TWI690233B - 傳送和接收參考信號的方法及裝置 - Google Patents

傳送和接收參考信號的方法及裝置 Download PDF

Info

Publication number
TWI690233B
TWI690233B TW108114956A TW108114956A TWI690233B TW I690233 B TWI690233 B TW I690233B TW 108114956 A TW108114956 A TW 108114956A TW 108114956 A TW108114956 A TW 108114956A TW I690233 B TWI690233 B TW I690233B
Authority
TW
Taiwan
Prior art keywords
transmission time
time interval
reference signal
information
data
Prior art date
Application number
TW108114956A
Other languages
English (en)
Other versions
TW201946486A (zh
Inventor
郭圭環
李承旻
李潤貞
李賢鎬
Original Assignee
南韓商Lg電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商Lg電子股份有限公司 filed Critical 南韓商Lg電子股份有限公司
Publication of TW201946486A publication Critical patent/TW201946486A/zh
Application granted granted Critical
Publication of TWI690233B publication Critical patent/TWI690233B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一種在無線通訊系統中由使用者設備(user equipment,UE)接收參考信號的方法。該方法包括:在第一傳輸時間間隔(transmission time interval,TTI)中,接收用於排定下行鏈路資料的下行鏈路控制資訊(downlink control information,DCI);從DCI中,獲取與參考信號是否包含在其中下行鏈路資料被排定的第一傳輸時間間隔中有關的資訊;在第一傳輸時間間隔中,基於與參考信號是否包含在第一傳輸時間間隔中有關的資訊,接收第一傳輸時間間隔的參考信號。該方法進一步包括:基於在第一傳輸時間間隔和至少一個第二傳輸時間間隔中排定要被重複傳輸的下行鏈路資料,在至少一個第二傳輸時間間隔中的每一個中,接收用於至少一個第二傳輸時間間隔中的每一個的參考信號。

Description

傳送和接收參考信號的方法及裝置
本發明一般涉及在無線通訊系統中傳送和接收參考信號。
隨著無線通訊系統的使用者以及服務提供者的需求和期望的增加,正在開發新的無線電接取技術以提供諸如每位元成本降低、增加服務的可用性、頻帶的靈活使用、簡化結構、開放介面、以及UE的適當功耗等的改進。
本發明的目的是提供一種用於傳送和接收參考信號的方法及裝置。
本發明所屬技術領域中具有通常知識者將理解,可以透過本發明實現的目的不限於上文已經具體描述的效果,並且從以下詳細描述中將更清楚地理解本發明的其他目的。
本發明的一個一般態樣包括一種在無線通訊系統中由使用者設備(user equipment,UE)接收參考信號的方法,該方法包括:接收下行鏈路控制資訊(downlink control information,DCI),用於在第一傳輸時間間隔(first transmission time interval,TTI)中排定下行鏈路資料。該方法還包括從DCI中獲取與參考信號是否包含在其中下行鏈路資料被排定的第一傳輸時間間隔中有關的資訊。該方法又包括:在第一傳輸時間間隔中,基於與參考信號是否包含在第一傳輸時間間隔中有關的資訊,接收用於第一傳輸時間間隔的參考信號;以及基於在第一傳輸時間間隔和至少一個第二傳輸時間間隔中排定要被重複傳輸的下行鏈路資料,在至少一個第二傳輸時間間隔的每一個中,接收用於至少一 個第二傳輸時間間隔中的每一個的參考信號。本態樣的其他實施例包括:對應的電腦系統、裝置和記錄在一個或多個電腦儲存裝置上的電腦程式,每一個被配置以執行該方法的動作。
本發明的實施方式可以包括以下特徵中的一個或多個。在該方法中,與參考信號是否包含在第一傳輸時間間隔中有關的資訊包括一固定值。在該方法中,該固定值在與參考信號是否包含在第一傳輸時間間隔中有關的資訊中係被用來通知用於第一傳輸時間間隔的參考信號包含在第一傳輸時間間隔中。該方法進一步包括:從DCI中獲取關於下行鏈路資料在第一傳輸時間間隔和至少一個第二傳輸時間間隔中排定要被重複傳輸的次數的資訊。在該方法中,基於在第一傳輸時間間隔和至少一個第二傳輸時間間隔中排定要被重複傳輸的下行鏈路資料,排定下行鏈路資料要被重複傳輸的次數大於1。在該方法中,第一傳輸時間間隔和至少一個第二傳輸時間間隔為短的傳輸時間間隔。在該方法中,至少一個第二傳輸時間間隔包括複數個與第一傳輸時間間隔在時間上連續排列的第二傳輸時間間隔。本發明所描述的技術的實施方式可以包括:硬體、方法或程序、或在電腦可存取媒介上的電腦軟體。
另一個一般的態樣包括一種配置以在無線通訊系統中接收參考信號的裝置,該裝置包括:至少一個處理器;至少一個電腦記憶體,可操作地連接到該至少一個處理器並儲存指令,該等指令在由該至少一個處理器執行時,執行操作包括:接收下行鏈路控制資訊(DCI),用於在第一傳輸時間間隔(TTI)中排定下行鏈路資料。該裝置進一步包括從DCI中,獲取與參考信號是否包含在其中下行鏈路資料被排定的第一傳輸時間間隔中有關的資訊。在該裝置中,所述操作還包括:在第一傳輸時間間隔中,基於與參考信號是否包含在第一傳輸時間間隔中有關的資訊,接收用於第一傳輸時間間隔的參考信號;以及基於在第一傳輸時間間隔和至少一個第二傳輸時間間隔中排定被重複傳輸的下行鏈路資料,在至少一個第二傳輸時間間隔的每一個中,接收用於至少一個第二傳輸時間間隔中的每一個的參考信號。本態樣的其他實施例包括:相對應的電腦系統、裝置和記錄在一個或多個電腦儲存裝置上的電腦程式,每一個被配置以執行該方法的動作。
本發明的實施方式可以包括以下特徵中的一個或多個。在該裝置中,與參考信號是否包含在第一傳輸時間間隔中有關的資訊包括一固定值。 在該裝置中,在與參考信號是否包含在第一傳輸時間間隔中有關的資訊中的固定值係被用來通知用於第一傳輸時間間隔的參考信號包含在第一傳輸時間間隔中。在該裝置中,所述操作進一步包括:從DCI中獲取關於在第一傳輸時間間隔和至少一個第二傳輸時間間隔中下行鏈路資料排定要被重複傳輸的次數的資訊。在該裝置中,下行鏈路資料在第一傳輸時間間隔和至少一個第二傳輸時間間隔中排定要被重複傳輸的次數大於1。在該裝置中,第一傳輸時間間隔和至少一個二傳輸時間間隔為短的傳輸時間間隔。在該裝置中,至少一個第二傳輸時間間隔包括複數個與該第一傳輸時間間隔在時間上連續排列的第二傳輸時間間隔。本發明所描述的技術的實施方式可以包括:硬體、方法或程序、或在電腦可存取媒介上的電腦軟體。
另一個一般態樣包括一種在無線通訊系統中由基地台傳輸參考信號的方法,該方法包括:傳輸下行鏈路控制資訊(downlink control information,DCI),用於在第一傳輸時間間隔(transmission time interval,TTI)中排定下行鏈路資料,該DCI包括與參考信號是否包含在其中下行鏈路資料被排定的第一傳輸時間間隔中有關的資訊。該方法進一步包括:在第一傳輸時間間隔中,基於與參考信號是否包含在第一傳輸時間間隔中有關的資訊,傳輸用於第一傳輸時間間隔的參考信號;以及基於在第一傳輸時間間隔和至少一個第二傳輸時間間隔中排定要被重複傳輸的下行鏈路資料,在至少一個第二傳輸時間間隔的每一個中,傳輸用於至少一個第二傳輸時間間隔中的每一個的參考信號。該態樣的其他實施例包括:相對應的電腦系統、裝置和記錄在一個或多個電腦儲存裝置上的電腦程式,每一個被配置以執行該方法的動作。
另一個一般態樣包括一種使用者設備(user equipment,UE),配置以在無線通訊系統中接收參考信號,該UE包括:至少一個收發器。該使用者設備還包括至少一個處理器;以及至少一個電腦記憶體,可操作地連接到該至少一個處理器並儲存指令,該等指令在由該至少一個處理器執行時,執行操作包括:通過至少一個收發器,接收下行鏈路控制資訊(DCI),用於在第一傳輸時間間隔(TTI)中排定下行鏈路資料。在該使用者設備中,所述操作包括從DCI中,獲取與參考信號是否包含在其中下行鏈路資料被排定的第一傳輸時間間隔中有關的資訊。在該使用者設備中,所述操作還包括:在第一傳輸時間間隔中通過至少一個收發器,基於與參考信號是否包含在第一傳輸時間間隔中有關 的資訊,接收用於第一傳輸時間間隔的參考信號;以及基於在第一傳輸時間間隔和至少一個第二傳輸時間間隔中排定要被重複傳輸的下行鏈路資料,在至少一個第二傳輸時間間隔的每一個中通過至少一個收發器,接收用於至少一個第二傳輸時間間隔中的每一個的參考信號。本態樣的其他實施例包括:相對應的電腦系統、裝置和記錄在一個或多個電腦儲存裝置上的電腦程式,每一個被配置以執行該方法的動作。
另一個一般態樣包括一種基地台(base station,BS),配置以在無線通訊系統中傳輸參考信號,該BS包括:至少一個收發器。該基地台進一步包括至少一個處理器;以及至少一個電腦記憶體,可操作地連接到該至少一個處理器並儲存指令,該等指令在由該至少一個處理器執行時,執行操作包括:通過至少一個收發器,傳輸下行鏈路控制資訊(DCI),用於在第一傳輸時間間隔(TTI)中排定下行鏈路資料,該DCI包括與參考信號是否包含在其中下行鏈路資料被排定的第一傳輸時間間隔中有關的資訊。在該基地台中,所述操作進一步包括:在第一傳輸時間間隔中通過至少一個收發器,基於與參考信號是否包含在第一傳輸時間間隔中有關的資訊,傳輸用第一傳輸時間間隔的參考信號;以及基於在第一傳輸時間間隔和至少一個第二傳輸時間間隔中排定要被重複傳輸的下行鏈路資料,在至少一個第二傳輸時間間隔的每一個中通過至少一個收發器,傳輸用於至少一個第二傳輸時間間隔中的每一個的參考信號。
本態樣的其他實施例包括:相對應的電腦系統、裝置和記錄在一個或多個電腦儲存裝置上的電腦程式,每一個被配置為以執行該方法的動作。
應當理解,本發明的前述一般描述和以下詳細描述都是示例性和說明性的,並且旨在提供對本發明的專利申請範圍進一步說明。
根據本發明,可以共享參考信號,使得資料可以根據重複傳輸的資料的特性,以高可靠性和低延遲時間重複傳輸。
所屬技術領域中具有通常知識者將理解,可以透過本發明所公開實現的效果不限於上文具體描述的內容,並且從以上結合附圖的詳細描述中將更清楚地理解本發明的優點。
5‧‧‧電源管理模組
10‧‧‧處理器
15‧‧‧顯示器
20‧‧‧鍵盤
25‧‧‧使用者識別身分模組(SIM)卡
30‧‧‧記憶體
35‧‧‧收發機
40‧‧‧天線
45‧‧‧揚聲器
50‧‧‧麥克風
55‧‧‧電池
TTI‧‧‧傳輸時間間隔
DMRS‧‧‧解調參考信號
S301~S308‧‧‧步驟
S1301、S1303‧‧‧步驟
S1401、S1403‧‧‧步驟
S1501、S1503、S1505‧‧‧步驟
圖1為說明無線通訊系統的示例;圖2為說明在無線電介面協定架構中的控制平面通訊協定堆疊和使用者平面通訊協定堆疊的示例;圖3為說明實體通道以及在3GPP系統中使用實體通道傳輸信號的示例;圖4為說明無線電訊框的結構的示例;圖5為說明下行鏈路無線電訊框的結構的示例;圖6為說明用於配置下行鏈路控制通道的資源單元的示例;圖7為說明上行鏈路子訊框的結構的示例;圖8為說明在一個RB對上的CRS和DRS的模式的示例的視圖;圖9為說明DMRS模式的示例的視圖;圖10為說明CSI-RS模式的示例的視圖;圖11為說明短的傳輸時間間隔(TTI)的結構的示例的視圖;圖12為說明重複傳輸的實體下行共享通道(physical downlink shared channel,PDSCH)的排程的示例的視圖;圖13至圖15為說明根據本發明一實施方式的UE、基地台和網路的操作的示例;圖16至圖18為說明根據本發明一實施方式之共享解調參考信號(demodulation reference signal,DMRS)的示例;以及圖19為說明可用於實施本發明的無線裝置的示例的方塊圖。
本發明所揭露的實施方式能夠傳輸和接收參考信號,並且具體地,在其中資料被重複傳輸的複數個傳輸時間間隔(transmission time intervals,TTI)中共享參考信號(reference signal,RS)。
如這裡所使用的,片語“共享RS”指的是重啟通道估計值(基於在之前的傳輸時間間隔或之後的傳輸時間間隔中傳輸的RS所量測的)以解調資料,或獲得關於通道狀態的資訊。在預期通道狀態的變化相對緩慢變化的情況下,從在另一個傳輸時間間隔中發送的RS(在相應的傳輸時間間隔之前或之後)測量的估計值可以應用在相應的傳輸時間間隔中,以解調資料或獲得關於通道 狀態的資訊。因此,否則將用於映射RS的資源單元可以替代地用於映射資料中,這可以幫助提高資料流通量。
在一些實施方式中,即使資料通過多個傳輸時間間隔排定要被重複傳輸,RS共享也可能不適用。在不應用RS共享的這種情況下,RS可以配置為在其中要被重複傳輸資料的所有傳輸時間間隔中被接收。在某些情況下,不應用RS共享(即,在其中要被重複傳輸資料的所有傳輸時間間隔中傳輸RS)可以幫助提高資料傳輸的可靠性。特別是,藉由在其中要被重複傳輸資料的所有傳輸時間間隔中傳輸RS,與其中RS在少於所有傳輸時間間隔(例如,僅在一個傳輸時間間隔中)中傳輸並在其他傳輸時間間隔中重新使用相同通道估計值的RS共享情況相比,可以實現相對改善的可靠性。
圖1為說明無線通訊系統的示例。在一些方案中,圖1的系統可以實施為與第三代合作夥伴計畫長期演進技術(3rd Generation Partnership Project Long Term Evolution,3GPP LTE)系統相容,例如演進通用行動通訊系統(Evolved Universal Mobile Telecommunications System,E-UMTS)網路。E-UMTS為UMTS的演進,3GPP在E-UMTS標準化的基礎上研究。E-UMTS也稱為LTE系統。
參考圖1,E-UMTS包含:使用者設備(User Equipment,UE)、演進節點B(evolved Node B,eNode B或eNB)、以及接取閘道(Access Gateway,AG),其位於演進的通用陸面無線接取網路(Evolved UMTS Terrestrial Radio Access Network,E-UTRAN)的末端並且連接到外部網路。eNB可以同時傳輸多個資料流,用於廣播服務、多播服務及/或單播服務。
單個eNB管理一個或多個細胞。細胞設定在1.25、2.5、5、10、15和20MHz的頻寬其中之一上操作,並且向頻寬中的複數個UE提供下行鏈路(Downlink,DL)或上行鏈路(Uplink,UL)傳輸服務。可以配置不同的細胞以便提供不同的頻寬。eNB控制複數個UE的資料傳輸和接收。關於DL資料,eNB藉由向UE傳輸DL排程資訊,向特定UE通知其中應該要被傳輸DL資料的時頻區域、編碼方案、資料大小、混合式自動重送請求(Hybrid Automatic Repeat request,HARQ)資訊等。關於UL資料,eNB藉由向UE傳輸UL排程資訊,向特定UE通知其中UE可以傳輸資料的時頻區域、編碼方案、資料大小、HARQ資訊等。可以在eNBs之間定義用於傳輸使用者流量或控制流量的介面。核心網路(Core Network,CN)可以包含AG以及用於UE的使用者註冊的網路節點。AG在跟踪區域(Tracking Area,TA)的基礎上管理UE的流動性。TA包含複數個細胞。
雖然無線通訊技術的發展階段已達到基於寬頻分碼多工接取(Wideband Code Division Multiple Access,WCDMA)的LTE,但是使用者和服務提供商的需求和期望正在增加。考慮到其他無線電接取技術正在開發中,需要新的技術演進以實現未來的競爭力。具體地說,需要每位元的成本降低、增加服務可用性、頻帶的靈活使用、簡化結構、開放介面、UE適當的功率消耗等。
現在將詳細參考根據本發明較佳的實施方式,其示例在附圖中說明。只要可能,在整篇說明書的附圖中,使用相同的單元符號表示相同或相似的部件。
透過參考附圖描述的本發明所揭露的實施方式,將輕易理解本發明所揭露的配置、操作和其他特徵。本發明在此描述的實施方式為示例,其中本發明的技術特徵應用於第三代合作夥伴計畫(3GPP)系統。
雖然在長期演進技術(Long Term Evolution,LTE)和進階LTE(LTE-Advanced,LTE-A)系統的背景下,描述了本發明所揭露的實施方式,但是它們純粹是示例性的。因此,只要上述定義對通訊系統有效,本發明所揭露的實施方式可應用於任何其他通訊系統。另外,雖然在分頻雙工(Frequency Division Duplexing,FDD)的背景下描述了本發明所揭露的實施方式,但是它們也可以輕易地應用於具有一些修改的半分頻雙工(Half-FDD,H-FDD)或分時雙工(Time Division Duplexing,TDD)。
圖2為說明在無線電介面協定架構中的控制平面通訊和使用者平面通訊協定堆疊的示例。在一些方案中,圖2的示例可以與使用者設備(User Equipment,UE)和演進的UMTS陸地無線電接取網路(E-UTRAN)之間的3GPP無線接取網路標準相容。例如,控制平面為UE和E-UTRAN傳輸控制信息以管理呼叫的路徑,並且使用者平面是傳輸從應用層生成的資料(例如,語音資料或網際網路封包資料)的路徑。
在第1層(L1)的實體(PHY)層向其更高層、媒體接取控制(Medium Access Control,MAC)層提供資訊傳輸服務。PHY層透過傳輸通道連接到MAC層。傳輸通道在MAC層與PHY層之間傳遞資料。資料在發射器與接收器的PHY層之間的實體通道上傳輸。實體通道使用時間和頻率作為無線電資 源。具體地說,實體通道在用於下行鏈路(Downlink,DL)的正交分頻多工接取(Orthogonal Frequency Division Multiple,OFDMA)和用於上行鏈路(UL)的單載波分頻多工接取(SC-FDMA)中被調變。
在第2層(L2)的MAC層經由邏輯通道向其更高層、無線電連結控制(Radio Link Control,RLC)層提供服務。在L2上的RLC層支持可靠的資料傳輸。RLC功能可以在MAC層的功能塊中實現。L2處的封包資料匯聚通訊協定(Packet Data Convergence Protocol,PDCP)層執行標頭壓縮以減少不必要的控制資訊的總量,從而經由具有窄頻寬的空中介面有效地傳輸網際網路協定(Internet Protocol,IP)封包,諸如IP版本4(IPv4)或IP版本6(IPv6)封包。
在第3層(或L3)的最低部分處的無線電資源控制(Radio Resource Control,RRC)層僅定義在控制平面上。RRC層控制與無線電承載的配置、重新配置以及釋放相關的邏輯通道、傳輸通道和實體通道。無線電承載是指在L2處提供的服務,用於UE與E-UTRAN之間的資料傳輸。為了這個目的,UE的RRC層以及E-UTRAN彼此交換RRC信息。如果在UE與E-UTRAN之間建立RRC連接,則UE處於RRC連接模式,否則,UE處於RRC閒置模式。RRC層之上的非接取層(Non-Access Stratum,NAS)執行包含對話管理和行動性管理的功能。
用於將資料從E-UTRAN遞送到UE的DL傳輸通道包含承載系統資訊的廣播通道(Broadcast Channel,BCH)、承載傳呼信息的傳呼通道(Paging Channel,PCH)、以及承載使用者流量或控制信息的共享通道(Shared Channel,SCH)。DL多播流量或控制信息或者DL廣播流量或控制信息可以在DL SCH或單獨定義的DL多播通道(separately defined DL Multicast Channel,MCH)上傳輸。用於將資料從UE遞送到E-UTRAN的UL傳輸通道包含承載初始控制信息的隨機接取通道(Random Access Channel,RACH)以及承載使用者流量或控制信息的UL SCH。在傳輸通道上方定義並且映射到傳輸通道的邏輯通道包含廣播控制波道(Broadcast Control Channel,BCCH)、傳呼控制通道(Paging Control Channel,PCCH)、公用控制通道(Common Control Channel,CCCH)、多播控制通道(Multicast Control Channel,MCCH)、多播流量通道(Multicast Traffic Channel,MTCH)等。
圖3為說明實體通道和在3GPP系統中之實體通道上傳輸信號的示例。
參考圖3,當UE通電或進入新細胞時,UE執行起始細胞搜索(initial cell search,S301)。起始細胞搜索涉及獲取與eNB的同步。具體地說,UE藉由從eNB接收主要同步通道(P-SCH)以及次要同步通道(S-SCH),將其時序與eNB同步,並且獲取細胞識別碼(Identifier,ID)和其他資訊。然後,UE可以藉由從eNB接收實體廣播通道(PBCH)獲取在細胞中廣播的資訊。在初始細胞搜索期間,UE可以藉由接收下行鏈路參考信號(DownLink Reference Signal,DL RS)監視DL通道的狀態。
在搜索初始細胞之後,UE可以藉由接收實體下行鏈路控制通道(Physical Downlink Control Channel,PDCCH)並且基於包含在PDCCH中的資訊接收實體下行鏈路共享通道(Physical Downlink Shared Channel,PDSCH),獲取詳細的系統資訊(S302)。
如果UE最初接取eNB或者沒有用於向eNB傳輸信號的無線電資源,則UE可以與eNB執行隨機接取程序(S303至S306)。在隨機接取程序中,UE可以在實體隨機接取通道(Physical Random Access Channel,PRACH)上傳輸預定序列作為前導碼(S303和S305),並且可以接收對PDCCH上的前導碼和與PDCCH相關聯的PDSCH的響應訊息(S304和S306)。在基於爭用RACH的情況下,UE可以另外執行爭用解決程序。
在上述程序之後,UE可以從eNB接收PDCCH及/或PDSCH(S307),並且向eNB傳輸實體上行鏈路共享通道(Physical Uplink Shared Channel,PUSCH)及/或實體上行鏈路控制通道(Physical Uplink Control Channel,PUCCH)(S308),這是一般的DL和UL信號傳輸程序。具體地說,UE在PDCCH上接收下行鏈路控制資訊(Downlink Control Information,DCI)。此處,DCI包含控制資訊,例如UE的資源分配資訊。根據DCI的不同的用法,定義不同的DCI格式。
UE在UL上向eNB傳輸或在DL上從eNB接收的控制資訊包括:DL/UL確認/否定確認(ACKnowledgment/Negative ACKnowledgment,ACK/NACK)信號、通道品質指標(Channel Quality Indicator,CQI)、預編碼矩陣索引(Precoding Matrix Index,PMI)、排序指示符(RI)等,在3GPP LTE系統中,UE可以在PUSCH及/或PUCCH上傳輸諸如CQI、PMI、RI等的控制資訊。
圖4為說明無線電訊框的結構的示例。在一些案例中,這樣的實施方式可以與LTE系統相容。
參考圖4,無線電訊框長10ms(327200xTs),並且被分成10個相等大小的子訊框。每個子訊框長1ms,並進一步分成兩個時槽。每個時槽長0.5ms(15360xTs)。這裡,Ts表示採樣時間,並且Ts=1/(15kHz×2048)=3.2552×10-8(約33ns)。時槽包含複數個正交分頻多工(Orthogonal Frequency Division Multiplexing,OFDM)符號,或在時域中由頻域中的複數個資源塊(RB)組成SC-FDMA符號。在LTE系統中,一個RB包含7(或6)個OFDM符號的12個副載波。傳輸資料的單位時間定義為傳輸時間間隔(Transmission Time Interval,TTI)。可以以一個或多個子訊框為單位定義傳輸時間間隔。上述無線電訊框結構純粹為示例性的說明,因此無線電訊框中的子訊框數、子訊框中的時槽數或時槽中的OFDM符號數可以任意變化。
圖5為說明包含在DL無線電訊框中的子訊框的控制區域中的示例性控制通道。在一些案例中,這樣的實施方式可以與LTE系統相容。
參考圖5,子訊框包含14個OFDM符號。子訊框的第一個到第三個OFDM符號用於控制區域,並且其他13到11個OFDM符號用於根據子訊框配置的資料區域。在圖5中,附圖標記R1至R4表示天線0至天線3的RS或導頻信號。無論控制區域和資料區域如何,RS都以預定模式分配在子訊框中。控制通道分配給控制區域中的非RS資源,流量通道也分配給資料區域中的非RS資源。分配給控制區域的控制通道包含實體控制格式指示符通道(Physical Control Format Indicator Channel,PCFICH)、實體混合ARQ指示符通道(PHICH)、實體下行鏈路控制通道(PDCCH)等。
PCFICH是承載關於每個子訊框中用於PDCCH的OFDM符號的數量的資訊的實體控制格式指示符通道。PCFICH位於子訊框的第一個OFDM符號中,並且配置為比PHICH和PDCCH更為優先。PCFICH包含4個資源單元群組(Resource Element Groups,REG),每個REG基於細胞識別碼(Identity,ID)分配給控制區域。一個REG包含4個資源單元(Resource Elements,RE)。一個RE是透過一個OFDM符號由一個副載波所定義的最小時體資源。根據頻寬將PCFICH設定為1到3或2到4。PCFICH在正交相移鍵控(Quadrature Phase Shift Keying,QPSK)中調變。
PHICH為實體混合自動重傳和請求(HARQ)指示符通道,其攜帶用於UL傳輸的HARQ ACK/NACK。也就是說,PHICH是傳遞用於UL HARQ的DL ACK/NACK資訊的通道。PHICH包含一個REG並且以細胞特定的方式加擾。ACK/NACK在一個位元中被指示,並且在二位元相移鍵控(Binary Phase Shift Keying,BPSK)中調變。調變後的ACK/NACK以2或4的展頻因子(Spreading Factor,SF)擴展。映射到相同資源的複數個PHICH形成PHICH群組。進行多工到PHICH群組中之PHICH的數量係根據展頻碼的數量來確定。PHICH(群組)重複三次以獲得頻域及/或時域中的分集增益。
PDCCH是分配給子訊框的前n個OFDM符號的實體DL控制通道。此處,n是大於或等於1的整數,並且由PCFICH表示。PDCCH佔用一個或多個CCE。PDCCH將關於傳輸通道、PCH和DL-SCH、UL排程許可和HARQ資訊的資源分配資訊攜帶給每個UE或UE群組。PCH和DL-SCH在PDSCH上傳輸。因此,除了特定控制資訊或特定服務資料之外,eNB和UE通常在PDSCH上傳輸和接收資料。
指示一個或多個UE接收PDSCH資料的資訊以及指示UE應如何接收和解碼PDSCH資料的資訊在PDCCH上傳遞。例如,在特定PDCCH的循環冗餘校驗(Cyclic Redundancy Check,CRC)被無線網路臨時識別碼(Radio Network Temporary Identity,RNTI)「A」屏蔽的情況,以及基於傳輸格式資訊(例如,傳輸區塊大小、調變方案、編碼資訊等)「C」關於在無線電資源「B」(例如,在頻率位置)中傳輸的資料的資訊在特定子訊框中傳輸,細胞內的UE在搜索空間中使用其RNTI資訊監視、例如盲解碼、PDCCH。如果一個或多個UE具有RNTI「A」,則那些UE接收PDCCH並基於所接收的PDCCH的資訊接收由「B」和「C」指示的PDSCH。
圖6為說明用於配置下行鏈路控制通道的資源單元的示例。在一些情況中,這樣的實施方式可以與LTE系統相容。
圖6(a)顯示傳輸(Tx)天線的數量是1或2的情況以及圖6(b)顯示Tx天線的數量是4的情況。儘管根據Tx天線的數量使用不同的RS模式,但是以相同的方式將RE配置用於DL控制通道。
參考圖6,DL控制通道的基本資源單元是REG。REG包含四個連續的RE,除了攜帶RS的RE。REG在圖6中用粗線描繪。PCFICH和PHICH分別包 含4個REG和3個REG。PDCCH以控制通道單元(CCE)為單位來配置,每個CCE包含9個REG。
為了確定是否將包含L個CCE的PDCCH傳輸到UE,UE配置以監視連續佈置或者根據預定規則佈置的M(L)(
Figure 108114956-A0202-12-0012-21
L)個CCE。UE應該考慮用於PDCCH接收的L的值可以是複數值。UE應該監視以接收PDCCH的CCE設定被稱為搜索空間。舉例而言,與LTE相容的系統可以定義為搜索空間,如以下表1所示。
Figure 108114956-A0202-12-0012-1
在表1的示例中,參數L是CCE聚集級別,亦即,PDCCH中的CCE的數量,參數Sk (L)是具有CCE聚集級別L的搜索空間,並且參數M(L)是具有CCE聚集級別L的搜索空間中要監視的候選PDCCH的數量。
搜索空間被分類為僅由特定UE可存取的UE特定搜索空間、以及由細胞內所有UE可存取的公共搜索空間。UE監視具有CCE聚合級別4和8的公共搜索空間、以及具有CCE聚合級別1、2、4和8的UE特定搜索空間。公共搜索空間和UE特定搜索空間可以彼此重疊。
對於每個CCE聚集級別,分配給UE的PDCCH搜索空間的第一CCE(具有最小索引的CCE)的位置改變每個子訊框。以上稱為PDCCH搜索空間散列(search space hashing)。
CCE可以分佈在系統頻帶上。更具體地說,可以將複數個邏輯上連續的CCE輸入到交錯器,並且該交錯器可以基於REG置換輸入的CCE的序列。因此,一個CCE的時間/頻率資源被實體分佈在子訊框的控制區域的總時間/頻率區域上。由於控制通道以CCE為單位配置,但以REG為單位進行交織,因此可以最大化頻率分集增益和干擾隨機增益。
圖7為說明UL子訊框的結構的示例。在一些情況中,這樣的實施方式可以與LTE系統相容。
參考圖7,UL子訊框可以被劃分為控制區域和資料區域。包含上行鏈路控制資訊(Uplink Control Information,UCI)的實體上行鏈路控制通道(Physical Uplink Control Channel,PUCCH)分配給控制區域,並且包含使用者資料的實體上行鏈路共享通道(Physical uplink Shared Channel,PUSCH)分配給資料區域。子訊框的中間分配給PUSCH,而頻域中的資料區域的兩側分配給PUCCH。在PUCCH上傳輸的控制資訊可以包含HARQ ACK/NACK、表示下行鏈路通道狀態的CQI、用於多輸入輸出系統(Multiple Input Multiple Output,MIMO)的RI、請求UL資源分配的排程請求(Scheduling Request,SR)。一個UE的PUCCH佔用子訊框的每個時槽中的一個RB。也就是說,分配給PUCCH的兩個RB在子訊框的時槽邊界上跳頻。具體地說,將m=0、m=1和m=2的PUCCH分配給圖7的示例中的子訊框。
參考信號(RS)
當在無線通訊系統中傳輸封包時,由於封包是透過無線電通道傳輸,因此信號可能在傳輸過程中失真。為了使接收端正確地接收失真信號,較佳是使用通道資訊來校正失真和接收信號。為了找出通道資訊,傳輸在傳輸端和接收端都已知的信號,並在通道上接收信號時,找出具有失真程度的通道資訊。該信號稱為領航信號或參考信號。
當使用MIMO天線傳輸/接收資料時,可以更好地檢測傳輸天線與接收天線之間的通道狀態,以便接收端正確地接收資料。因此,為了使接收端檢測通道狀態,傳輸端的每個傳輸天線較佳可以具有單獨的參考信號。
在無線通訊系統中,根據其目的,RS可以大致分為兩種類型。一種類型的RS用於獲取通道資訊,另一種類型的RS用於資料解調。較前的RS用於允許UE獲取DL通道資訊,並且該RS應該在寬頻帶上傳輸。在一些實施方式中,甚至在特定子訊框中不接收DL資料的UE也可以接收並測量RS。在一些情況中,較前的RS也用於測量,例如切換。當eNB在下行鏈路上傳輸資源時,傳輸較後的RS。UE可以藉由接收較後的RS來執行通道測量,從而實現資料調變。該RS應該在傳輸資料的區域中傳輸。
在一些實施方式中,諸如與3GPP LTE系統相容的實施方式(例如,3GPP LTE版本-8)中,可以實施兩種類型的下行鏈路RS,用於單播服務。一個是公共RS(common RS,CRS),另一個是專用RS(dedicated RS,DRS)。 CRS用於獲取關於通道狀態的資訊和例如切換的測量,並且可以稱為細胞特定RS。DRS用於資料解調,並且可以稱為UE特定RS。在這樣的系統中,DRS可以僅用於資料解調,並且CRS可以用於通道資訊的獲取和資料解調。
CRS在寬頻帶中的每個子訊框中以細胞為單位進行傳輸。取決於eNB的Tx天線的數量,CRS可以相對於多達四個天線埠來傳輸。例如,如果eNB的Tx天線的數量是2,則傳輸用於天線埠# 0和# 1的CRS。如果eNB的Tx天線的數量是4,則分別傳輸用於天線埠# 0到# 3的CRS。
圖8為在資源區塊(resource block,RB)對上的CRS和DRS的模式的示例圖。
作為參考信號模式的示例,圖6顯示在由基地台支援4個天線的系統中的RB對(正常CP情況,時域中的14個OFDM符號×頻域中的12個子訊框)上的CRS和DRS的模式。在圖8中,表示為“R0”、“R1”、“R2”和“R3”的資源單元(resource elements,RE)分別表示用於天線埠0、1、2和3的CRS的位置。同時,圖8中表示為“D”的資源單元指示DRS的位置。
在一些系統中,例如與LTE-A(LTE的高級版本)相容的系統,可以支援下行鏈路上多達8個Tx天線。在這樣的系統中,可以支援多達8個Tx天線的RS。相反地,在一些系統中,例如與LTE相容的系統,可以僅為多達4個天線埠定義下行鏈路RS。因此,在與LTE-A相容的系統的eNB實現4到8個DL Tx天線的情況下,可能需要另外定義用於這些天線埠的RS。在這些用於多達8個Tx天線埠的RS中,可能需要考慮用於通道測量的RS和用於資料解調的RS。
設計與LTE-A相容的系統的一個重要考慮因素是向後相容性。向後相容性是指支援LTE相容的UE,使得LTE相容的UE也與LTE-A系統相容。在RS傳輸方面,如果將多達8個Tx天線的RS添加到其中在整個頻帶上的每個子訊框中傳輸與LTE相容的CRS的時頻區域,則RS負擔可能過度增加。因此,在設計多達8個天線埠的新RS時,需要考慮降低RS負擔。
在一些系統中,例如那些與LTE-A相容的系統,附加RS可以分為兩種類型。一種RS是意在用於選擇傳輸等級的通道測量的通道狀態資訊-RS(channel state information-RS,CSI-RS)、調變及編碼的結構(modulation and coding scheme,MCS)、預編碼矩陣索引(precoding matrix index,PMI)等。其 他類型的RS為解調RS(demodulation RS,DMRS),意在用於解調通過多達8個Tx天線所傳輸的資料。
在一些實施方式中,CSI-RS被設計用於通道測量,不同於除了通道測量和切換測量之外可以在一些系統中實現的CRS,其用於資料解調。在一些方案中,CSI-RS還可以用於切換測量。在一些實施方式中,僅傳輸CSI-RS以便獲得關於通道狀態的資訊,並且不需要在每個子訊框中傳輸CSI-RS,這與在與LTE相容的系統中的CRS不同。因此,在一些實施方式中,為了減少CSI-RS的負擔,可以將CSI-RS設計為在時域中間歇性(例如,週期性)傳輸。
當在特定DL子訊框中傳輸資料時,將專用DMRS傳輸到資料傳輸被排定的UE。在一些方案中,DMRS可以稱為UE的特定RS。專用於特定UE的DMRS可以設計為僅在其中UE被排定的資源區域中、亦即在其中用於UE的資料被傳輸的該時頻區域中傳輸。
圖9為說明DMRS模式的示例的視圖。在一些情況中,這樣的實施方式可以與LTE-A系統相容。
圖9中的示例為顯示在一個資源區塊對上傳輸DMRS的資源單元的位置(在正常CP的情況下,在時域中的14個OFDM符號×在頻域中的12個子訊框),其中傳輸DL資料。可以傳輸DMRS以響應與LTE-A系統相容的8個天線埠(天線埠索引7,8,9,10)。用於彼此不同的天線埠的DMRS可以以位於彼此不同的頻率資源(子訊框)及/或彼此不同的時間資源(OFDM符號)的方式彼此區分(亦即,可以透過FDM及/或TDM,對用於彼此不同的天線埠的DMRS進行多工)。並且,位於相同時頻資源處之彼此不同的天線埠的DMRS,可以透過正交碼彼此區分(亦即,可以透過CDM,對用於彼此不同的天線埠的DMRS進行多工)。在圖9的示例中,用於天線埠7和天線埠8的DMRS可以位於由DMRS CDM群組1指示的RE上,並且可以透過正交碼進行多工。類似地,在圖9的示例中,用於天線埠9和天線埠10的DMRS可以位於由DMRS群組2指示的RE上,並且由正交碼進行多工。
當eNB傳輸DMRS時,應用於資料的預編碼被應用於DMRS。因此,使用DMRS(或UE特定的RS)之由UE估計的通道資訊是預編碼通道資訊。UE可以使用通過DMRS估計的預編碼通道資訊,輕易地執行資料解調。然而,UE並不知道關於應用於DMRS的預編碼的資訊,因此UE可以不從DMRS獲取未 預編碼的通道資訊。UE可以使用與DMRS分離的RS獲取未預編碼的通道資訊,亦即使用上述CSI-RS。
圖10為說明CSI-RS模式的示例的視圖。在一些情況中,這樣的實施方式可以與LTE-A系統相容。
圖10為顯示在其中傳輸DL資料的一個資源區塊對(在正常CP的情況下,在時域中之14個OFDM符號×在頻域中的12個子訊框)上傳輸CSI-RS的資源單元的位置。可以在指定的DL子訊框中使用圖10(a)至圖10(e)中所描繪的圖案中的一個CSI-RS圖案。可以傳輸該CSI-RS以響應在LTE-A系統中另外定義的8個天線埠(天線埠索引15,16,17,18,19,20,21,22)。
用於彼此不同的天線埠的CSI-RS可以以位於彼此不同的頻率資源(子訊框)及/或彼此不同的時間資源(OFDM符號)的方式彼此區分(例如,可以透過FDM及/或TDM方案,對用於彼此不同的天線埠的CSI-RS進行多工)。並且,位於相同時頻資源之彼此不同的天線埠的CSI-RS可以透過正交碼彼此區分(例如,可以透過CDM方案,對用於彼此不同的天線埠的CSI-RS進行多工)。參考圖10(a)的示例,用於天線埠15和16的CSI-RS可以位於表示為CSI-RS CDM群組1的資源單元(resource elements,REs)處,並且可以透過正交碼對用於天線埠15和16的CSI-RS進行多工。
參考圖10(a)的示例,用於天線埠17和18的CSI-RS可以位於表示為CSI-RS CDM群組2的資源單元(resource elements,REs)處,並且可以透過正交碼動用於天線埠17和18的CSI-RS進行多工。參考圖10(a)的示例,用於天線埠19和20的CSI-RS可以位於表示為CSI-RS CDM群組3的資源單元(resource elements,REs)處,並且可以透過正交碼對用於天線埠19和20的CSI-RS進行多工。參考圖10(a)的示例,用於天線埠21和22的CSI-RS可以位於表示為CSI-RS CDM群組4的資源單元(resource elements,REs)處,並且可以透過正交碼對用於天線埠21和22的CSI-RS進行多工。圖10(a)中所實施的特徵可以相似地應用於圖10(b)至10(e)。
圖8至圖10中所描繪的RS圖案僅僅是示例,並且本發明所揭露的實施方式限於特定RS圖案。特別是,在與圖8至圖10中描繪的RS圖案不同而實施的RS圖案的情況中,本發明的實施方式的各種特徵可以類似地應用於不同的RS圖案。
在下文中,將更詳細地描述根據本發明實施方式的傳輸和接收參考信號的示例。
在下一代通訊系統中,用於在傳輸和接收資訊中,實現非常低的延遲性和非常高的可靠性的技術將會是重要的。在這方面,用於配置各種目標服務品質(Quality of Service,QoS)要求(例如延遲性及/或可靠性),並且根據每個目標QoS要求,不同地執行操作以有效地提供呈現目標QoS要求的服務將會是重要的。
根據本發明的實施方式,揭露了能夠在蜂巢式通訊系統中,在從基地台向UE重複傳輸下行鏈路資料的情況下,共享參考信號(RS)的技術。這樣的實施方式可以提供許多優點,例如實現更高的可靠性和更低的延遲性。
本發明的細節及/或實施方式的各種組合可以據以實施。另外,具體的公開細節不限於本發明所呈現的實施方式或特定系統。也就是說,具體的公開細節可以透過所屬技術領域中具有通常知識者輕易地從本發明所呈現的實施方式導出的範圍內延伸,並且可以應用於各種通訊系統,例如與LTE、LTE-A、LTE-Pro、NR和IEEE相容的那些通訊系統,本發明的實施方式適用於這些。
還應當理解,本發明所揭露的所有參數、本發明所揭露的所有操作、每個參數及/或每個操作的組合、是否應用相應的參數及/或操作、及/或是否應用每個參數及/或每個操作的組合,可以由基地台通過高層信號及/或實體層信號指示給UE,或者可以在系統中預先定義。
在一些實施方式中,關於本發明中所揭露之不同子訊框類型的細節可以適用於不同的傳輸模式(transmission modes,TM)。例如,即使在傳輸模式於相同子訊框類型中所配置的兩個子訊框之間改變和不相同的情況下,也可以應用該等細節。還應當理解,在本發明中所描述的傳輸時間間隔(Transmission Time Interval,TTI)可以對應於各種傳輸時間間隔長度單元,例如副時槽、時槽、和子訊框。
這裡,副時槽和時槽可以稱「為短的傳輸時間間隔」。短的傳輸時間間隔具有比用於下行鏈路共享通道(Downlink Shared Channel,DL-SCH)和上行鏈路共享通道(Uplink Shared Channel,UL-SCH)的傳輸時間間隔更短的持續時間,該持續時間為1ms。短的PDCCH(short PDCCH,SPDCCH)和短的PUCCH (short PUCCH,SPUCCH)可以實現為用於支援短的傳輸時間間隔的控制通道,並且傳輸的持續時間可以短於1ms。在一些實施方式中,時槽具有0.5ms的持續時間,並且可以由7個符號組成。在一些實施方式中,子訊框可以由兩個符號或三個符號組成。
圖11為說明短的傳輸時間間隔(TTI)的結構的示例的視圖。
在TDD系統中,可以在逐個時槽的基礎上,執行基於傳輸時間間隔的短傳輸。在FDD系統中,可以在逐個時槽的基礎上、及/或在逐個副時槽的基礎上,執行基於傳輸時間間隔的短傳輸。
在這種情況下,一個子訊框由6個副時槽組成,並且其中佈置副時槽的模式可以根據用於PDCCH的符號的數量而不同。例如,如圖11(a)的示例所示,當一個符號或三個符號用於PDCCH時,副時槽0和副時槽5中的每一個可以由三個符號組成,並且其他副時槽的每一個可以由兩個符號組成。
作為另一示例,如圖11(b)所示,當兩個符號用於PDCCH時,副時槽1和副時槽5中的每一個可以由三個符號組成,並且其他副時槽的每一個可以由兩個符號組成。
圖12為說明被重複傳輸的實體下行共享通道(physical downlink shared channel,PDSCH)的排程的示例的視圖。
可以重複傳輸資料以增強下行鏈路傳輸的可靠性。例如,如圖12(a)的示例所示,可以在每個傳輸時間間隔中獨立地傳輸由控制通道排定的控制通道和資料通道。在一些實施方式中,對於每個控制通道、HARQ程序號碼、新資料指示符(New Data Indicator,NDI)等,可以被用來通知UE,在複數個傳輸時間間隔中所傳輸的資料通道傳輸相同的傳輸區塊(transmission block,TB),並且在複數個傳輸時間間隔中可以重複傳輸相同的資料。
作為另一示例,如圖12(b)所示,與圖12(a)相比,為了減少控制通道的負擔,在單個傳輸時間間隔中傳輸的控制通道可以在複數個傳輸時間間隔中排定要被重複傳輸的資料。也就是說,在單個傳輸時間間隔中傳輸的控制通道可以排定用於複數個傳輸時間間隔的資料。
在以複數個傳輸時間間隔中傳輸控制通道的情況下,其中控制通道被傳輸的傳輸時間間隔的數量可以少於其中資料通道被傳輸的傳輸時間間隔的數量。在一些實施方式中,用於在多個傳輸時間間隔中排定要被重複傳輸的 資料之諸如在下行鏈路控制資訊(Downlink Control Information,DCI)中的調變編碼方案(Modulation Coding Scheme,MCS)/資源分配(Resource Allocation,RA)的資訊可以以相同的方式應用於其中要被重複傳輸的資料的所有傳輸時間間隔。在一些實施方式中,DCI可以包含關於資料要被重複傳輸的次數的資訊。
例如,在一些短的傳輸時間間隔(short TTI,sTTI)系統中,例如與LTE相容的系統,傳輸時間間隔可以配置為具有非常短的持續時間。因此,在每個短的傳輸時間間隔中傳輸諸如解調參考信號(demodulation reference signal,DMRS)的參考信號可能增加RS負擔,導致資料的編位元速率增加。根據本發明所揭露的實施方式,可以在傳輸時間間隔之間共享參考信號,這可以減少RS負擔。
在以特定傳輸時間間隔傳輸的DCI在連續或非連續傳輸時間間隔(包含特定傳輸時間間隔)中排定要被重複傳輸的資料的情況下,可以在特定傳輸時間間隔之後的傳輸時間間隔中不嘗試解碼DCI。或者,即使藉由在特定傳輸時間間隔之後嘗試解碼傳輸時間間隔中的DCI來檢測DCI,則檢測後的DCI也可以丟棄。在一些實施方式中,DCI可以是基於C-RNTI且與資料排程有關。
在一些實施方式中,可以通過DCI設定資料的重複次數k。k被設定為大於1的情況可以稱為「排定要被重複傳輸的資料」。這可以指的是配置為關於是否執行無HARQ/封閉的資料重複而應用的資料重複。
然而,對於其中未嘗試解碼DCI的傳輸時間間隔(或者對於其中藉由嘗試解碼來檢測DCI但被丟棄的傳輸時間間隔),關於這種傳輸時間間隔的RS共享相關資訊可能無法在傳輸時間間隔中傳輸。因此,即使在這樣的傳輸時間間隔中,本發明揭露的實施方式也能夠共享RS。
在進一步討論與要被重複傳輸資料的RS共享相關的實施方式之前,下面的圖13至圖15提供了UE、基地台和網路的操作的示例。
圖13至圖15為說明根據本發明實施方式之UE、基地台和網路的操作的示例。
圖13為說明根據本發明實施方式之UE的操作的示例。UE從基地台接收(i)與資料的重複傳輸有關的第一資訊和(ii)與在其中資料被重複傳輸的傳輸時間間隔中應用的RS共享有關的第二資訊(S1301)。這裡,第一資訊和第二資訊可以通過共同的發信號一起接收,或者可以通過分開的發信號單獨接 收。例如,可以透過一個DCI接收第一資訊和第二資訊。或者,可以透過DCI接收第一資訊,並且可以通過更高層發信號接收第二資訊。或者,可以通過分開的DCI接收第一資訊和第二資訊。
在接收到第一資訊和第二資訊時,UE可以基於第一資訊和第二資訊對重複傳輸的資料進行解碼(S1303)。這裡,使用共享或者非共享的RS用於資料解碼、以及包含在第二資訊中關於RS共享的資訊可以符合將在下面進一步描述的特定實施方式。
圖14為說明根據本發明實施方式之基地台的操作的示例。基地台傳輸(i)與資料的重複傳輸有關的第一資訊和(ii)與在其中資料被重複傳輸的傳輸時間間隔中應用的RS共享有關的第二資訊(S1401)。這裡,第一資訊和第二資訊可以通過共同的發信號一起傳輸,或者可以通過分開的發信號單獨傳輸。例如,可以通過一個DCI傳輸第一資訊和第二資訊。或者,可以通過DCI傳輸第一資訊,並且可以通過更高層發信號傳輸第二資訊。或者,可以通過分開的DCI傳輸第一資訊和第二資訊。
已傳輸第一資訊和第二資訊的基地台可以基於第一資訊和第二資訊通過複數個傳輸時間間隔傳輸要被重複傳輸的資料(S1403)。在一些實施方式中,基於第二資訊(以及關於包含在第二資訊中的RS共享的資訊)將一RS映射到複數個傳輸時間間隔中的每一個可以符合將在下面進一步描述的特定實施方式。
圖15為說明根據本發明實施方式之從網路的角度來看的操作的示例。基地台向UE傳輸(i)與資料的重複傳輸有關的第一資訊和(ii)與在其中資料被重複傳輸的傳輸時間間隔中應用的RS共享有關的第二資訊(S1501)。這裡,第一資訊和第二資訊可以通過共同的發信號一起傳輸,或者可以通過分開的發信號單獨傳輸。例如,可以通過一個DCI傳輸第一資訊和第二資訊。或者,可以通過DCI傳輸第一資訊,並且可以通過更高層發信號傳輸第二資訊。或者,可以通過分開的DCI傳輸第一資訊和第二資訊。在一些實施方式中,包含在第二資訊中的關於RS共享的資訊可以符合將在下面進一步描述的實施方式。
已傳輸第一資訊和第二資訊的基地台可以基於第一資訊和第二資訊通過複數個傳輸時間間隔傳輸要被重複傳輸到UE的資料(S1503)。在接收到重複傳輸的資料時,UE可以基於第一資訊和第二資訊對重複傳輸的資料進行 解碼(S1505)。這裡,基於第二資訊將RS映射到複數個傳輸時間間隔中的每一個以及使用共享RS或者非共享RS來解碼資料可以符合稍後將描述的實施方式。
在下文中,下面將描述用於操作圖13至圖15中所示之UE和基地台的RS共享的具體實施方式的示例。
圖16至圖18為說明根據本發明實施方式之共享解調參考信號(demodulation reference signal,DMRS)的示例。
為簡化起見,這些示例說明了有關於特定傳輸區塊(transmission block,TB)執行重複傳輸四次的情況,並且具體而言,在TTI # n、# n+1、# n+2和# n+3中執行重複傳輸。然而,本發明的實施方式不限於這些示例,因為重複傳輸的數量及/或其中執行重複傳輸的傳輸時間間隔或資料位置可以不限於任何特定數量。在一些實施方式中,對於RS共享相關的操作,DCI可以指示相應的傳輸時間間隔中RS的存在或不存在。在一些情況中,如果DCI指示當前傳輸時間間隔中不存在RS,則可以共享在之前傳輸時間間隔中所傳輸的RS。
本發明中,詞組“共享RS”指的是重啟通道估計值(其是基於在之前傳輸時間間隔或之後傳輸時間間隔中所傳輸之RS來量測)以便(i)解調在相應傳輸時間間隔內所傳輸的資料,或者(ii)獲得關於相應傳輸時間間隔用的通道狀態的資訊。例如,可以基於映射到相應傳輸時間間隔的RS估計通道狀態等,以便(i)解調在對應傳輸時間間隔中傳輸的資料,或者(ii)獲得關於相應傳輸時間間隔的通道狀態的資訊。因此,在預期通道狀態的變化不大(例如,由於相對短的傳輸時間間隔或由於良好的通道環境)的情況下,則從在相應傳輸時間間隔之前或之後的傳輸時間間隔中所傳輸之RS測量的估計值可以應用在相應傳輸時間間隔中,以解調資料或獲得關於通道狀態的資訊。因此,用於映射RS的資源單元可以用於映射資料,這可以幫助提高資料流通量。
然而,本發明的實施方式不限於這裡討論的RS共享的示例,並且可以適用於各種類型的RS共享情況。
在一些情況中,即使DCI(在特定傳輸時間間隔中傳輸)通過包含特定傳輸時間間隔和在特定的傳輸時間間隔之後的至少一個連續(或非連續)傳輸時間間隔排定要被重複傳輸的資料,RS共享可能不適用。圖16中為顯示這種情況的示例。在這種情況下,RS可以配置為在其中資料被重複傳輸的所有傳輸時間間隔中被接收。
在該示例中,如果DCI(在特定傳輸時間間隔中傳輸)操作或配置以操作通過包含特定傳輸時間間隔以及在特定傳輸時間間隔之後的至少一個後續連續(或非連續)傳輸時間間隔來排定要被重複傳輸的資料,則UE可以配置為不執行RS共享。可以在系統中預先定義這樣的操作,並且基地台可以通過更高層信號、及/或實體層信號向UE通知是否應用RS共享操作。
或者,如果配置重複資料傳輸並且指示用於重複資料的次數大於1,則可以在RS共享相關的DCI欄位中發送特定值(例如,“1”或另一個合適的值)。該DCI欄位中的該特定值的傳輸可以指示必須在其中執行重複資料傳輸的所有傳輸時間間隔中傳輸RS,並且不應用RS共享,如圖16的示例所示。
在一些情況中,不應用RS共享(即,在重複傳輸資料的所有傳輸時間間隔中傳輸RS)可以提高資料傳輸的可靠性。例如,如果共享RS,則在其中不傳輸RS的傳輸時間間隔中的通道估計可能不太準確,因此可能降低了可靠性。它與重複傳輸資料的目的不匹配。因此,在這樣的情況中,藉由在其中資料被重複傳輸的所有傳輸時間間隔中傳輸RS,可以維持可靠性。
在一些實施方式中,當RS共享應用於資料的重複傳輸時,可以在其中資料被重複傳輸的傳輸時間間隔中的第一傳輸時間間隔中傳輸RS。然後,在第二傳輸時間間隔中,可以共享第一傳輸時間間隔的RS,並且可以不在第二傳輸時間間隔中傳輸RS。在這種情況下,如果在第一傳輸時間間隔中檢測到DCI錯誤,則即使在第二傳輸時間間隔中檢測DCI成功,UE也可能不能解碼第一傳輸時間間隔中的資料以及也不能解碼第二傳輸時間間隔中的資料。這可以是因為UE未能在第一傳輸時間間隔中獲得關於RS的資訊,因此沒有可以通過RS共享在第二傳輸時間間隔中重新使用的RS留下。
因此,在一些實施方式中,當需要重複傳輸資料時,比起應用RS共享,如圖16所示,在執行重複資料傳輸的所有傳輸時間間隔中傳輸RS可能更有效率。
在重複資料傳輸的次數指示為具有數值1的情況下,根據RS共享相關DCI欄位的數值,可以確定是否在其中已發送了相應DCI的傳輸時間間隔中應用RS共享。例如,可以根據重複資料傳輸的次數來不同地定義應用RS共享相關欄位的技術。
例如,如果資料重複的數量設定為大於1,則可以在相應的欄位中傳輸特定值(例如,“1”或其他合適的值),使得可以不在其中資料被重複傳輸的傳輸時間間隔之間應用RS共享,可以使用於虛擬循環冗餘校驗(Cyclic Redundancy Check,CRC)。另一方面,如果資料重複的數量設定為1,則可以根據在相應欄位中傳輸的數值,確定是否在相應傳輸時間間隔中應用RS共享。
如果RS共享未應用在其中資料被重複傳輸的傳輸時間間隔時,則DCI中的RS共享相關欄位可以預先定義,或者可以透基地台通過更高層及/或實體層發信號,以指示給UE的值發送,並且可以用於虛擬CRC。或者,該欄位可以配置為可選欄位,並且可以實現為僅當配置RS共享時,才存在該欄位。
在一些情況中,在TTI # n-1中傳輸第一DCI以排定第一資料(在TTI # n-1中),並且在TTI #n中傳輸用於排定第二資料的重複傳輸的第二DCI,使得第二資料在TTI # n、# n+1、# n+2和#n+3中被重複傳輸,則可以指示RS必須在TTI #n中共享。由此,在TTI #n中共享在# n-1中所傳輸的RS的操作可以啟用。
這裡,諸如DMRS的RS可以僅在指示了RS共享的TTI#n中不傳輸,但可以在TTI # n+1、# n+2和#n+3中傳輸。在一些實施方式中,當UE報告與重複資料傳輸有關的能力時,可以實現符合該報告內容的DCI格式。在一些實施方式中,DCI格式可以不包含與RS共享的相關欄位。
作為另一示例,即使在特定傳輸時間間隔中傳輸的DCI操作以在包含特定傳輸時間間隔和特定傳輸時間間隔之後的至少一個後續連續(或非連續)傳輸時間間隔的傳輸時間間隔中排定要被重複傳輸的資料的情況下,也可以應用RS共享。
例如,在重複傳輸的操作中,基地台可以通過高層及/或實體層發信號向UE指示操作RS共享。在一些實施方式中,指示通過高層及/或實體層發信號的RS共享操作的資訊可以包含以下中的至少一個:(i)關於是否在每個傳輸時間間隔中應用RS共享、或者在相應的傳輸時間間隔中是否存在RS的資訊,或者(ii)關於在其中執行重複傳輸的傳輸時間間隔之間應用RS共享的模式的資訊。這裡,可以預先定義模式。例如,可以根據重複資料傳輸的次數預先定義其中應用RS共享的模式,或者可以基於重複資料傳輸的最大可能次數來定義。
例如,可以配置其中應用RS共享的傳輸時間間隔數量的限制。該限制可以在系統中預先定義,或者可以由基地台通過更高層及/或實體層發信號向UE指示。
另外,UE可以假設為在對應於有限數量的傳輸時間間隔中的特定傳輸時間間隔(例如第一傳輸時間間隔)中傳輸RS。另外,可以限制其中應用RS共享的多個傳輸時間間隔,以便不配置成跨越子訊框之間的邊界或跨越改變子訊框類型的邊界。這裡,子訊框類型改變的邊界可以參考,例如,子訊框類型從群播/廣播單頻網路(Multicast Broadcast Single Frequency Network,MBSFN)子訊框改變為非MBSFN子訊框的邊界,或者可以參考子訊框類型從非MBSFN子訊框改變為MBSFN子訊框的邊界。
在一些實施方式中,可以跨越子訊框之間的邊界或者跨越改變子訊框類型的邊界,配置其中應用RS共享的多個傳輸時間間隔。是否其中應用RS共享的多個傳輸時間間隔可以配置為跨越子訊框之間的邊界,或者跨越改變子訊框類型的邊界可以在系統中預先定義,或者可以由基地台通過更高層及/或實體層發信號指示UE。
如果配置重複資料傳輸的次數大於其中應用RS共享的傳輸時間間隔的數量的限制,則在一些實施方式中,可以以數量限制為單位將傳輸時間間隔分成幾群組,用於在配置的重複資料傳輸次數內應用RS共享。在這樣的實施方式中,在每個劃分的群組中,可以在對應於數量限制的複數個傳輸時間間隔中的特定傳輸時間間隔中傳輸RS。在這種情況下,RS可以配置為在以用於RS共享的數量限制為單位設定配置資料的重複傳輸的次數之後剩餘的傳輸時間間隔中傳輸。
例如,參考圖17,如果重複資料傳輸的次數設定為3,並且RS共享的傳輸時間間隔數量限制為2,則可以僅在配置在三個資料傳輸傳輸時間間隔之間用於RS共享的傳輸時間間隔數量限制單位中之前兩個傳輸時間間隔中的其中一個傳輸DMRS。這樣,在該示例中,在前兩個傳輸時間間隔之間共享DMRS,並且在剩餘的一個傳輸時間間隔中傳輸DMRS,該傳輸時間間隔小於用於RS共享的數量限制。
在資料的重複傳輸的次數配置為小於用於RS共享的數量限制的情況下,可以僅在與資料的重複傳輸次數相對應的傳輸時間間隔的一些傳輸時 間間隔(例如,第一傳輸時間間隔)中傳輸RS。或者,可以在與重複傳輸資料的次數相對應的所有傳輸時間間隔中傳輸RS。
例如,如果資料的重複傳輸的次數是2並且RS共享的數量限制為3,則RS可以僅在其中資料被重複傳輸的兩個傳輸時間間隔中的第一個中傳輸,並且可以不在第二傳輸時間間隔中傳輸。或者是,可以在第一傳輸時間間隔和第二傳輸時間間隔兩者中傳輸RS。
在一些實施方式中,是否執行該操作可以在系統中預先定義,或者可以由基地台通過更高層發信號、及/或實體層發信號向UE指示。
在一些實施方式中,如果配置的重複傳輸資料的次數不能完全被RS共享的應用數量限制並且整除,則可以在每個傳輸時間間隔中傳輸RS(例如,DMRS)。在這種情況下,可以不應用RS共享。
在當RS共享被限制為在子訊框邊界內執行時跨越子訊框邊界配置資料的重複傳輸的情況下,可以基於子訊框邊界劃分其中資料被重複傳輸的傳輸時間間隔,並且可以在傳輸時間間隔內應用RS共享的操作,以用於包含在每個子訊框中的重複資料傳輸。
作為示例,圖18為說明其中應用RS共享的傳輸時間間隔的數量被限制為2且資料的重複傳輸的次數被配置為4的情況下,其中執行重複傳輸的傳輸時間間隔可以分為三個傳輸時間間隔和一個傳輸時間間隔。在這種情況下,可以在包含在兩個子訊框中的每一個中的三個傳輸時間間隔/一個傳輸時間間隔內應用上述RS共享操作。因此,包含在之前的子訊框中的三個傳輸時間間隔可以基於用於RS共享的傳輸時間間隔數量限制劃分為兩個傳輸時間間隔和一個傳輸時間間隔,使得在TTI #n和TTI # n+2的每一個中傳輸一個RS,並且可以在包含在隨後的子訊框中的一個傳輸時間間隔中傳輸RS。因此,在圖18的示例中,RS可以在用於四個重複資料傳輸的傳輸時間間隔中的第一、第三和第四傳輸時間間隔(即,TTI # n、TTI # n+2和TTI #n+3)中傳輸。
一般而言,在不同子訊框上配置資料重複傳輸的情況下,可以僅在位於相同子訊框內的傳輸時間間隔之間、或者僅在位於相同子訊框類型的子訊框內的傳輸時間間隔之間應用RS共享。這裡,相同的子訊框類型可以指多個子訊框都是MBSFN子訊框或非MBSFN子訊框的情況。
這裡,如果在不同的子訊框或子訊框類型上配置資料的重複傳輸,則可以僅在之前的子訊框和之後的子訊框的其中一個中應用RS共享,並且可以在另一個子訊框中的每一個傳輸時間間隔中傳輸RS。
例如,如果子訊框類型從配置在基於DMRS的傳輸模式中的子訊框(或MBSFN子訊框)改變為配置在基於CRS的傳輸模式中的子訊框(或非MBSFN子訊框),則DMRS共享可以僅應用於MBSFN子訊框或其中配置了基於DMRS的傳輸模式的傳輸時間間隔中,並且可以不應用於非MBSFN子訊框或其中配置了基於CRS的傳輸模式的傳輸時間間隔中。
或者,如上所述,如果RS共享和重複資料傳輸同時執行,則可以在同一子訊框中佈置其中資料被重複傳輸的所有傳輸時間間隔。在一些實施方式中,僅在當子訊框邊界之前和之後的子訊框以相同的傳輸模式配置時,才可以應用RS共享。或者是,如果跨越子訊框邊界改變傳輸模式,則配置在之前的子訊框中於傳輸模式中傳輸的RS可以配置為在隨後的子訊框中傳輸。例如,如果傳輸模式從配置在基於DMRS的傳輸模式中的子訊框改變為配置在基於CRS的傳輸模式中的子訊框,則DMRS也可以在配置在基於CRS的傳輸模式中的子訊框中傳輸。
可能存在這樣的情況:子訊框中的第一傳輸時間間隔(例如,sTTI)可能不可用於資料傳輸,這取決於由更高層發信號(例如,實體控制格式指示符通道(PCFICH)發信號)、及/或實體層發信號(例如,無線電資源控制(Radio Resource Control,RRC)發信號)所指示的控制格式指示符(Control Format Indicator,CFI)的值。也就是說,存在這樣的情況:特定傳輸時間間隔被包含在配置為控制區域的符號中,因此根據CFI值不可以用於資料傳輸。
在這種情況下,當UE計算重複傳輸的次數時,UE可以藉由排除特定傳輸時間間隔來執行計算操作。例如,如果TTI # n+1包含在配置為控制區域的符號中(因此當UE檢測時,不可用於資料傳輸,在TTI#n中,DCI指示4為重複次數),則UE可以假設在TTI#n、# n+2、# n+3和#n+4中執行資料的重複傳輸。
在這種情況下,RS共享操作可以在不可用於資料傳輸的傳輸時間間隔中執行,其方式與在上述實施方式中與子訊框邊界相關的部分的方式相同。例如,如果TTI # n+1不可以用於資料傳輸,則可以基於TTI # n+1劃分其中 資料被重複傳輸的傳輸時間間隔,並且上述之與RS共享應用相關的實施方式可以應用在所劃分之用於重複資料傳輸的傳輸時間間隔中。
例如,如果在其中應用RS共享的傳輸時間間隔的數量限制為2,並且重複傳輸資料的次數配置為4的情況下,TTI #n+1不可用於資料傳輸(如上述的示例中的情況),則可以基於TTI # n+1將其中資料被重複傳輸的傳輸時間間隔劃分為一個傳輸時間間隔和三個傳輸時間間隔。在這種情況下,可以在一個傳輸時間間隔/三個傳輸時間間隔內應用上述的基本操作。因此,RS可以在前一個傳輸時間間隔中傳輸,而接下來的三個傳輸時間間隔可以基於用於RS共享的傳輸時間間隔數量限制劃分為兩個傳輸時間間隔和一個傳輸時間間隔,使得在每一個群組中傳輸一個RS。也就是說,可以在四個重複傳輸傳輸時間間隔中的第一傳輸時間間隔(TTI #n)、第二傳輸時間間隔(TTI #n+2)和第四傳輸時間間隔(TTI#n+4)中傳輸RS。
在一些實施方式中,在子訊框中的第一傳輸時間間隔(例如,sTTI)根據由諸如PCFICH發信號之更高層發信號及/或諸如RRC發信號之實體層發信號所指示的CFI的值不可用於資料傳輸的情況下,則UE可以計算包含第一傳輸時間間隔的重複傳輸的次數。例如,如果TTI # n+1包含在配置為控制區域的符號中(因此當UE檢測時,不可用於資料傳輸,在傳輸時間間隔DCI指示4為重複次數),則UE可以假設僅在TTI#n、# n+2和#n+3中執行資料的重複傳輸。
在這種情況下,可以基於TTI # n、# n+2和#n+3應用RS共享。例如,其中資料被重複傳輸的傳輸時間間隔可以基於TTI # n+1劃分為一個傳輸時間間隔和兩個傳輸時間間隔。然後,RS可以在前一個傳輸時間間隔(TTI#n)中傳輸,也可以在TTI#n+2中於接下來的兩個傳輸時間間隔(TTI # n+2和TTI#n+3)之間傳輸。
另外,如果在特定傳輸時間間隔中傳輸的DCI操作或配置操作以在特定傳輸時間間隔之後,於包含特定傳輸時間間隔和特定傳輸時間間隔之後的至少一個後續連續(或非連續)的傳輸時間間隔中排定要被重複傳輸的資料,則可以根據包含在DCI中之RS共享相關欄位的值,確定是否在包含特定傳輸時間間隔的後續傳輸時間間隔中應用RS共享或RS共享模式。這可以解釋為意味著根據包含在DCI中之RS共享相關欄位的值,確定要應用於其中資料被重複傳輸的傳輸時間間隔的RS共享模式,或者可以被解釋為意味著根據傳輸時間間隔中 之RS共享相關欄位的值,確定是否在其中DCI被傳輸的傳輸時間間隔中共享RS,並根據欄位的值確定是否在後續傳輸時間間隔中應用RS共享或RS共享模式。
在一些實施方式中,關於是否應用RS共享或RS共享模式,與欄位的大小及/或重複資料傳輸的次數相對應的數量可以在系統中預先定義,或者可以由基地台通過更高層發信號及/實體層發信號向UE指示。例如,如果RS共享相關欄位的大小是1位元,則用於每個重複資料傳輸的兩個RS模式可以在系統中預先定義,或者可以由基地台通過更高層發信號及/或物理層發信號向UE指示,並且可以將與該欄位的解碼結果相對應的模式確定為用於重複傳輸資料的RS共享模式。
例如,如果在作為解碼的結果而在欄位中已傳輸了‘0’的值,則在由DCI排定的整個重複資料傳輸期間可以不應用RS共享,並且可以在其中資料被重複傳輸的所有傳輸時間間隔中傳輸RS。另一方面,如果在欄位中傳輸“1”的值,則可以將在系統中預先定義或者由基地台透過更高層發信號及/或實體層發信號指示給UE的RS共享模式應用於其中資料被重複傳輸的傳輸時間間隔。
在一些實施方式中,基地台可以傳輸指示在多個傳輸時間間隔中重複傳輸相同資料的多個DCI。在一些情況中,這樣的實施方式可以提高控制通道的可靠性。在這種情況下,即使DCI排定相同資料的重複傳輸,DCI也可以根據其中DCI被傳輸的傳輸時間間隔的位置指示不同的模式。換句話說,即使在資料重複傳輸期間,傳輸的RS的絕對位置是固定的,DCI也可以根據其中DCI被傳輸的傳輸時間間隔的位置指示RS的不同傳輸模式(即,RS共享模式)。在這種情況下,可以指示不應該根據由DCI中的對應欄位所指示的值來應用RS共享,或者可以根據DCI傳輸位置指示不同的RS共享模式。
可以根據第一傳輸時間間隔中之DCI中的RS共享相關欄位的值來執行操作,其中,用於在複數個傳輸時間間隔上排定要被重複傳輸的資料的DCI被傳送。是否應用用於在後續傳輸時間間隔中所重複傳輸的資料的RS共享或者RS共享模式可以根據欄位的值來確定。例如,如果欄位的值是“0”,則在相應的傳輸時間間隔中可以不傳輸RS,並且在之前傳輸時間間隔中所傳輸的RS可以在傳輸時間間隔中共享。作為另一示例,如果欄位的值是“1”,則可以不應用RS共享,並且可以在對應的傳輸時間間隔中傳輸RS。可選地,用於在後續傳輸 時間間隔中要被重複傳輸的資料RS的共享模式或者是否應用RS共享可以在系統中預先定義,或者可以由基地台通過更高層發信號及/或實體層發信號向UE指示。
如果在於用於重複傳輸的資料的第一傳輸時間間隔中所傳輸之DCI中的RS共享相關欄位的值是“1”,則可以在第一傳輸時間間隔中傳輸RS。隨後,如果在第二傳輸時間間隔中存在要被重複傳輸的資料,則可以在第二傳輸時間間隔中不傳輸RS,而是可以在第二傳輸時間間隔中共享第一傳輸時間間隔的RS。在具有隨後要被重複傳輸的資料的第三傳輸時間間隔中,可以傳輸RS。此後,在具有隨後要被重複傳輸的資料的第四傳輸時間間隔中,可以在第四傳輸時間間隔中不傳輸RS,而是可以在第四傳輸時間間隔中共享第三傳輸時間間隔的RS。這樣,可以用各種方式執行RS共享。也就是說,RS可以配置以在其中資料被重複傳輸的傳輸時間間隔中的每兩個傳輸時間間隔中傳輸,並且可以根據配置執行RS共享。
在上述示例中,傳輸RS的間隔可以在系統中預先定義,或者可以根據由基地台通過更高層發信號及/或實體層發信號向UE指示的RS共享單元不同地配置。
在一些情況中,RS共享可能對通道估計的性能產生影響。對通道估計的影響可以根據UE的通道環境而變化,例如SNR/SINR。因此,在一些實施方式中,基地台可以基於目標QoS要求及/或UE的條件(例如,SNR/SINR)向UE指示是否應用RS共享(例如,透過更高層發信號及/或實體層發信號)。如果配置為不應用RS共享,則可以在RS共享相關DCI欄位中傳輸第一值(例如,“1”),使得RS在其中資料被重複傳輸的所有傳輸時間間隔中傳輸。如果配置為應用RS共享,則可以在欄位中傳輸第二值(例如,“0”)以指示其中RS被傳輸的RS共享模式。
或者,可以根據在DCI的欄位中所傳輸的值隱含地判定是否應用RS共享,而無需關於是否應用RS共享的單獨配置。這裡,RS共享模式可以在系統中預先定義,或者可以由基地台通過更高層及/或實體層發信號向UE指示。
在一些實施方式中,基地台可以在多個傳輸時間間隔中傳輸指示相同資料的重複傳輸的多重DCI。這樣的實施方式可以提高控制通道的可靠性。在這種情況下,DCI可以根據其中傳輸DCI的傳輸時間間隔的位置,指示不同的 RS共享模式(即使DCI排定相同資料的重複傳輸)。因此,如果在系統中預先定義RS共享模式,則可以確定RS共享模式,而不論DCI的傳輸位置。也就是說,可以確定RS共享模式以便不依賴於UE的排程。
在這種情況下,可以根據傳輸時間間隔的索引確定是否傳輸RS。例如,在LTE s傳輸時間間隔系統中,六個傳輸時間間隔可以配置為LTE子訊框中的sTTI # 0、# 1、# 2、# 3、# 4和# 5。這裡,取決於CFI的配置,sTTI # 0可能無法用於資料傳輸。因此,當sTTI # 1、# 3和# 5對應於重複資料傳輸時,RS可以在傳輸時間間隔中傳輸。當重複資料傳輸對應於sTTI # 0、# 2和# 4時,可以共享sTTI # 1、# 3和# 5的RS。
這裡,其中沒有傳輸RS而是共享RS的傳輸時間間隔可以是其中RS被傳輸的傳輸時間間隔之前或者之後的傳輸時間間隔(可以為預先定義)。例如,如果在sTTI # 0、# 1、# 2和# 3上執行資料的重複傳輸,則RS可以僅在sTTI # 1和# 3中傳輸,並且在sTTI # 0和# 2中傳輸的資料可以分別共享在sTTI # 1和# 3中傳輸的RS。作為另一示例,如果在sTTI # 1、# 2、# 3和# 4上執行資料的重複傳輸,則可以僅在sTTI # 1和# 3中傳輸RS,並且在sTTI # 2和# 4中傳輸的資料可以分別共享在sTTI # 1和# 3中傳輸的RS。這裡,RS是否共享可以在系統中預先定義,或者可以由基地台向UE指示(通過更高層發信號及/或實體層發信號)。例如,如果通過DCI在RS共享相關欄位中傳輸‘1’,則可以在所有傳輸時間間隔中傳輸RS而不應用RS共享。如果在欄位中傳輸‘0’,則可以根據上述實施方式共享RS。
在一些實施方式中,如果RS共享被配置,但是通過DCI被禁用,則UE可以假設在執行重複傳輸的每個傳輸時間間隔中傳輸DMRS,並且在資料被重複傳輸時應用相同的時域預編碼。例如,如果啟用了重複的資料傳輸,則如果RS共享相關欄位的值為“1”,可以啟用時域預編碼,並且如果RS共享相關欄位的值為“0”,則可以啟用RS共享(即,DMRS共享)。在一些實施方式中,還可以實現與RS共享(即,DMRS共享)分開地啟用/禁用時域預編碼。
圖19為顯示根據本發明實施方式之無線電通訊設備的示例。
圖19所示的無線通訊設備可以表示根據本發明實施方式的UE(使用者設備)及/或基地台。然而,圖19的無線通訊設備不必然限於根據本發 明的UE及/或基地台,並且可以實施各種類型的設備,諸如:車輛通訊系統或設備、可穿戴設備、筆記型電腦等。
在圖19的示例中,根據本發明一實施方式的UE及/或基地台包括:至少一個處理器10,諸如數位信號處理器或微處理器;收發機35;電源管理模組5;天線40;電池55;顯示器15、鍵盤20;至少一個記憶體30;使用者身分模組(subscriber identity module,SIM)卡25;揚聲器45;以及麥克風50等。另外,UE及/或基地台可以包含單個天線或多重天線。收發機35還可以稱為RF模組。
至少一個處理器10可以配置以實現貫穿本發明所描述的功能、程序及/或方法,例如,如圖1至圖18中所描述的。在圖1至圖18中所描述的至少一些實施方式中,至少一個處理器10可以實施一個或多個通訊協定,諸如空中介面協定的層(例如,功能層)。
至少一個記憶體30連接到至少一個處理器10,並儲存與至少一個處理器10的操作有關的資訊。至少一個記憶體30可以在至少一個處理器10的內部或外部,並且可以經由諸如有線或無線通訊的各種技術耦合到至少一個處理器10。
使用者可以透過諸如按下鍵盤20上的按鈕或使用麥克風50啟動語音的各種技術,來輸入各種類型的資訊(例如,諸如電話號碼的指令資訊)。至少一個處理器10執行適當的功能,例如接收及/或處理使用者的資訊以及撥打電話號碼。
也可以從SIM卡25或至少一個記憶體30檢索資料(例如,操作資料)以執行適當的功能。另外,至少一個處理器10可以從GPS晶片接收和處理GPS資訊以獲得UE及/或基地台的位置資訊,諸如車輛導航、地圖服務等,或者執行與位置資訊有關的功能。另外,至少一個處理器10可以在顯示器15上顯示這些各種類型的資訊和資料,以供使用者參考和方便。
收發機35耦合到至少一個處理器10以傳輸及/或接收無線電信號,例如RF信號。此時,至少一個處理器10可以控制收發機35開始通訊並傳輸,包含各種類型的資訊或資料的無線信號,例如語音通訊資料。收發機35可以包括用於接收無線電信號的接收器和用於傳輸的傳輸器。天線40促進無線電信號的傳輸和接收。在一些實施方案中,在接收到無線電信號時,收發機35可以將 信號轉發並轉換為基頻以提供至少一個處理器10處理。可以根據各種技術處理經過處理的信號,例如將其轉換為可聽或可讀資訊,並且可以經由揚聲器45輸出這樣的信號。
在一些實施方式中,感測器也可以耦合到至少一個處理器10。感測器可以包含一個或多個感測裝置,其配置以檢測各種類型的資訊,包含:速度、加速度、光、振動等。至少一個處理器10接收並處理從感測器獲得的感測器資訊,例如接近度、位置、圖像等,從而執行諸如避免碰撞和自主行進的各種功能。
同時,UE及/或基地台中可以進一步包含諸如相機、USB埠等的各種組件。例如,相機可以進一步連接到至少一個處理器10,其可以用於各種服務,例如:自主導航、車輛安全服務等。
圖19僅說明了構成UE及/或基地台的設備的一個示例,並且本發明不限於此。例如,在一些實施方式中,可以排除一些組件,諸如小鍵盤20、全球定位系統(GPS)晶片、感測器、揚聲器45及/或麥克風50等用於UE及/或基地台的實例。
具體地說,將描述在根據本發明的實施方式,將圖19中呈現的無線電通訊設備配置為UE的情況下,執行以實現本發明的實施方式的操作。當根據本發明實施方式的無線通訊設備為UE時,處理器10控制收發器35從基地台接收與資料的重複傳輸有關的第一資訊;以及與在其中資料被重複傳輸的傳輸時間間隔中應用的RS共享有關的第二資訊。這裡,第一資訊和第二資訊可以通過共同的發信號一起接收,或者可以通透過分開的發信號單獨接收。例如,可以通透過一個DCI接收第一資訊和第二資訊。或者,可以通過DCI接收第一資訊,並且可以通過更高層發信號接收第二資訊。或者,可以通過DCI接收第一資訊和第二資訊。在這種情況下,可以通過分開的DCI接收第一資訊和第二資訊。
在接收到第一資訊和第二資訊時,處理器10可以基於第一資訊和第二資訊對重複傳輸的資料進行解碼。這裡,使用共享或非共享RS來解碼資料、以及關於包含在第二資訊中的RS共享的資訊可以符合上文所描述的特定實施方式。
在根據本發明實施方式的圖19中呈現的無線通訊設備配置為基地台的情況下,至少一個處理器10可以控制收發器35以傳輸與重複傳輸資料有 關的第一資訊、以及與在其中資料被重複傳輸的傳輸時間間隔中應用的RS共享有關的第二資訊。這裡,第一資訊和第二資訊可以通過共同的發信號一起傳輸,或者可以通過分開的發信號單獨傳輸。例如,可以通過一個DCI傳輸第一資訊和第二資訊。或者,可以通過DCI傳輸第一資訊,並且可以通過更高層發信號傳輸第二資訊。或者,可以通過DCI傳輸第一資訊和第二資訊。在這種情況下,可以通過分開的DCI傳輸第一資訊和第二資訊。
在傳輸第一資訊和第二資訊時,至少一個處理器10可以控制收發器35以基於第一資訊和第二資訊通過複數個傳輸時間間隔傳輸經歷重複傳輸後的資料。這裡,用於基於第二資訊將RS映射到多個傳輸時間間隔中的每一個的方法、以及關於包含在第二資訊中之RS共享的資訊可以符合上文所描述的特定實施方式。
上述實施方式是根據本發明所揭露的元件和特徵以預定形式組合以實現。除非另有明確說明,否則每個組件或特徵應視為可自由選擇。每個組件或特徵可以以不與其他組件或特徵組合的形式實現。可以進一步藉由組合一些元件及/或特徵來構建本發明的實施方式。可以更改在本發明所揭露的實施方式中描述的操作的順序。某些實施方式的一些配置或特徵可以包含在其他實施方式中,或者可以用其他實施方式的對應配置或特徵替換。顯然地,申請專利範圍中未明確引用的請求可以用組合形成實施方式或者在申請之後透過修改包含在新的專利申請範圍中。
在某些情況下,本文所描述的由基地台執行的特定操作,可以由其上層節點執行。也就是說,顯而易見的是,用於在包含複數個包含基地台的網路節點的網路中與UE進行通訊所執行的各種操作,可以由基地台或除基地台之外的網路節點執行。基地台可以由諸如固定站、節點B、eNode B(eNB)、接取點等術語代替。
根據本發明的實施方式可以透過各種技術來實施,例如:硬體、韌體、軟體或其組合。在硬體實施方式的情況下,本發明的實施方式可以包含一個或多個特殊應用積體電路(application specific integrated circuits,ASIC)、數位信號處理器(digital signal processors,DSP)、數位信號處理設備(digital signal processing devices,DSPD)、可程式化邏輯設備(programmable logic devices,PLD)、電場可程式化邏輯閘陣列、處理器、控制器、微控制器、微處理機等。
在透過韌體或軟體實施方式的情況下,可以用於執行上述功能或操作的模組、程序、功能等的形式,來實踐本發明所揭露的實施效果。軟體代碼可以儲存在記憶體單元中並由處理器驅動。記憶體單元可以位於處理器的內部或外部,並且可以透過各種技術與處理器交換資料。
儘管已經關注於將該方法和裝置應用於3GPP LTE系統的示例,描述了用於傳輸和接收參考信號的方法和裝置,但是該方法和裝置可應用於除了3GPP LTE系統之外的各種無線通訊系統。
從以上描述為顯而易見的,本發明具有如下效果。
根據本發明的實施方式,可以共享參考信號,使得可以根據重複傳輸的資料的特性,以高可靠性和低延遲性重複傳輸資料。
所屬技術領域中具有通常知識者將理解,本發明可實現的效果不限於上文具體描述的內容,並且從以上結合附圖的詳細描述中將更清楚地理解本發明的優點。
對於所屬技術領域中具有通常知識者顯而易見的是,在不脫離本發明的精神的情況下,本發明可以以其他特定形式實施。因此,以上描述不應在所有方面都被解釋為限制意義,而應被解釋為說明性的。本發明的範圍應當透過對所附申請專利範圍的合理解釋來確定,並且在本發明的等同物的範圍內的所有改變都包含在本發明的範圍內。
(工業應用性)
儘管已經關注於將該方法和裝置應用於3GPP LTE系統的示例,描述了用於傳輸和接收參考信號的方法和裝置,但是該方法和裝置可應用於除了3GPP LTE系統之外的各種無線通訊系統。
TTI‧‧‧傳輸時間間隔
DMRS‧‧‧解調參考信號

Claims (17)

  1. 一種在無線通訊系統中由使用者設備(user equipment,UE)接收參考信號的方法,該方法包括:接收一下行鏈路控制資訊(downlink control information,DCI),用於在一第一傳輸時間間隔(transmission time interval,TTI)中排定一下行鏈路資料;從該下行鏈路控制資訊中,獲取與該參考信號是否包含在其中該下行鏈路資料被排定的該第一傳輸時間間隔中有關的資訊;在該第一傳輸時間間隔中,基於與該參考信號是否包含在該第一傳輸時間間隔中有關的該資訊,接收用於該第一傳輸時間間隔的該參考信號;以及基於在該第一傳輸時間間隔和至少一個第二傳輸時間間隔中排定要被重複傳輸的該下行鏈路資料,在該至少一個第二傳輸時間間隔中的每一個中,接收用於該至少一個第二傳輸時間間隔中的每一個的一參考信號。
  2. 根據申請專利範圍第1項所述的方法,其中,與該參考信號是否包含在該第一傳輸時間間隔中有關的該資訊包括一固定值。
  3. 根據申請專利範圍第2項所述的方法,其中,在與該參考信號是否包含在該第一傳輸時間間隔中有關的該資訊中的該固定值係被用來通知用於該第一傳輸時間間隔的該參考信號包含在該第一傳輸時間間隔中。
  4. 根據申請專利範圍第1項所述的方法,進一步包括:從該下行鏈路控制資訊中,獲取關於該下行鏈路資料在該第一傳輸時間間隔和該至少一個第二傳輸時間間隔中排定要被重複傳輸的次數的資訊。
  5. 根據申請專利範圍第4項所述的方法,其中,基於在該第一傳輸時間間隔和該至少一個第二傳輸時間間隔中排定要被重複傳輸的該下行鏈路資料,排定該下行鏈路資料要被重複傳輸的次數大於1。
  6. 根據申請專利範圍第1項所述的方法,其中,該第一傳輸時間間隔和該至少一個第二傳輸時間間隔為短的傳輸時間間隔。
  7. 根據申請專利範圍第1項所述的方法,其中,該至少一個第二傳輸時間間隔包括與該第一傳輸時間間隔在時間上連續排列的至少一個傳輸時間間隔。
  8. 一種配置以在無線通訊系統中接收參考信號的裝置,該裝置包括:至少一個處理器;以及至少一個電腦記憶體,可操作地連接到該至少一個處理器並且儲存指令,該等指令在由該至少一個處理器執行時,執行以下操作,包括:接收一下行鏈路控制資訊(downlink control information,DCI),用於在一第一傳輸時間間隔(transmission time interval,TTI)中排定一下行鏈路資料;從該下行鏈路控制資訊中,獲取與該參考信號是否包含在其中該下行鏈路資料被排定的該第一傳輸時間間隔中有關的資訊;在該第一傳輸時間間隔中,基於與該參考信號是否包含在該第一傳輸時間間隔中有關的該資訊,接收該第一傳輸時間間隔的該參考信號;以及基於在該第一傳輸時間間隔和至少一個第二傳輸時間間隔中排定要被重複傳輸的該下行鏈路資料,在該至少一個第二傳輸時間間隔中的每一個中,接收用於該至少一個第二傳輸時間間隔中的每一個的一參考信號。
  9. 根據申請專利範圍第8項所述的裝置,其中,與該參考信號是否包含在該第一傳輸時間間隔中有關的資訊包括一固定值。
  10. 根據申請專利範圍第9項所述的裝置,其中,在與該參考信號是否包含在該第一傳輸時間間隔中有關的該資訊中的該固定值係被用來通知該第一傳輸時間間隔的該參考信號包含在該第一傳輸時間間隔中。
  11. 根據申請專利範圍第8項所述的裝置,進一步包括:從該下行鏈路控制資訊中,獲取關於該下行鏈路資料在該第一傳輸時間間隔和該至少一個第二傳輸時間間隔中排定要被重複傳輸的次數的資訊。
  12. 根據申請專利範圍第11項所述的裝置,其中,該下行鏈路資料在該第一傳輸時間間隔和該至少一個第二傳輸時間間隔中排定要被重複傳輸的次數大於1。
  13. 根據申請專利範圍第8項所述的裝置,其中,該第一傳輸時間間隔和該至少一個第二傳輸時間間隔為短的傳輸時間間隔。
  14. 根據申請專利範圍第8項所述的裝置,其中,該至少一個第二傳輸時間間隔包括與該第一傳輸時間間隔在時間上連續排列的至少一個傳輸時間間隔。
  15. 一種在無線通訊系統中由基地台傳輸傳輸參考信號的方法,該方法包括:傳輸用於在一第一傳輸時間間隔(transmission time interval,TTI)中排定一下行鏈路資料的一下行鏈路控制資訊(downlink control information,DCI),該下行鏈路控制資訊包括與該參考信號是否包含在其中該下行鏈路資料被排定的該第一傳輸時間間隔中有關的資訊;在該第一傳輸時間間隔中,基於與該參考信號是否包含在該第一傳輸時間間隔中有關的該資訊,傳輸該第一傳輸時間間隔的該參考信號;以及基於在該第一傳輸時間間隔和至少一個第二傳輸時間間隔中排定要被重複傳輸的該下行鏈路資料,在該至少一個第二傳輸時間間隔中的每一個中,傳輸用於該至少一個該第二傳輸時間間隔中的每一個的一參考信號。
  16. 一種使用者設備(user equipment,UE),配置以在一無線通訊系統中接收一參考信號,該使用者設備包括:至少一個收發器;至少一個處理器;以及至少一個電腦記憶體,可操作地連接到該至少一個處理器並且儲存指令,該等指令在由該至少一個該處理器執行時,執行以下操作,包括:通過該至少一個該收發器,接收一下行鏈路控制資訊(downlink control information,DCI),用於在一第一傳輸時間間隔(transmission time interval,TTI)中排定一下行鏈路資料;從該下行鏈路控制資訊中,獲取與該參考信號是否包含在其中該下行鏈路資料被排定的該第一傳輸時間間隔中有關的資訊; 在該第一傳輸時間間隔中通過該至少一個收發器,基於與該參考信號是否包含在該第一傳輸時間間隔中有關的該資訊,接收該第一傳輸時間間隔的該參考信號;以及基於在該第一傳輸時間間隔和至少一個第二傳輸時間間隔中排定要被重複傳輸的該下行鏈路資料,在該至少一個第二傳輸時間間隔中的每一個中通過該至少一個收發器,接收用於該至少一個第二傳輸時間間隔中的每一個的一參考信號。
  17. 一種基地台(base station,BS),配置以在一無線通訊系統中傳輸一參考信號,該基地台包括:至少一個收發器;至少一個處理器;以及至少一個電腦記憶體,可操作地連接到該至少一個處理器並且儲存指令,該等指令在由該至少一個處理器執行時,執行以下操作,包括:通過該至少一個收發器,傳輸一下行鏈路控制資訊(downlink control information,DCI),用於在一第一傳輸時間間隔(transmission time interval,TTI)中排定一下行鏈路資料,該下行鏈路控制資訊包括與該參考信號是否包含在其中該下行鏈路資料被排定的該第一傳輸時間間隔中有關的資訊;在該第一傳輸時間間隔中通過該至少一個收發器,基於與該參考信號是否包含在該第一傳輸時間間隔中有關的該資訊,傳輸該第一傳輸時間間隔的該參考信號;以及基於在該第一傳輸時間間隔和至少一個第二傳輸時間間隔中排定要被重複傳輸的該下行鏈路資料,在該至少一個第二傳輸時間間隔中的每一個中通過該至少一個收發器,傳輸用於該至少一個第二傳輸時間間隔中的每一個的一參考信號。
TW108114956A 2018-04-27 2019-04-29 傳送和接收參考信號的方法及裝置 TWI690233B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862663294P 2018-04-27 2018-04-27
US62/663,294 2018-04-27
US201862670066P 2018-05-11 2018-05-11
US62/670,066 2018-05-11

Publications (2)

Publication Number Publication Date
TW201946486A TW201946486A (zh) 2019-12-01
TWI690233B true TWI690233B (zh) 2020-04-01

Family

ID=68291709

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108114956A TWI690233B (zh) 2018-04-27 2019-04-29 傳送和接收參考信號的方法及裝置

Country Status (7)

Country Link
US (2) US10587390B2 (zh)
EP (1) EP3648393B1 (zh)
JP (1) JP7121795B2 (zh)
KR (1) KR102082705B1 (zh)
CN (1) CN111133716B (zh)
TW (1) TWI690233B (zh)
WO (1) WO2019209085A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116506087A (zh) * 2018-01-19 2023-07-28 华为技术有限公司 用于管理非授权频段的信道占用时长的方法和设备
US11025373B2 (en) 2018-05-11 2021-06-01 Qualcomm Incorporated Repetition-based transmission
US11229045B2 (en) 2018-12-14 2022-01-18 Qualcomm Incorporated Pruning rules for DCI repetition
CN111757489A (zh) * 2019-03-29 2020-10-09 中兴通讯股份有限公司 下行控制信息传输方法及装置
EP3963998A1 (en) * 2019-04-30 2022-03-09 Telefonaktiebolaget LM Ericsson (publ) Scheduling information for transmission
US11638243B2 (en) * 2019-11-15 2023-04-25 Qualcomm Incorporated Scheduling resources for multiple transmission configuration indicator states in multiple transmission time intervals using single downlink control information
KR20220133217A (ko) * 2020-02-14 2022-10-04 퀄컴 인코포레이티드 복조 기준 신호 및 추적 기준 신호 준 코-로케이션 관계에 대한 설계 및 고려사항
CN111901055A (zh) * 2020-02-14 2020-11-06 中兴通讯股份有限公司 一种数据传输方法、装置、设备和存储介质
CN116097856A (zh) * 2020-08-31 2023-05-09 华为技术有限公司 一种信号处理方法及装置
CN113890707B (zh) * 2021-09-26 2023-05-30 中国联合网络通信集团有限公司 通信方法、装置、设备以及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016200236A1 (ko) * 2015-06-11 2016-12-15 엘지전자 주식회사 무선 통신 시스템에서 v2v 통신을 위한 참조 신호 설정 방법 및 이를 위한 장치
WO2018018776A1 (zh) * 2016-07-28 2018-02-01 中兴通讯股份有限公司 上下行数据处理方法、装置及计算机存储介质
WO2018059305A1 (zh) * 2016-09-30 2018-04-05 中兴通讯股份有限公司 Pusch的发送方法及装置、dci的指示方法及装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077577A1 (ko) * 2012-11-13 2014-05-22 엘지전자 주식회사 데이터 전송 방법 및 장치와, 데이터 전송 방법 및 장치
US10680771B2 (en) * 2014-08-28 2020-06-09 Qualcomm Incorporated Reference signal transmission and averaging for wireless communications
US10560245B2 (en) 2014-10-21 2020-02-11 Lg Electronics Inc. Data transmission/reception method in wireless communication system that supports low latency, and apparatus therefor
WO2016143968A1 (ko) * 2015-03-12 2016-09-15 엘지전자 주식회사 Short tti 내 제어 채널의 전송 자원을 감소시키는 방법 및 이를 사용한 기기
CN107431588B (zh) * 2015-03-20 2020-08-07 Lg 电子株式会社 用于短tti的时间频率资源的分配方法及其设备
US10193677B2 (en) * 2015-04-03 2019-01-29 Lg Electronics Inc. Method for receiving downlink signal by means of unlicensed band in wireless communication system and device for same
US10966194B2 (en) * 2015-04-15 2021-03-30 Qualcomm Incorporated Coordinated wireless communications using multiple transmission time intervals
WO2017014558A1 (en) * 2015-07-20 2017-01-26 Lg Electronics Inc. Method and apparatus for handling mbsfn subframes for short tti in wireless communication system
EP3371919B1 (en) 2015-11-03 2020-12-30 Apple Inc. Short transmission time interval (tti)
CN107925534A (zh) * 2015-11-06 2018-04-17 华为技术有限公司 一种参考信号的传输方法、用户设备、基站及***
US11924826B2 (en) * 2015-12-10 2024-03-05 Qualcomm Incorporated Flexible transmission unit and acknowledgment feedback timeline for efficient low latency communication
WO2017171259A1 (ko) * 2016-03-28 2017-10-05 주식회사 케이티 공유 복조 기준 신호 기반 상향링크 데이터 채널 설정 방법 및 그 장치
US10277367B2 (en) 2016-04-01 2019-04-30 Motorola Mobility Llc Method and apparatus for scheduling uplink transmissions with reduced latency
TWI653853B (zh) * 2016-05-12 2019-03-11 華碩電腦股份有限公司 無線通訊系統中具有不同傳輸時間間隔的控制通道的檢測
CN107371257B (zh) 2016-05-12 2020-04-28 华硕电脑股份有限公司 改善短传输时间间隔的控制信道结构的方法及装置
US10764880B2 (en) * 2016-05-13 2020-09-01 Telefonaktiebolaget Lm Ericsson (Publ) Configuration of downlink transmissions
US20180309489A1 (en) * 2017-04-21 2018-10-25 Qualcomm Incorporated Physical downlink control channel structure in low latency systems
US11497007B2 (en) * 2017-05-05 2022-11-08 Qualcomm Incorporated Sounding reference signal configuration and transport block size scaling in low latency systems
WO2019030376A1 (en) * 2017-08-11 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) FLEXIBLE TRANSMISSION TIME INTERVAL (TTI) RESOURCES ALLOCATION
WO2019097287A1 (en) * 2017-11-14 2019-05-23 Lenovo (Singapore) Pte, Ltd. Downlink control for ultra reliable communications
US11057091B2 (en) * 2018-02-16 2021-07-06 Qualcomm Incorporated Reference signals for tracking

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016200236A1 (ko) * 2015-06-11 2016-12-15 엘지전자 주식회사 무선 통신 시스템에서 v2v 통신을 위한 참조 신호 설정 방법 및 이를 위한 장치
WO2018018776A1 (zh) * 2016-07-28 2018-02-01 中兴通讯股份有限公司 上下行数据处理方法、装置及计算机存储介质
WO2018059305A1 (zh) * 2016-09-30 2018-04-05 中兴通讯股份有限公司 Pusch的发送方法及装置、dci的指示方法及装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Ericsson et. al., "On blind/HARQ-less PDSCH repetition", R1-1804587, 3GPP TSG-RAN WG1 Meeting 92bis, Sanya, P.R. China, 16th - 20th of April, 2018 *
Ericsson, "RAN1 decisions for WI Shortened TTI and processing time for LTE (LTE_sTTIandPT) – per topic", R1-1803174, 3GPP TSG RAN WG1 Meeting 92, Athens, Greece, 26th Feb – 2nd March, 2018 *
Ericsson, "Text proposal on 1ms HARQ bits inclusion in UL sTTI in case of SPS and HARQ process sharing", R1-1805354, 3GPP TSG-RAN WG1 Meeting 92bis, Sanya, P.R. China, 16th - 20th of April, 2018 *
Huawei, HiSilicon, "Blind/HARQ-less Repetition for Scheduled DL-SCH Operation", R1-1805322, 3GPP TSG RAN WG1 Meeting 92bis, Sanya, China, April 16th - 20th, 2018 *
Nokia, Nokia Shanghai Bell, "On blind/HARQ-less PDSCH repetition", R1-1804587, 3GPP TSG-RAN WG1 Meeting 92bis, Sanya, P.R. China, 16th - 20th of April, 2018 *

Also Published As

Publication number Publication date
WO2019209085A1 (ko) 2019-10-31
KR102082705B1 (ko) 2020-02-28
JP7121795B2 (ja) 2022-08-18
TW201946486A (zh) 2019-12-01
EP3648393B1 (en) 2022-06-01
EP3648393A4 (en) 2020-12-16
CN111133716A (zh) 2020-05-08
US10587390B2 (en) 2020-03-10
US20200195409A1 (en) 2020-06-18
US11483118B2 (en) 2022-10-25
CN111133716B (zh) 2022-05-27
JP2020529787A (ja) 2020-10-08
KR20190125226A (ko) 2019-11-06
EP3648393A1 (en) 2020-05-06
US20190334688A1 (en) 2019-10-31

Similar Documents

Publication Publication Date Title
TWI690233B (zh) 傳送和接收參考信號的方法及裝置
CN108702752B (zh) 终端装置、基站装置和通信方法
CN108141853B (zh) 终端装置、基站装置和通信方法
US11218279B2 (en) Method and apparatus for transmitting and receiving downlink data
WO2017169003A1 (ja) 端末装置、基地局装置および通信方法
TWI704791B (zh) 傳輸和接收下行鏈路資料的方法及裝置
JPWO2017130500A1 (ja) 端末装置、基地局装置および通信方法
EP3457786B1 (en) Terminal device, base station device, communication method and integrated circuit
EP3457806B1 (en) Efficient communications using a short tti
US11510231B2 (en) Method for transmitting or receiving downlink data and device therefor