change of the applied magnetic field.

目前在磁阻裝置的製造過程中,電連接結構的製程仍有諸多挑戰,特別是降低對磁阻元件的傷害。因此,磁阻裝置的形成方法仍有待進一步改善。At present, in the manufacturing process of the magnetoresistive device, there are still many challenges in the manufacturing process of the electrical connection structure, especially to reduce the damage to the magnetoresistive element. Therefore, the formation method of the magnetoresistive device still needs further improvement.

本發明的一些實施例提供磁阻裝置,此磁阻裝置包含設置於基底之上的磁阻、覆蓋磁阻的側表面的應力釋放結構、設置於磁阻之上的電連接結構、以及設置於電連接結構和應力釋放結構之上的鈍化層。Some embodiments of the present invention provide a magnetoresistive device. The magnetoresistive device includes a magnetoresistive device disposed on a substrate, a stress relief structure covering the side surface of the magnetoresistor, an electrical connection structure disposed on the magnetoresistor, and The passivation layer on the electrical connection structure and the stress relief structure.

本發明的一些實施例提供磁阻裝置的形成方法,此方法包含形成磁阻於基底之上、形成介電材料於磁阻之上、蝕刻介電材料以形成應力釋放結構圍繞磁阻的側表面、形成電連接結構於磁阻之上、以及形成鈍化層覆蓋電連接結構和應力釋放結構。Some embodiments of the present invention provide a method for forming a magnetoresistive device. The method includes forming a magnetoresistance on a substrate, forming a dielectric material on the magnetoresistance, and etching the dielectric material to form a stress relief structure surrounding the side surface of the magnetoresistance , Forming an electrical connection structure on the magnetic resistance, and forming a passivation layer to cover the electrical connection structure and the stress relief structure.

以下揭露提供了許多的範例或實施例,用於實施所提供的磁阻裝置之不同元件。各元件和其配置的具體範例描述如下,以簡化本發明實施例之說明。當然,這些僅僅是範例,並非用以限定本發明實施例。舉例而言,敘述中若提及第一元件形成在第二元件之上,可能包含第一和第二元件直接接觸的實施例,也可能包含額外的元件形成在第一和第二元件之間,使得它們不直接接觸的實施例。此外,本發明實施例可能在不同的範例中重複參考數字及/或字母。如此重複是為了簡明和清楚,而非用以表示所討論的不同實施例之間的關係。The following disclosure provides many examples or embodiments for implementing different components of the provided magnetoresistive device. Specific examples of each element and its configuration are described below to simplify the description of the embodiments of the present invention. Of course, these are only examples and are not used to limit the embodiments of the present invention. For example, if the description mentions that the first element is formed on the second element, it may include an embodiment in which the first and second elements are in direct contact, or may include additional elements formed between the first and second elements. , So that they do not directly touch the embodiment. In addition, the embodiment of the present invention may repeat reference numbers and/or letters in different examples. Such repetition is for conciseness and clarity, and is not used to express the relationship between the different embodiments discussed.

以下描述實施例的一些變化。在不同圖式和說明的實施例中,相似的元件符號被用來標示相似的元件。可以理解的是,在方法的前、中、後可以提供額外的步驟,且一些所敘述的步驟可在該方法的其他實施例被取代或刪除。Some changes of the embodiment are described below. In the embodiments of different drawings and descriptions, similar component symbols are used to denote similar components. It is understood that additional steps may be provided before, during, and after the method, and some of the described steps may be replaced or deleted in other embodiments of the method.

第1A-1D圖是根據一些範例,顯示第1D圖所示之磁阻裝置100在各個不同製程階段的剖面示意圖。FIGS. 1A-1D show schematic cross-sectional views of the magnetoresistive device 100 shown in FIG. 1D at various stages of the manufacturing process according to some examples.

請參考第1D圖,磁阻裝置100包含基底102、磁阻104、以及電連接結構116。基底102可包含主動元件(例如,邏輯電路)、以及位於主動元件之上的內連線結構。內連線結構包含介電層(例如,層間介電層及金屬間介電層)和導電部件(例如,接觸件、導孔、及/或導線),以電性連接主動元件至磁阻104。電連接結構116設置於磁阻104之上,用以改變在電連接結構116之間的磁阻104中之電流的流通方向,使得磁阻104的電阻值對於外加磁場的變化呈線性反應。電連接結構116包含依序堆疊於磁阻104之上的下阻障(barrier)層106’、金屬主體層108’、上阻障層110’、以及抗反射塗層112’。以下說明第1D圖的磁阻裝置100的形成方法。Please refer to FIG. 1D, the magnetoresistive device 100 includes a substrate 102, a magnetoresistive 104, and an electrical connection structure 116. The substrate 102 may include an active device (for example, a logic circuit) and an interconnect structure located on the active device. The interconnect structure includes a dielectric layer (for example, an interlayer dielectric layer and an intermetal dielectric layer) and conductive components (for example, contacts, vias, and/or wires) to electrically connect the active element to the magnetoresistor 104 . The electrical connection structure 116 is disposed on the magnetic resistor 104 to change the direction of current flow in the magnetic resistor 104 between the electrical connection structures 116 so that the resistance value of the magnetic resistor 104 responds linearly to the change of the applied magnetic field. The electrical connection structure 116 includes a lower barrier layer 106', a metal body layer 108', an upper barrier layer 110', and an anti-reflective coating 112' sequentially stacked on the magnetoresistor 104. The method of forming the magnetoresistive device 100 of FIG. 1D will be described below.

請參考第1A圖,提供基底102,並且在基底102之上形成磁阻材料,例如鎳鐵(NiFe)、鈷鐵(CoFe)、鈷鐵棚(CoFeB)、鉑錳(PtMn)、釕(Ru)、銥錳(IrMn)、銅(cu)、及/或鉭(Ta)的堆疊結構。接著,圖案化磁阻材料以形成磁阻104,例如異向性磁阻(AMR)或是巨磁阻(GMR)。圖案化製程包含微影製程和乾蝕刻製程。一般而言,乾蝕刻製程會過蝕刻至基底102的介電層,從而形成深度D1的高低差,例如約500埃(Å)至約1000Å的範圍內。請參考第1B圖,在基底102之上依序形成第一阻障材料106(例如,鈦鎢(TiW))、金屬主體材料108(例如,鋁銅(AlCu)合金)、第二阻障材料110(氮化鈦(TiN))、以及抗反射塗層112。接著,進行圖案化製程,其包含在抗反射塗層112之上形成圖案化光阻層114,如第1B圖所示。圖案化製程包含對抗反射塗層112、第二阻障材料110、和金屬主體材料108進行乾蝕刻製程,以分別形成圖案化抗反射塗層112’、上阻障層110’、和金屬主體層108’,如第1C圖所示。在蝕刻製程中,第一阻障材料106作為蝕刻停止層,以保護下方的磁阻104免於受到蝕刻的損傷。圖案化製程還包含透過灰化(ashing)製程移除圖案化光阻層114。接著,請參考第1D圖,使用濕蝕刻製程移除第一阻障材料106未被金屬主體層108’覆蓋的部分,以形成下阻障層106’。Please refer to Figure 1A, a substrate 102 is provided, and magnetoresistive materials are formed on the substrate 102, such as nickel iron (NiFe), cobalt iron (CoFe), cobalt iron (CoFeB), platinum manganese (PtMn), ruthenium (Ru) ), iridium manganese (IrMn), copper (cu), and/or tantalum (Ta) stack structure. Next, the magnetoresistive material is patterned to form the magnetoresistance 104, such as anisotropic magnetoresistance (AMR) or giant magnetoresistance (GMR). The patterning process includes a lithography process and a dry etching process. Generally speaking, the dry etching process will over-etch the dielectric layer of the substrate 102 to form a height difference of the depth D1, for example, in the range of about 500 Angstroms (Å) to about 1000 Å. Referring to FIG. 1B, a first barrier material 106 (for example, titanium tungsten (TiW)), a metal body material 108 (for example, aluminum copper (AlCu) alloy), and a second barrier material are sequentially formed on the substrate 102 110 (Titanium Nitride (TiN)), and anti-reflective coating 112. Next, a patterning process is performed, which includes forming a patterned photoresist layer 114 on the anti-reflective coating layer 112, as shown in FIG. 1B. The patterning process includes dry etching the anti-reflective coating 112, the second barrier material 110, and the metal body material 108 to form the patterned anti-reflective coating 112', the upper barrier layer 110', and the metal body layer, respectively 108', as shown in Figure 1C. During the etching process, the first barrier material 106 serves as an etching stop layer to protect the magnetoresistor 104 underneath from being damaged by etching. The patterning process also includes removing the patterned photoresist layer 114 through an ashing process. Next, referring to FIG. 1D, a wet etching process is used to remove the portion of the first barrier material 106 that is not covered by the metal body layer 108' to form the lower barrier layer 106'.

值得注意的是,第一阻障材料106與磁阻104之間的黏著力大於磁阻104與基底102的介電層之間的黏著力,所以在灰化光阻層114期間(第1C圖),第一阻障材料106因高溫產生的形變應力,會傾向從磁阻104的圖案邊緣處(例如,區域A)以局部方式裂開來將應力釋放,這造成磁阻104的圖案邊緣被局部裂開的第一阻障材料106黏起而與基底102的介電層分離。如此,後續移除第一阻障材料106的濕蝕刻製程期間(第1D圖),磁阻104的圖案邊緣(例如,區域A)發生局部剝離(peel),從而降低磁阻裝置的製造良率並損害磁阻裝置的可靠度。It is worth noting that the adhesive force between the first barrier material 106 and the magnetoresistor 104 is greater than the adhesive force between the magnetoresistor 104 and the dielectric layer of the substrate 102, so during the ashing of the photoresist layer 114 (Figure 1C) ), the deformation stress of the first barrier material 106 due to high temperature tends to crack locally from the pattern edge of the magnetoresistor 104 (for example, area A) to release the stress, which causes the pattern edge of the magnetoresistor 104 to be The partially split first barrier material 106 sticks and separates from the dielectric layer of the substrate 102. In this way, during the subsequent wet etching process of removing the first barrier material 106 (Figure 1D), the pattern edge (for example, area A) of the magnetoresistive 104 is partially peeled off, thereby reducing the manufacturing yield of the magnetoresistive device And damage the reliability of the magnetoresistive device.

第2圖是根據另一些範例之磁阻裝置200的剖面示意圖,其中相同於前述第1A-1D圖的範例的部件係使用相同的標號並省略其說明。第2圖所示之磁阻裝置200與前述第1D圖之磁阻裝置100的差別在於,磁阻裝置200包含含鉭(Ta)黏著層202。黏著層202形成於磁阻104與基底102之間,並且配置以增加磁阻104與基底102的介電層之間的黏著力,這可阻止第一阻障材料106從磁阻104的圖案邊緣處裂開。因此,在如第1D圖所述的濕蝕刻製程期間,不會在磁阻104的圖案邊緣處(例如,區域A)發生局部剝離。FIG. 2 is a schematic cross-sectional view of the magnetoresistive device 200 according to some other examples, in which the same components as those in the examples in FIGS. 1A-1D use the same reference numerals and their description is omitted. The difference between the magnetoresistive device 200 shown in FIG. 2 and the magnetoresistive device 100 in FIG. 1D is that the magnetoresistive device 200 includes an adhesive layer 202 containing tantalum (Ta). The adhesive layer 202 is formed between the magnetoresistor 104 and the substrate 102, and is configured to increase the adhesive force between the magnetoresistor 104 and the dielectric layer of the substrate 102, which can prevent the first barrier material 106 from moving away from the pattern edge of the magnetoresistor 104 Cracked. Therefore, during the wet etching process as described in FIG. 1D, local peeling does not occur at the pattern edge of the magnetoresistive 104 (for example, the area A).

在第2圖的範例中,如果黏著層202的鉭原子擴散至磁阻104中,會造成磁阻104的磁阻比(MR%)降低。因此,在形成黏著層202與磁阻104之後,製程溫度被限制在300℃以下。舉例而言,在第1A-1D圖之範例中,形成抗反射塗層112的化學氣相沉積(CVD)製程溫度在約300℃至約400℃範圍內。然而,在第2圖的範例中,形成抗反射塗層112的化學氣相沉積(CVD)製程溫度限制在約250℃至約300℃的範圍內。較低溫度的化學氣相沉積(CVD)具有較低沉積速率和較差的厚度均勻度,並且造成較多的不期望顆粒表現,從而降低磁阻裝置200的生產效率和生產良率。此外,製程溫度限制300℃以下導致磁阻104無法透過後續高溫退火來提升磁阻比(MR%)。In the example of FIG. 2, if the tantalum atoms of the adhesive layer 202 diffuse into the magnetoresistor 104, the magnetoresistance ratio (MR%) of the magnetoresistor 104 will decrease. Therefore, after forming the adhesive layer 202 and the magnetoresistance 104, the process temperature is limited to below 300°C. For example, in the example of FIGS. 1A-1D, the chemical vapor deposition (CVD) process temperature for forming the anti-reflective coating 112 is in the range of about 300° C. to about 400° C. However, in the example of FIG. 2, the temperature of the chemical vapor deposition (CVD) process for forming the anti-reflective coating 112 is limited to a range of about 250°C to about 300°C. Lower temperature chemical vapor deposition (CVD) has a lower deposition rate and poor thickness uniformity, and causes more undesirable particle performance, thereby reducing the production efficiency and production yield of the magnetoresistive device 200. In addition, the process temperature limit is less than 300°C, so that the magnetoresistance 104 cannot increase the magnetoresistance ratio (MR%) through subsequent high temperature annealing.

第3A-1至3I-1圖是根據一些實施例,顯示包含應力釋放結構的磁阻裝置在各個不同製程階段的剖面示意圖;第3A-2至3I-2圖是根據一些實施例,顯示此磁阻裝置在各個不同製程階段的上視示意圖,其中第3A-1至3I-1圖分別是沿著第3A-2至3I-2圖中的線I-I擷取。在一些實施例中,在不使用含鉭黏著層的情況下,透過形成應力釋放結構覆蓋磁阻的側表面,釋放了施加於磁阻的應力,這避免磁阻的圖案邊緣處發生局部裂開,進而避免磁阻的圖案邊緣發生局部剝離的問題。Figures 3A-1 to 3I-1 are cross-sectional schematic diagrams showing magnetoresistive devices including stress relief structures at various process stages according to some embodiments; Figures 3A-2 to 3I-2 are based on some embodiments, showing this The top view schematic diagram of the magnetoresistive device at various stages of the manufacturing process, wherein Figures 3A-1 to 3I-1 are taken along line II in Figures 3A-2 to 3I-2, respectively. In some embodiments, without using a tantalum-containing adhesive layer, by forming a stress relief structure to cover the side surface of the magnetoresistor, the stress applied to the magnetoresistor is released, which prevents local cracks at the edge of the magnetoresistance pattern. , Thereby avoiding the problem of local peeling of the pattern edge of the magnetoresistance.

根據一些實施例,提供基底302,如第3A-1圖所示。在一些實施例中,基底302包含半導體基底303、設置於半導體基底303上的主動元件304、以及多層內連線結構305。在一些實施例中,半導體基底303可以是矽基底、矽鍺(SiGe)基底、化合物半導體基底、絕緣層上覆矽(silicon on insulator,SOI)基底、或類似基底。在一些實施例中,主動元件304是邏輯電路,例如電晶體。在一些實施例中,多層內連線結構305包含介電層310(例如金屬間介電層及/或層間介電層)、以及被介電層310圍繞的導電部件(例如,提供垂直電佈線的接觸插塞308及/或導孔314、以及提供水平電佈線的導線312)。According to some embodiments, a substrate 302 is provided, as shown in Figure 3A-1. In some embodiments, the substrate 302 includes a semiconductor substrate 303, an active device 304 disposed on the semiconductor substrate 303, and a multilayer interconnection structure 305. In some embodiments, the semiconductor substrate 303 may be a silicon substrate, a silicon germanium (SiGe) substrate, a compound semiconductor substrate, a silicon on insulator (SOI) substrate, or the like. In some embodiments, the active element 304 is a logic circuit, such as a transistor. In some embodiments, the multilayer interconnection structure 305 includes a dielectric layer 310 (for example, an intermetal dielectric layer and/or an interlayer dielectric layer), and conductive components surrounded by the dielectric layer 310 (for example, to provide vertical electrical wiring The contact plugs 308 and/or vias 314, and wires 312 that provide horizontal electrical wiring).

根據一些實施例,在基底302的介電層310之上形成磁阻材料316,如第3A-1圖所示。在一些實施例中,磁阻材料316包含或者是鎳鐵(NiFe)、鈷鐵(CoFe)、鈷鐵硼(CoFeB)、銅(Cu)、鉑錳(PtMn)、銥錳(IrMn)、釕(Ru)等類似材料、前述之多層、前述之組合、或其他適合用於構成異向性磁阻(AMR)或巨磁阻(GMR)的堆疊結構。在一些實施例中,透過化學氣相沈積(CVD)、物理氣相沉積(PVD)、原子層沉積(ALD)、其他適合沉積技術、或前述之組合,形成磁阻材料316。在一些實施例中,介電層310與磁阻材料316之間不存有含鉭黏著層。According to some embodiments, a magnetoresistive material 316 is formed on the dielectric layer 310 of the substrate 302, as shown in FIG. 3A-1. In some embodiments, the magnetoresistive material 316 includes or is nickel iron (NiFe), cobalt iron (CoFe), cobalt iron boron (CoFeB), copper (Cu), platinum manganese (PtMn), iridium manganese (IrMn), ruthenium (Ru) and similar materials, the foregoing multilayer, the foregoing combination, or other suitable stacked structures for forming anisotropic magnetoresistance (AMR) or giant magnetoresistance (GMR). In some embodiments, the magnetoresistive material 316 is formed by chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), other suitable deposition techniques, or a combination of the foregoing. In some embodiments, there is no adhesion layer containing tantalum between the dielectric layer 310 and the magnetoresistive material 316.

根據一些實施例,在磁阻材料316之上形成保護材料318,如第3A-1和3A-2圖所示。在一些實施例中,保護材料318包含或者是鈦鎢(TiW)、鈦(Ti)、氮化鈦(TiN)、或前述之組合。在一些實施例中,透過物理氣相沉積(PVD)、原子層沉積(ALD)、其他適合沉積技術、或前述之組合,形成保護材料318。在一些實施例中,保護材料318的厚度範圍在約300Å至約1500Å。在一實施例中,保護材料318由鈦鎢(TiW)形成,其中鈦及鎢的重量比為約1:9。According to some embodiments, a protective material 318 is formed on the magnetoresistive material 316, as shown in FIGS. 3A-1 and 3A-2. In some embodiments, the protective material 318 includes or is titanium tungsten (TiW), titanium (Ti), titanium nitride (TiN), or a combination thereof. In some embodiments, the protective material 318 is formed by physical vapor deposition (PVD), atomic layer deposition (ALD), other suitable deposition techniques, or a combination of the foregoing. In some embodiments, the thickness of the protective material 318 ranges from about 300 Å to about 1500 Å. In one embodiment, the protective material 318 is formed of titanium tungsten (TiW), wherein the weight ratio of titanium to tungsten is about 1:9.

根據一些實施例,對保護材料318和磁阻材料316進行圖案化製程,以分別形成保護層319A、319B、以及磁阻317A、317B,如第3B-1和3B-2圖所示。根據一些實施例中,保護層319A的側表面對齊於磁阻317A的側表面之上,且保護層319B的側表面對齊於磁阻317B的側表面之上。在一些實施例中,圖案化製程包含微影製程和蝕刻製程。舉例而言,在保護材料318(第3A-1圖)之上形成遮罩元件(例如,光阻),接著蝕刻移除保護材料318和磁阻材料316未被遮罩元件覆蓋的部分,直到暴露出基底302的介電層310。蝕刻製程可以是乾蝕刻,例如離子束蝕刻(ion bean etch,IBE)、反應性離子蝕刻(reactive ion etch,RIE)、或其他適合蝕刻技術。根據一些實施例,多層內連線結構305耦接主動元件304至磁阻317A及/或磁阻317B、及/或磁阻317A和磁阻317B下方的電連接結構(未顯示)。According to some embodiments, a patterning process is performed on the protective material 318 and the magnetoresistive material 316 to form the protective layers 319A, 319B, and the magnetoresistive layers 317A, 317B, respectively, as shown in FIGS. 3B-1 and 3B-2. According to some embodiments, the side surface of the protective layer 319A is aligned on the side surface of the magnetic resistor 317A, and the side surface of the protective layer 319B is aligned on the side surface of the magnetic resistor 317B. In some embodiments, the patterning process includes a lithography process and an etching process. For example, a mask element (for example, photoresist) is formed on the protective material 318 (Figure 3A-1), and then the parts of the protective material 318 and the magnetoresistive material 316 that are not covered by the mask element are removed by etching until The dielectric layer 310 of the substrate 302 is exposed. The etching process can be dry etching, such as ion bean etch (IBE), reactive ion etch (RIE), or other suitable etching techniques. According to some embodiments, the multilayer interconnection structure 305 couples the active device 304 to the magnetic resistance 317A and/or the magnetic resistance 317B, and/or the electrical connection structure (not shown) under the magnetic resistance 317A and the magnetic resistance 317B.

根據一些實施例,在基底302、磁阻317A、317B、以及保護層319A、319B之上順性應地(conformally)形成介電材料320,如第3C-1和3C-2圖所示。根據一些實施例,介電材料320沿著介電層310的上表面、磁阻317A、317B的側表面、以及保護層319A、319B的側表面和上表面順應性地橫向延伸。在一些實施例中,介電材料320包含或者是氧化矽、氮化矽、氮氧化矽、前述之組合、或其他適合介電材料。在一些實施例中,透過化學氣相沉積(CVD)(例如,低溫化學氣相沉積)、物理氣相沉積(PVD)、原子層沉積(ALD)、或其他適合沉積技術,形成介電材料320。在一些實施例中,介電材料320的厚度範圍在約500Å至約5000Å。According to some embodiments, the dielectric material 320 is conformally formed on the substrate 302, the magnetoresistance 317A, 317B, and the protective layers 319A, 319B, as shown in FIGS. 3C-1 and 3C-2. According to some embodiments, the dielectric material 320 conformally extends laterally along the upper surface of the dielectric layer 310, the side surfaces of the magnetoresistance 317A, 317B, and the side surfaces and upper surfaces of the protective layers 319A, 319B. In some embodiments, the dielectric material 320 includes or is silicon oxide, silicon nitride, silicon oxynitride, a combination of the foregoing, or other suitable dielectric materials. In some embodiments, the dielectric material 320 is formed by chemical vapor deposition (CVD) (for example, low temperature chemical vapor deposition), physical vapor deposition (PVD), atomic layer deposition (ALD), or other suitable deposition techniques . In some embodiments, the thickness of the dielectric material 320 ranges from about 500 Å to about 5000 Å.

根據一些實施例,對介電材料320進行蝕刻製程,直到暴露出保護層319A、319B的上表面、以及介電層310的上表面,如第3D-1和3D-2圖所示。蝕刻製程可以是乾蝕刻,例如離子束蝕刻(IBE)、反應性離子蝕刻(RIE)、或其他適合蝕刻技術。在一些實施例中,此蝕刻製程是無遮罩蝕刻製程,也就是說,在蝕刻製程期間,沒有遮罩元件形成於介電材料320之上。According to some embodiments, the dielectric material 320 is etched until the upper surfaces of the protective layers 319A and 319B and the upper surface of the dielectric layer 310 are exposed, as shown in FIGS. 3D-1 and 3D-2. The etching process may be dry etching, such as ion beam etching (IBE), reactive ion etching (RIE), or other suitable etching techniques. In some embodiments, the etching process is a maskless etching process, that is, during the etching process, no mask elements are formed on the dielectric material 320.

根據一些實施例,在蝕刻製程之後,剩餘的介電材料320形成應力釋放結構321A、321B。根據一些實施例,應力釋放結構321A和應力釋放結構321B各自以封閉環形方式橫向延伸,以圍繞磁阻317A的側表面和磁阻317B的側表面。根據一些實施例,應力釋放結構321A、321B完全覆蓋磁阻317A、317B的側表面。也就是說,在一些實施例中,應力釋放結構321A、321B向上延伸超出磁阻317A、317B的上表面,以至少部分覆蓋保護層319A、319B的側表面。根據一些實施例,應力釋放結構321A、321B面向磁阻317A、317B的內側表面抵接磁阻317A、317B和保護層319A、319B。According to some embodiments, after the etching process, the remaining dielectric material 320 forms the stress relief structures 321A, 321B. According to some embodiments, the stress relief structure 321A and the stress relief structure 321B each extend laterally in a closed loop manner to surround the side surface of the magnetic resistor 317A and the side surface of the magnetic resistor 317B. According to some embodiments, the stress relief structure 321A, 321B completely covers the side surface of the magnetoresistor 317A, 317B. That is, in some embodiments, the stress relief structure 321A, 321B extends upwardly beyond the upper surface of the magnetoresistor 317A, 317B to at least partially cover the side surface of the protective layer 319A, 319B. According to some embodiments, the inner surface of the stress relief structure 321A, 321B facing the magnetoresistor 317A, 317B abuts the magnetoresistor 317A, 317B and the protective layer 319A, 319B.

根據一些實施例,應力釋放結構321A、321B配置為將磁阻317A、317B上方的材料層(例如,保護層319A、319B、及後續形成材料層)施加於磁阻317A、317B的應力轉移至應力釋放結構321A、321B,從而釋放施加於磁阻317A、317B的應力。由此,應力釋放結構透過覆蓋磁阻與保護層於邊緣處的界面,從而避免磁阻圖案於邊緣處發生局部裂開,進而剝離的問題。According to some embodiments, the stress relief structure 321A, 321B is configured to transfer the stress applied to the magnetoresistor 317A, 317B by the material layer above the magnetoresistor 317A, 317B (for example, the protective layer 319A, 319B, and the subsequent material layer) to the stress The structure 321A, 321B is released, thereby releasing the stress applied to the magnetoresistance 317A, 317B. In this way, the stress relief structure covers the interface between the magnetoresistance and the protective layer at the edge, thereby avoiding the problem of local cracking and peeling of the magnetoresistive pattern at the edge.

根據一些實施例,形成第一阻障材料322於基底302、應力釋放結構321A、321B、以及保護層319A、319B之上,如第3E-1圖所示。根據一些實施例,第一阻障材料322沿著介電層310的上表面、應力釋放結構321A、321B的外側表面、以及保護層319A、319B的上表面(及如果有暴露出來側表面)順應性地延伸。在一些實施例中,第一阻障材料322包含或者是鈦鎢(TiW)、氮化鈦(TiN)、鈦(Ti)、氮化鉭(TaN)、鉭(Ta)、前述之組合、或其他適合阻障材料。在一些實施例中,透過物理氣相沉積(PVD)、原子層沉積(ALD)、或其他適合沉積技術,形成第一阻障材料322。在一些實施例中,第一阻障材料322的厚度範圍在約250Å至約750Å。According to some embodiments, the first barrier material 322 is formed on the substrate 302, the stress relief structures 321A, 321B, and the protective layers 319A, 319B, as shown in FIG. 3E-1. According to some embodiments, the first barrier material 322 conforms along the upper surface of the dielectric layer 310, the outer surface of the stress relief structure 321A, 321B, and the upper surface (and if any exposed side surfaces) of the protective layers 319A, 319B Sexually extend. In some embodiments, the first barrier material 322 includes or is titanium tungsten (TiW), titanium nitride (TiN), titanium (Ti), tantalum nitride (TaN), tantalum (Ta), a combination of the foregoing, or Other suitable barrier materials. In some embodiments, the first barrier material 322 is formed by physical vapor deposition (PVD), atomic layer deposition (ALD), or other suitable deposition techniques. In some embodiments, the thickness of the first barrier material 322 ranges from about 250 Å to about 750 Å.

根據一些實施例,形成金屬主體材料324於第一阻障材料322之上,如第3E-1圖所示。在一些實施例中,金屬主體材料324包含或者是鋁銅(AlCu)、鋁矽銅(AlSiCu)、前述之組合、或其他適合金屬材料。在一些實施例中,透過物理氣相沉積(PVD)、原子層沉積(ALD)、電鍍、或其他適合沉積技術,形成金屬主體材料324。在一些實施例中,金屬主體材料324的厚度範圍在約3000Å至約8000Å內。According to some embodiments, the metal body material 324 is formed on the first barrier material 322, as shown in FIG. 3E-1. In some embodiments, the metal body material 324 includes or is aluminum copper (AlCu), aluminum silicon copper (AlSiCu), a combination of the foregoing, or other suitable metal materials. In some embodiments, the metal body material 324 is formed by physical vapor deposition (PVD), atomic layer deposition (ALD), electroplating, or other suitable deposition techniques. In some embodiments, the thickness of the metal body material 324 ranges from about 3000 Å to about 8000 Å.

根據一些實施例,形成第二阻障材料326於金屬主體材料324之上,如第3E-1和3E-2圖所示。在一些實施例中,第二阻障材料326包含或者是氮化鈦(TiN)、鈦(Ti)、氮化鉭(TiN)、鉭(Ta)、前述之組合、或其他適合阻障材料。在一些實施例中,透過物理氣相沉積(PVD)、原子層沉積(ALD)、或其他適合沉積技術,形成第二阻障材料326。在一些實施例中,第二阻障材料326的厚度範圍在約250Å至約500Å。According to some embodiments, the second barrier material 326 is formed on the metal body material 324, as shown in FIGS. 3E-1 and 3E-2. In some embodiments, the second barrier material 326 includes or is titanium nitride (TiN), titanium (Ti), tantalum nitride (TiN), tantalum (Ta), a combination of the foregoing, or other suitable barrier materials. In some embodiments, the second barrier material 326 is formed by physical vapor deposition (PVD), atomic layer deposition (ALD), or other suitable deposition techniques. In some embodiments, the thickness of the second barrier material 326 ranges from about 250 Å to about 500 Å.

根據一些實施例,對第二阻障材料326和金屬主體材料324進行圖案化製程1000。圖案化製程1000包含微影製程,形成遮罩元件328(例如,光阻)於第二阻障材料326的上表面之上,如第3F-1和3F-2圖所示。根據一些實施例,遮罩元件328的圖案對應於後續形成於磁阻317A、317B之上的電連接結構的圖案。在一些實施例中,在形成遮罩元件328之前,可形成抗反射塗層(ARC)於第二阻障材料326的上表面之上。According to some embodiments, the patterning process 1000 is performed on the second barrier material 326 and the metal body material 324. The patterning process 1000 includes a photolithography process to form a mask element 328 (for example, a photoresist) on the upper surface of the second barrier material 326, as shown in FIGS. 3F-1 and 3F-2. According to some embodiments, the pattern of the mask element 328 corresponds to the pattern of the electrical connection structure subsequently formed on the magnetoresistor 317A, 317B. In some embodiments, before forming the mask element 328, an anti-reflective coating (ARC) may be formed on the upper surface of the second barrier material 326.

根據一些實施例,圖案化製程1000還包含對第二阻障材料326和金屬主體材料324進行蝕刻製程1100,直到暴露出第一阻障材料322的上表面,如第3G-1和3G-2圖所示。根據一些實施例,在蝕刻製程1100中,第一阻障材料322作為蝕刻停止層,以保護下方的磁阻317A、317B免於受到蝕刻的傷害。在一些實施例中,蝕刻製程1100可以是乾蝕刻,例如離子束蝕刻(ion bean etch,IBE)、反應性離子蝕刻(reactive ion etch,RIE)、或其他適合蝕刻技術。According to some embodiments, the patterning process 1000 further includes performing an etching process 1100 on the second barrier material 326 and the metal body material 324 until the upper surface of the first barrier material 322 is exposed, such as 3G-1 and 3G-2 As shown in the figure. According to some embodiments, in the etching process 1100, the first barrier material 322 serves as an etching stop layer to protect the underlying magnetoresistor 317A, 317B from being damaged by etching. In some embodiments, the etching process 1100 may be dry etching, such as ion bean etch (IBE), reactive ion etch (RIE), or other suitable etching techniques.

根據一些實施例,蝕刻製程1100移除第二阻障材料326和金屬主體材料324未被遮罩元件328覆蓋的部分,使得遮罩圖案328轉移至第二阻障材料326和金屬主體材料324中。根據一些實施例,剩餘的第二阻障材料326和金屬主體材料324分別稱為上阻障層327A、327B以及金屬主體層325A、325B,其中金屬主體層325B並未顯示於第3G-1和3G-2圖。根據一些實施例,上阻障層327A和金屬主體層325A對應於磁阻319A,並且上阻障層327B和金屬主體層325B對應於磁阻319B。根據一些實施例,上阻障層327A對齊於金屬主體層325A之上,並且上阻障層327B對齊於金屬主體層325B之上。According to some embodiments, the etching process 1100 removes the portions of the second barrier material 326 and the metal body material 324 that are not covered by the mask element 328, so that the mask pattern 328 is transferred to the second barrier material 326 and the metal body material 324 . According to some embodiments, the remaining second barrier material 326 and the metal body material 324 are referred to as upper barrier layers 327A, 327B and metal body layers 325A, 325B, respectively, where the metal body layer 325B is not shown in 3G-1 and Figure 3G-2. According to some embodiments, the upper barrier layer 327A and the metal body layer 325A correspond to the magnetoresistance 319A, and the upper barrier layer 327B and the metal body layer 325B correspond to the magnetoresistance 319B. According to some embodiments, the upper barrier layer 327A is aligned on the metal body layer 325A, and the upper barrier layer 327B is aligned on the metal body layer 325B.

根據一些實施例,圖案化製程1000還包含使用灰化製程移除遮罩元件328(例如,光阻),從而暴露出上阻障層327A、327B。According to some embodiments, the patterning process 1000 further includes using an ashing process to remove the mask element 328 (for example, photoresist), thereby exposing the upper barrier layers 327A, 327B.

根據一些實施例,使用金屬主體層325A、325B作為蝕刻遮罩,對第一阻障材料322和保護層319A、319B進行濕蝕刻製程1200,直到暴露出磁阻317A和317B的上表面和介電層310的上表面,如第3H-1和3H-2圖所示。根據一些實施例,應力釋放結構321A、321B面向磁阻317A、318B的內側表面也部分暴露出來。根據一些實施例,濕蝕刻製程1200使用含過氧化氫(H 2O 2)的溶液,以避免磁阻317A和磁阻317B受到損傷。 According to some embodiments, the metal body layers 325A, 325B are used as etching masks, and the first barrier material 322 and the protective layers 319A, 319B are subjected to a wet etching process 1200 until the upper surfaces of the magnetoresistor 317A and 317B and the dielectric are exposed. The upper surface of layer 310 is shown in Figures 3H-1 and 3H-2. According to some embodiments, the inner surface of the stress relief structure 321A, 321B facing the magnetoresistance 317A, 318B is also partially exposed. According to some embodiments, the wet etching process 1200 uses a solution containing hydrogen peroxide (H 2 O 2 ) to prevent the magnetoresistance 317A and the magnetoresistance 317B from being damaged.

根據一些實施例,濕蝕刻製程1200移除了第一阻障材料322和保護層319A、319B未被金屬主體層325A、325B覆蓋的部分。根據一些實施例,剩餘的第一阻障材料322稱為下阻障層323A和323B,並且剩餘的保護層319A、319B標示為保護層319A’、319B’,其中下阻障層323B和保護層319B’並未顯示於第3H-1和3H-2圖。根據一些實施例,下阻障層323A對齊於金屬主體層325A之下,且下阻障層323B對齊於金屬主體層325B之下。根據一些實施例,上阻障層327A、金屬主體層325A、以及下阻障層323A結合以形成磁阻317A上的電連接結構330A,並且上阻障層327B、金屬主體層325B、以及下阻障層323B結合以形成磁阻317B上的電連接結構330B。According to some embodiments, the wet etching process 1200 removes the portions of the first barrier material 322 and the protective layers 319A, 319B that are not covered by the metal body layers 325A, 325B. According to some embodiments, the remaining first barrier material 322 is referred to as lower barrier layers 323A and 323B, and the remaining protective layers 319A, 319B are labeled as protective layers 319A', 319B', wherein the lower barrier layer 323B and the protective layer 319B' is not shown in Figures 3H-1 and 3H-2. According to some embodiments, the lower barrier layer 323A is aligned under the metal body layer 325A, and the lower barrier layer 323B is aligned under the metal body layer 325B. According to some embodiments, the upper barrier layer 327A, the metal body layer 325A, and the lower barrier layer 323A are combined to form the electrical connection structure 330A on the magnetoresistance 317A, and the upper barrier layer 327B, the metal body layer 325B, and the lower barrier layer The barrier layers 323B are combined to form an electrical connection structure 330B on the magnetoresistive 317B.

根據一些實施例,電連接結構330A(或330B)配置以改變在電連接結構330A(或330B)之間的磁阻317A(或317B)中之電流的流通方向,使磁阻值對於外加磁場的變化呈線性反應。根據一些實施例,電連接結構330A、330B的延伸方向與磁阻317A、317B的延伸方向的夾角可以為約45度。根據一些實施例,電連接結構330A、330B橫向延伸超出應力釋放結構321A、321B背離磁阻317A、317B的外側表面。也就是說,電連接結構330A、330B部分覆蓋應力釋放結構321A、321B的外側表面。According to some embodiments, the electrical connection structure 330A (or 330B) is configured to change the flow direction of the current in the magnetic resistance 317A (or 317B) between the electrical connection structure 330A (or 330B), so that the magnetic resistance value is relatively to the applied magnetic field. The change is linear. According to some embodiments, the angle between the extension direction of the electrical connection structure 330A, 330B and the extension direction of the magnetic resistance 317A, 317B may be about 45 degrees. According to some embodiments, the electrical connection structure 330A, 330B extends laterally beyond the outer surface of the stress relief structure 321A, 321B away from the magnetic resistance 317A, 317B. In other words, the electrical connection structures 330A, 330B partially cover the outer surfaces of the stress relief structures 321A, 321B.

根據一些實施例,透過覆蓋磁阻與保護層於邊緣處的界面,應力釋放結構321A、321B釋放施加於磁阻317A、317B的應力,因而避免了磁阻317A、317B的圖案邊緣處發生局部裂開。由此,在進行濕蝕刻製程1200期間,如前面第1A-1D圖之範例所述的磁阻的圖案邊緣發生局部剝離的問題得以避免。According to some embodiments, by covering the interface between the magnetoresistor and the protective layer at the edge, the stress relief structure 321A, 321B releases the stress applied to the magnetoresistor 317A, 317B, thereby avoiding local cracks at the pattern edge of the magnetoresistor 317A, 317B. open. As a result, during the wet etching process 1200, the problem of local peeling of the pattern edges of the magnetoresistance as described in the example of FIGS. 1A-1D above can be avoided.

根據一些實施例,形成鈍化層332覆蓋介電層310以及電連接結構330A、330B,如第3I-1和3I-2圖所示。接著,形成開口334通過鈍化層332,以暴露出電連接結構330A之上阻障層327A的上表面,從而製得磁阻裝置300。在一些實施例中,鈍化層330包含或者是氧化矽、氮化矽、氮氧化矽、或前述之組合。在一些實施例中,透過化學氣相沈積(CVD)形成鈍化層330。According to some embodiments, a passivation layer 332 is formed to cover the dielectric layer 310 and the electrical connection structures 330A, 330B, as shown in FIGS. 3I-1 and 3I-2. Next, an opening 334 is formed to pass through the passivation layer 332 to expose the upper surface of the barrier layer 327A on the electrical connection structure 330A, so that the magnetoresistive device 300 is manufactured. In some embodiments, the passivation layer 330 includes or is silicon oxide, silicon nitride, silicon oxynitride, or a combination thereof. In some embodiments, the passivation layer 330 is formed by chemical vapor deposition (CVD).

根據一些實施例,由於磁阻317A、318B與介電層310之間並無含鉭黏著層,形成鈍化層332的化學氣相沈積(CVD)可執行於較高的溫度,例如約400℃至約450℃的溫度的範圍內。使用較高溫度執行的化學氣相沉積來形成鈍化層332,不僅得致較高沉積速率和較佳的厚度均勻度,並且有著較少的不期望顆粒表現,進而提升磁阻裝置的生產效率和生產良率。According to some embodiments, since there is no tantalum-containing adhesion layer between the magnetoresistor 317A, 318B and the dielectric layer 310, chemical vapor deposition (CVD) for forming the passivation layer 332 can be performed at a higher temperature, for example, about 400°C to The temperature range is about 450°C. The use of chemical vapor deposition performed at a higher temperature to form the passivation layer 332 not only results in a higher deposition rate and better thickness uniformity, but also has fewer undesirable particles, thereby improving the production efficiency and performance of the magnetoresistive device. Production yield.

此外,根據一些實施例,於形成鈍化層332的開口334之後,可對磁阻裝置300執行高溫退火,例如退火溫度在350℃至約450℃範圍內的溫度,以改善磁阻317A、318B的特性,例如包含提高磁阻比(MR%)與降低片電阻(Rsq)。In addition, according to some embodiments, after the opening 334 of the passivation layer 332 is formed, high temperature annealing may be performed on the magnetoresistive device 300, for example, the annealing temperature is in the range of 350° C. to about 450° C., to improve the magnetoresistance 317A, 318B. Features include, for example, increasing the magnetoresistance ratio (MR%) and reducing the sheet resistance (Rsq).

第4A-1至4H-1圖是根據一些實施例,顯示包含應力釋放結構的磁阻裝置在各個不同製程階段的剖面示意圖;第4A-2至4H-2圖是根據一些實施例,顯示磁阻裝置在各個不同製程階段的上視示意圖,其中第4A-1至4H-1圖分別是沿著第4A-2至4H-2圖中的線I-I擷取。Figures 4A-1 to 4H-1 are cross-sectional schematic diagrams showing magnetoresistive devices including stress relief structures at various stages of the manufacturing process according to some embodiments; Figures 4A-2 to 4H-2 are diagrams showing magnetic properties according to some embodiments The top view schematic diagram of the resistance device at various stages of the process, in which Figures 4A-1 to 4H-1 are taken along line II in Figures 4A-2 to 4H-2, respectively.

第4A-1至4H-2圖的實施例的磁阻裝置與第3A-1至3I-2圖的實施例的磁阻裝置大致上相似,除了應力釋放結構。第4A-1至4H-2圖中相同於前述第3A-1至3I-2圖之實施例的部件係使用相同的標號並省略其說明。The magnetoresistive device of the embodiment in FIGS. 4A-1 to 4H-2 is substantially similar to the magnetoresistive device of the embodiment in FIGS. 3A-1 to 3I-2, except for the stress relief structure. The components in Figures 4A-1 to 4H-2 that are the same as those of the aforementioned embodiment in Figures 3A-1 to 3I-2 are given the same reference numerals and their description is omitted.

在形成保護層319A、319B以及磁阻317A、317B之後,在基底302、磁阻317A、317B、以及保護層319A、319B之上形成介電材料420,如第4A-1和4A-2圖所示。在一些實施例中,介電材料420包含或者是氧化矽、氮化矽、氮氧化矽、前述之組合、或其他適合介電材料。在一些實施例中,透過化學氣相沉積(CVD)(例如,低溫化學氣相沉積)、物理氣相沉積(PVD)、原子層沉積(ALD)、或其他適合沉積技術,形成介電材料420。在一些實施例中,介電材料420的厚度範圍在約500Å至約5000Å。After the protective layers 319A, 319B and the magnetoresistor 317A, 317B are formed, a dielectric material 420 is formed on the substrate 302, the magnetoresistor 317A, 317B, and the protective layers 319A, 319B, as shown in FIGS. 4A-1 and 4A-2. Show. In some embodiments, the dielectric material 420 includes or is silicon oxide, silicon nitride, silicon oxynitride, a combination of the foregoing, or other suitable dielectric materials. In some embodiments, the dielectric material 420 is formed by chemical vapor deposition (CVD) (for example, low temperature chemical vapor deposition), physical vapor deposition (PVD), atomic layer deposition (ALD), or other suitable deposition techniques . In some embodiments, the thickness of the dielectric material 420 ranges from about 500 Å to about 5000 Å.

根據一些實施例,介電材料420包含延伸於介電層305之上的平坦部424、以及對應於且覆蓋磁阻317A、317B的突起部422A、422B。根據一些實施例,突起部422A、422B突出於平坦部424之上。According to some embodiments, the dielectric material 420 includes a flat portion 424 extending above the dielectric layer 305, and protrusions 422A, 422B corresponding to and covering the magnetoresistor 317A, 317B. According to some embodiments, the protrusions 422A, 422B protrude above the flat portion 424.

根據一些實施例,全面地形成光阻材料440於介電材料420之上,如第4B-1和4B-2圖所示。According to some embodiments, the photoresist material 440 is fully formed on the dielectric material 420, as shown in FIGS. 4B-1 and 4B-2.

根據一些實施例,回蝕光阻材料440,直到暴露出介電材料420的突起部422A、422B,如第4C-1和4C-2圖所示。根據一些實施例,在回蝕製程之後,剩餘的光阻材料440留在介電材料420的平坦部424之上,並標示為光阻材料440’。According to some embodiments, the photoresist material 440 is etched back until the protrusions 422A, 422B of the dielectric material 420 are exposed, as shown in FIGS. 4C-1 and 4C-2. According to some embodiments, after the etch-back process, the remaining photoresist material 440 remains on the flat portion 424 of the dielectric material 420 and is labeled as photoresist material 440'.

根據一些實施例,對介電材料420和光阻材料440’進行蝕刻製程,直到暴露出保護層319A、319B的上表面,如第4D-1和4D-2圖所示。根據一些實施例,在蝕刻製程之後,剩餘的介電材料420形成應力釋放結構421。在一些實施例中,蝕刻製程可以是乾蝕刻,例如離子束蝕刻(IBE)、反應性離子蝕刻(RIE)、或其他適合蝕刻技術。According to some embodiments, the dielectric material 420 and the photoresist material 440' are etched until the upper surfaces of the protective layers 319A and 319B are exposed, as shown in FIGS. 4D-1 and 4D-2. According to some embodiments, after the etching process, the remaining dielectric material 420 forms a stress relief structure 421. In some embodiments, the etching process may be dry etching, such as ion beam etching (IBE), reactive ion etching (RIE), or other suitable etching techniques.

在一些實施例中,在蝕刻製程期間,光阻材料440’ 完全耗盡。根據一些實施例,由於介電材料420和光阻材料440’之間存有蝕刻選擇性,所以介電材料420的平坦部424留在介電層310的上表面上,從而形成應力釋放結構421的平坦部424’。再者,蝕刻製程移除介電材料420在保護層319A、319B上方的突起部424A、424B,從而形成應力釋放結構421的突起部426A和426B。In some embodiments, the photoresist material 440' is completely depleted during the etching process. According to some embodiments, due to the etch selectivity between the dielectric material 420 and the photoresist material 440', the flat portion 424 of the dielectric material 420 remains on the upper surface of the dielectric layer 310, thereby forming the stress relief structure 421 Flat portion 424'. Furthermore, the etching process removes the protrusions 424A and 424B of the dielectric material 420 above the protective layers 319A and 319B, thereby forming the protrusions 426A and 426B of the stress relief structure 421.

根據一些實施例,突起部426A和426B突出於平坦部424’之上。根據一些實施例,突起部426A和426B各自以封閉環形方式橫向延伸,以圍繞磁阻317A和磁阻317B的側表面。根據一些實施例,突起部426A和426B完全覆蓋磁阻317A、317B的側表面。也就是說,突起部426A和426B向上延伸超出磁阻317A、317B的上表面,以至少部分覆蓋保護層319A、319B的側表面。根據一些實施例,突起部426A和426B面向磁阻317A、317B的內側表面抵接磁阻317A、317B和保護層319A、319B。根據一些實施例,平坦部424延伸於介電層310之上,且延伸於突起部426A和突起部426B之間。According to some embodiments, the protrusions 426A and 426B protrude above the flat portion 424'. According to some embodiments, the protrusions 426A and 426B each extend laterally in a closed loop manner to surround the side surfaces of the magnetic resistor 317A and the magnetic resistor 317B. According to some embodiments, the protrusions 426A and 426B completely cover the side surfaces of the magnetic resistors 317A and 317B. That is, the protrusions 426A and 426B extend upwardly beyond the upper surface of the magnetic resistors 317A and 317B to at least partially cover the side surfaces of the protective layers 319A and 319B. According to some embodiments, the inner side surfaces of the protrusions 426A and 426B facing the magnetic resistors 317A, 317B abut the magnetic resistors 317A, 317B and the protective layers 319A, 319B. According to some embodiments, the flat portion 424 extends above the dielectric layer 310 and extends between the protrusion 426A and the protrusion 426B.

根據一些實施例,依序形成第一阻障材料322、金屬主體材料324、以及第二阻障材料326於應力釋放結構421以及保護層319A、319B之上,如第4E-1和4E-2圖所示。According to some embodiments, the first barrier material 322, the metal body material 324, and the second barrier material 326 are sequentially formed on the stress relief structure 421 and the protective layers 319A and 319B, such as 4E-1 and 4E-2 As shown in the figure.

根據一些實施例,對第二阻障材料326和金屬主體材料324進行如前述關於第3F-1至3G-2的圖案化製程1000,以形成上阻障層327A、327B以及金屬主體層325A、325B,如第4F-1和4F-2圖所示。其中,金屬主體層325B並未顯示於第4F-1和4F-2圖。根據一些實施例,在圖案化製程1000的灰化製程之後,暴露出上阻障層327A、327B。According to some embodiments, the second barrier material 326 and the metal body material 324 are subjected to the patterning process 1000 described above with respect to 3F-1 to 3G-2 to form the upper barrier layers 327A, 327B and the metal body layer 325A, 325B, as shown in Figures 4F-1 and 4F-2. Among them, the metal body layer 325B is not shown in Figures 4F-1 and 4F-2. According to some embodiments, after the ashing process of the patterning process 1000, the upper barrier layers 327A and 327B are exposed.

根據一些實施例,使用金屬主體層325A、325B作為蝕刻遮罩,對第一阻障材料322和保護層319A、319B進行如前述關於第3H-1和3H-2的濕蝕刻製程1200,直到暴露出磁阻317A和317B的上表面和應力釋放結構421,如第4G-1和4G-2圖所示。根據一些實施例,應力釋放結構421的突起部426A、426B面向磁阻317A、317B的側表面也部分暴露出來。According to some embodiments, the metal body layers 325A, 325B are used as etching masks, and the first barrier material 322 and the protective layers 319A, 319B are subjected to the wet etching process 1200 as described above with respect to the 3H-1 and 3H-2 until exposed The upper surfaces of the magnetic resistors 317A and 317B and the stress relief structure 421 are as shown in Figs. 4G-1 and 4G-2. According to some embodiments, the side surfaces of the protrusions 426A, 426B of the stress relief structure 421 facing the magnetoresistor 317A, 317B are also partially exposed.

根據一些實施例,在濕蝕刻製程1200之後,剩餘的第一阻障材料322稱為下阻障層323A和323B,並且剩餘的保護層319A、319B標示為保護層319A、319B’,其中下阻障層323B和保護層319B’並未顯示於第4G-1和4G-2圖。根據一些實施例,上阻障層327A、金屬主體層325A、以及下阻障層323A結合以形成磁阻317A上的電連接結構330A,並且上阻障層327B、金屬主體層325B、以及下阻障層323B結合以形成磁阻317B上的電連接結構330B。根據一些實施例,電連接結構330A、330B橫向延伸超出應力釋放結構421的突起部426A、426B,並且部分覆蓋應力釋放結構421的平坦部424’的上表面。According to some embodiments, after the wet etching process 1200, the remaining first barrier material 322 is referred to as lower barrier layers 323A and 323B, and the remaining protective layers 319A and 319B are denoted as protective layers 319A, 319B', where the lower barrier materials The barrier layer 323B and the protective layer 319B' are not shown in FIGS. 4G-1 and 4G-2. According to some embodiments, the upper barrier layer 327A, the metal body layer 325A, and the lower barrier layer 323A are combined to form the electrical connection structure 330A on the magnetoresistor 317A, and the upper barrier layer 327B, the metal body layer 325B, and the lower barrier layer The barrier layers 323B are combined to form an electrical connection structure 330B on the magnetoresistive 317B. According to some embodiments, the electrical connection structures 330A, 330B extend laterally beyond the protrusions 426A, 426B of the stress relief structure 421, and partially cover the upper surface of the flat portion 424' of the stress relief structure 421.

根據一些實施例,透過覆蓋磁阻與保護層於邊緣處的界面,應力釋放結構421的突起部426A、426B釋放了施加於磁阻317A、317B的應力,因而避免了磁阻317A、317B的圖案邊緣處發生局部裂開。由此,在進行濕蝕刻製程1200的期間,如第1A-1D圖之範例所述的磁阻的圖案邊緣發生局部剝離的問題得以避免。 According to some embodiments, by covering the interface between the magnetoresistance and the protective layer at the edge, the protrusions 426A, 426B of the stress relief structure 421 release the stress applied to the magnetoresistor 317A, 317B, thereby avoiding the pattern of the magnetoresistor 317A, 317B Local cracks occurred at the edges. Therefore, during the wet etching process 1200, the problem of local peeling of the pattern edges of the magnetoresistance as described in the example of FIGS. 1A-1D can be avoided.

根據一些實施例,形成鈍化層332覆蓋基底302以及電連接結構330A、330B,如第4H-1和4H-2圖所示。接著,形成開口334通過鈍化層332,以暴露出電連接結構330A之上阻障層337A的上表面,從而製得磁阻裝置400。 According to some embodiments, the passivation layer 332 is formed to cover the substrate 302 and the electrical connection structures 330A, 330B, as shown in FIGS. 4H-1 and 4H-2. Next, an opening 334 is formed to pass through the passivation layer 332 to expose the upper surface of the barrier layer 337A on the electrical connection structure 330A, so that the magnetoresistive device 400 is manufactured.

第5A和5B圖是根據一些實施例之磁阻裝置的一部分,以說明應力釋放結構的一些細節。 Figures 5A and 5B are a part of a magnetoresistive device according to some embodiments to illustrate some details of the stress relief structure.

根據一些實施例,為了完全移除未被遮罩元件覆蓋的磁阻材料316,形成磁阻317A、317B的蝕刻製程(第3B-1圖)進一步凹蝕基底302的介電層310,從而形成平台510M,如第5A和5B圖所示。根據一些實施例,前述關於第3A-1至3I-2圖之應力釋放結構321A(或321B)覆蓋且圍繞平台510M的側表面,如第5A圖所示圖。根據一些實施例,前述關於第4A-1至4H-2圖之應力釋放結構421的突起部426A(或426B)覆蓋且圍繞平台510M的側表面,如第5B圖所示。 According to some embodiments, in order to completely remove the magnetoresistive material 316 not covered by the mask element, the etching process of forming the magnetoresistor 317A and 317B (FIG. 3B-1) further etches the dielectric layer 310 of the substrate 302, thereby forming Platform 510M, as shown in Figures 5A and 5B. According to some embodiments, the aforementioned stress relief structure 321A (or 321B) in FIGS. 3A-1 to 3I-2 covers and surrounds the side surface of the platform 510M, as shown in FIG. 5A. According to some embodiments, the protrusions 426A (or 426B) of the stress relief structure 421 in FIGS. 4A-1 to 4H-2 cover and surround the side surface of the platform 510M, as shown in FIG. 5B.

綜上所述,根據本發明實施例,透過形成應力釋放結構覆蓋磁阻的側表面,釋放了施加於磁阻的應力,這避免磁阻的圖案邊緣處發生局部裂開,進而避免磁阻的圖案邊緣發生局部剝離的問題。因此,提升磁阻裝置的製造良率。 In summary, according to the embodiments of the present invention, by forming a stress release structure to cover the side surface of the magnetoresistor, the stress applied to the magnetoresistor is released, which prevents local cracks at the edges of the magnetoresistance pattern, thereby avoiding the magnetoresistance The problem of local peeling at the edge of the pattern. Therefore, the manufacturing yield of the magnetoresistive device is improved.

此外,根據本發明實施例,由於磁阻與下方的介電層之間不存有含鉭黏著層,所以製程溫度不會被限制於300℃以下。因此,可對磁阻裝置進行高溫退火,以提升磁阻裝置的效能。In addition, according to the embodiment of the present invention, since there is no tantalum-containing adhesion layer between the magnetoresistance and the underlying dielectric layer, the process temperature is not limited to below 300°C. Therefore, high temperature annealing can be performed on the magnetoresistive device to improve the performance of the magnetoresistive device.

以上概述數個實施例,以便在本發明所屬技術領域中具有通常知識者可以更理解本發明實施例的觀點。在本發明所屬技術領域中具有通常知識者應該理解,他們能以本發明實施例為基礎,設計或修改其他製程和結構,以達到與在此介紹的實施例相同之目的及/或優勢。在本發明所屬技術領域中具有通常知識者也應該理解到,此類等效的製程和結構並無悖離本發明的精神與範圍,且他們能在不違背本發明之精神和範圍之下,做各式各樣的改變、取代和替換。The foregoing summarizes several embodiments so that those with ordinary knowledge in the technical field of the present invention can better understand the viewpoints of the embodiments of the present invention. Those with ordinary knowledge in the technical field of the present invention should understand that they can design or modify other processes and structures based on the embodiments of the present invention to achieve the same purposes and/or advantages as the embodiments described herein. Those with ordinary knowledge in the technical field to which the present invention pertains should also understand that such equivalent manufacturing processes and structures do not depart from the spirit and scope of the present invention, and they can, without departing from the spirit and scope of the present invention, Make all kinds of changes, substitutions and replacements.

100、200、300、400:磁阻裝置100, 200, 300, 400: Magnetoresistive device

102、302:基底102, 302: base

104、317A、317B:磁阻104, 317A, 317B: Magnetoresistance

106、322:第一阻障材料106, 322: the first barrier material

106’、323A、323B:下阻障層106’, 323A, 323B: Lower barrier layer

108、324:金屬主體材料108, 324: Metal body material

108’、325A、325B:金屬主體層108’, 325A, 325B: Metal body layer

110、326:第二阻障材料110, 326: second barrier material

110’、327A、327B:上阻障層110’, 327A, 327B: upper barrier layer

112:抗反射塗層112: Anti-reflective coating

112’:圖案化抗反射塗層112’: Patterned anti-reflective coating

114:圖案化光阻層114: patterned photoresist layer

116、330A、330B:電連接結構116, 330A, 330B: electrical connection structure

202:黏著層202: Adhesive layer

303:半導體基底303: Semiconductor substrate

304:主動元件304: active component

305:多層內連線結構305: Multi-layer interconnect structure

308:接觸插塞308: contact plug

310:介電層310: Dielectric layer

312:導線312: Wire

314:導孔314: Pilot Hole

316:磁阻材料316: Magnetoresistive material

318:保護材料318: Protective Materials

319A、319A’、319B、319B’:保護層319A, 319A’, 319B, 319B’: protective layer

320、420:介電材料320, 420: Dielectric materials

321A、321B、421:應力釋放結構321A, 321B, 421: stress relief structure

332:鈍化層332: passivation layer

334:開口334: open

422A、422B、426A、426B:突起部422A, 422B, 426A, 426B: protrusion

424、424’:平坦部424, 424’: flat part

440、440’:光阻材料440, 440’: Photoresist

510M:平台510M: platform

1000:圖案化製程1000: Patterning process

1100:蝕刻製程1100: etching process

1200:濕蝕刻製程1200: Wet etching process

A:區域A: area

D:深度D: depth

藉由以下詳細描述和範例配合所附圖式,可以更加理解本發明實施例。為了使圖式清楚顯示,圖式中各個不同的元件可能未依照比例繪製,其中: 第1A-1D圖是根據一些範例,顯示磁阻裝置在各個不同製程階段的剖面示意圖。 第2圖是根據另一些範例的磁阻裝置。 第3A-1至3I-1及3A-2至3I-2圖是根據一些實施例,顯示包含應力釋放結構的磁阻裝置在各個不同製程階段的示意圖。 第4A-1至4H-1及4A-2至4H-2圖是根據一些實施例,顯示包含應力釋放結構的磁阻裝置在各個不同製程階段的示意圖。 第5A和5B圖是根據一些實施例之磁阻裝置的一部分,以說明應力釋放結構的一些細節。 The embodiments of the present invention can be better understood through the following detailed description and examples in conjunction with the accompanying drawings. In order to make the diagram clearly displayed, the various elements in the diagram may not be drawn to scale, among which: Figures 1A-1D are schematic cross-sectional diagrams showing magnetoresistive devices at various stages of the manufacturing process according to some examples. Figure 2 shows magnetoresistive devices according to other examples. FIGS. 3A-1 to 3I-1 and 3A-2 to 3I-2 are schematic diagrams showing the magnetoresistive device including the stress relief structure in various process stages according to some embodiments. 4A-1 to 4H-1 and 4A-2 to 4H-2 are schematic diagrams showing the magnetoresistive device including the stress relief structure at various stages of the manufacturing process according to some embodiments. Figures 5A and 5B are a part of a magnetoresistive device according to some embodiments to illustrate some details of the stress relief structure.

300:磁阻裝置 300: Magnetoresistive device

302:基底 302: Base

303:半導體基底 303: Semiconductor substrate

304:主動元件 304: active component

305:多層內連線結構 305: Multi-layer interconnect structure

308:接觸插塞 308: contact plug

310:介電層 310: Dielectric layer

312:導線 312: Wire

314:導孔 314: Pilot Hole

317A、317B:磁阻 317A, 317B: Magnetoresistance

319A’:保護層 319A’: Protective layer

321A、321B:應力釋放結構 321A, 321B: stress relief structure

323A:下阻障層 323A: Lower barrier layer

325A:金屬主體層 325A: Metal body layer

327A:上阻障層 327A: Upper barrier layer

330A:電連接結構 330A: Electrical connection structure

332:鈍化層 332: passivation layer

334:開口 334: open

Claims (19)

一種磁阻裝置,包括:一磁阻,設置於一基底之上;一應力釋放結構,覆蓋該磁阻的一側表面;一電連接結構,設置於該磁阻之上,其中該電連接結構覆蓋該應力釋放結構背離該磁阻的一外側表面;以及一鈍化層,設置於該電連接結構和該應力釋放結構之上。 A magnetoresistive device, comprising: a magnetoresistance arranged on a substrate; a stress relief structure covering one side surface of the magnetoresistance; an electrical connection structure arranged on the magnetoresistance, wherein the electrical connection structure Covering an outer surface of the stress relief structure away from the magnetoresistance; and a passivation layer disposed on the electrical connection structure and the stress relief structure. 如申請專利範圍第1項所述之磁阻裝置,其中該應力釋放結構面向該磁阻的一內側表面向上延伸超出該磁阻的一上表面。 The magnetoresistive device according to the first item of the scope of patent application, wherein the stress relief structure faces an inner surface of the magnetoresistor and extends upwardly beyond an upper surface of the magnetoresistor. 如申請專利範圍第1項所述之磁阻裝置,其中該應力釋放結構以封閉環形方式延伸以圍繞該磁阻。 According to the magnetoresistive device described in item 1 of the scope of patent application, the stress relief structure extends in a closed loop to surround the magnetoresistance. 如申請專利範圍第1項所述之磁阻裝置,其中該應力釋放結構包括:一平坦部,延伸於該基底的一介電層之上;一突起部,突出於該平坦部之上且抵接該磁阻。 According to the magnetoresistive device described in claim 1, wherein the stress relief structure includes: a flat part extending on a dielectric layer of the substrate; a protrusion part protruding above the flat part and resisting Connect the magnetic resistance. 如申請專利範圍第1項所述之磁阻裝置,其中該電連接結構包括:一下阻障層、一金屬主體層、以及一上阻障層,依序堆疊於該磁阻之上。 According to the magnetoresistive device described in claim 1, wherein the electrical connection structure includes: a lower barrier layer, a metal body layer, and an upper barrier layer, which are sequentially stacked on the magnetoresistance. 如申請專利範圍第5項所述之磁阻裝置,更包括:一保護層,設置於該磁阻與該下阻障層之間。 The magnetoresistive device described in item 5 of the scope of the patent application further includes: a protective layer disposed between the magnetoresistance and the lower barrier layer. 如申請專利範圍第6項所述之磁阻裝置,其中該保護 層的一側表面對齊該磁阻的該側表面。 The magnetoresistive device described in item 6 of the scope of patent application, wherein the protection One side surface of the layer is aligned with the side surface of the magnetoresistive. 如申請專利範圍第7項所述之磁阻裝置,其中該應力釋放結構至少部分覆蓋該保護層的該側表面。 The magnetoresistive device described in item 7 of the scope of patent application, wherein the stress relief structure at least partially covers the side surface of the protective layer. 如申請專利範圍第6項所述之磁阻裝置,其中該保護層由鈦鎢形成。 The magnetoresistive device described in item 6 of the scope of patent application, wherein the protective layer is formed of titanium tungsten. 如申請專利範圍第1項所述之磁阻裝置,其中該應力釋放結構由氧化矽、氮化矽、或氮氧化矽形成。 In the magnetoresistive device described in item 1 of the scope of patent application, the stress relief structure is formed of silicon oxide, silicon nitride, or silicon oxynitride. 如申請專利範圍第1項所述之磁阻裝置,其中該基底包括一平台,且該應力釋放結構圍繞該平台。 According to the magnetoresistive device described in claim 1, wherein the substrate includes a platform, and the stress relief structure surrounds the platform. 一種磁阻裝置的形成方法,包括:形成一磁阻於一基底之上;形成一介電材料於該磁阻之上;蝕刻該介電材料以形成一應力釋放結構圍繞該磁阻的一側表面;形成一電連接結構於該磁阻之上,其中該電連接結構覆蓋該應力釋放結構背離該磁阻的一外側表面;以及形成一鈍化層覆蓋該電連接結構和該應力釋放結構。 A method for forming a magnetoresistive device includes: forming a magnetoresistance on a substrate; forming a dielectric material on the magnetoresistance; etching the dielectric material to form a stress relief structure around one side of the magnetoresistance Surface; forming an electrical connection structure on the magnetoresistance, wherein the electrical connection structure covers an outer surface of the stress relief structure away from the magnetoresistance; and forming a passivation layer covering the electrical connection structure and the stress relief structure. 如申請專利範圍第12項所述之磁阻裝置的形成方法,其中:蝕刻該介電材料直到暴露出該基底的一上表面;該電連接結構橫向延伸超出該應力釋放結構背離該磁阻的一外側表面。 The method for forming a magnetoresistive device as described in claim 12, wherein: the dielectric material is etched until an upper surface of the substrate is exposed; the electrical connection structure extends laterally beyond the stress relief structure away from the magnetoresistance An outside surface. 如申請專利範圍第12項所述之磁阻裝置的形成方法,其中該介電材料包括: 一平坦部,延伸於該基底之上;以及一突出部,突出於該平坦部之上且覆蓋該磁阻。 The method for forming a magnetoresistive device as described in item 12 of the scope of patent application, wherein the dielectric material includes: A flat part extending above the base; and a protruding part protruding above the flat part and covering the magnetic resistance. 如申請專利範圍第14項所述之磁阻裝置的形成方法,在蝕刻該介電材料之前,更包括:形成一光阻材料於該介電材料之上;以及回蝕該光阻材料,從而暴露出該介電材料的該突出部,並留下該光阻材料於該平坦部之上;其中在蝕刻該介電材料之後,該平坦部留在該基底上。 The method for forming a magnetoresistive device as described in item 14 of the scope of patent application, before etching the dielectric material, further includes: forming a photoresist material on the dielectric material; and etching back the photoresist material, thereby Expose the protruding part of the dielectric material, and leave the photoresist material on the flat part; wherein after etching the dielectric material, the flat part remains on the substrate. 如申請專利範圍第12項所述之磁阻裝置的形成方法,其中形成該磁阻的步驟包括:形成一磁阻材料於該基底之上;形成一保護材料於該磁阻材料之上;以及對該保護材料和該磁阻材料進行一第一圖案化製程,以分別形成一保護層和該磁阻。 The method for forming a magnetoresistive device according to claim 12, wherein the step of forming the magnetoresistance includes: forming a magnetoresistive material on the substrate; forming a protective material on the magnetoresistive material; and A first patterning process is performed on the protective material and the magnetoresistive material to form a protective layer and the magnetoresistive respectively. 如申請專利範圍第16項所述之磁阻裝置的形成方法,其中形成該電連接結構的步驟包括:沉積一第一阻障材料於該保護層和該應力釋放結構之上;沉積一金屬主體材料於該第一阻障材料之上;沉積一第二阻障材料於該金屬主體材料之上;對該第二阻障材料和該金屬主體材料進行一第二圖案化製程,以分別形成一上阻障層和一金屬主體層;以及以該金屬主體層作蝕刻遮罩,對該第一阻障材料進行一濕蝕刻製程,以形成一下阻擋層。 The method for forming a magnetoresistive device as described in claim 16, wherein the step of forming the electrical connection structure includes: depositing a first barrier material on the protective layer and the stress relief structure; depositing a metal body Material on the first barrier material; deposit a second barrier material on the metal body material; perform a second patterning process on the second barrier material and the metal body material to form a An upper barrier layer and a metal body layer; and using the metal body layer as an etching mask, a wet etching process is performed on the first barrier material to form a lower barrier layer. 如申請專利範圍第17項所述之磁阻裝置的形成方 法,其中該濕蝕刻製程移除部分的該保護層,使得該應力釋放結構面向該磁阻的一內側表面暴露出來。 The formation method of the magnetoresistive device as described in item 17 of the scope of patent application Method, wherein the wet etching process removes part of the protective layer, so that an inner surface of the stress relief structure facing the magnetoresistor is exposed. 如申請專利範圍第16項所述之磁阻裝置的形成方法,其中該第一圖案化製程包括:圖案化該基底的一介電層,以形成一平台,且該應力釋放結構覆蓋該平台的一側表面。 The method for forming a magnetoresistive device according to claim 16, wherein the first patterning process includes: patterning a dielectric layer of the substrate to form a platform, and the stress relief structure covers the platform One side surface.
TW108137375A 2019-10-17 2019-10-17 Magnetoresistive device and method for forming the same TWI698034B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108137375A TWI698034B (en) 2019-10-17 2019-10-17 Magnetoresistive device and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108137375A TWI698034B (en) 2019-10-17 2019-10-17 Magnetoresistive device and method for forming the same

Publications (2)

Publication Number Publication Date
TWI698034B true TWI698034B (en) 2020-07-01
TW202118102A TW202118102A (en) 2021-05-01

Family

ID=72602033

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108137375A TWI698034B (en) 2019-10-17 2019-10-17 Magnetoresistive device and method for forming the same

Country Status (1)

Country Link
TW (1) TWI698034B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201705563A (en) * 2015-03-12 2017-02-01 格羅方德半導體私人有限公司 Integrated magnetic random access memory with logic device having low-k interconnects

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201705563A (en) * 2015-03-12 2017-02-01 格羅方德半導體私人有限公司 Integrated magnetic random access memory with logic device having low-k interconnects

Also Published As

Publication number Publication date
TW202118102A (en) 2021-05-01

Similar Documents

Publication Publication Date Title
US20230276712A1 (en) Semiconductor device
CN105023908B (en) Composite contact plug structure and its manufacturing method
US10515874B2 (en) Semiconductor device and method of manufacture
TWI579962B (en) A technique for increasing adhesion of metallization layers by providing dummy vias
JP5739434B2 (en) Semiconductor device having copper plug and method for forming the device
TWI515827B (en) Interconnect structure with enhanced reliability and forming method thereof
TW201036109A (en) Method for forming thin film resistor and terminal bond pad simultaneously
TW201017848A (en) Multi-layer thick metallization structure for a microelectronic device, integrated circuit containing same, and method of manufacturing an integrated circuit containing same
US10263064B2 (en) Semiconductor devices and methods of forming the same
TW201820562A (en) Method of forming semiconductor devices
US10727123B2 (en) Interconnect structure with fully self-aligned via pattern formation
TWI678820B (en) Magnetoresistive devices and methods for forming the same
TWI698034B (en) Magnetoresistive device and method for forming the same
US11963460B2 (en) Method for manufacturing memory device having resistance switching layer
US11366182B2 (en) Magnetoresistive devices and methods for forming the same
US20230207452A1 (en) Multi-stacking carrier structure and method for fabricating the same
TW202301570A (en) Manufacturing method of memory device
US9484398B2 (en) Metal-insulator-metal (MIM) capacitor
CN112750942A (en) Magnetoresistive device and method of forming the same
US10510661B2 (en) Semiconductor devices and methods of forming the same
CN114388473A (en) Semiconductor device and method for manufacturing the same
US7960835B2 (en) Fabrication of metal film stacks having improved bottom critical dimension
CN110838541B (en) Magneto-resistive device and method of forming the same
US20230207453A1 (en) Semiconductor device with multi-stacking carrier structure
TWI825707B (en) Method for fabricating a semiconductor device with multi-stacking carrier structure