TWI690697B - Temperature sensor evaluation method - Google Patents

Temperature sensor evaluation method Download PDF

Info

Publication number
TWI690697B
TWI690697B TW108103216A TW108103216A TWI690697B TW I690697 B TWI690697 B TW I690697B TW 108103216 A TW108103216 A TW 108103216A TW 108103216 A TW108103216 A TW 108103216A TW I690697 B TWI690697 B TW I690697B
Authority
TW
Taiwan
Prior art keywords
temperature
voltage
detection
reference voltage
temperature sensor
Prior art date
Application number
TW108103216A
Other languages
Chinese (zh)
Other versions
TW202028707A (en
Inventor
楊軒任
黃庭瀚
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW108103216A priority Critical patent/TWI690697B/en
Application granted granted Critical
Publication of TWI690697B publication Critical patent/TWI690697B/en
Publication of TW202028707A publication Critical patent/TW202028707A/en

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

A temperature sensor adjustment method is disclosed. The temperature sensor is arranged in a memory device and includes a comparator, a voltage divider and a bandgap reference voltage source. The comparator compares a temperature reference voltage that varies with temperature and a plurality of divided voltages generated from the voltage divider. The evaluation method includes, for a plurality of pre-determined testing temperatures, changing the plurality of divided voltages from the voltage divider, the comparator comparing the divided voltages with the temperature reference voltage to get a first detection voltage, and based on a voltage difference between a target divided voltage and the first detection voltage, retrieving a temperature error value between a sensing temperature of the temperature sensor and the testing temperature.

Description

溫度感測器的評估方法Evaluation method of temperature sensor

本發明係有關於一溫度感測器,特別是有關於設置於一記憶體裝置內的該溫度感測器之評估方法。The invention relates to a temperature sensor, in particular to an evaluation method of the temperature sensor provided in a memory device.

動態隨機存取記憶體(Dynamic Random Access Memory: DRAM) 為了省電會根據不同溫度而有不同的自更新頻率,溫度愈低其自更新的頻率愈低,亦即間隔較長的時間做一次自更新;溫度愈高其自更新頻率愈高,亦即間隔較短的時間做一次自更新。而DRAM就是依據其內部的一溫度感測器的感測溫度,用以調整不同溫度下的該自更新頻率。如果該溫度感測器的感測溫度與實際溫度誤差過大,則會因為不適當的自更新頻率,而造成DRAM所儲存資料的遺失。Dynamic random access memory (Dynamic Random Access Memory: DRAM) will have different self-refresh frequencies according to different temperatures in order to save power. The lower the temperature, the lower the self-refresh frequency, which means that the self-refresh frequency is longer. Renewal; the higher the temperature, the higher the self-refresh frequency, that is, the self-refresh is performed at a shorter interval. The DRAM is used to adjust the self-refresh frequency at different temperatures according to the temperature sensed by a temperature sensor inside. If the temperature difference between the sensed temperature and the actual temperature of the temperature sensor is too large, the data stored in the DRAM may be lost due to an inappropriate self-refresh frequency.

在評估該溫度感測器的實際感測溫度時,以往的測試環境方式需將該溫度感測器放入一特定溫度(例如90∘C)的測試環境中,待熱平衡之後,上下調整該測試環境的溫度,例如以該特定溫度上下調整各2∘C、4∘C、6∘C,甚至8∘C,用以找出該溫度感測器切換該自更新頻率的溫度點。然而,在測試環境過程中,每調整一次測試環境溫度都需等待2小時的熱平衡時間,而造成該溫度感測器的測試環境效率低落,並且該溫度感測器的實際感測溫度的解析度僅為±3∘C,換句話說,若該溫度感測器切換該自更新頻率的溫度點在該特定溫度±2∘C的區間內時,在測試環境過程中並無法有效偵測該溫度感測器切換該自更新頻率的溫度點。When evaluating the actual sensing temperature of the temperature sensor, the conventional test environment method needs to put the temperature sensor into a test environment with a specific temperature (for example, 90∘C), and adjust the test up and down after the heat balance The temperature of the environment, for example, adjust each 2∘C, 4∘C, 6∘C, or even 8∘C up and down with the specific temperature to find the temperature point at which the temperature sensor switches the self-renewal frequency. However, in the test environment process, each time the test environment temperature is adjusted, it needs to wait for 2 hours of thermal equilibrium time, which causes the test environment of the temperature sensor to be inefficient, and the resolution of the actual temperature sensing of the temperature sensor Only ±3∘C, in other words, if the temperature point at which the temperature sensor switches the self-refresh frequency is within the range of ±2∘C of the specific temperature, the temperature cannot be effectively detected during the test environment The sensor switches the temperature point of the self-renewal frequency.

依據本發明一實施例之一溫度感測器的評估方法,該溫度感測器設置於一記憶體裝置內,且該溫度感測器包括一比較器、一分壓器、一二極體及一帶隙參考電壓源,該帶隙參考電壓源供電予該分壓器及該二極體,該比較器將該二極體產生隨溫度變化的一感溫參考電壓與該分壓器產生的複數分壓電壓進行比較;該評估方法包括:對預設的複數檢測溫度,在大於一既定溫度的該等檢測溫度中的一第一檢測溫度下,將該帶隙參考電壓源校準至一目標電壓,該分壓器依據該目標電壓輸出該等複數分壓電壓,且以該比較器對該等複數分壓電壓與該感溫參考電壓進行比較,取得對應於該第一檢測溫度的一第一目標分壓電壓; 其中該第一目標分壓電壓對應於該等複數分壓電壓之第一者;改變該分壓器的該等分壓電壓之第一者,且以該比較器對該等分壓電壓之第一者與該感溫參考電壓進行比較,取得對應於該第一檢測溫度的一第一檢測電壓;透過該第一目標分壓電壓與該第一檢測電壓的一電壓差值,在該第一檢測溫度時,得到該溫度感測器的實際感測溫度與該第一檢測溫度的一第一溫度誤差值。According to an evaluation method of a temperature sensor according to an embodiment of the invention, the temperature sensor is disposed in a memory device, and the temperature sensor includes a comparator, a voltage divider, a diode and A bandgap reference voltage source, the bandgap reference voltage source supplies the voltage divider and the diode, and the comparator generates a temperature-sensing reference voltage that varies with temperature from the diode and the complex number generated by the voltage divider Comparing divided voltages; the evaluation method includes: calibrating the bandgap reference voltage source to a target voltage at a first detection temperature among the detection temperatures greater than a predetermined temperature , The voltage divider outputs the plurality of divided voltages according to the target voltage, and the comparator is used to compare the plurality of divided voltages with the temperature reference voltage to obtain a first corresponding to the first detected temperature A target divided voltage; wherein the first target divided voltage corresponds to the first of the plurality of divided voltages; the first of the divided voltages of the voltage divider is changed, and the comparator The first of the divided voltages is compared with the temperature-sensing reference voltage to obtain a first detected voltage corresponding to the first detected temperature; through a voltage difference between the first target divided voltage and the first detected voltage , At the first detected temperature, a first temperature error value between the actual sensed temperature of the temperature sensor and the first detected temperature is obtained.

第1圖為本發明實施例之溫度感測器方塊圖。如第1圖所示,一記憶體裝置或積體電路(例如DRAM)內的一溫度感測器100包括:一分壓器102、一比較器104、一帶隙參考電壓源106、一二極體108、一控制器110。分壓器102依據帶隙參考電壓源106所提供的電源,產生複數分壓電壓Vout[0:5],以6個分壓為例,包括Vout[0]~Vout[5]總共6個分壓。帶隙參考電壓源106亦可輸出一定電流116流經二極體108,而產生隨溫度變化的一感溫參考電壓112。比較器104將隨溫度變化的該感溫參考電壓112與分壓器102產生的複數分壓電壓Vout[0:5]進行比較,以偵測該溫度感測器所處測試環境的溫度。控制器110依據比較器104所輸出的比較結果,可控制該記憶體的自更新頻率。FIG. 1 is a block diagram of a temperature sensor according to an embodiment of the invention. As shown in FIG. 1, a temperature sensor 100 in a memory device or integrated circuit (such as DRAM) includes: a voltage divider 102, a comparator 104, a bandgap reference voltage source 106, and a diode体108、一Controller 110。 Body 108, a controller 110. The voltage divider 102 generates a plurality of divided voltages Vout[0:5] according to the power provided by the bandgap reference voltage source 106, taking 6 divided voltages as an example, including Vout[0]~Vout[5] a total of 6 divided voltages Pressure. The bandgap reference voltage source 106 can also output a certain current 116 to flow through the diode 108 to generate a temperature-sensing reference voltage 112 that varies with temperature. The comparator 104 compares the temperature-sensing reference voltage 112 that changes with temperature with the complex voltage-dividing voltage Vout[0:5] generated by the voltage divider 102 to detect the temperature of the test environment where the temperature sensor is located. The controller 110 can control the self-refresh frequency of the memory according to the comparison result output by the comparator 104.

分壓器102具有可調整該等分壓電壓Vout[0:5]的阻抗構件,例如,分壓器102具有可調整電阻值的一可變電阻、或是搭配開關、熔絲與電阻的可調阻抗網路 (未圖示),藉由調整該可變電阻的電阻值,透過分壓原理,分壓器102係可改變該等分壓電壓Vout[0:5]。溫度感測器100的評估方法,包括:對預設的複數檢測溫度,在大於一既定溫度的一第一檢測溫度下,將帶隙參考電壓源106校準至一目標電壓,分壓器102依據該目標電壓輸出該等複數分壓電壓(Vout[0:5]),且以比較器104對該等複數分壓電壓(Vout[0:5])與該感溫參考電壓112進行比較,取得對應於該第一檢測溫度的一第一目標分壓電壓。其中,該第一目標分壓電壓對應於該等複數分壓之第一者(Vout[5])。The voltage divider 102 has an impedance component that can adjust the divided voltage Vout[0:5], for example, the voltage divider 102 has a variable resistance with adjustable resistance value, or can be matched with a switch, fuse and resistance By adjusting the resistance of the variable resistance network (not shown), the voltage divider 102 can change the divided voltage Vout[0:5] through the principle of voltage division. The evaluation method of the temperature sensor 100 includes: calibrating the bandgap reference voltage source 106 to a target voltage at a first detection temperature greater than a predetermined temperature for a preset complex detection temperature, based on the voltage divider 102 The target voltage outputs the plurality of divided voltages (Vout[0:5]), and the comparator 104 compares the plurality of divided voltages (Vout[0:5]) with the temperature reference voltage 112 to obtain A first target divided voltage corresponding to the first detected temperature. Wherein, the first target divided voltage corresponds to the first of the plurality of divided voltages (Vout[5]).

第2圖為本發明實施例第1圖之感溫參考電壓112及複數檔位電壓Vout[0:5]的電壓-溫度曲線圖。如第2圖所示,舉例來說,假設在90∘C以上的測試環境溫度下,選擇了90∘C及120∘C二個溫度點作為溫度感測器100的檢測溫度。首先,在120∘C的檢測溫度下(亦即,該記憶體裝置在120∘C測試環境溫度下),將帶隙參考電壓源106校準至一目標電壓,分壓器102依據該目標電壓輸出該等複數分壓電壓(Vout[0:5])至比較器104而與感溫參考電壓112做比較,在120∘C時,藉由改變該等複數分壓之第一者(Vout[5])的電壓值,可得到其與感溫參考電壓112的交點,即點A。在點A時,該等複數分壓之第一者(Vout[5])的電壓值相等於該感溫參考電壓112的電壓值,並且得到與點A相對應的在120∘C時的一第一目標分壓電壓,即點B,例如約為500mV。在90∘C的檢測溫度下,改變該等複數分壓之第二者(Vout[4])的電壓值,可得到其與感溫參考電壓112的交點,即點C。在點C時,該等複數分壓之第二者(Vout[4])的電壓值相等於該感溫參考電壓112的電壓值,並且得到與點C相對應在90℃時的一第二目標分壓電壓,即點D,例如約為570mV。 FIG. 2 is a voltage-temperature graph of the temperature-sensing reference voltage 112 and the complex gear voltage Vout[0:5] of FIG. 1 according to an embodiment of the present invention. As shown in FIG. 2, for example, suppose that at a test environment temperature of 90∘C or more, two temperature points of 90∘C and 120∘C are selected as the detection temperature of the temperature sensor 100. First, at a detection temperature of 120∘C (that is, the memory device is at 120∘C test ambient temperature), the bandgap reference voltage source 106 is calibrated to a target voltage, and the voltage divider 102 outputs according to the target voltage The complex divided voltages (Vout[0:5]) are compared to the comparator 104 and the temperature reference voltage 112, at 120∘C, by changing the first of the complex divided voltages (Vout[5 ]) The voltage value can be obtained as the intersection point with the temperature reference voltage 112, namely point A. At point A, the voltage value of the first of the plurality of divided voltages (Vout[5]) is equal to the voltage value of the temperature-sensing reference voltage 112, and a value corresponding to point A at 120∘C is obtained The first target divided voltage, point B, is, for example, about 500 mV. Under the detection temperature of 90∘C, change the voltage value of the second of these complex partial voltages (Vout[4]) to obtain its intersection with the temperature reference voltage 112, namely point C. At point C, the voltage value of the second of the plurality of divided voltages (Vout[4]) is equal to the voltage value of the temperature reference voltage 112, and a second corresponding to point C at 90°C is obtained The target divided voltage, point D, is, for example, about 570mV.

帶隙參考電壓源106之中,一般具有正溫度係數區塊及負溫度係數區塊(未圖示)。其中,該正溫度係數電路區塊中的電路阻抗隨著溫度的上升而升高;該負溫度係數電路區塊中的電路阻抗隨著溫度的升高而降低。在本實施例中,藉由調整帶隙參考電壓源106中的正溫度係數電路區塊及/或負溫度係數電路區塊,用以校準該等複數分壓電壓Vout[0:5],使得該等複數分壓電壓Vout[0:5]在預設的該等複數檢測溫度時,不因溫度變化的影響而發生電壓偏移。 The bandgap reference voltage source 106 generally has a positive temperature coefficient block and a negative temperature coefficient block (not shown). Among them, the circuit impedance in the positive temperature coefficient circuit block increases with increasing temperature; the circuit impedance in the negative temperature coefficient circuit block decreases with increasing temperature. In this embodiment, by adjusting the positive temperature coefficient circuit block and/or the negative temperature coefficient circuit block in the bandgap reference voltage source 106, it is used to calibrate the complex divided voltages Vout[0:5], so that When the plurality of complex divided voltages Vout[0:5] detect the temperature at the preset plurality of complex voltages, no voltage shift occurs due to the influence of temperature changes.

帶隙參考電壓源106包括一電流源114,該電流源114輸出一定電流116流經二極體108,而產生隨溫度變化的該感溫參考電壓。藉由調整流經二極體108的定電流116的大小,亦可改變該感溫參考電壓的電壓-溫度變化斜率,進而改變溫度感測器100的靈敏度;其中,感溫參考電壓112的電壓值是隨著溫度的升高而降低。舉例來說,藉由增加定電流116的電流大小,使得流經二極體108的電流變大,讓該感溫參考電壓的電壓-溫度變化斜率變大,溫度感測器100的靈敏度因此隨之變大。其中,該感溫參考電壓係基於溫度感測器100的靈敏度需求而設定,亦或依據實體元件的電壓-溫度變化特性而設定在本實施例,該感溫參考電壓的該電壓-溫度變化斜率,係為二極體108的跨壓對溫度變化的斜率(約-2mV/℃)。 The bandgap reference voltage source 106 includes a current source 114 that outputs a certain current 116 to flow through the diode 108 to generate the temperature-sensing reference voltage that varies with temperature. By adjusting the magnitude of the constant current 116 flowing through the diode 108, the voltage-temperature change slope of the temperature-sensing reference voltage can also be changed, thereby changing the sensitivity of the temperature sensor 100; wherein, the voltage of the temperature-sensing reference voltage 112 The value decreases with increasing temperature. For example, by increasing the current of the constant current 116, the current flowing through the diode 108 becomes larger, so that the slope of the voltage-temperature change of the temperature reference voltage becomes larger, and the sensitivity of the temperature sensor 100 accordingly increases Become bigger. Wherein, the temperature-sensing reference voltage is set based on the sensitivity requirement of the temperature sensor 100, or is set in this embodiment according to the voltage-temperature change characteristic of the physical element, and the voltage-temperature change slope of the temperature-sensing reference voltage , Is the slope of the cross-pressure of the diode 108 to the temperature change (about -2mV/℃).

溫度感測器100的評估方法更利用一雷射維修(laser repair)裝置(未圖示),在大於該既定溫度的該至少一第一檢測溫度下,依據該目標分壓電壓對帶隙參考電壓源106中的該正溫度係數電路區塊及/或負溫度係數電路區塊內的熔絲(fuse)執行燒斷的動作,使得溫度感測器100的感測溫度得以接近於該至少一第一檢測溫度。舉例來說,在120∘C的測試環境中,該雷射維修裝置依據第2圖中的該第一目標分壓電壓(點B, 500mV),對該正溫度係數電路區塊及/或負溫度係數電路區塊內的熔絲(fuse)執行燒斷的動作,進而影響該等複數分壓電壓(Vout[0:5])的電壓-溫度特性。不同的該等目標分壓電壓係可對應於在該正溫度係數電路區塊及/或負溫度係數電路區塊內不同的熔絲。因此在120∘C的測試環境時,藉由執行熔絲燒斷可使得該該等複數分壓電壓之第一者(Vout[5])在120∘C時被設定為500mV,亦即將該等複數分壓電壓之第一者(Vout[5])於120∘C時的電壓固定。在其他的檢測溫度下亦可執行相同動作以調校該該等複數分壓電壓(Vout[0:5])。換句話說,該熔絲燒斷的動作係在120∘C的測試環境中校準該該等複數分壓電壓之第一者(Vout[5]),故可使得溫度感測器100的感測溫度得以接近於120∘C的檢測溫度。The evaluation method of the temperature sensor 100 further utilizes a laser repair device (not shown), at the at least one first detection temperature greater than the predetermined temperature, based on the target divided voltage to the band gap reference The fuse in the positive temperature coefficient circuit block and/or the negative temperature coefficient circuit block in the voltage source 106 performs a blowout operation, so that the temperature sensed by the temperature sensor 100 is close to the at least one The first detection temperature. For example, in a 120∘C test environment, the laser repair device is based on the first target divided voltage (point B, 500mV) in Figure 2 to the positive temperature coefficient circuit block and/or negative The fuse in the temperature coefficient circuit block performs a blowout operation, which in turn affects the voltage-temperature characteristics of the complex divided voltages (Vout[0:5]). Different target voltage division voltages may correspond to different fuses in the positive temperature coefficient circuit block and/or the negative temperature coefficient circuit block. Therefore, in the 120∘C test environment, by performing fuse blowing, the first of the plurality of divided voltages (Vout[5]) is set to 500mV at 120∘C. The voltage of the first of the plurality of divided voltages (Vout[5]) is fixed at 120∘C. The same action can be performed at other detection temperatures to calibrate the multiple divided voltages (Vout[0:5]). In other words, the action of the fuse blowing is to calibrate the first of the plurality of divided voltages (Vout[5]) in a 120∘C test environment, so that the temperature sensor 100 can be sensed The temperature can be close to the detection temperature of 120∘C.

接著,在大於該既定溫度的該等檢測溫度中的該至少一第一檢測溫度下,由該記憶體或溫度感測器100內的帶隙參考電壓源106供電給分壓器102及二極體108,並改變分壓器102的該等複數分壓電壓Vout[0:5],且比較器104對該等複數分壓電壓Vout[0:5]與該感溫參考電壓112進行比較,取得對應於該至少一第一檢測溫度的一第一檢測電壓;並且透過該第一目標分壓電壓與該第一檢測電壓的一電壓差值,在該至少一第一檢測溫度時,得到溫度感測器100的實際感測溫度與該至少一第一檢測溫度的一第一溫度誤差值。Then, at the at least one first detection temperature among the detection temperatures greater than the predetermined temperature, the voltage divider 102 and the diode are supplied by the band gap reference voltage source 106 in the memory or the temperature sensor 100 Body 108, and change the plurality of divided voltages Vout[0:5] of the voltage divider 102, and the comparator 104 compares the plurality of divided voltages Vout[0:5] with the temperature reference voltage 112, Obtaining a first detection voltage corresponding to the at least one first detection temperature; and obtaining a temperature at the at least one first detection temperature through a voltage difference between the first target divided voltage and the first detection voltage A first temperature error value between the actually sensed temperature of the sensor 100 and the at least one first detected temperature.

舉例來說,假設在90∘C以上的測試環境溫度下,選擇了90∘C及120∘C二個溫度點作為溫度感測器100的檢測溫度。如第2圖所示,首先,在120∘C的檢測溫度下,將帶隙參考電壓源106校準至一目標電壓,分壓器102依據該目標電壓而輸出該等複數分壓電壓Vout[0:5],藉由改變該等複數分壓電壓Vout[0:5],例如改變該等複數分壓電壓之第一者Vout[5]的變化範圍為500mV±20mV(例如由Vout[5]改變為Vout[5]’),而得到其與感溫參考電壓112的交點,即點A’。在點A’時,該等複數分壓電壓之第一者Vout[5]’的電壓值相等於該感溫參考電壓112的電壓值,並且得到與點A’相對應的一第一檢測電壓,即點B’。 點A’所對應的第一檢測電壓B’約為520mV。第一目標分壓電壓B(500mV)與第一檢測電壓B’的差值為20mV,由於感溫參考電壓112的電壓-溫度變化斜率為-2mV/∘C,因此可得到溫度感測器100的實際感測溫度比120∘C的檢測溫度還要小10∘C,亦即110∘C(第2圖點A’所對應的感測溫度110∘C)。同理,在90∘C的檢測溫度下,亦改變該等複數分壓電壓Vout[0:5]的電壓值,例如改變該等複數分壓電壓之第二者Vout[4]的變化範圍為570mV±20mV,而得到其與感溫參考電壓112的交點。因此,亦可透過改變該等複數分壓之第二者(Vout[4])的電壓值而得到溫度感測器100的第二檢測電壓。For example, suppose that under the test environment temperature of 90∘C or more, two temperature points of 90∘C and 120∘C are selected as the detection temperature of the temperature sensor 100. As shown in FIG. 2, first, at a detection temperature of 120∘C, the bandgap reference voltage source 106 is calibrated to a target voltage, and the voltage divider 102 outputs the complex divided voltages Vout[0 according to the target voltage :5], by changing the plurality of divided voltages Vout[0:5], for example, the first Vout[5] of the plurality of divided voltages has a variation range of 500mV±20mV (for example, by Vout[5] Change to Vout[5]'), and get its intersection with the temperature reference voltage 112, namely point A'. At point A', the voltage value of the first of the plurality of divided voltages Vout[5]' is equal to the voltage value of the temperature reference voltage 112, and a first detection voltage corresponding to point A'is obtained , That is point B'. The first detection voltage B'corresponding to point A'is about 520 mV. The difference between the first target divided voltage B (500mV) and the first detection voltage B'is 20mV. Since the voltage-temperature change slope of the temperature reference voltage 112 is -2mV/∘C, the temperature sensor 100 can be obtained The actual sensing temperature of is 10∘C less than the detection temperature of 120∘C, which is 110∘C (the sensing temperature corresponding to point A'in Figure 2 is 110∘C). Similarly, at the detection temperature of 90∘C, the voltage value of the complex partial voltage Vout[0:5] is also changed. For example, the variation range of the second Vout[4] of the complex partial voltage is: 570mV±20mV, and get its intersection with the temperature reference voltage 112. Therefore, the second detection voltage of the temperature sensor 100 can also be obtained by changing the voltage value of the second of these complex partial voltages (Vout[4]).

在得到每一第一檢測溫度時的每一檢測電壓後,透過該目標分壓電壓與該檢測電壓的一電壓差值,在該至少一第一檢測溫度時,得到該溫度感測器的實際感測溫度與該至少一第一檢測溫度的一溫度誤差值。舉例來說,在120∘C測試環境溫度時,假設所取得的該目標分壓電壓為570mV、該檢測電壓為580mV,該電壓差值為10mV,假設感溫參考電壓112的電壓-溫度變化率為-2mV/∘C,則表示溫度感測器100的實際感測溫度比120∘C的測試環境溫度還要再低5∘C,換句話說,溫度感測器100的實際感測溫度為115∘C。After obtaining each detection voltage at each first detection temperature, through a voltage difference between the target divided voltage and the detection voltage, at the at least one first detection temperature, the actual temperature sensor is obtained A temperature error value between the sensed temperature and the at least one first detected temperature. For example, when testing the ambient temperature at 120∘C, it is assumed that the target divided voltage obtained is 570mV, the detection voltage is 580mV, the voltage difference is 10mV, and the voltage-temperature change rate of the temperature reference voltage 112 is assumed Is -2mV/∘C, it means that the actual sensing temperature of the temperature sensor 100 is 5∘C lower than the test environment temperature of 120∘C. In other words, the actual sensing temperature of the temperature sensor 100 is 115∘C.

以檢測溫度120∘C為例,在該溫度感測器100的測試過程中,透過改變該等複數分壓電壓Vout[0:5],無需實際將測試環境溫度調整為115∘C ~125∘C,省去了等待熱平衡的時間,改善了溫度感測器100的測試效率,亦藉由得到該檢測電壓,用以精確地得知溫度感測器100的實際感測溫度,進而設定與該實際感測溫度相對應的該記憶體的自更新週期。Taking the detection temperature of 120∘C as an example, during the test of the temperature sensor 100, by changing the complex partial voltage Vout[0:5], there is no need to actually adjust the test ambient temperature to 115∘C ~125∘ C, the time for waiting for thermal equilibrium is saved, and the test efficiency of the temperature sensor 100 is improved. The detection voltage is also used to accurately know the actual temperature sensed by the temperature sensor 100, and then set with the The self-renewal cycle of the memory corresponding to the actually sensed temperature.

在本實施例中,在得知高於該既定溫度的每一第一檢測溫度時的每一檢測電壓後,該控制器110藉由溫度誤差值得知實際感測溫度,進而得知自更新周期,並用以更新該記憶體的該自更新週期。舉例來說,如第2圖所示,在點A時,120∘C時所對應的該等複數分壓電壓之第一者Vout[5]為500mV,並且設定相對應的自更新週期16ms;而在點C時,90∘C時所對應的該等複數分壓電壓之第二者Vout[4]為570mV,並且設定相對應的自更新週期32ms。換句話說,依據上述設定,該記憶體在高於120∘C的測試環境下,其自更新週期會是16ms,而在高於90∘C且不高於120∘C的測試環境下,其自更新週期會是32ms。因此,可達成根據不同溫度而有不同的自更新頻率的目的。In this embodiment, after knowing each detection voltage at each first detection temperature higher than the predetermined temperature, the controller 110 knows the actual sensed temperature through the temperature error, and then knows the self-renewal cycle And used to update the self-refresh cycle of the memory. For example, as shown in Figure 2, at point A, the first Vout[5] of the complex divided voltages corresponding to 120∘C is 500mV, and the corresponding self-renewal period is set to 16ms; At point C, the second Vout[4] of the complex divided voltages corresponding to 90∘C is 570mV, and the corresponding self-refresh period is set at 32ms. In other words, according to the above settings, the self-refresh cycle of the memory under the test environment above 120∘C will be 16ms, and under the test environment above 90∘C and not above 120∘C The self-update cycle will be 32ms. Therefore, the purpose of having different self-renewal frequencies according to different temperatures can be achieved.

在完成高於該既定溫度的高溫測試環境下的溫度感測器100的準確度評估之後,接著,在低於該既定溫度(例如低於90∘C)的低溫或常溫測試環境下,繼續執行以取得對應於每一第二檢測溫度的一第二檢測電壓。其中該第二檢測溫度係小於該第一檢測溫度。該檢測電壓的量測方式係與上述第[0012]~[0014]段相同,故不再贅述。After completing the accuracy evaluation of the temperature sensor 100 in a high temperature test environment higher than the predetermined temperature, then, in a low temperature or normal temperature test environment lower than the predetermined temperature (for example, lower than 90∘C), continue to execute To obtain a second detection voltage corresponding to each second detection temperature. The second detection temperature is lower than the first detection temperature. The measurement method of the detection voltage is the same as the above paragraphs [0012] to [0014], so it will not be repeated here.

原有的溫度感測器100之準確度評估方式,係會將複數記憶體中的每一溫度感測器在每一檢測溫度下,取±2∘C、±4∘C總共5個溫度點去評估溫度感測器的實際感測溫度的集中性。其中,所述集中性為在複數記憶體中的每一記憶體內的一溫度感測器彼此之間的集中性。本發明所提供的溫度感測器100的評估方法,可省去上述±2∘C、±4∘C總共4個溫度點皆需等2小時的熱平衡時間,故總共節省了80%的評估時間。並且由於二極體108的跨壓對溫度變化的斜率約為-2mV/∘C,因此可以更精確地計算出溫度感測器100的實際感測溫度,並且評估複數記憶體中的每一記憶體內的一溫度感測器彼此之間實際感測溫度的的集中性。The accuracy evaluation method of the original temperature sensor 100 will take a total of 5 temperature points of ±2∘C and ±4∘C for each temperature sensor in the complex memory at each detection temperature To evaluate the concentration of the actual temperature sensed by the temperature sensor. Wherein, the concentration is the concentration of a temperature sensor in each memory in the plurality of memories. The evaluation method of the temperature sensor 100 provided by the present invention can save the above-mentioned ±2∘C, ±4∘C total 4 temperature points and need to wait for 2 hours of heat balance time, so a total of 80% of the evaluation time is saved . And because the slope of the cross-voltage of the diode 108 to the temperature change is about -2mV/∘C, the actual sensing temperature of the temperature sensor 100 can be calculated more accurately, and each memory in the complex memory can be evaluated A temperature sensor in the body actually senses the concentration of temperature between each other.

第3圖為本發明實施例第1圖之溫度感測器100評估方法的流程圖。如第3圖所示,在大於一既定溫度的一第一檢測溫度下, 將帶隙參考電壓源106校準至一目標電壓,並且分壓器102依據該目標電壓輸出複數分壓電壓(Vout[0:5])(S300),以該溫度感測器100內的一比較器104對該等複數分壓電壓(Vout[0:5])與一感溫參考電壓112進行比較,取得對應於該第一檢測溫度的一第一目標分壓電壓(S302)。 FIG. 3 is a flowchart of the temperature sensor 100 evaluation method of FIG. 1 according to an embodiment of the present invention. As shown in FIG. 3, at a first detection temperature greater than a predetermined temperature, the bandgap reference voltage source 106 is calibrated to a target voltage, and the voltage divider 102 outputs a complex divided voltage (Vout[ 0:5]) (S300), a comparator 104 in the temperature sensor 100 compares the complex divided voltages (Vout[0:5]) with a temperature-sensing reference voltage 112, and obtains the corresponding A first target divided voltage of the first detected temperature (S302).

利用一雷射維修裝置,在大於該既定溫度的該第一檢測溫度下,依據該第一目標分壓電壓對一帶隙參考電壓源106中的一正溫度係數電路區塊及/或負溫度係數電路區塊內的熔絲執行燒斷的動作,使得該溫度感測器100的感測溫度得以接近於該第一檢測溫度(S304)。之後,在大於該既定溫度中的該第一檢測溫度下,改變分壓器102的該等複數分壓電壓之第一者(Vout[5])(S306)。該比較器104對該等複數分壓電壓之第一者(Vout[5])與該感溫參考電壓112進行比較,取得對應於該第一檢測溫度的一第一檢測電壓(S308)。透過該第一目標分壓電壓與該第一檢測電壓的一電壓差值,在該第一檢測溫度時,得到該溫度感測器100的實際感測溫度與該第一檢測溫度的一第一溫度誤差值(S310)。透過比較在該第一檢測溫度時的該溫度誤差值,可以更精確地計算出溫度感測器100的實際感測溫度。上述步驟S300~S310的詳細內容已描述於第[0008]~[0016]段,故不再贅述。 Using a laser maintenance device, at the first detected temperature that is greater than the predetermined temperature, a positive temperature coefficient circuit block and/or a negative temperature coefficient in a bandgap reference voltage source 106 according to the first target divided voltage The fuse in the circuit block performs a blowout action, so that the temperature sensed by the temperature sensor 100 is close to the first detected temperature (S304). After that, at the first detection temperature greater than the predetermined temperature, the first of the plurality of divided voltages of the voltage divider 102 (Vout[5]) is changed (S306). The comparator 104 compares the first of the plurality of divided voltages (Vout[5]) with the temperature-sensing reference voltage 112 to obtain a first detection voltage corresponding to the first detection temperature (S308). Through a voltage difference between the first target divided voltage and the first detection voltage, at the first detection temperature, a first of the actual sensed temperature of the temperature sensor 100 and the first detection temperature is obtained Temperature error value (S310). By comparing the temperature error value at the first detected temperature, the actual temperature sensed by the temperature sensor 100 can be calculated more accurately. The details of the above steps S300~S310 have been described in paragraphs [0008]~[0016], so they will not be repeated here.

雖然本發明的實施例如上述所描述,我們應該明白上述所呈現的只是範例,而不是限制。依據本實施例上述示範實施例的許多改變是可以在沒有違反發明精神及範圍下被執行。因此,本發明的廣度及範圍不該被上述所描述的實施例所限制。更確切地說,本發明的範圍應該要以以下的申請專利範圍及其相等物來定義。 Although the embodiments of the present invention are described above, we should understand that the above presented are only examples, not limitations. Many of the changes of the above-described exemplary embodiments according to this embodiment can be implemented without violating the spirit and scope of the invention. Therefore, the breadth and scope of the present invention should not be limited by the embodiments described above. More specifically, the scope of the present invention should be defined by the following patent applications and their equivalents.

100:溫度感測器 100: temperature sensor

102:分壓器 102: voltage divider

104:比較器 104: Comparator

106:帶隙參考電壓源 106: Bandgap reference voltage source

108:二極體 108: Diode

110:控制器 110: controller

112:感溫參考電壓 112: Temperature reference voltage

Vout[0:5]:複數分壓電壓 Vout[0:5]: complex divided voltage

Vout[5]、Vout[5]’:複數分壓電壓之第一者 Vout[5], Vout[5]’: the first of complex voltage division

Vout[4]:複數分壓電壓之第二者 Vout[4]: the second of complex voltage division

114:電流源 114: current source

116:定電流 116: constant current

A、A’、B、B’、C、D:點 A, A’, B, B’, C, D: point

第1圖為本發明實施例之溫度感測器100方塊圖。 第2圖為本發明實施例第1圖之感溫參考電壓112及複數分壓電壓Vout[0:5]的電壓-溫度曲線圖。 第3圖為本發明實施例第1圖之溫度感測器100評估方法的流程圖。 FIG. 1 is a block diagram of a temperature sensor 100 according to an embodiment of the invention. FIG. 2 is a voltage-temperature graph of the temperature-sensing reference voltage 112 and the complex divided voltage Vout[0:5] of FIG. 1 according to an embodiment of the present invention. FIG. 3 is a flowchart of the temperature sensor 100 evaluation method of FIG. 1 according to an embodiment of the present invention.

100:溫度感測器 100: temperature sensor

102:分壓器 102: voltage divider

104:比較器 104: Comparator

106:帶隙參考電壓源 106: Bandgap reference voltage source

108:二極體 108: Diode

110:控制器 110: controller

112:感溫參考電壓 112: Temperature reference voltage

Vout[0:5]:複數分壓電壓 Vout[0:5]: complex divided voltage

114:電流源 114: current source

116:定電流 116: constant current

Claims (10)

一種溫度感測器的評估方法,該溫度感測器設置於一記憶體裝置內,且該溫度感測器包括一比較器、一分壓器、一二極體及一帶隙參考電壓源,該帶隙參考電壓源供電予該分壓器及該二極體,該比較器將該二極體產生隨溫度變化的一感溫參考電壓與該分壓器產生的複數分壓電壓進行比較;該評估方法包括:對預設的複數檢測溫度,在大於一既定溫度的該等檢測溫度中的一第一檢測溫度下,將該帶隙參考電壓源校準至一目標電壓,該分壓器依據該目標電壓輸出該等複數分壓電壓,且以該比較器對該等複數分壓電壓與該感溫參考電壓進行比較,取得對應於該第一檢測溫度的一第一目標分壓電壓;其中該第一目標分壓電壓對應於該等複數分壓電壓之第一者;改變該分壓器的該等分壓電壓之第一者,且以該比較器對該等分壓電壓之第一者與該感溫參考電壓進行比較,取得對應於該第一檢測溫度的一第一檢測電壓;透過該第一目標分壓電壓與該第一檢測電壓的一電壓差值,在該第一檢測溫度時,得到該溫度感測器的實際感測溫度與該第一檢測溫度的一第一溫度誤差值。 An evaluation method of a temperature sensor is provided in a memory device, and the temperature sensor includes a comparator, a voltage divider, a diode and a bandgap reference voltage source. The bandgap reference voltage source supplies the voltage divider and the diode, and the comparator compares the temperature-sensing reference voltage generated by the diode with temperature and the complex voltage divider voltage generated by the voltage divider; The evaluation method includes: calibrating the bandgap reference voltage source to a target voltage for a preset plurality of detection temperatures at a first detection temperature among the detection temperatures greater than a predetermined temperature, and the voltage divider is based on the The target voltage outputs the plurality of divided voltages, and the comparator is used to compare the plurality of divided voltages with the temperature reference voltage to obtain a first target divided voltage corresponding to the first detected temperature; wherein the The first target divided voltage corresponds to the first of the plurality of divided voltages; the first of the divided voltages of the voltage divider is changed, and the first of the divided voltages is changed by the comparator Comparing with the temperature-sensing reference voltage to obtain a first detection voltage corresponding to the first detection temperature; through a voltage difference between the first target divided voltage and the first detection voltage, at the first detection temperature , A first temperature error value between the actual temperature sensed by the temperature sensor and the first detected temperature is obtained. 如申請專利範圍第1項之溫度感測器的評估方法,更包括:在小於該既定溫度的該等檢測溫度中的一第二檢測溫度下,該比較器對該等複數分壓電壓與該感溫參考電壓進行比較,取得對應於該 第二檢測溫度的一第二目標分壓電壓;其中該第二目標分壓電壓對應於該等複數分壓電壓之第二者;改變該分壓器的該等分壓電壓之第二者,且以該比較器對該等分壓電壓之第二者與該感溫參考電壓進行比較,取得對應於該第二檢測溫度的一第二檢測電壓;透過該第二目標分壓電壓與該第二檢測電壓的一電壓差值,在該第二檢測溫度時,得到該溫度感測器的實際感測溫度與該第二檢測溫度的一第二溫度誤差值。 For example, the evaluation method of the temperature sensor according to item 1 of the patent scope further includes: at a second detection temperature among the detection temperatures less than the predetermined temperature, the comparator divides the plurality of divided voltages and the The temperature reference voltage is compared to obtain the corresponding A second target divided voltage of the second detected temperature; wherein the second target divided voltage corresponds to the second of the plurality of divided voltages; the second of the divided voltages of the voltage divider is changed, And the second of the divided voltages is compared with the temperature-sensing reference voltage by the comparator to obtain a second detection voltage corresponding to the second detection temperature; through the second target divided voltage and the first A voltage difference between the two detected voltages, at the second detected temperature, obtains a second temperature error value between the actual sensed temperature of the temperature sensor and the second detected temperature. 如申請專利範圍第1項之溫度感測器的評估方法,更包括藉由該感溫參考電壓的電壓-溫度變化率,得到該溫度感測器的實際感測溫度。 For example, the evaluation method of the temperature sensor according to item 1 of the patent application scope further includes obtaining the actual sensing temperature of the temperature sensor by the voltage-temperature change rate of the temperature reference voltage. 如申請專利範圍第3項之溫度感測器的評估方法,更包括依據所得知的該溫度感測器的實際感測溫度,進而評估複數記憶體中的每一記憶體內的該溫度感測器彼此之間實際感測溫度的的集中性;其中該記憶體為該等複數記憶體中的一個。 For example, the evaluation method of the temperature sensor in the third patent application scope further includes evaluating the temperature sensor in each of the plurality of memories based on the actual temperature sensed by the temperature sensor. The concentration of temperature actually sensed between each other; wherein the memory is one of the plural memories. 如申請專利範圍第1項之溫度感測器的評估方法,其中,在該第一檢測溫度下,當該等複數分壓電壓相等於該感溫參考電壓,則將該等複數分壓電壓之第一者的電壓值設為該第一目標分壓電壓;當改變後的該等複數分壓電壓之第一者相等於該感溫參考電壓,則將該等複數分壓電壓之第一者設為該第一檢測電壓。 For example, the evaluation method of the temperature sensor according to item 1 of the patent application, wherein, at the first detection temperature, when the plurality of divided voltages are equal to the temperature-sensing reference voltage, the The voltage value of the first one is set to the first target divided voltage; when the first of the plurality of divided voltages after the change is equal to the temperature reference voltage, the first of the plurality of divided voltages Set to this first detection voltage. 如申請專利範圍第2項之溫度感測器的評估方法,其中,在該第二檢測溫度下,當該等複數分壓電壓相等於該感溫參考電壓,則將該等複數分壓電壓之第二者的電壓值設為該第二目標分壓電壓; 當改變後的該等複數分壓電壓之第二者相等於該感溫參考電壓,則將該等複數分壓電壓之第二者的電壓值設為該第二檢測電壓。 For example, the evaluation method of the temperature sensor in the second item of the patent application scope, wherein, at the second detection temperature, when the plurality of divided voltages is equal to the temperature-sensing reference voltage, the The voltage value of the second one is set as the second target divided voltage; When the changed second of the plurality of divided voltages is equal to the temperature-sensing reference voltage, the voltage value of the second of the plurality of divided voltages is set as the second detection voltage. 如申請專利範圍第1項之溫度感測器的評估方法,更包括:調整該帶隙參考電壓源中的正溫度係數電路區塊及/或負溫度係數電路區塊。 For example, the evaluation method of the temperature sensor according to item 1 of the patent application scope further includes: adjusting the positive temperature coefficient circuit block and/or the negative temperature coefficient circuit block in the band gap reference voltage source. 如申請專利範圍第7項之溫度感測器的評估方法,更包括:利用一雷射維修裝置,在大於該既定溫度的該第一檢測溫度下,依據該第一目標分壓電壓對該帶隙參考電壓源中的該正溫度係數電路區塊及/或負溫度係數電路區塊內的熔絲(fuse)執行燒斷的動作,使得該溫度感測器的感測溫度得以實質等於該第一檢測溫度。 For example, the evaluation method of the temperature sensor in item 7 of the patent application scope further includes: using a laser maintenance device, at the first detection temperature greater than the predetermined temperature, according to the first target divided voltage The fuse in the positive temperature coefficient circuit block and/or the negative temperature coefficient circuit block in the gap reference voltage source performs a blowout operation, so that the sensing temperature of the temperature sensor is substantially equal to the first 1. Check the temperature. 如申請專利範圍第1項之溫度感測器的評估方法,其中,該帶隙參考電壓源輸出一定電流流經一二極體而產生隨溫度變化的該感溫參考電壓;藉由調整流經該二極體的該定電流的大小,可改變該感溫參考電壓的電壓-溫度變化斜率。 For example, the evaluation method of the temperature sensor according to item 1 of the patent application, wherein the bandgap reference voltage source outputs a certain current flowing through a diode to generate the temperature-sensing reference voltage that varies with temperature; by adjusting the flow through The magnitude of the constant current of the diode can change the slope of the voltage-temperature change of the temperature-sensing reference voltage. 如申請專利範圍第1項之溫度感測器的評估方法,其中,該既定溫度為90℃。 For example, the evaluation method of the temperature sensor according to item 1 of the patent application, wherein the predetermined temperature is 90°C.
TW108103216A 2019-01-29 2019-01-29 Temperature sensor evaluation method TWI690697B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108103216A TWI690697B (en) 2019-01-29 2019-01-29 Temperature sensor evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108103216A TWI690697B (en) 2019-01-29 2019-01-29 Temperature sensor evaluation method

Publications (2)

Publication Number Publication Date
TWI690697B true TWI690697B (en) 2020-04-11
TW202028707A TW202028707A (en) 2020-08-01

Family

ID=71134373

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108103216A TWI690697B (en) 2019-01-29 2019-01-29 Temperature sensor evaluation method

Country Status (1)

Country Link
TW (1) TWI690697B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200425161A (en) * 2003-03-10 2004-11-16 Sharp Kk Temperature compensated RRAM circuit
TW200529230A (en) * 2004-02-19 2005-09-01 Hynix Semiconductor Inc Semiconductor memory device having optimum refresh cycle according to temperature variation
CN1734667A (en) * 2004-07-16 2006-02-15 尔必达存储器株式会社 Refresh period generating circuit
US20060083094A1 (en) * 2003-09-22 2006-04-20 Micron Technology, Inc. Method and apparatus for controlling refresh operations in a dynamic memory device
TW200620308A (en) * 2004-06-15 2006-06-16 Samsung Electronics Co Ltd DRAM device with a refresh period that varies responsive to a temperature signal having a hysteresis characteristic
TW200620287A (en) * 2004-12-07 2006-06-16 Elite Semiconductor Esmt Temperature-dependent DRAM self-refresh circuit
TW200735100A (en) * 2006-01-11 2007-09-16 Samsung Electronics Co Ltd Temperature sensor for generating sectional temperature code and sectional temperature detection method
TW201104697A (en) * 2009-07-29 2011-02-01 Nanya Technology Corp Temperature sensing system and related temperature sensing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200425161A (en) * 2003-03-10 2004-11-16 Sharp Kk Temperature compensated RRAM circuit
US20060083094A1 (en) * 2003-09-22 2006-04-20 Micron Technology, Inc. Method and apparatus for controlling refresh operations in a dynamic memory device
TW200529230A (en) * 2004-02-19 2005-09-01 Hynix Semiconductor Inc Semiconductor memory device having optimum refresh cycle according to temperature variation
TW200620308A (en) * 2004-06-15 2006-06-16 Samsung Electronics Co Ltd DRAM device with a refresh period that varies responsive to a temperature signal having a hysteresis characteristic
CN1734667A (en) * 2004-07-16 2006-02-15 尔必达存储器株式会社 Refresh period generating circuit
TW200620287A (en) * 2004-12-07 2006-06-16 Elite Semiconductor Esmt Temperature-dependent DRAM self-refresh circuit
TW200735100A (en) * 2006-01-11 2007-09-16 Samsung Electronics Co Ltd Temperature sensor for generating sectional temperature code and sectional temperature detection method
TW201104697A (en) * 2009-07-29 2011-02-01 Nanya Technology Corp Temperature sensing system and related temperature sensing method

Also Published As

Publication number Publication date
TW202028707A (en) 2020-08-01

Similar Documents

Publication Publication Date Title
JP5901616B2 (en) Circuit for controlling temperature and enabling testing of semiconductor chips
US9423460B2 (en) Systems and methods mitigating temperature dependence of circuitry in electronic devices
US7502710B2 (en) Temperature detection circuit
TWI424441B (en) Temperature sensing system and related temperature sensing method
US7434985B2 (en) Calibrated built-in temperature sensor and calibration method thereof
JP2007310983A (en) Semiconductor memory device and refresh period control method
US7116142B2 (en) Apparatus and method for accurately tuning the speed of an integrated circuit
US11320322B2 (en) Temperature sensor evaluation method
TWI690697B (en) Temperature sensor evaluation method
CN111583987B (en) Evaluation method of temperature sensor
US7003424B2 (en) Temperature detection cell, and method to determine the detection threshold of such a cell
JP2009109314A (en) Semiconductor device and its inspecting method
CN114295883A (en) Multi-dimensional calibration method for improving measurement accuracy of optical fiber current sensor
JP2006064666A (en) Semiconductor circuit, semiconductor circuit characteristics monitoring method, semiconductor circuit testing method, semiconductor circuit testing device, and semiconductor circuit testing program
JP6080691B2 (en) Temperature measuring device, temperature measuring method, and semiconductor module
US6968287B2 (en) System and method for predicting burn-in conditions
Stadnyk et al. Metrological Array of Cyber-Physical Systems. Part 14: Basics of Metrology and Techniques for Accuracy Improvement
Armstrong et al. Water Vapor Measurements of Ultra-Pure Gases for Critical Manufacturing Processes
CN118112388A (en) Diode thermal resistance testing equipment and testing method thereof
JP2003248029A (en) Testing method for semiconductor device
CN116775387A (en) Chip testing method and system
TW202124989A (en) Electronic component testing device and method thereof
CN116486875A (en) Antifuse memory
US20170214361A1 (en) Solar cell current and voltage characteristic measurement
CN114578277A (en) Thermal load calibration method for high-low temperature environment test chamber