TWI685127B - A photo detector and producing method thereof - Google Patents

A photo detector and producing method thereof Download PDF

Info

Publication number
TWI685127B
TWI685127B TW107143668A TW107143668A TWI685127B TW I685127 B TWI685127 B TW I685127B TW 107143668 A TW107143668 A TW 107143668A TW 107143668 A TW107143668 A TW 107143668A TW I685127 B TWI685127 B TW I685127B
Authority
TW
Taiwan
Prior art keywords
layer
dielectric layer
nano
channel layer
substrate
Prior art date
Application number
TW107143668A
Other languages
Chinese (zh)
Other versions
TW202023062A (en
Inventor
游信強
吳承炎
Original Assignee
國立勤益科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立勤益科技大學 filed Critical 國立勤益科技大學
Priority to TW107143668A priority Critical patent/TWI685127B/en
Application granted granted Critical
Publication of TWI685127B publication Critical patent/TWI685127B/en
Publication of TW202023062A publication Critical patent/TW202023062A/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

Present invention is related to a photo detector having a substrate with a gate layer, a dielectric layer, a nano-gold particles layer, a channel layer and two electrodes being placed on top. The nano-gold particles layer is interlinked with a surface of the dielectric layer. The present invention is able to provide photo detecting function by using zinc oxide channel layer with high light transmission ability. A visual light is able to penetrate through the channel layer and reach the following nano-gold particles layer to generate surface plasma resonance and activate an electron-hole or generate extra photons into the channel layer causing a change of an electronic signal.

Description

一種光感測器及其製造方法 Light sensor and manufacturing method thereof

一種感測器的製造方法,特別是一種具有高透光性且在可見光波段下可檢測的光感測器。 A manufacturing method of a sensor, in particular, a light sensor with high transparency and detectable in the visible light band.

物聯網時代崛起,當中物聯網最核心的技術就是感測器。感測器是物聯網最重要的四肢、五官,一切資訊都要透過感測器來感知、收集資訊、測量,因此感測元件也隨著科技進步不斷發展,更結合在科技、物理、醫療等,讓人類生活更便利也更安全。 The rise of the Internet of Things era, the core technology of which is the sensor. Sensors are the most important limbs and facial features of the Internet of Things. All information must be sensed, collected, and measured through the sensors. Therefore, the sensor components have been continuously developed with the advancement of technology, and are more integrated in technology, physics, medical treatment, etc. To make human life more convenient and safer.

在所有感測器中,光感測器是可應用最為廣泛的檢測器之一。其中氧化鋅是最熱門的感光材料,氧化鋅具有材料性質無毒、便宜及極佳的熱穩定性等特性,因而被廣泛利用於紫外光感測器,但由於氧化鋅對光學的限制,因此只限於紫外光的檢測。 Among all sensors, light sensors are one of the most widely used detectors. Among them, zinc oxide is the most popular photosensitive material. Zinc oxide has the characteristics of non-toxic, cheap and excellent thermal stability, so it is widely used in ultraviolet light sensors. However, due to the optical limitations of zinc oxide, only zinc oxide Limited to the detection of ultraviolet light.

為解決該氧化鋅材料只對於該紫外光波段的檢測限制,本發明首先提供一種光感測器,該光感測器包括:一基板;一閘極層,設於該基板之一底面;一介電層形成於該基板之一頂面; 一奈米金粒子層形成於該介電層之表面;一通道層形成於該介電層表面;以及兩個電極間隔且分別形成於該通道層之表面。 In order to solve the limitation of the detection of the zinc oxide material only in the ultraviolet band, the present invention first provides a light sensor, the light sensor includes: a substrate; a gate layer, which is provided on a bottom surface of the substrate; a A dielectric layer is formed on a top surface of the substrate; A nano-gold particle layer is formed on the surface of the dielectric layer; a channel layer is formed on the surface of the dielectric layer; and two electrodes are spaced apart and formed on the surface of the channel layer, respectively.

上述該光感測器的製造方法,其步驟包含:於一基板上利用電漿輔助化學氣相沉積形成一介電層;於該介電層表面鏈結一奈米金粒子層,利用旋轉塗佈方式將通道層批覆於該介電層表面;於該通道層表面利用一金屬光罩及一熱蒸鍍法鍍出兩個電極,於該基板底面利用一金屬光罩及一熱蒸鍍法鍍出一閘極。 The manufacturing method of the photo sensor described above includes the steps of: forming a dielectric layer on a substrate using plasma-assisted chemical vapor deposition; linking a layer of nano-gold particles on the surface of the dielectric layer, using spin coating The channel layer is coated on the surface of the dielectric layer in a cloth way; two electrodes are plated on the surface of the channel layer using a metal mask and a thermal evaporation method, and a metal mask and a thermal evaporation method are used on the bottom surface of the substrate A gate is plated.

其中,該介電層為二氧化矽(SiO2)或氮化矽(SiNx),利用低溫製程約300℃電漿輔助氣相沉積製成,且該電漿處理可改善該薄膜表面粗糙度,使表面粗糙度小於3nm。 Wherein, the dielectric layer is made of silicon dioxide (SiO 2 ) or silicon nitride (SiN x ), which is produced by plasma assisted vapor deposition at a low temperature process of about 300° C., and the plasma treatment can improve the surface roughness of the film To make the surface roughness less than 3nm.

其中,該奈米金粒子利用一四氯化金酸(HAuCl4.3H2O)搭配一檸檬酸(Na3C6H5O7)還原劑,以比例1mM:38.8mM合成出13nm粒徑大小的該奈米金粒子,該奈米金粒子在吸收光譜中有一特性吸收波帶,為一表面電漿共振波段,該奈米金粒子在吸收相對應的光能量後產生一熱載子(Hot electrons),當該熱載子獲得足夠能量即可藉由一熱載子擴散(Thermionic diffusion)跨越接面能量進入該通道層。 Among them, the nano-gold particles used monotetrachloroauric acid (HAuCl 4 .3H 2 O) combined with a citric acid (Na 3 C 6 H 5 O 7 ) reducing agent to synthesize a 13nm particle size at a ratio of 1mM: 38.8mM The size of the nano-gold particles, the nano-gold particles have a characteristic absorption band in the absorption spectrum, which is a surface plasmon resonance band, the nano-gold particles generate a hot carrier after absorbing the corresponding light energy ( Hot electrons), when the hot carrier obtains enough energy, it can enter the channel layer by a thermal carrier diffusion (Thermionic diffusion) across the junction energy.

該奈米金粒子層,利用3-氨基丙基三乙氧基矽烷(C9H23NO3Si,APTMS)或3-巰丙基三乙氧基矽烷(C9H22O3SSi,MPTES)自組鏈結,將該奈米金粒子層鏈結於介電層上。 The nano-gold particle layer uses 3-aminopropyltriethoxysilane (C 9 H 23 NO 3 Si, APTMS) or 3-mercaptopropyltriethoxysilane (C 9 H 22 O 3 SSi, MPTES ) Self-assembled link, link the nano gold particle layer on the dielectric layer.

其中,該通道層為一氧化鋅薄膜,利用一溶膠-凝膠法(Sol-Gel method)備製出高透光性一氧化鋅有機金屬鹽水溶液,並利用旋轉塗佈方式將該氧化鋅有機金屬鹽水溶液塗佈於該介電層表面形成該氧化鋅薄膜。 Wherein, the channel layer is a zinc monoxide film, a sol-gel method (Sol-Gel method) is used to prepare a highly transmissive zinc monoxide organic metal salt aqueous solution, and the zinc oxide is organically formed by spin coating A metal salt aqueous solution is coated on the surface of the dielectric layer to form the zinc oxide film.

其中,該氧化鋅薄膜利用一氧電漿處理(Oxygen plasma treatment)使其漏電流減少,電流開關比增加至107以上。 Wherein the zinc oxide thin film using an oxygen plasma process (Oxygen plasma treatment) so as to reduce the leakage current, the switching current ratio is increased to more than 107.

其中,該閘極層及兩個該電極利用一金屬光罩及以一熱蒸鍍法,於真空度5×10-6torr下鍍出。 Wherein, the gate layer and the two electrodes are plated under a vacuum degree of 5×10 -6 torr using a metal mask and a thermal evaporation method.

其中,該介電層厚度為100nm。 The thickness of the dielectric layer is 100nm.

其中,該奈米金粒子粒徑大小為13nm。 Among them, the particle size of the nano-gold particles is 13 nm.

其中,該閘極層及兩個該電極厚度為300nm。 The thickness of the gate layer and the two electrodes are 300 nm.

藉由上述說明可知,本發明具有以下優點:1.本發明所提之該一種光感測器及其製造方法,使用該溶膠-凝膠法(Sol-Gel method)備製出高透光性一氧化鋅有機金屬鹽水溶液,並使用旋轉塗佈方式生成一氧化鋅薄膜,該氧化鋅薄膜為一通道層,利用該氧化鋅薄膜通道層的高透光性於可見光波段將可見光直接穿透該通道層至下一層該奈米金粒子層中;該奈米金粒子會對於可見光波段產生表面電漿共振,進而激發該通道層的一電子-電洞或產生額外的光電子進入該通道層中,改變了原始電訊號,以達到偵測目的。 It can be seen from the above description that the present invention has the following advantages: 1. The light sensor and the manufacturing method thereof provided by the present invention, using the Sol-Gel method to prepare high light transmittance A zinc oxide organic metal salt aqueous solution, and a spin coating method is used to generate a zinc oxide film. The zinc oxide film is a channel layer, and the high light transmittance of the zinc oxide film channel layer penetrates the visible light directly in the visible light band The channel layer to the next layer of the nano-gold particles; the nano-gold particles will generate surface plasmon resonance in the visible light band, which in turn excites an electron-hole in the channel layer or generates additional photoelectrons into the channel layer, Changed the original signal to achieve the purpose of detection.

10‧‧‧閘級層 10‧‧‧Gate level

20‧‧‧基板 20‧‧‧ substrate

30‧‧‧介電層 30‧‧‧dielectric layer

40‧‧‧奈米金粒子層 40‧‧‧Nano gold particle layer

40A‧‧‧奈米金粒子 40A‧‧‧Nano gold particles

50‧‧‧通道層 50‧‧‧channel layer

51‧‧‧電子 51‧‧‧Electronics

52‧‧‧電洞 52‧‧‧Electric Cave

60‧‧‧電極 60‧‧‧electrode

圖1是本發明較佳實施例的示意圖。 FIG. 1 is a schematic diagram of a preferred embodiment of the present invention.

圖2是本發明較佳實施例的流程圖。 FIG. 2 is a flowchart of a preferred embodiment of the present invention.

圖3是本發明較佳實施例的步驟流程示意圖。 FIG. 3 is a schematic flowchart of steps in a preferred embodiment of the present invention.

圖4是本發明較佳實施例的第二較佳實施例示意圖。 4 is a schematic diagram of a second preferred embodiment of the preferred embodiment of the present invention.

為能詳細瞭解本發明的技術特徵及實用功效,並可依照說明書的內容來實施,進一步以如圖式所示的較佳實施例,詳細說明如下。 In order to understand the technical features and practical effects of the present invention in detail, and can be implemented in accordance with the content of the specification, the preferred embodiments shown in the drawings are further described in detail below.

請參考圖1,為本發明之光感測器的較佳實施例,該光感測器包括:一基板20;一閘極層10,設於該基板20之一底面;一介電層30,形成於該基板20之一頂面;一奈米金粒子層40,形成於於該介電層30之表面;一通道層50,形成於該介電層30表面;以及兩個電極60間隔且分別形成於該通道層50之表面。 Please refer to FIG. 1, which is a preferred embodiment of the photo sensor of the present invention. The photo sensor includes: a substrate 20; a gate layer 10 disposed on a bottom surface of the substrate 20; a dielectric layer 30 Formed on the top surface of the substrate 20; a nano-gold particle layer 40 formed on the surface of the dielectric layer 30; a channel layer 50 formed on the surface of the dielectric layer 30; and two electrodes 60 spaced apart And formed on the surface of the channel layer 50 respectively.

請參考圖2、圖3,為本發明之光感測器製造方法的較佳實施例,製造方法與步驟包含: Please refer to FIGS. 2 and 3, which are preferred embodiments of the manufacturing method of the light sensor of the present invention. The manufacturing method and steps include:

STEP1. 取一矽基板20經過標準濕式清潔(RCA)進行清洗。 STEP1. Take a silicon substrate 20 and clean it with standard wet cleaning (RCA).

STEP2. 於該基板20表面形成一介電層30,本實施例之該介電層30係以低溫製程約300℃之電漿輔助化學氣相沉積成長厚度約10nm的二氧化矽(Sio2)或氮化矽(SiNx)。 STEP2. A dielectric layer 30 is formed on the surface of the substrate 20. In this embodiment, the dielectric layer 30 is formed by plasma-assisted chemical vapor deposition at a low temperature process of about 300° C. to grow silicon dioxide (Sio 2 ) with a thickness of about 10 nm. Or silicon nitride (SiN x ).

STEP3. 使用氧電漿對該介電層30表面進行清潔處理,使該介電層30表面形成親水性及改善表面粗糙度。 STEP3. Use oxygen plasma to clean the surface of the dielectric layer 30 to make the surface of the dielectric layer 30 hydrophilic and improve the surface roughness.

STEP4. 備製一奈米金粒子40A:使用四氯化金酸(HAuCl4.3H2O)搭配檸檬酸(Na3C6H5O7)還原劑,以比例1mM:38.8mM合成出13nm粒徑大小的該奈米金粒子40A。 STEP4. Preparation of one nanometer gold particle 40A: using tetrachloroauric acid (HAuCl 4 .3H 2 O) in combination with citric acid (Na 3 C 6 H 5 O 7 ) reducing agent to synthesize 13nm at a ratio of 1mM: 38.8mM The nano-gold particles 40A having a particle size.

STEP5. 於該介電層30表面鏈結一奈米金粒子層40,本實施例利用3-氨基丙基三乙氧基矽烷(C9H23NO3Si,APTMS)或3-巰丙基三乙氧基矽烷(C9H22O3SSi,MPTES),將該奈米金粒子層40鏈結於該介電層30表面。 STEP5. A nano-gold particle layer 40 is linked to the surface of the dielectric layer 30. In this embodiment, 3-aminopropyltriethoxysilane (C 9 H 23 NO 3 Si, APTMS) or 3-mercaptopropyl is used Triethoxysilane (C 9 H 22 O 3 SSi, MPTES) links the nano-gold particle layer 40 to the surface of the dielectric layer 30.

STEP6. 備製一氧化鋅有機金屬鹽水溶液,將一溶質醋酸鋅Zn(CH3COO)2.2H2O(Aldrich,99.9%),加入一乙醇(Ethanol,99.5%)溶劑中,產生莫爾濃度為0.05M的一氧化鋅有機金屬鹽水溶液,再利用電磁加熱攪拌器,將調配好的該氧化鋅有機金屬鹽水溶液加熱至55℃並攪拌1小時,使該氧化鋅有機金屬鹽水溶液之一溶質均勻溶解混和於溶劑中,得到高透明之該氧化鋅有機金屬鹽水溶液。 STEP6. Prepare an aqueous solution of zinc monoxide organic metal salt, and a solute zinc acetate Zn (CH 3 COO) 2 . 2H 2 O (Aldrich, 99.9%), add monoethanol (Ethanol, 99.5%) solvent to produce zinc oxide organic metal salt aqueous solution with a molar concentration of 0.05M, and then use electromagnetic heating stirrer The zinc oxide organic metal salt aqueous solution is heated to 55°C and stirred for 1 hour, so that one of the solutes of the zinc oxide organic metal salt aqueous solution is uniformly dissolved and mixed in the solvent to obtain the highly transparent zinc oxide organic metal salt aqueous solution.

STEP7. 於該介電層30上塗佈該氧化鋅薄膜形成一通道層50,本實施例之該通道層50利用前一步驟製成的該氧化鋅有機金屬鹽水溶液使用一旋轉塗佈方式在室溫下塗佈2-6次形成該氧化鋅薄膜。 STEP7. The zinc oxide film is coated on the dielectric layer 30 to form a channel layer 50. The channel layer 50 of this embodiment uses the zinc oxide organic metal salt aqueous solution prepared in the previous step using a spin coating method. The zinc oxide film is formed by coating 2-6 times at room temperature.

STEP8. 於該通道層50之表面形成兩個間隔的該電極60,於該基板20底面形成一閘極層10。利用一金屬光罩及以一熱蒸鍍法,於真空度5×10-6torr下鍍出厚度300nm該閘極層10及兩個該電極60。 STEP8. Two spaced electrodes 60 are formed on the surface of the channel layer 50, and a gate layer 10 is formed on the bottom surface of the substrate 20. Using a metal mask and a thermal evaporation method, the gate layer 10 and two electrodes 60 with a thickness of 300 nm were deposited under a vacuum of 5×10 −6 torr.

本實施例之該光感測器,如圖4於可見光波段下,利用該通道層50氧化鋅的高透光性,可見光可直接穿透該通道層50至下一層該奈米金粒子層40中,進而產生表面電漿共振,激發該通道層50產生一電子51-電洞52或產生額外光電子進入該通道層50中,改變了原始電訊號,進而導致薄膜電晶體之電訊號位移或更高之飽和電流。 The light sensor of this embodiment, as shown in FIG. 4 under the visible light band, utilizes the high transparency of the zinc oxide of the channel layer 50, and visible light can directly penetrate the channel layer 50 to the next layer of nano-gold particles 40 In this way, surface plasma resonance is generated, which excites the channel layer 50 to generate an electron 51-hole 52 or generates additional photoelectrons into the channel layer 50, which changes the original electrical signal, which in turn causes the electrical signal of the thin film transistor to shift or High saturation current.

以上所述僅為本發明的較佳實施例而已,並非用以限定本發明主張的權利範圍,凡其它未脫離本發明所揭示的精神所完成的等效改變或修飾,均應包括在本發明的申請專利範圍內。 The above are only preferred embodiments of the present invention and are not intended to limit the scope of the claimed rights of the present invention. Any other equivalent changes or modifications made without departing from the spirit of the present invention should be included in the present invention Within the scope of patent application.

10‧‧‧閘級層 10‧‧‧Gate level

20‧‧‧基板 20‧‧‧ substrate

30‧‧‧介電層 30‧‧‧dielectric layer

40‧‧‧奈米金粒子層 40‧‧‧Nano gold particle layer

40A‧‧‧奈米金粒子 40A‧‧‧Nano gold particles

50‧‧‧通道層 50‧‧‧channel layer

60‧‧‧電極 60‧‧‧electrode

Claims (8)

一種光感測器,其包括:一基板;一閘極層,設於該基板之一底面;一介電層形成於該基板之一頂面;一奈米金粒子層,該奈米金粒子層利用四氯化金酸搭配檸檬酸還原劑,以比例1mM:38.8mM合成出13nm粒徑大小的一奈米金粒子,並利用一自組鏈結將該奈米金粒子層鏈結形成於該介電層之表面;一通道層形成於該介電層表面;以及兩個電極間隔且分別形成於該通道層之表面。 A light sensor, comprising: a substrate; a gate layer provided on a bottom surface of the substrate; a dielectric layer formed on a top surface of the substrate; a nano-gold particle layer, the nano-gold particles The layer uses auric acid tetrachloride and citric acid reducing agent to synthesize a nano-gold particle with a particle size of 13nm at a ratio of 1mM: 38.8mM, and uses a self-assembled link to form a layer of nano-gold particles. A surface of the dielectric layer; a channel layer formed on the surface of the dielectric layer; and two electrodes spaced apart and formed on the surface of the channel layer, respectively. 如申請專利範圍第1項之光感測器,該介電層為二氧化矽(Sio2)或氮化矽(SiNx)。 For example, for the photo sensor in the first patent application, the dielectric layer is silicon dioxide (Sio 2 ) or silicon nitride (SiN x ). 如申請專利範圍第1項之光感測器,該通道層為一氧化鋅薄膜,將一溶質醋酸鋅,加入一乙醇溶劑中,產生莫爾濃度為0.05M的一氧化鋅有機金屬鹽水溶液,並將該氧化鋅有機金屬鹽水溶液以一旋轉塗佈方式塗佈在介電層之上形成該通道層。 For example, in the light sensor of the first patent application, the channel layer is a zinc monoxide film. A solute zinc acetate is added to an ethanol solvent to produce an aqueous solution of zinc monoxide organic metal salt with a molar concentration of 0.05M. The zinc oxide organic metal salt aqueous solution is coated on the dielectric layer by a spin coating method to form the channel layer. 如申請專利範圍第1項之光感測器,該閘極層及兩個該電極之材料為鋁,厚度為300nm。 For example, in the photo sensor of the first patent application, the material of the gate layer and the two electrodes is aluminum, and the thickness is 300 nm. 如申請專利範圍的第1項之光感測器,該介電層厚度為100nm。 For example, the photo sensor in the first item of the patent application, the thickness of the dielectric layer is 100 nm. 一種光感測器的製造方法,其步驟包含:於一基板上利用電漿輔助化學氣相沉積形成一介電層;於該介電層表面使用一自組鏈結方法將一奈米金粒子層鏈結於該介電層,該奈米金粒子層的製造方法是利用四氯化金酸搭配檸檬酸還原劑,以比例 1mM:38.8mM合成出13nm粒徑大小的一奈米金粒子,並利用一自組鏈結將該奈米金粒子鏈結在該介電層表面;於該介電層表面鏈結該奈米金粒子層,於該介電層表面利用旋轉塗佈方式將通道層批覆於該介電層;於該通道層表面,利用一金屬光罩及一熱蒸鍍法鍍出兩個電極,於該基板底面,利用一金屬光罩及一熱蒸鍍法鍍出一閘極層。 A method for manufacturing a photo sensor, the steps of which include: forming a dielectric layer on a substrate using plasma-assisted chemical vapor deposition; using a self-assembly link method on the surface of the dielectric layer to deposit a nanometer gold particle The layer chain is connected to the dielectric layer. The manufacturing method of the nano-gold particle layer is to use tetrachloroauric acid in combination with a citric acid reducing agent. 1mM: 38.8mM synthesize a nanometer gold particle with a particle size of 13nm, and link the nanometer gold particle to the surface of the dielectric layer using a self-assembly link; link the nanometer to the surface of the dielectric layer On the surface of the dielectric layer, the channel layer is overlaid on the surface of the dielectric layer by spin coating; on the surface of the channel layer, two electrodes are plated by a metal mask and a thermal evaporation method. A gate layer is plated on the bottom surface of the substrate using a metal mask and a thermal evaporation method. 如申請專利範圍第6項之光感測器的製造方法,其該通道層的製造方法,將一溶質醋酸鋅,加入一乙醇溶劑中,產生莫爾濃度為0.05M的一氧化鋅有機金屬鹽水溶液,並將該氧化鋅有機金屬鹽水溶液以一旋轉塗佈方式塗佈在介電層之上形成該通道層。 For example, the manufacturing method of the photo sensor in the 6th range of the patent application, the manufacturing method of the channel layer is to add a solute zinc acetate to an ethanol solvent to produce a zinc monoxide organic metal salt with a molar concentration of 0.05M An aqueous solution, and the zinc oxide organic metal salt aqueous solution is applied on the dielectric layer by a spin coating method to form the channel layer. 如申請專利範圍第6項之光感測器的製造方法,該奈米金粒子是利用3-氨基丙基三乙氧基矽烷(C9H23NO3Si,APTMS)或3-巰丙基三乙氧基矽烷(C9H22O3SSi,MPTES)自組鏈結於介電層表面。 For example, the manufacturing method of the photo sensor in item 6 of the patent application, the nano-gold particles use 3-aminopropyltriethoxysilane (C 9 H 23 NO 3 Si, APTMS) or 3-mercaptopropyl Triethoxysilane (C 9 H 22 O 3 SSi, MPTES) is self-assembled on the surface of the dielectric layer.
TW107143668A 2018-12-05 2018-12-05 A photo detector and producing method thereof TWI685127B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107143668A TWI685127B (en) 2018-12-05 2018-12-05 A photo detector and producing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107143668A TWI685127B (en) 2018-12-05 2018-12-05 A photo detector and producing method thereof

Publications (2)

Publication Number Publication Date
TWI685127B true TWI685127B (en) 2020-02-11
TW202023062A TW202023062A (en) 2020-06-16

Family

ID=70413592

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107143668A TWI685127B (en) 2018-12-05 2018-12-05 A photo detector and producing method thereof

Country Status (1)

Country Link
TW (1) TWI685127B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080221806A1 (en) * 2005-05-19 2008-09-11 Nanomix, Inc. Sensor having a thin-film inhibition layer, nitric oxide converter and monitor
US9331293B2 (en) * 2013-03-14 2016-05-03 Nutech Ventures Floating-gate transistor photodetector with light absorbing layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080221806A1 (en) * 2005-05-19 2008-09-11 Nanomix, Inc. Sensor having a thin-film inhibition layer, nitric oxide converter and monitor
US9331293B2 (en) * 2013-03-14 2016-05-03 Nutech Ventures Floating-gate transistor photodetector with light absorbing layer

Also Published As

Publication number Publication date
TW202023062A (en) 2020-06-16

Similar Documents

Publication Publication Date Title
Zhou et al. UV-visible photodetector based on I-type heterostructure of ZnO-QDs/monolayer MoS 2
Wang et al. Titania-nanotube-array-based photovoltaic cells
CN107316915A (en) Photodetector of integrated graphene molybdenum disulfide of visible light wave range and preparation method thereof
CN103545397B (en) Thin film ultraviolet detector and preparation method thereof and application
US20110278541A1 (en) Color-selective quantum dot photodetectors
US20150036234A1 (en) Methods and compositions related to dielectric coated metal nanoparticles in thin-film opto-electronic conversion devices
CN103413594A (en) Flexible transparent conductive material of topological insulator and preparation method and application thereof
CN109273543B (en) Transistor with nano-particles coated on chalcogenide film, preparation method and application
Kuang et al. Performance improvement of flexible ultraviolet photodetectors based on ZnO nanorod arrays by hydrothermal method with assistance of polyethyleneimine
CN106356421A (en) Ultraviolet detector of optical controlled transmission channel formed by TiO2-NiO P-N heterojunction based on vertical conductive direction and preparation method thereof
CN112885922A (en) Based on PtSe2Photoelectric detector with silicon nano-pillar array and preparation method thereof
CN108630782B (en) Preparation method of wide detection waveband dual-plasma working photoelectric detector
Wang et al. Modification of compact TiO2 layer by TiCl4-TiCl3 mixture treatment and construction of high-efficiency carbon-based CsPbI2Br perovskite solar cells
CN105810828B (en) Based on PDHF/TiO2/ PDHF double heterojunction type hole gain ultraviolet detectors and preparation method thereof
Bao et al. Antireflection and band gap extension effects of ZnO nanocrystalline films grown on ITO-coated glasses by low temperature process
CN104576789B (en) Graphene oxide is as the detector and preparation method thereof of barrier layer and tunnel layer
TWI685127B (en) A photo detector and producing method thereof
Mondal et al. An experimental and theoretical understanding of a UV photodetector based on Ag nanoparticles decorated Er-doped TiO2 thin film
Yang et al. Visible‐Blind Deep Ultraviolet Photomultiplication Organic Photodetectors with Ultrahigh Gain for UVB and UVC Light Detection
CN104659152B (en) A kind of based on photodetector reversing bilayer graphene and preparation method thereof
US20200357939A1 (en) Ultrasensitive photodetectors
CN107359217A (en) A kind of quick response ultraviolet light detector and preparation method
Eisa Effects of beta-ray irradiation on optical properties of PbO thin films
Jeong et al. One‐Step Transfer and Integration of Multifunctionality in CVD Graphene by TiO2/Graphene Oxide Hybrid Layer
Paz et al. Selective photosensitivity of metal–oxide–semiconductor structures with SiO x layer annealed at high temperature

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees