TWI692879B - A perovskite solar cell and a method of manufacturing the same - Google Patents

A perovskite solar cell and a method of manufacturing the same Download PDF

Info

Publication number
TWI692879B
TWI692879B TW107147354A TW107147354A TWI692879B TW I692879 B TWI692879 B TW I692879B TW 107147354 A TW107147354 A TW 107147354A TW 107147354 A TW107147354 A TW 107147354A TW I692879 B TWI692879 B TW I692879B
Authority
TW
Taiwan
Prior art keywords
layer
perovskite
crystal nucleus
solar cell
semiconductor layer
Prior art date
Application number
TW107147354A
Other languages
Chinese (zh)
Other versions
TW202025505A (en
Inventor
徐為哲
許弘儒
王凱正
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW107147354A priority Critical patent/TWI692879B/en
Priority to CN201910096554.9A priority patent/CN111384243B/en
Application granted granted Critical
Publication of TWI692879B publication Critical patent/TWI692879B/en
Publication of TW202025505A publication Critical patent/TW202025505A/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present disclosure provides a perovskite solar cell. The perovskite solar cell includes a first semiconductor layer disposed on a substrate, a crystal-induced layer disposed on the first semiconductor layer, a perovskite absorption layer covering the crystal-induced layer and the first semiconductor layer, a second semiconductor layer disposed on the perovskite absorption layer, and an electrode layer disposed on the second semiconductor layer. The present disclosure also provides a perovskite solar cell manufacturing method thereof.

Description

鈣鈦礦太陽能電池及其製造方法 Perovskite solar cell and manufacturing method thereof

本揭露係有關於鈣鈦礦太陽能電池,且特別係有關於一種包含誘導晶核層的鈣鈦礦太陽能電池。 The present disclosure relates to a perovskite solar cell, and particularly relates to a perovskite solar cell including an induced crystal core layer.

近年來由於受到全球氣候變遷、環境污染問題以及資源日趨短缺的影響,並在環保意識高漲與能源危機的警訊下,因而促使太陽光電產業的蓬勃發展。太陽能電池之發電原理係利用半導體材料之光電效應而將光能轉換成電能。具體而言,當光照射至半導體材料時會產生光子,而光子又使得半導體材料內部產生電子-電洞對,接著,電子與電洞係藉由內部電場而分別被輸送至兩個相對的電極,因此產生了電壓。此時,若將兩個電極連接至外部電路,則產生了電流。 In recent years, due to the impact of global climate change, environmental pollution and the increasing shortage of resources, and the warning of rising environmental awareness and energy crisis, it has promoted the vigorous development of the solar photovoltaic industry. The principle of solar cell power generation is to use the photoelectric effect of semiconductor materials to convert light energy into electrical energy. Specifically, when light is irradiated to the semiconductor material, photons are generated, and the photons cause electron-hole pairs to be generated inside the semiconductor material. Then, the electrons and holes are transported to two opposite electrodes by the internal electric field, respectively. , So voltage is generated. At this time, if two electrodes are connected to an external circuit, a current is generated.

目前,具有鈣鈦礦(perovskite)結構之新興半導體材料被提出,其具有光電轉換效率高,製備成本低等優勢,且不容易造成汙染。因此,將鈣鈦礦材料應用於太陽能電池的研究技術日益成長。然而,目前在應用上面臨最大的問題在於鈣鈦礦上太陽電池穩定性不佳。 Currently, emerging semiconductor materials with a perovskite structure have been proposed, which have the advantages of high photoelectric conversion efficiency and low manufacturing cost, and are not likely to cause pollution. Therefore, the research technology of applying perovskite materials to solar cells is growing day by day. However, the biggest problem facing the current application is the poor stability of solar cells on perovskite.

因此,目前亟需提高鈣鈦礦吸收層的穩定性,以提升其 應用性。 Therefore, there is an urgent need to improve the stability of the perovskite absorber layer in order to enhance its Applicability.

本揭露提供一種鈣鈦礦太陽能電池。該鈣鈦礦太陽能電池結構,包括:一基板、一第一半導體層,設置於該基板上、一誘導晶核層,設置於該第一半導體層上、一鈣鈦礦吸收層,覆蓋該誘導晶核層及該第一半導體層、一第二半導體層,設置於該鈣鈦礦吸收層上、一電極層,設置於該第二半導體層上,以及設置於第二半導體層上的電極層。 The present disclosure provides a perovskite solar cell. The perovskite solar cell structure includes: a substrate, a first semiconductor layer, disposed on the substrate, an induced crystal nucleus layer, disposed on the first semiconductor layer, a perovskite absorber layer, covering the induced The crystal nucleus layer, the first semiconductor layer, and a second semiconductor layer are disposed on the perovskite absorption layer, an electrode layer, are disposed on the second semiconductor layer, and an electrode layer disposed on the second semiconductor layer .

本揭露另提供一種製造上述鈣鈦礦太陽能電池的製造方法。該方法包含提供基板並形成第一半導體層於基板上、形成誘導晶核層於第一半導體層上、形成鈣鈦礦吸收層覆蓋誘導晶核層及第一半導體層、形成第二半導體層於鈣鈦礦吸收層上,以及形成電極層於第二半導體層上。 The disclosure also provides a method for manufacturing the above-mentioned perovskite solar cell. The method includes providing a substrate and forming a first semiconductor layer on the substrate, forming an induced crystal nucleus layer on the first semiconductor layer, forming a perovskite absorber layer to cover the induced crystal nucleus layer and the first semiconductor layer, and forming a second semiconductor layer on The perovskite absorber layer and the electrode layer are formed on the second semiconductor layer.

為讓本揭露實施例之特徵、和優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下。 In order to make the features and advantages of the disclosed embodiments more obvious and understandable, the preferred embodiments are specifically listed below and described in detail in conjunction with the accompanying drawings.

100:鈣鈦礦太陽能電池結構 100: Perovskite solar cell structure

110:基板 110: substrate

120:第一半導體層 120: first semiconductor layer

130:誘導晶核層 130: Induced nucleus layer

130a:晶核點 130a: nucleus point

130b:晶核點 130b: nucleus point

140:鈣鈦礦吸收層 140: Perovskite absorption layer

150:第二半導體層 150: second semiconductor layer

160:透明導電層 160: transparent conductive layer

170:電極 170: electrode

180:前驅物溶液 180: precursor solution

210:晶核點 210: nucleus point

220:島狀結構 220: island structure

D:直徑 D: diameter

P:間距 P: pitch

第1圖為根據本揭露的一些實施例之鈣鈦礦太陽能電池結構的剖面示意圖;第2圖為根據本揭露的一些實施例之鈣鈦礦太陽能電池結構的上視圖;第3A-3D圖為根據本揭露的一些實施例之形成鈣鈦礦太陽能 電池結構的中間結構的製程流程圖;第4A-4B圖為根據本揭露的一些實施例之形成鈣鈦礦太陽能電池結構的中間結構的製程流程圖;第5A-5D圖為鈣鈦礦吸收層透過光學顯微鏡顯示的放大圖,其中5A、5B圖為比較例之鈣鈦礦吸收層的放大圖,5C、5D圖為實施例之鈣鈦礦吸收層的放大圖;6A、6B圖為本揭露的一些實施例的鈣鈦礦吸收層透過掃描電子顯微鏡顯示的放大圖;第7圖為比較例與實施例之鈣鈦礦吸收層的光激發螢光光譜圖;第8圖為比較例與實施例之鈣鈦礦吸收層的X光繞射分析光譜圖;以及第9圖為比較例與實施例之鈣鈦礦太陽能電池結構的電池開路電壓與電流密度關係圖。 Figure 1 is a schematic cross-sectional view of a perovskite solar cell structure according to some embodiments of the present disclosure; Figure 2 is a top view of a perovskite solar cell structure according to some embodiments of the present disclosure; Figures 3A-3D are Formation of perovskite solar energy according to some embodiments of the present disclosure Process flow chart of the intermediate structure of the battery structure; FIGS. 4A-4B are process flow charts of forming the intermediate structure of the perovskite solar cell structure according to some embodiments of the present disclosure; FIGS. 5A-5D are the perovskite absorber layers Enlarged image displayed through an optical microscope, of which 5A and 5B are enlarged views of the perovskite absorption layer of the comparative example, and 5C and 5D are enlarged views of the perovskite absorption layer of the embodiment; FIGS. 6A and 6B are disclosed The magnified view of the perovskite absorption layer of some examples shown by scanning electron microscope; Figure 7 is the photoexcited fluorescence spectrum of the perovskite absorption layer of the comparative example and the example; Figure 8 is the comparison example and the implementation The X-ray diffraction analysis spectrum diagram of the perovskite absorption layer of the example; and FIG. 9 are the relationship between the open circuit voltage and the current density of the perovskite solar cell structure of the comparative example and the example.

以下針對本揭露一些實施例之鈣鈦礦太陽能電池結構作詳細說明。應了解的是,以下之敘述提供許多不同的實施例或例子,用以實施本揭露一些實施例之不同樣態。以下所述特定的元件及排列方式僅為簡單清楚描述本揭露一些實施例。當然,這些僅用以舉例而非本揭露之限定。此外,在不同實施例中可能使用重複的標號或標示。這些重複僅為了簡單清楚地敘述本揭露一些實施例,不代表所討論之不同實施例及/或結構之間具有任何關連性。再 者,當述及一第一材料層位於一第二材料層上或之上時,包括第一材料層與第二材料層直接接觸之情形。或者,亦可能間隔有一或更多其它材料層之情形,在此情形中,第一材料層與第二材料層之間可能不直接接觸。 The following is a detailed description of the perovskite solar cell structures of some embodiments of the present disclosure. It should be understood that the following description provides many different embodiments or examples for implementing different embodiments of the disclosed embodiments. The specific elements and arrangements described below are simply and clearly describing some embodiments of the present disclosure. Of course, these are only examples and not limitations of this disclosure. In addition, repeated reference numbers or labels may be used in different embodiments. These repetitions are merely to briefly describe some embodiments of the present disclosure, and do not mean that there is any correlation between the different embodiments and/or structures discussed. again Furthermore, when a first material layer is located on or above a second material layer, it includes the case where the first material layer and the second material layer are in direct contact. Alternatively, there may be a situation where one or more other material layers are spaced apart, in which case, the first material layer and the second material layer may not be in direct contact.

此外,實施例中可能使用相對性的用語,例如「較低」或「底部」及「較高」或「頂部」,以描述圖式的一個元件對於另一元件的相對關係。能理解的是,如果將圖式的裝置翻轉使其上下顛倒,則所敘述在「較低」側的元件將會成為在「較高」側的元件。在此,「約」、「大約」、「大抵」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內,或3%之內,或2%之內,或1%之內,或0。5%之內。在此給定的數量為大約的數量,亦即在沒有特定說明「約」、「大約」、「大抵」的情況下,仍可隱含「約」、「大約」、「大抵」之含義。 In addition, embodiments may use relative terms, such as "lower" or "bottom" and "higher" or "top" to describe the relative relationship of one element of the drawing to another element. It is understandable that if the device of the figure is turned upside down, the element on the "lower" side will become an element on the "higher" side. Here, the terms “about”, “approximately” and “approximately” generally mean within 20% of a given value or range, preferably within 10%, and more preferably within 5%, or 3 Within %, or within 2%, or within 1%, or within 0.5%. The quantity given here is an approximate quantity, that is, if there is no specific description of "about", "approximate", or "approximately", the meaning of "approximate", "approximate", and "approximately" may still be implied.

本揭露一些實施例提供一種鈣鈦礦太陽能電池結構。在一些實施例,鈣鈦礦太陽能電池結構包含誘導晶核層。誘導晶核層可作為晶種,誘導鈣鈦礦吸收層於底部成核,而促使鈣鈦礦晶體由底部往上及往側面生長。藉此減少晶體缺陷的產生並提高鈣鈦礦吸收層的晶體品質,以提升鈣鈦礦太陽能電池結構的效率及穩定性。 Some embodiments of the present disclosure provide a perovskite solar cell structure. In some embodiments, the perovskite solar cell structure includes a layer of induced crystal nuclei. The inducing crystal nucleus layer can be used as seed crystals to induce the perovskite absorption layer to nucleate at the bottom, and promote the growth of perovskite crystals from the bottom up and to the side. In this way, the generation of crystal defects is reduced and the crystal quality of the perovskite absorber layer is improved to improve the efficiency and stability of the perovskite solar cell structure.

參閱第1圖,第1圖為根據本揭露的一些實施例之鈣鈦礦太陽能電池結構100的剖面示意圖。如第1圖所示,鈣鈦礦太陽能電池結構100包含基板110。基板110可為透明導電基板,例如為 氟摻雜氧化錫(F-doped Tin Oxide,FTO)基板。 Referring to FIG. 1, FIG. 1 is a schematic cross-sectional view of a perovskite solar cell structure 100 according to some embodiments of the present disclosure. As shown in FIG. 1, the perovskite solar cell structure 100 includes a substrate 110. The substrate 110 may be a transparent conductive substrate, such as Fluorine doped tin oxide (F-doped Tin Oxide, FTO) substrate.

此外,鈣鈦礦太陽能電池結構100包含第一半導體層120。第一半導體層120設置於基板110上。第一半導體層120包含富勒烯或2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(2,2',7,7'-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spiro-bifluorene,Spiro-OMeTAD),富勒烯例如為[6.6]-苯基-C61-丁酸甲酯([6,6]-phenyl-C61-butyric acid methyl ester,PCBM)。此外,第一半導體層120亦包含氧化鎳(NiO)、二氧化鈦(TiO2)、碳(C)、二氧化錫(SnO2)或其他材料。在一些實施例,第一半導體層120可為p型半導體層或n型半導體層。 In addition, the perovskite solar cell structure 100 includes a first semiconductor layer 120. The first semiconductor layer 120 is disposed on the substrate 110. The first semiconductor layer 120 contains fullerene or 2,2',7,7'-tetra[N,N-bis(4-methoxyphenyl)amino]-9,9'-spirobifluorene (2, 2',7,7'-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spiro-bifluorene,Spiro-OMeTAD), for example fullerene is [6.6]-phenyl-C61 -Methyl butyrate ([6,6]-phenyl-C61-butyric acid methyl ester,PCBM). In addition, the first semiconductor layer 120 also includes nickel oxide (NiO), titanium dioxide (TiO 2 ), carbon (C), tin dioxide (SnO 2 ), or other materials. In some embodiments, the first semiconductor layer 120 may be a p-type semiconductor layer or an n-type semiconductor layer.

在一些實施例,鈣鈦礦太陽能電池結構包含誘導晶核層130,其包含複數個晶核點130a(可參閱第2圖)。晶核點130a設置於部分第一半導體層120上方。在一些實施例,晶核點130a為疏水性材料。在一些實施例,晶核點130a相對於第一半導體層120,更具疏水性。在一些實施例,誘導晶核層130包含銦錫氧化物。(Indium Tin Oxide,ITO)、氧化鎳(NiO)、鉬硫化物(MoSX)、鉬氧化物(MoOX)、鎢氧化物(WOX)或其他適合的材料。晶核點130a是用來幫助在形成鈣鈦礦吸收層140的過程中,能讓鈣鈦礦晶體由第一半導體層120的上表面開始往上生長,藉由這樣的方式形成的鈣鈦礦吸收層140的晶體缺陷較少。關於利用晶核點130a形成鈣鈦礦吸收層140的詳細過程將在後續描述。 In some embodiments, the perovskite solar cell structure includes an induced crystal core layer 130, which includes a plurality of crystal core points 130a (see FIG. 2). The crystal nucleus point 130 a is disposed above a part of the first semiconductor layer 120. In some embodiments, the crystal nucleus point 130a is a hydrophobic material. In some embodiments, the nucleus point 130a is more hydrophobic than the first semiconductor layer 120. In some embodiments, the inducing crystal core layer 130 includes indium tin oxide. (Indium Tin Oxide, ITO), nickel oxide (NiO), molybdenum sulfide (MoS X ), molybdenum oxide (MoO X ), tungsten oxide (WO X ) or other suitable materials. The nucleus point 130a is used to help the perovskite crystal grow from the upper surface of the first semiconductor layer 120 in the process of forming the perovskite absorption layer 140. The perovskite formed in this way The absorption layer 140 has fewer crystal defects. The detailed process of forming the perovskite absorption layer 140 using the crystal nucleus point 130a will be described later.

在一些實施例,鈣鈦礦太陽能電池結構100包含鈣鈦 礦吸收層140,鈣鈦礦吸收層140覆蓋晶核點130a,並且形成在第一半導體層120的上方。鈣鈦礦吸收層140的通用化學結構式為ABX3。其中,A可選自於金屬離子,例如選自於Li+、Na+、Cs+、Rb+、K+所組成的群組中的任一者;或者,A也可包含1至15個的碳以及1至20個的雜原子,上述雜原子可為N、O或S,例如A可為甲基胺(methylammonium)、甲脒(formamidinium)、羥基胺(hydroxylammonium)、

Figure 107147354-A0305-02-0008-4
(hydrazinium)、氮雜環(azetidinium)、咪唑(imidazolium)、二甲銨(dimethylammonium)、乙銨(ethylammonium)、胍(guanidinium)、四甲銨(tetramethylammonium)或噻唑(thiazolium)。在一些實施例,A可包含一種以上的上述材料或上述材料的組合。 In some embodiments, the perovskite solar cell structure 100 includes a perovskite absorber layer 140 that covers the crystal nucleus point 130 a and is formed above the first semiconductor layer 120. The general chemical structural formula of the perovskite absorption layer 140 is ABX 3 . Wherein, A may be selected from metal ions, for example, any one selected from the group consisting of Li + , Na + , Cs + , Rb + , and K + ; or, A may also contain 1 to 15 Carbon and 1 to 20 heteroatoms, the heteroatoms may be N, O or S, for example, A may be methylammonium, formamidinium, hydroxylammonium,
Figure 107147354-A0305-02-0008-4
(hydrazinium), azetidinium, imidazolium, dimethylammonium, ethylammonium, guanidinium, tetramethylammonium or thiazolium. In some embodiments, A may include more than one of the foregoing materials or a combination of the foregoing materials.

B可包含金屬離子,例如選自於Li+、Na+、Cs+、Rb+、K+、Ge2+、Sn2+、Mn2+、Fe2+、Co2+、Ni2+、Pd2+、Pt2+、Cu2+、Zn2+、Cd2+、Hg2+、Be2+、Mg2+、Ca2+、Sr2+、Ba2+、Eu2+、Tm2+、Yb2+所組成的群組中的任一者。在一些實施例,B可包含一種以上的上述材料或上述材料的組合。 B may contain metal ions, for example selected from Li + , Na + , Cs + , Rb + , K + , Ge 2+ , Sn 2+ , Mn 2+ , Fe 2+ , Co 2+ , Ni 2+ , Pd 2+ , Pt 2+ , Cu 2+ , Zn 2+ , Cd 2+ , Hg 2+ , Be 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Eu 2+ , Tm 2+ , Yb 2+ in any group. In some embodiments, B may include more than one of the foregoing materials or a combination of the foregoing materials.

X為陰離子,例如鹵素,鹵素包含Cl-、Br-、I-。X亦可包含NCS-、CN-、NCO-或RCOO-之官能基,其中R可為甲基或乙基。在一些實施例,C可包含一種以上的上述材料或上述材料的組合。 X is an anion such as halogen, a halogen containing Cl -, Br -, I - . X may also comprise NCS -, CN -, NCO -, or RCOO - the functional group, wherein R may be methyl or ethyl. In some embodiments, C may include more than one of the foregoing materials or a combination of the foregoing materials.

在一些實施例,可先將包含A、B及X的化合物溶於 溶劑,形成前驅物溶液,之後,再藉由將前驅物溶液塗佈在晶核點130a及第一半導體層120上,之後使溶劑蒸發而形成鈣鈦礦吸收層140。此過程將在後續詳細描述。 In some embodiments, the compound containing A, B, and X may be dissolved in The solvent forms a precursor solution. After that, the precursor solution is coated on the nucleus point 130a and the first semiconductor layer 120, and then the solvent is evaporated to form the perovskite absorption layer 140. This process will be described in detail later.

鈣鈦礦太陽能電池結構100包含第二半導體層150。第二半導體層150設置於鈣鈦礦吸收層140上。第二半導體層150可包含富勒烯或2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(2,2',7,7'-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spiro-bifluorene,Spiro-OMeTAD),富勒烯例如為[6.6]-苯基-C61-丁酸甲酯([6,6]-phenyl-C61-butyric acid methyl ester,PCBM)。此外,第二半導體層150亦包含NiO、TiO2、C、SnO2或其他材料。在一些實施例,第二半導體層150可為p型半導體層或n型半導體層,並且與第一導體層120的導電型態不同。 The perovskite solar cell structure 100 includes a second semiconductor layer 150. The second semiconductor layer 150 is disposed on the perovskite absorption layer 140. The second semiconductor layer 150 may include fullerene or 2,2',7,7'-tetra[N,N-bis(4-methoxyphenyl)amino]-9,9'-spirobifluorene (2 ,2',7,7'-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spiro-bifluorene,Spiro-OMeTAD), for example fullerene is [6.6]-phenyl- C61-Butyric acid methyl ester ([6,6]-phenyl-C61-butyric acid methyl ester, PCBM). In addition, the second semiconductor layer 150 also includes NiO, TiO 2 , C, SnO 2 or other materials. In some embodiments, the second semiconductor layer 150 may be a p-type semiconductor layer or an n-type semiconductor layer, and has a different conductivity type from the first conductor layer 120.

鈣鈦礦太陽能電池結構100包含透明導電層160。透明導電層160設置於第二半導體層150上。透明導電層160可讓環境的光入射,並具有使上述入射光散射的效果,使得光被吸收的效率增加,以改善光電轉換的效率。透明導電層160可為單層或多層結構。透明導電層160的材料包含氧化鋅、氧化錫,上述的摻雜材料,例如氧化錫摻氟(F-doped Tin Oxide,FTO)、氧化鋅摻鋁(Al-doped Zinc Oxide,AZO)、氧化錫摻銻(Sb-doped Tin Oxide,ATO)或其他材料。 The perovskite solar cell structure 100 includes a transparent conductive layer 160. The transparent conductive layer 160 is disposed on the second semiconductor layer 150. The transparent conductive layer 160 allows the ambient light to be incident, and has the effect of scattering the incident light, so that the efficiency of absorbing light is increased to improve the efficiency of photoelectric conversion. The transparent conductive layer 160 may be a single-layer or multi-layer structure. The material of the transparent conductive layer 160 includes zinc oxide and tin oxide, and the above-mentioned doped materials, such as F-doped Tin Oxide (FTO), Al-doped Zinc Oxide (AZO), and tin oxide Antimony doped (Sb-doped Tin Oxide, ATO) or other materials.

鈣鈦礦太陽能電池結構100包含電極170。電極170 設置於透明導電層160上。電極170包含金屬材料,例如銀(Ag)、銅(Cu)、鋁(Al)、鉬(Mo)、鎢(W)、金(Au)、鉻(Cr)、鎳(Ni)、鉑(Pt)或鈦(Ti)。 The perovskite solar cell structure 100 includes an electrode 170. Electrode 170 Set on the transparent conductive layer 160. The electrode 170 contains metal materials such as silver (Ag), copper (Cu), aluminum (Al), molybdenum (Mo), tungsten (W), gold (Au), chromium (Cr), nickel (Ni), platinum (Pt) ) Or titanium (Ti).

太陽光可以從基板110進入鈣鈦礦太陽能電池結構100的內部結構中,藉由第一半導體層120、第二半導體層150及鈣鈦礦吸收層140進行光電轉換之後產生電子電洞,然後電極170可以藉由設置一傳遞迴路而導通電流。 Sunlight can enter the internal structure of the perovskite solar cell structure 100 from the substrate 110, and after the photoelectric conversion is performed by the first semiconductor layer 120, the second semiconductor layer 150, and the perovskite absorption layer 140, an electron hole is generated, and then the electrode 170 can be turned on by setting a transfer loop.

參閱第2圖,第2圖為根據本揭露的一些實施例之鈣鈦礦太陽能電池結構100的上視圖。為了清楚描述誘導晶核層130、晶核點130a與第一半導體層120的排列關係,第2圖省略了其他元件。 Referring to FIG. 2, FIG. 2 is a top view of a perovskite solar cell structure 100 according to some embodiments of the present disclosure. In order to clearly describe the arrangement relationship between the induced crystal nucleus layer 130, the crystal nucleus point 130a and the first semiconductor layer 120, other elements are omitted in FIG. 2.

在一些實施例,由上視圖觀看,誘導晶核層130可為一圖案化層,其包含複數個晶核點130a設置於第一半導體層120上並曝露出部分第一半導體層120。在此,所謂的圖案化層指的是具有複數個不連續的區塊,上述區塊可具有任意相同的形狀或不同的形狀,上述複數個區塊之間的距離可相同或不同,並且可以任意的方式排列上述複數個區塊。 In some embodiments, viewed from the top view, the induced crystal nucleus layer 130 may be a patterned layer, which includes a plurality of crystal nucleus points 130 a disposed on the first semiconductor layer 120 and exposing a portion of the first semiconductor layer 120. Here, the so-called patterned layer refers to having a plurality of discontinuous blocks, the blocks may have any same shape or different shapes, the distance between the blocks may be the same or different, and may Arrange the plurality of blocks in any way.

如第2圖所示,上述多個晶核點130a彼此分離,並且具有間距P。在一些實施例,間距P介於約0.1mm~1.7mm之間的範圍。若間距小於0.1mm將導致透光度降低,使得光電流下降,因而降低電池效率;若間距大於1.7mm,將影響鈣鈦礦晶粒的品質。在一些實施例中間距為0.4mm~1.5mm、0.5mm~1.2mm或 0.6mm~1.0mm。在一些實施例,晶核點130a的直徑D介於約30μm至約100μm的範圍間,例如40μm~80μm或50μm~70μm。若直徑D小於30μm,將限縮晶體的成長空間,因此限縮晶粒大小;若間距大於100μm,將使得前趨溶液無法均勻覆蓋於晶核點上。 As shown in FIG. 2, the plurality of crystal nucleus points 130 a are separated from each other and have a pitch P. In some embodiments, the pitch P ranges from about 0.1 mm to 1.7 mm. If the pitch is less than 0.1mm, the light transmittance will be reduced, which will reduce the photocurrent, thus reducing the battery efficiency; if the pitch is greater than 1.7mm, it will affect the quality of the perovskite grains. In some embodiments, the pitch is 0.4 mm to 1.5 mm, 0.5 mm to 1.2 mm, or 0.6 mm to 1.0 mm. In some embodiments, the diameter D of the crystal nucleus point 130a is in the range of about 30 μm to about 100 μm, for example, 40 μm to 80 μm or 50 μm to 70 μm. If the diameter D is less than 30 μm , it will limit the growth space of the crystal, thus limiting the size of the grain; if the distance is greater than 100 μm, the precursor solution will not be able to uniformly cover the nucleus point.

在一些情況,若誘導晶核層130並未圖案化,而大抵上完整覆蓋第一半導體層120時,會因為誘導晶核層130所具有的疏水性而導致鈣鈦礦吸收層140的前驅物溶液無法塗佈在誘導晶核層130上,如此將無法形成鈣鈦礦吸收層140。由於晶核點130a的尺寸會影響鈣鈦礦吸收層140的晶體大小,考量到形成的晶體品質與鈣鈦礦太陽能電池結構100的效率,晶核點130a的直徑D範圍為30μm至100μm。 In some cases, if the induced crystal nucleus layer 130 is not patterned, but almost completely covers the first semiconductor layer 120, the precursor of the perovskite absorber layer 140 may be caused by the hydrophobicity of the induced crystal nucleus layer 130. The solution cannot be coated on the induced crystal nucleus layer 130, so that the perovskite absorption layer 140 cannot be formed. Since the size of the nucleus point 130a affects the crystal size of the perovskite absorption layer 140, the diameter D of the nucleus point 130a ranges from 30 μm to 100 μm considering the quality of the formed crystal and the efficiency of the perovskite solar cell structure 100.

參閱第3A-3D圖,第3A-3D圖為根據本揭露的一些實施例之形成鈣鈦礦太陽能電池100的中間結構的製程流程圖。詳細而言,第3A-3D圖繪示在第一半導體層120上形成鈣鈦礦吸收層140的過程。此外,第3A-3D圖所示的剖面可為第2圖中沿著A-A’切線的剖面,其中第2圖所示的結構為第3A圖的結構的上視圖。 Referring to FIGS. 3A-3D, FIGS. 3A-3D are process flow diagrams of forming an intermediate structure of a perovskite solar cell 100 according to some embodiments of the present disclosure. In detail, FIGS. 3A-3D illustrate the process of forming the perovskite absorber layer 140 on the first semiconductor layer 120. In addition, the cross section shown in FIGS. 3A-3D may be a cross section along A-A' line in FIG. 2, wherein the structure shown in FIG. 2 is a top view of the structure shown in FIG. 3A.

參閱第3A圖,在一些實施例,形成第一半導體層120於基板110上之後,在第一半導體層120上形成多個晶核點130a。晶核點130a可藉由圖案化製程形成,例如蒸鍍、濺鍍、微影(Lithography)製程、網印或其他適合的製程,但不以此為限。在一些實施例,先將具有圖案的遮罩層(未繪示)設置在第一半導體層120上,其中上述遮罩層具有多個開口露出第一半導體層120的表 面。接下來,將疏水性材料藉由遮罩層設置於第一半導體層120,之後移除遮罩層,形成晶核點130a。第2圖所示的晶核點130a的設置處對應於遮罩層的開口處。藉由設置具有圖案的遮罩層,可形成如第2A圖所示的誘導晶核層130,其包含多個晶核點130a。上述遮罩層可包含金屬遮罩或其他具有圖案化的遮罩。 Referring to FIG. 3A, in some embodiments, after the first semiconductor layer 120 is formed on the substrate 110, a plurality of crystal nuclei points 130a are formed on the first semiconductor layer 120. The nucleus dot 130a can be formed by a patterning process, such as evaporation, sputtering, Lithography, screen printing, or other suitable processes, but not limited thereto. In some embodiments, a patterned mask layer (not shown) is first disposed on the first semiconductor layer 120, wherein the mask layer has a plurality of openings to expose the surface of the first semiconductor layer 120 surface. Next, a hydrophobic material is provided on the first semiconductor layer 120 through a mask layer, and then the mask layer is removed to form a crystal nucleus point 130a. The location of the crystal nucleus point 130a shown in FIG. 2 corresponds to the opening of the mask layer. By providing a mask layer with a pattern, an induced crystal nucleus layer 130 as shown in FIG. 2A can be formed, which includes a plurality of crystal nucleus points 130a. The mask layer may include a metal mask or other masks with patterns.

如第3B圖所示,將前驅物溶液180塗佈在晶核點130a及第一半導體層120上。在一些實施例,可將欲形成鈣鈦礦的前驅物溶於溶劑,以形成前驅物溶液180。鈣鈦礦的前驅物可包含複數化合物,其中每一個化合物包含上述A、B或X所組成的群組的任一者。溶劑可包含γ-丁內酯(gamma-Butyrolactone,GBL)、二甲基甲醯胺(Dimethylformamide,DMF)、二甲基亞碸(Dimethyl Sulfoxide,DMSO)、二甲基乙醯胺(Dimethylacetamide,DMAc)、N-甲基吡咯酮(N-Methyl-2-Pyrrolidone,NMP)或其他適合的溶劑。在一些實施例,可藉由塗佈製程將前驅物溶液180塗佈在晶核點130a及第一半導體層120上。 As shown in FIG. 3B, the precursor solution 180 is coated on the crystal nucleus point 130a and the first semiconductor layer 120. In some embodiments, the precursor to be formed may be dissolved in a solvent to form the precursor solution 180. The precursor of the perovskite may include a plurality of compounds, each of which includes any one of the above-mentioned group consisting of A, B, or X. The solvent may contain gamma-butyrolactone (gamma-butyrolactone, GBL), dimethylformamide (Dimethylformamide, DMF), dimethylsulfoxide (Dimethyl Sulfoxide, DMSO), dimethylacetamide (Dimethylacetamide, DMAc) ), N-Methyl-2-Pyrrolidone (NMP) or other suitable solvents. In some embodiments, the precursor solution 180 may be coated on the crystal nucleus point 130a and the first semiconductor layer 120 by a coating process.

如第3C圖所示,塗佈前驅物溶液180後,使溶劑蒸發,使鈣鈦礦結晶以形成鈣鈦礦吸收層140。可先將基板110預熱,使其溫度達到約300℃,以利溶劑蒸發。由於晶核點130a具有疏水性的關係,會排斥前驅物溶液180,促使鈣鈦礦吸收層140由底部(或第一半導體層120的上表面)開始形成。當鈣鈦礦吸收層140由底部往上面及側面生長,有助於溶劑完全揮發,而形成缺陷少且結晶粒較大的結晶。在一些實施例,鈣鈦礦吸收層140與晶核點130a及第 一半導體層120直接接觸。 As shown in FIG. 3C, after applying the precursor solution 180, the solvent is evaporated to crystallize the perovskite to form the perovskite absorption layer 140. The substrate 110 may be preheated to reach a temperature of about 300°C to facilitate solvent evaporation. Since the crystal nucleus point 130a has a hydrophobic relationship, the precursor solution 180 will be repelled, so that the perovskite absorption layer 140 is formed from the bottom (or the upper surface of the first semiconductor layer 120). When the perovskite absorption layer 140 grows from the bottom to the upper side and the side, it helps the solvent to completely volatilize and form crystals with fewer defects and larger crystal grains. In some embodiments, the perovskite absorption layer 140 and the nucleus point 130a and the first A semiconductor layer 120 directly contacts.

在一些情況,若沒有使用晶核點130a,則鈣鈦礦吸收層會從前驅物溶液的上表面開始形成結晶,並且由上表面朝底部的順序形成結晶,這樣的方式會阻擋溶劑蒸發,使得溶劑容易殘留於鈣鈦礦吸收層內,使得鈣鈦礦吸收層的晶體缺陷較多,例如於吸收層內形成孔洞,使得形成的結晶粒較小,且此鈣鈦礦吸收層覆蓋第一半導體層的覆蓋率會較低。 In some cases, if the nucleus point 130a is not used, the perovskite absorption layer will form crystals from the upper surface of the precursor solution, and the crystals will form in order from the upper surface to the bottom. This way will block the evaporation of the solvent, so that The solvent is likely to remain in the perovskite absorber layer, so that the crystal defects of the perovskite absorber layer are more, such as forming holes in the absorber layer, so that the crystal grains formed are smaller, and the perovskite absorber layer covers the first semiconductor The coverage of the layer will be lower.

如第3D圖所示,當溶劑大抵上完全揮發以後,形成鈣鈦礦吸收層140於第一半導體層120的表面上。如上所述,在形成鈣鈦礦吸收層140的過程中,晶核點130a可避免溶劑殘留在第一半導體層120的上表面而導致鈣鈦礦吸收層140的晶體的缺陷產生,因此設置晶核點130a有助於形成具有較大結晶粒的鈣鈦礦吸收層140,並使鈣鈦礦吸收層140覆蓋第一半導體層120的覆蓋率較高。當鈣鈦礦吸收層140的結晶粒越大,越有助於提升鈣鈦礦吸收層140的穩定性,使得鈣鈦礦太陽能電池結構100能被長時間的使用並維持高效率。 As shown in FIG. 3D, after the solvent is almost completely evaporated, a perovskite absorption layer 140 is formed on the surface of the first semiconductor layer 120. As described above, in the process of forming the perovskite absorber layer 140, the crystal nucleus point 130a can prevent the solvent from remaining on the upper surface of the first semiconductor layer 120 to cause defects in the crystal of the perovskite absorber layer 140, so the crystal is provided The core point 130a helps to form the perovskite absorption layer 140 with larger crystal grains, and makes the perovskite absorption layer 140 cover the first semiconductor layer 120 higher. When the crystal grains of the perovskite absorber layer 140 are larger, the stability of the perovskite absorber layer 140 is improved, so that the perovskite solar cell structure 100 can be used for a long time and maintain high efficiency.

參閱第4A-4B圖,第4A-4B圖為根據本揭露的一些實施例之形成鈣鈦礦太陽能電池結構100的中間結構的製程流程圖。參閱第4A圖,在一些實施例,在形成鈣鈦礦吸收層140前,可先形成晶核點130b於第一半導體層120上。可藉由對第一半導體層120的表面實施改質製程,例如對第一半導體層120的表面進行疏水化處理而形成晶核點130b。在一些實施例,可對第一半導體層120 的表面進行電漿處理,以在第一半導體層120的表面形成自由基或具有疏水性的官能基,以形成晶核點130b。 Referring to FIGS. 4A-4B, FIGS. 4A-4B are process flowcharts of forming an intermediate structure of a perovskite solar cell structure 100 according to some embodiments of the present disclosure. Referring to FIG. 4A, in some embodiments, before forming the perovskite absorber layer 140, a nucleus point 130b may be formed on the first semiconductor layer 120 first. The crystal nucleus point 130b may be formed by performing a modification process on the surface of the first semiconductor layer 120, for example, performing a hydrophobic treatment on the surface of the first semiconductor layer 120. In some embodiments, the first semiconductor layer 120 The surface of the is subjected to plasma treatment to form free radicals or hydrophobic functional groups on the surface of the first semiconductor layer 120 to form the nucleus point 130b.

在此實施例,晶核點130b鑲入於第一半導體層120內,晶核點130b的上表面與第一半導體層120的上表面大抵上共平面。在此實施例,晶核點130b為具有疏水性的半導體材料。 In this embodiment, the crystal nucleus point 130b is embedded in the first semiconductor layer 120, and the upper surface of the crystal nucleus point 130b and the upper surface of the first semiconductor layer 120 are substantially coplanar. In this embodiment, the crystal nucleus point 130b is a hydrophobic semiconductor material.

如第4B圖所示,形成晶核點130b之後,形成鈣鈦礦吸收層140於第一半導體層120上。由第4A至4B的過程與由第3A至3D的過程相同或相似,在此不再重複敘述。在此實施例,具有圖案的誘導晶核層130可由複數個晶核點130b組成。此外,此實施例的誘導晶核層130的材料與第一半導體層120相同或相似。 As shown in FIG. 4B, after the crystal nucleus point 130b is formed, a perovskite absorption layer 140 is formed on the first semiconductor layer 120. The processes from 4A to 4B are the same as or similar to the processes from 3A to 3D, and will not be repeated here. In this embodiment, the patterned induced crystal nucleus layer 130 may be composed of a plurality of crystal nucleus points 130b. In addition, the material of the inducing crystal nucleus layer 130 of this embodiment is the same as or similar to the first semiconductor layer 120.

為了讓本揭露之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉實施例並搭配圖式,作詳細說明如下: In order to make the above-mentioned and other purposes, features, and advantages of this disclosure more obvious and understandable, the following specific examples and drawings are used to explain in detail as follows:

實施例1 Example 1

準備FTO基板,並以異丙醇(Isopropanol,IPA)進行超音波清潔後,使用氮氣乾燥之。接下來,以旋塗方式將包含NiO奈米粒子之溶液塗佈於FTO基板上,並在溫度為300℃之環境製備NiO薄膜,其中NiO薄膜的厚度約為60nm,接下來,將具有圖案的金屬遮罩設置於NiO薄膜/FTO基板上,以濺鍍製程形成具有多個晶核點的誘導晶核層於NiO薄膜上,並移除金屬遮罩,其中,每一個晶核點的直徑約為50μm,且晶核點之間的間距約為1.0mm。接下來,準備用來形成鈣鈦礦吸收層的前趨物溶液,其包含甲基三碘化鉛(MaPbI3)、γ-丁內酯及二甲基亞碸,其中MaPbI3可使用 PbI2/MAI比例為1:1來形成,另外溶劑則使用DMSO/GBL比例為3:7調配而成,最後前驅物溶液中MaPbI3的濃度為1.2M(MaPbI3/(DMSO+GBL)=1.2M)。將上述前驅物溶液旋塗於已加熱之誘導晶核層/NiO薄膜/FTO基板上,待溶劑蒸發後形成鈣鈦礦吸收層。接下來,以旋塗方式製作n型PCBM薄膜,其中PCBM薄膜的厚度約為50nm。接下來,以蒸鍍製作銀電極於PCBM薄膜上,其中銀電極的厚度約為150nm,以完成實施例1的鈣鈦礦太陽能電池結構。 Prepare the FTO substrate and perform ultrasonic cleaning with isopropanol (IPA), then dry it with nitrogen. Next, a solution containing NiO nanoparticles is applied on the FTO substrate by spin coating, and a NiO thin film is prepared in an environment at a temperature of 300° C., where the thickness of the NiO thin film is about 60 nm. Next, the patterned The metal mask is disposed on the NiO film/FTO substrate, and an induced crystal nucleus layer having a plurality of crystal nucleus points is formed on the NiO film by a sputtering process, and the metal mask is removed, wherein the diameter of each crystal nucleus point is about It is 50 μm, and the spacing between crystal nuclei is about 1.0 mm. Next, prepare a precursor solution for forming the perovskite absorber layer, which contains lead methyl triiodide (MaPbI 3 ), γ-butyrolactone, and dimethyl sulfoxide, of which MaPbI 3 can use PbI 2 /MAI ratio is 1:1, and the solvent is prepared by using DMSO/GBL ratio of 3:7. Finally, the concentration of MaPbI 3 in the precursor solution is 1.2M (MaPbI 3 /(DMSO+GBL)=1.2M ). The above precursor solution is spin-coated on the heated induced crystal nucleus layer/NiO film/FTO substrate, and the perovskite absorption layer is formed after the solvent is evaporated. Next, an n-type PCBM film is produced by spin coating, wherein the thickness of the PCBM film is about 50 nm. Next, a silver electrode is fabricated on the PCBM film by evaporation, wherein the thickness of the silver electrode is about 150 nm, to complete the perovskite solar cell structure of Example 1.

比較例1 Comparative example 1

準備FTO基板,並以IPA進行超音波清潔後,使用氮氣乾燥之。接下來,以旋塗方式將包含NiO奈米粒子之溶液塗佈於FTO基板上,並在溫度為300℃之環境製備NiO薄膜,其中NiO薄膜的厚度約為60nm。接下來,準備用來形成鈣鈦礦吸收層的前趨物溶液,其包含甲基三碘化鉛(MaPbI3)、γ-丁內酯及二甲基亞碸。以旋轉塗佈法將上述前驅物溶液旋塗於已加熱之NiO薄膜/FTO基板上,待溶劑蒸發後形成鈣鈦礦吸收層。接下來,以旋塗方式製作n型PCBM薄膜,其中PCBM薄膜的厚度約為50nm。接下來,接下來,以蒸鍍製作銀電極於PCBM薄膜上,其中銀電極的厚度約為150nm,以完成比較例1的鈣鈦礦太陽能電池結構。 After preparing the FTO substrate and performing ultrasonic cleaning with IPA, dry it with nitrogen. Next, a solution containing NiO nanoparticles is applied on the FTO substrate by spin coating, and a NiO thin film is prepared in an environment with a temperature of 300° C., wherein the thickness of the NiO thin film is about 60 nm. Next, a precursor solution for forming a perovskite absorption layer is prepared, which contains lead methyl triiodide (MaPbI 3 ), γ-butyrolactone, and dimethyl sulfoxide. The above-mentioned precursor solution was spin-coated on the heated NiO film/FTO substrate by spin coating method, and the perovskite absorption layer was formed after the solvent was evaporated. Next, an n-type PCBM film is produced by spin coating, wherein the thickness of the PCBM film is about 50 nm. Next, next, a silver electrode is fabricated on the PCBM film by evaporation, wherein the thickness of the silver electrode is about 150 nm, to complete the perovskite solar cell structure of Comparative Example 1.

參閱第5A-5D圖,第5A-5D圖是鈣鈦礦吸收層透過光學顯微鏡顯示的放大圖,其中5A、5B圖為比較例1之鈣鈦礦吸收 層的放大圖,第5C、5D圖為實施例1之鈣鈦礦吸收層的放大圖,第5A、5C圖的放大倍率為5倍,第5B、5D圖的放大倍率為50倍。 Refer to Figures 5A-5D. Figures 5A-5D are enlarged views of the perovskite absorption layer through an optical microscope. Figures 5A and 5B show the perovskite absorption of Comparative Example 1. 5C and 5D are magnified views of the perovskite absorption layer of Example 1. The magnifications of the 5A and 5C figures are 5 times, and the magnifications of the 5B and 5D figures are 50 times.

比較第5A及5C圖,可以發現第5C圖上有多個顏色較淺、間距約為1.0mm、且大小約為100μm的圓點,這些圓點的位置對應於晶核點210(如第5D圖所示)的形成處。如第5C圖所示,圓點內鈣鈦礦吸收層的顏色較其他地方淺,其原因是長在晶核點210上的鈣鈦礦吸收層的表面較平滑所致。相對於此,形成在晶核點210以外的鈣鈦礦吸收層的顏色較深,代表其表面較粗糙。 Comparing Figures 5A and 5C, it can be seen that there are multiple dots with a lighter color, a pitch of about 1.0 mm, and a size of about 100 μm on Figure 5C. The position of these dots corresponds to the nucleus point 210 (such as the 5D Figure shows) the formation of. As shown in FIG. 5C, the color of the perovskite absorption layer in the dots is lighter than other places. The reason is that the surface of the perovskite absorption layer growing on the nucleus point 210 is smoother. In contrast, the color of the perovskite absorber layer formed outside the nucleus point 210 is darker, which means that its surface is rougher.

比較第5B及5D圖,由第5B圖可以發現許多顏色較深的島狀結構220。此外,由第5D圖可發現位於圓點外的部分,亦有許多島狀結構220。這些島狀結構220的長度介於約5μm至約10μm的範圍間。島狀結構220為形成在鈣鈦礦吸收層內的孔洞所致。相較於此,在第5D圖可以發現在晶核點210上及其周邊的鈣鈦礦吸收層的表面較為平滑,亦即,形成在誘導晶核層上的鈣鈦礦吸收層的表面相對較不會有孔洞,而使得其表面較為緻密。由於比較例1並未形成誘導晶核層或晶核點210,因此鈣鈦礦吸收層的島狀結構220佈滿整個鈣鈦礦吸收層,而使得鈣鈦礦吸收層的覆蓋率較差。實施例1有形成誘導晶核層,由第5D圖可知位於晶核點210上及其周圍的鈣鈦礦吸收層實質上不含有島狀結構220,因此形成在晶核點210上及其周圍的鈣鈦礦吸收層的覆蓋率較佳。島狀結構220會減少光線吸收,使短路電流降低。此外,島狀結構220亦會造成晶體缺陷,使開路電壓及填充因子下降,而降低電池效率。據此,藉由設置誘 導晶核層,可減少晶體缺陷的產生,提供較佳的薄膜品質,並且避免因生成島狀結構220而衍生的問題。 Comparing Figures 5B and 5D, from Figure 5B, many darker island structures 220 can be found. In addition, from FIG. 5D, it can be found that there are many island-like structures 220 in the portion outside the dot. The length of these island structures 220 is in the range of about 5 μm to about 10 μm. The island structure 220 is caused by holes formed in the perovskite absorption layer. Compared to this, in the 5D image, it can be found that the surface of the perovskite absorption layer on and around the crystal nucleus point 210 is relatively smooth, that is, the surface of the perovskite absorption layer formed on the induced crystal nucleus layer is relatively There are fewer holes, making the surface denser. Since Comparative Example 1 does not form an induced crystal nucleus layer or crystal nucleus point 210, the island structure 220 of the perovskite absorber layer covers the entire perovskite absorber layer, which makes the coverage of the perovskite absorber layer poor. Example 1 has formed an induced crystal nucleus layer. It can be seen from FIG. 5D that the perovskite absorption layer on and around the crystal nucleus point 210 does not substantially contain the island-like structure 220, so it is formed on and around the crystal nucleus point 210 The coverage of the perovskite absorber layer is better. The island structure 220 reduces light absorption and reduces short-circuit current. In addition, the island structure 220 may also cause crystal defects, reduce the open circuit voltage and the fill factor, and reduce the battery efficiency. Accordingly, by setting The crystal conducting core layer can reduce the occurrence of crystal defects, provide better film quality, and avoid problems caused by the formation of the island-shaped structure 220.

在一些實施例,形成在晶核點210上的鈣鈦礦吸收層的結晶粒的直徑介於約20μm至約40μm的範圍間。而形成在晶核點210外,並環繞晶核點210的鈣鈦礦吸收層的結晶粒的尺寸介於約0.5μm至約1μm的範圍間。亦即,形成在誘導晶核層上的鈣鈦礦吸收層具有較大的晶粒。在一些實施例,晶核點210上的鈣鈦礦吸收層的結晶粒的尺寸與晶核點210外的鈣鈦礦吸收層的結晶粒的尺寸的比介於約20:1至約40:1之間。 In some embodiments, the diameter of the crystal grains of the perovskite absorption layer formed on the crystal nucleus point 210 is in the range of about 20 μm to about 40 μm. The size of the crystal grains of the perovskite absorption layer formed outside the crystal nucleus point 210 and surrounding the crystal nucleus point 210 is in the range of about 0.5 μm to about 1 μm. That is, the perovskite absorption layer formed on the induced crystal nucleus layer has larger crystal grains. In some embodiments, the ratio of the size of the crystal grains of the perovskite absorber layer on the nucleus point 210 to the size of the crystal grains of the perovskite absorber layer outside the nucleus point 210 is from about 20:1 to about 40: Between 1.

由上述內容,可以將鈣鈦礦吸收層分成第一區及第二區。第一區實質上位於誘導晶核層的正上方,第二區之鈣鈦礦吸收層下方並無誘導晶核層或晶核點,此外,第二區環繞第一區並與第一區接觸。位於第一區的鈣鈦礦吸收層的結晶粒的直徑大於位於第二區的鈣鈦礦吸收層的結晶粒的直徑。在一些實施例中第一區與第二區結晶直徑比為20:1~40:1。第一區投影至FTO基板的面積可大於或等於晶核點投影至FTO基板的面積。例如,第一區的投影面積與晶核點的投影面積的比介於約1:1至約2:1的範圍間。此外,由上視圖觀看,第一區與誘導晶核層或晶核點重疊。 From the above, the perovskite absorption layer can be divided into a first zone and a second zone. The first zone is located substantially directly above the induced crystal nucleus layer. There is no induced crystal nucleus layer or nucleus point under the perovskite absorption layer in the second zone. In addition, the second zone surrounds the first zone and is in contact with the first zone . The diameter of the crystal grains of the perovskite absorption layer located in the first zone is larger than the diameter of the crystal grains of the perovskite absorption layer located in the second zone. In some embodiments, the ratio of the crystal diameter of the first zone to the second zone is 20:1~40:1. The area of the first area projected onto the FTO substrate may be greater than or equal to the area of the crystal nucleus point projected onto the FTO substrate. For example, the ratio of the projected area of the first region to the projected area of the crystal nucleus point is in the range of about 1:1 to about 2:1. In addition, as viewed from the top view, the first region overlaps with the induced nucleus layer or nucleus point.

參閱第6A、6B圖,第6A、6B圖為實施例1的鈣鈦礦吸收層透過掃描電子顯微鏡顯示的放大圖。第6A圖的放大倍率為500倍,第6B圖的放大倍率為5000倍。由第6B圖可以發現位於圓點210內的鈣鈦礦吸收層的結晶具有樹枝狀(dendrite)結構。由於 誘導晶核層與前趨物溶液的界面為疏水性,因此不利鈣鈦礦晶體析出。隨溶劑蒸發,會使得溶液過飽和,並使鈣鈦礦晶體迅速長晶。由於晶體的成長速度過於迅速,使得位於誘導晶核層上的鈣鈦礦吸收層的結晶呈現樹枝狀結構。樹枝狀結晶的結晶粒大小可以透過控制FTO基板溫度而調整。在一些實施例,樹枝狀結晶的結晶粒尺寸介於約為20um至40um的範圍間。 Referring to FIGS. 6A and 6B, FIGS. 6A and 6B are enlarged views of the perovskite absorption layer of Example 1 displayed through a scanning electron microscope. The magnification of FIG. 6A is 500 times, and the magnification of FIG. 6B is 5000 times. From FIG. 6B, it can be found that the crystal of the perovskite absorption layer located within the dot 210 has a dendrite structure. due to The interface between the induced nucleus layer and the precursor solution is hydrophobic, which is not favorable for the precipitation of perovskite crystals. As the solvent evaporates, the solution will be supersaturated and the perovskite crystals will grow rapidly. Because the growth rate of the crystal is too fast, the crystal of the perovskite absorption layer located on the induced crystal core layer exhibits a dendritic structure. The crystal grain size of the dendrite can be adjusted by controlling the temperature of the FTO substrate. In some embodiments, the crystallite size of the dendritic crystals is in the range of about 20um to 40um.

參閱第7圖,第7圖為比較例1與實施例1之鈣鈦礦吸收層的拉曼光譜圖。其中實線為實施例1的光譜,虛線為比較例1的光譜。分析光源為使用波長為532nm之雷射,其雷射光斑約為10um,分析範圍為從50cm-1~650cm-1,解析度為0.6cm-1。其結果顯示,比較例1與實施例1於波數76.8cm-1、93.5cm-1、107.7cm-1、163.0cm-1以及214.2cm-1有峰值,其中76.8cm-1、93.5cm-1、107.7cm-1符合MAPbI3之峰值,而163.0cm-1以及214.2cm-1則符合PbI2之峰值。由峰值強度可以得知,實施例1之鈣鈦礦吸收層的PbI2/MAPbI3的訊號強度比例明顯低於比較例1的PbI2/MAPbI3的訊號強度,這結果顯示透過使用誘導晶核層較容易使前驅物反應成為MAPbI3,因此未反應完的PbI2之殘存量相較於比較例1較少。 Referring to FIG. 7, FIG. 7 is a Raman spectrum chart of the perovskite absorption layer of Comparative Example 1 and Example 1. The solid line is the spectrum of Example 1, and the broken line is the spectrum of Comparative Example 1. The analysis light source is a laser with a wavelength of 532 nm. The laser spot is about 10 um. The analysis range is from 50 cm -1 to 650 cm -1 and the resolution is 0.6 cm -1 . The results are shown, Comparative Example 1 and Example wavenumber 76.8cm -1 1, 93.5cm -1, 107.7cm -1, 163.0cm -1 with peaks and 214.2cm -1, wherein 76.8cm -1, 93.5cm - 1 , 107.7cm -1 corresponds to the peak of MAPbI 3 , while 163.0cm -1 and 214.2cm -1 correspond to the peak of PbI 2 . It can be known from the peak intensity that the signal intensity ratio of PbI 2 /MAPbI 3 of the perovskite absorber layer of Example 1 is significantly lower than that of PbI 2 /MAPbI 3 of Comparative Example 1. This result shows that The layer makes it easier for the precursor to react to MAPbI 3 , so the remaining amount of unreacted PbI 2 is smaller than that in Comparative Example 1.

參閱第8圖,第8圖為比較例1與實施例1之鈣鈦礦吸收層的X光繞射分析(XRD)光譜圖。其中實線為實施例1的光譜,虛線為比較例1的光譜。由第8圖可知,在13.98°、19.86°、28.34°、31.82°、40.50°及43.14°都有明顯繞射峰,上述繞射峰符合 MAPbI3,參閱表1及表2,如下所示:

Figure 107147354-A0305-02-0019-1
Refer to FIG. 8, which is an X-ray diffraction analysis (XRD) spectrum chart of the perovskite absorption layer of Comparative Example 1 and Example 1. The solid line is the spectrum of Example 1, and the broken line is the spectrum of Comparative Example 1. It can be seen from Fig. 8 that there are obvious diffraction peaks at 13.98°, 19.86°, 28.34°, 31.82°, 40.50° and 43.14°. The above diffraction peaks are in accordance with MAPbI 3. Refer to Table 1 and Table 2 as follows:
Figure 107147354-A0305-02-0019-1

Figure 107147354-A0305-02-0019-2
Figure 107147354-A0305-02-0019-2

表1為比較例1及實施例1在波峰為13.98°、19.86°、28.34°、31.82°、40.50°及43.14°的訊號強度,表2將兩個訊號強度最強的繞射峰13.98°和31.82°進行半峰全寬(Full Width at Half Maximum,FWHM)分析。由第8圖、表1及表2可知,實施例1之鈣鈦礦的所有繞射峰的訊號強度皆大於比較例1之鈣鈦礦之繞射峰的訊號強度。另外根據表2,顯示比較例1及實施例1於13.98°之半峰全寬分別為1.13以及0.41,在31.82°之半峰全寬分別為0.47以及0.41。當半峰全寬的數值越小時,代表晶體的品質較佳。根據表二的分析結果,可以得知,實施例1所生長之鈣鈦礦 吸收層的晶體品質優於比較例1所製備之鈣鈦礦吸收層。 Table 1 shows the signal intensities of Comparative Example 1 and Example 1 at peaks of 13.98°, 19.86°, 28.34°, 31.82°, 40.50°, and 43.14°. Table 2 shows the diffraction peaks with the strongest signal intensity at 13.98° and 31.82. °Full Width at Half Maximum (FWHM) analysis. As can be seen from FIG. 8, Table 1 and Table 2, the signal intensity of all diffraction peaks of the perovskite of Example 1 is greater than that of the diffraction peak of the perovskite of Comparative Example 1. In addition, according to Table 2, it is shown that the full width at half maximum of 13.98° of Comparative Example 1 and Example 1 is 1.13 and 0.41, and the full width at half of 31.82° is 0.47 and 0.41, respectively. The smaller the value of the full width at half maximum, the better the quality of the crystal. According to the analysis results in Table 2, it can be known that the perovskite grown in Example 1 The crystal quality of the absorption layer is better than that of the perovskite absorption layer prepared in Comparative Example 1.

第9圖是比較例1與實施例1之鈣鈦礦太陽能電池結構的電池開路電壓(Open-Circuit Voltage,Von)與電流密度之關係圖。實施例1的電池開路電壓為1.056V,短路電流密度(Short Circuit Current Density,Jsc)為19.76mA/cm2,填充因子(Fill-Factor,F.F.)為66.29%,效率為13.83%,其中,實線為實施例1,虛線比較例1。比較例1的電池開路電壓為1.052V,短路電流密度為18.59mA/cm2,填充因子為64.64%,效率為12.64%。根據第9圖,實施例1之鈣鈦礦太陽能電池結構的電池效率高於比較例1的鈣鈦礦太陽能電池結構的電池效率,主要原因可歸因於使用誘導晶核層所形成的鈣鈦礦吸收層的覆蓋率較高,因此提升了電流密度。並且,使用誘導晶核層所形成的鈣鈦礦吸收層之晶體品質較高,且缺陷相對較少,因此可提升電池效率。另外,參閱表3,如下:

Figure 107147354-A0305-02-0020-3
FIG. 9 is a graph showing the relationship between the open-circuit voltage (V on ) and the current density of the perovskite solar cell structure of Comparative Example 1 and Example 1. FIG. The open circuit voltage of the battery of Example 1 is 1.056V, the short circuit current density (Short Circuit Current Density, J sc ) is 19.76 mA/cm 2 , the fill factor (Fill-Factor, FF) is 66.29%, and the efficiency is 13.83%, where, The solid line is Example 1, and the dotted line is Comparative Example 1. The open circuit voltage of Comparative Example 1 was 1.052 V, the short-circuit current density was 18.59 mA/cm 2 , the fill factor was 64.64%, and the efficiency was 12.64%. According to FIG. 9, the cell efficiency of the perovskite solar cell structure of Example 1 is higher than that of the perovskite solar cell structure of Comparative Example 1, the main reason can be attributed to the use of perovskite formed by the induced crystal nucleus layer The coverage of the ore absorber layer is high, thus increasing the current density. Moreover, the perovskite absorber layer formed using the induced crystal nucleus layer has high crystal quality and relatively few defects, so the battery efficiency can be improved. In addition, refer to Table 3 as follows:
Figure 107147354-A0305-02-0020-3

表3整理出未形成晶核點、晶核點間距分別為0.6mm、1.0mm的開路電壓、短路電流密度、填充因子及效率的比較表格。由表格可以發現,當晶核點間距大於0.6mm時,開路電壓、 短路電流密度、填充因子及效率可比未形成晶核點的參數更進一步提升。 Table 3 summarizes the comparison table of open-circuit voltage, short-circuit current density, fill factor and efficiency where the nucleus point is not formed and the nucleus point spacing is 0.6 mm and 1.0 mm respectively. It can be found from the table that when the spacing between the nucleus points is greater than 0.6mm, the open circuit voltage, The short-circuit current density, fill factor and efficiency can be further improved than the parameters that do not form crystal nuclei.

雖然本揭露的實施例及其優點已揭露如上,但應該瞭解的是,任何所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作更動、替代與潤飾。此外,本揭露之保護範圍並未侷限於說明書內所述特定實施例中的製程、機器、製造、物質組成、裝置、方法及步驟,任何所屬技術領域中具有通常知識者可從本揭露一些實施例之揭示內容中理解現行或未來所發展出的製程、機器、製造、物質組成、裝置、方法及步驟,只要可以在此處所述實施例中實施大抵相同功能或獲得大抵相同結果皆可根據本揭露一些實施例使用。因此,本揭露之保護範圍包括上述製程、機器、製造、物質組成、裝置、方法及步驟。另外,每一申請專利範圍構成個別的實施例,且本揭露之保護範圍也包括各個申請專利範圍及實施例的組合。 Although the embodiments and advantages of the present disclosure have been disclosed above, it should be understood that anyone with ordinary knowledge in the technical field can make changes, substitutions, and retouching without departing from the spirit and scope of the present disclosure. In addition, the scope of protection of the present disclosure is not limited to the processes, machines, manufacturing, material composition, devices, methods, and steps in the specific embodiments described in the specification. Any person with ordinary knowledge in the technical field can implement some implementations from the present disclosure. In the disclosure of the examples, understand the current or future development of processes, machines, manufacturing, material composition, devices, methods and steps, as long as they can implement substantially the same functions or obtain substantially the same results in the embodiments described herein. This disclosure uses some embodiments. Therefore, the protection scope of the present disclosure includes the above processes, machines, manufacturing, material composition, devices, methods and steps. In addition, each patent application scope constitutes an individual embodiment, and the protection scope of the present disclosure also includes a combination of each patent application scope and embodiment.

100:鈣鈦礦太陽能電池結構 100: Perovskite solar cell structure

110:基板 110: substrate

120:第一半導體層 120: first semiconductor layer

130a:晶核點 130a: nucleus point

140:鈣鈦礦吸收層 140: Perovskite absorption layer

150:第二半導體層 150: second semiconductor layer

160:透明導電層 160: transparent conductive layer

170:電極 170: electrode

Claims (14)

一種鈣鈦礦太陽能電池,包括:一基板;一第一半導體層,設置於該基板上;一誘導晶核層,設置於該第一半導體層上;一鈣鈦礦吸收層,覆蓋該誘導晶核層及該第一半導體層;一第二半導體層,設置於該鈣鈦礦吸收層上;以及一電極層,設置於該第二半導體層上,其中該誘導晶核層為疏水層。 A perovskite solar cell includes: a substrate; a first semiconductor layer disposed on the substrate; an induced crystal nucleus layer disposed on the first semiconductor layer; and a perovskite absorber layer covering the induced crystal A core layer and the first semiconductor layer; a second semiconductor layer disposed on the perovskite absorption layer; and an electrode layer disposed on the second semiconductor layer, wherein the induced crystal core layer is a hydrophobic layer. 如申請專利範圍第1項所述的鈣鈦礦太陽能電池,其中該誘導晶核層為一圖案化層。 The perovskite solar cell as described in item 1 of the patent application scope, wherein the induced crystal nucleus layer is a patterned layer. 如申請專利範圍第1項所述的鈣鈦礦太陽能電池,其中該誘導晶核層的材料包括銦錫氧化物、氧化鎳、鉬硫化物、鉬氧化物或鎢氧化物。 The perovskite solar cell as described in item 1 of the patent application scope, wherein the material of the inducing crystal nucleus layer includes indium tin oxide, nickel oxide, molybdenum sulfide, molybdenum oxide, or tungsten oxide. 如申請專利範圍第1項所述的鈣鈦礦太陽能電池,其中該誘導晶核層包括複數個晶核點,該些晶核點的直徑介於30μm至100μm的範圍間。 The perovskite solar cell as described in item 1 of the patent application range, wherein the induced crystal nucleus layer includes a plurality of crystal nucleus points, and the diameter of the crystal nucleus points is in the range of 30 μm to 100 μm. 如申請專利範圍第4項所述的鈣鈦礦太陽能電池,其中該些晶核點的間距介於0.1mm至約1.7mm的範圍間。 The perovskite solar cell as described in item 4 of the patent application range, wherein the pitch of the crystal nucleus points is in the range of 0.1 mm to about 1.7 mm. 如申請專利範圍第4項所述的鈣鈦礦太陽能電池,其中該些晶核點的間距介於0.4mm至約1.5mm的範圍間。 The perovskite solar cell as described in item 4 of the patent application scope, wherein the pitch of the crystal nucleus points ranges from 0.4 mm to about 1.5 mm. 如申請專利範圍第1項所述的鈣鈦礦太陽能電池,其 中該誘導晶核層鑲入該第一半導體層,且該誘導晶核層包括具疏水性的半導體材料。 The perovskite solar cell as described in item 1 of the patent application scope, which The induced crystal nucleus layer is embedded in the first semiconductor layer, and the induced crystal nucleus layer includes a hydrophobic semiconductor material. 如申請專利範圍第1項所述的鈣鈦礦太陽能電池,其中該鈣鈦礦吸收層包括位於該誘導晶核層正上方的第一區,以及環繞第一區並其接觸的一第二區,位於該第一區內的結晶粒直徑與位於該第二區的結晶粒直徑比為20:1~40:1。 The perovskite solar cell as described in item 1 of the patent application scope, wherein the perovskite absorber layer includes a first region directly above the induced crystal nucleus layer, and a second region surrounding and contacting the first region The ratio of the diameter of the crystal grains in the first zone to the diameter of the crystal grains in the second zone is 20:1~40:1. 如申請專利範圍第8項所述的鈣鈦礦太陽能電池,其中位於該第一區內的結晶粒的直徑介於20μm至40μm的範圍間。 The perovskite solar cell as described in item 8 of the patent application scope, wherein the diameter of the crystal grains in the first zone is in the range of 20 μm to 40 μm. 申請專利範圍第1項所述的鈣鈦礦太陽能電池,其中該鈣鈦礦吸收層包括樹枝狀結構的結晶。 The perovskite solar cell as described in item 1 of the patent application scope, wherein the perovskite absorber layer includes crystals of a dendritic structure. 一種製造鈣鈦礦太陽能電池的方法,包括:提供一基板;形成一第一半導體層於該基板上;形成一誘導晶核層於該第一半導體層上;形成一鈣鈦礦吸收層,以覆蓋該誘導晶核層及該第一半導體層;形成一第二半導體層於該鈣鈦礦吸收層上;以及形成一電極層於該第二半導體層上,其中該誘導晶核層為疏水層。 A method for manufacturing a perovskite solar cell includes: providing a substrate; forming a first semiconductor layer on the substrate; forming an induced crystal nucleus layer on the first semiconductor layer; forming a perovskite absorber layer to Covering the induced crystal nucleus layer and the first semiconductor layer; forming a second semiconductor layer on the perovskite absorber layer; and forming an electrode layer on the second semiconductor layer, wherein the induced crystal nucleus layer is a hydrophobic layer . 如申請專利範圍第11項所述的方法,更包括:圖案化該誘導晶核層,以形成多個彼此分隔的晶核點。 The method as described in item 11 of the patent application scope further includes: patterning the induced crystal nucleus layer to form a plurality of crystal nucleus points separated from each other. 如申請專利範圍第11項所述的方法,其中該誘導晶核層的材料包括銦錫氧化物、氧化鎳、鉬硫化物、鉬氧化物或鎢氧 化物。 The method as described in item 11 of the patent application range, wherein the material of the inducing crystal nucleus layer includes indium tin oxide, nickel oxide, molybdenum sulfide, molybdenum oxide or tungsten oxide Chemical compound. 如申請專利範圍第11項所述的方法,更包括:對該第一半導體層執行疏水化處理,以形成該誘導晶核層。 The method as described in item 11 of the patent application scope further includes: performing a hydrophobization treatment on the first semiconductor layer to form the induced crystal nucleus layer.
TW107147354A 2018-12-27 2018-12-27 A perovskite solar cell and a method of manufacturing the same TWI692879B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW107147354A TWI692879B (en) 2018-12-27 2018-12-27 A perovskite solar cell and a method of manufacturing the same
CN201910096554.9A CN111384243B (en) 2018-12-27 2019-01-30 Perovskite solar cell and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107147354A TWI692879B (en) 2018-12-27 2018-12-27 A perovskite solar cell and a method of manufacturing the same

Publications (2)

Publication Number Publication Date
TWI692879B true TWI692879B (en) 2020-05-01
TW202025505A TW202025505A (en) 2020-07-01

Family

ID=71219165

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107147354A TWI692879B (en) 2018-12-27 2018-12-27 A perovskite solar cell and a method of manufacturing the same

Country Status (2)

Country Link
CN (1) CN111384243B (en)
TW (1) TWI692879B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112522776B (en) * 2020-11-11 2021-08-06 山西绿普光电新材料科技有限公司 Method for continuously preparing perovskite photovoltaic single crystal thin film composite material
CN112467043B (en) * 2020-11-25 2023-01-20 隆基绿能科技股份有限公司 Perovskite solar cell and manufacturing method thereof
TWI825657B (en) * 2022-04-07 2023-12-11 中華學校財團法人中華科技大學 Perovskite planar solar cell production method
CN115884607B (en) * 2022-08-02 2023-11-17 中国科学技术大学 Perovskite solar cell with local semi-open passivation contact structure and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204857789U (en) * 2015-09-06 2015-12-09 辽宁工业大学 Perovskite type solar cell
US20160248028A1 (en) * 2013-12-19 2016-08-25 Nutech Ventures Method for single crystal growth of photovoltaic perovskite material and devices
WO2017057913A1 (en) * 2015-09-30 2017-04-06 한양대학교 산학협력단 Method for manufacturing perovskite crystal structure and device for manufacturing perovskite crystal structure therefor
CN106953019A (en) * 2017-05-04 2017-07-14 东华大学 A kind of Ca-Ti ore type solar cell and preparation method thereof
CN106960883A (en) * 2017-03-24 2017-07-18 华中科技大学 A kind of full-inorganic perovskite solar cell and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101172374B1 (en) * 2011-02-14 2012-08-08 성균관대학교산학협력단 Dye-sensitized solar cell based on perovskite sensitizer and manufacturing method thereof
CN108258119A (en) * 2018-01-10 2018-07-06 中国科学院半导体研究所 Inorganic halide bismuth perovskite battery and preparation method thereof
CN108878654A (en) * 2018-06-07 2018-11-23 杭州众能光电科技有限公司 A kind of perovskite solar battery of novel full-inorganic contact

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160248028A1 (en) * 2013-12-19 2016-08-25 Nutech Ventures Method for single crystal growth of photovoltaic perovskite material and devices
CN204857789U (en) * 2015-09-06 2015-12-09 辽宁工业大学 Perovskite type solar cell
WO2017057913A1 (en) * 2015-09-30 2017-04-06 한양대학교 산학협력단 Method for manufacturing perovskite crystal structure and device for manufacturing perovskite crystal structure therefor
CN106960883A (en) * 2017-03-24 2017-07-18 华中科技大学 A kind of full-inorganic perovskite solar cell and preparation method thereof
CN106953019A (en) * 2017-05-04 2017-07-14 东华大学 A kind of Ca-Ti ore type solar cell and preparation method thereof

Also Published As

Publication number Publication date
CN111384243B (en) 2023-06-30
CN111384243A (en) 2020-07-07
TW202025505A (en) 2020-07-01

Similar Documents

Publication Publication Date Title
TWI692879B (en) A perovskite solar cell and a method of manufacturing the same
Wu et al. Thin films of dendritic anatase titania nanowires enable effective hole‐blocking and efficient light‐harvesting for high‐performance mesoscopic perovskite solar cells
Hsu et al. Synthesis of novel Cu2O micro/nanostructural photocathode for solar water splitting
Ren et al. Thermal assisted oxygen annealing for high efficiency planar CH3NH3PbI3 perovskite solar cells
US20170084400A1 (en) Precipitation process for producing perovskite-based solar cells
Wang et al. High efficient perovskite whispering-gallery solar cells
Zhang et al. High-efficiency (> 20%) planar carbon-based perovskite solar cells through device configuration engineering
US20160071655A1 (en) Electrochemical solar cells
Wu et al. Solvent‐mediated dimension tuning of semiconducting oxide nanostructures as efficient charge extraction thin films for perovskite solar cells with efficiency exceeding 16%
Patil et al. Highly efficient mixed-halide mixed-cation perovskite solar cells based on rGO-TiO2 composite nanofibers
US9287057B2 (en) Plasmonic enhanced tandem dye-sensitized solar cell with metallic nanostructures
Yu et al. Mn-doped CdS quantum dots sensitized hierarchical TiO2 flower-rod for solar cell application
US20120305069A1 (en) Photoelectrode including zinc oxide hemisphere, method of fabricating the same and dye-sensitized solar cell using the same
Nguyen et al. 3-D solar cells by electrochemical-deposited Se layer as extremely-thin absorber and hole conducting layer on nanocrystalline TiO 2 electrode
US20120181503A1 (en) Method of Fabricating Silicon Quantum Dot Layer and Device Manufactured Using the Same
Holi et al. Ag2S/ZnO nanorods composite photoelectrode prepared by hydrothermal method: influence of growth temperature
Ye et al. Towards large-area perovskite solar cells: the influence of compact and mesoporous TiO2 electron transport layers
Leal et al. In situ incorporation of laser ablated PbS nanoparticles in CH3NH3PbI3 films by spin-dip coating and the subsequent effects on the planar junction CdS/CH3NH3PbI3 solar cells
AL-Zahrani et al. Synthesis of binary Bi2S3/ZnO nanorod array heterostructure and their photoelectrochemical performance
Khorasani et al. Application of combinative TiO2nanorods and nanoparticles layer as the electron transport film in highly efficient mixed halides perovskite solar cells
Liyanage et al. CdS–CdTe heterojunction nanotube arrays for efficient solar energy conversion
Andrade et al. W: BiVO4-WO3-V2O5 heterostructures increase light absorption and charge transport in photoanodes for water splitting
Lee et al. Sb2Se3 liquid-junction semiconductor-sensitized solar cells
Shirvani et al. Comparative study on the electrochemical synthesis of zinc oxide nanorods using chronoamperometry and chronopotentiometry and their application in inverted polymer solar cells
Jawad et al. An alternative method to grow Ge thin films on Si by electrochemical deposition for photonic applications