TWI685015B - 微波電漿源及電漿處理裝置 - Google Patents

微波電漿源及電漿處理裝置 Download PDF

Info

Publication number
TWI685015B
TWI685015B TW105116274A TW105116274A TWI685015B TW I685015 B TWI685015 B TW I685015B TW 105116274 A TW105116274 A TW 105116274A TW 105116274 A TW105116274 A TW 105116274A TW I685015 B TWI685015 B TW I685015B
Authority
TW
Taiwan
Prior art keywords
microwave
chamber
plasma
slot
gas
Prior art date
Application number
TW105116274A
Other languages
English (en)
Other versions
TW201711080A (zh
Inventor
池田太郎
小松智仁
Original Assignee
日商東京威力科創股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東京威力科創股份有限公司 filed Critical 日商東京威力科創股份有限公司
Publication of TW201711080A publication Critical patent/TW201711080A/zh
Application granted granted Critical
Publication of TWI685015B publication Critical patent/TWI685015B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32201Generating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32229Waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32238Windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32266Means for controlling power transmitted to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • H01L21/02315Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

提供一種可使表面波模式成為單模而進行穩定 的微波處理,且可於周方向形成均勻的電漿之微波電漿源。

微波電漿源(2),係具有微波輸出部(30)、 微波傳送部(40)及微波放射構件(50)。微波傳送部(40),係具有:微波導入機構(43a),在微波放射構件(50)的周緣部上,沿著圓周方向設置有複數個,微波放射構件(50),係具有:慢波材(121);複數個槽孔(123),以全體成為圓周狀的方式彼此分離而設置;微波穿透構件(122);及複數個介電質層(124),在複數個槽孔(123)與微波穿透構件(122)之間,與複數個槽孔(123)相對應地彼此分離而設置,並藉由來自槽孔(123)的微波電場,以形成有單一之磁場迴路的方式而設置。

Description

微波電漿源及電漿處理裝置
本發明,係關於微波電漿源及使用該微波電漿源之電漿處理裝置。
電漿處理,係半導體裝置之製造不可欠缺的技術,近來,由於要求LSI之高積體化、高速化,構成LSI之半導體元件之設計規則日漸微細化,又半導體晶圓大型化,伴隨於此,即便在電漿處理裝置中,亦要求對應於像這樣之微細化及大型化。
然而,在從以往被大量運用之平行平板型或感應耦合型的電漿處理裝置中,係難以均勻且高速地對大型的半導體晶圓進行電漿處理。
因此,能夠以高密度均勻地形成低電子溫度之表面波電漿的微波電漿處理裝置受到注目。
作為微波電漿處理裝置,在專利文獻1的第0002~0008段,係記載有如下述者:從微波振盪器經由導波管,對介電質線路導入微波,藉此,將形成於介電質線路之下方的電場,經由空氣間隙及微波導入窗供給至處 理室,從而生成電漿。
但是,在該技術中,係有如下述之課題:雖可進行大型基板之處理,但變得有增大空間的必要,作為解決該課題的技術,在專利文獻1的第0020~0061段,記載有一種電漿處理裝置,其係沿著環狀導波管天線的周方向設置槽孔,經由槽孔及其下的微波導入窗,將微波電場導入至處理室內,從而生成電漿。
另一方面,在專利文獻2,係揭示有一種電漿源,其係將微波分配成複數個,設置複數個具有如上述般之平面天線與進行阻抗匹配之調諧器的微波導入機構,將從該些所放射的微波導入腔室內,並在腔室內使微波進行空間合成。
如此一來,使用複數個微波導入機構而對微波進行空間合成,藉此,可個別地調整從各微波導入機構所導入之微波的相位或強度,並可比較容易地進行電漿分布的調整。
又,在專利文獻3,係揭示有藉由對複數個微波導入機構之配置加以設計的方式,謀求電漿分布的均勻化。
[先前技術文獻] [專利文獻]
[專利文獻1]日本特開2000-277296號公報
[專利文獻2]國際公開第2008/013112號手冊
[專利文獻3]日本特開2012-216745號公報
然而,在記載於專利文獻1之經由配置於圓周方向的槽孔,將微波電場導入至處理室內的技術中,係有出現複數個表面波模式的可能性,從而產生模式跳動,導致不穩定的電漿處理。
在專利文獻2、3中,雖係在腔室的頂壁對每個微波導入機構設置由介電質所構成的微波穿透窗(微波穿透構件),並經由該微波穿透窗而對腔室內放射微波,但在像這樣之構成的情況下,電漿無法在周方向充分擴散,難以獲得均勻電漿。又,亦難以將表面波模式單一化。
本發明,係有鑑於像這樣之觀點而進行研究者,以提供一種可使表面波模式成為單模而進行穩定的微波處理,且可於周方向形成均勻的電漿之微波電漿源及使用該微波電漿源之電漿處理裝置。
為了解決上述課題,本發明之第1觀點,提供一種微波電漿源,其係對電漿處理裝置的腔室內放射微波,從而形成表面波電漿,該微波電漿源,其特徵係,具備有:微波輸出部,生成微波而予以輸出;微波傳送部, 用以傳送從前述微波輸出部所輸出的微波;及微波放射構件,構成前述腔室的頂壁,用以對前述腔室內放射從前述微波傳送部所供給的微波,前述微波傳送部,係具有:微波導入機構,對前述微波放射構件導入微波,前述微波放射構件,係具有:金屬製之本體部;慢波材,由設置於前述本體部之導入有微波之側的介電質所構成;複數個槽孔,被前述慢波材覆蓋,以全體成為圓周狀的方式彼此分離而設置,並放射經由前述慢波材所導入的微波;微波穿透構件,設置於前述本體部的前述腔室側表面,以覆蓋前述槽孔之配置區域的方式而設置,由在前述腔室側的表面形成有表面波的介電質所構成;及複數個介電質層,在前述複數個槽孔與前述微波穿透構件之間,與前述複數個槽孔相對應地彼此分離而設置,並藉由來自前述槽孔的微波電場,以形成有單一之磁場迴路的方式而設置。
本發明之第2觀點,提供一種電漿處理裝置,其係具備有收容被處理基板的腔室、對前述腔室內供給氣體的氣體供給機構及對前述腔室內放射微波而形成表面波電漿的微波電漿源,藉由前述表面波電漿對被處理基板施予電漿處理,該電漿處理裝置,其特徵係,前述微波電漿源,係具備有:微波輸出部,生成微波而予以輸出;微波傳送部,用以傳送從前述微波輸出部所輸出的微波;及微波放射構件,構成前述腔室的頂壁,用以對前述腔室內放射從前述微波傳送部所供給的微波,前述微波傳送部,係具有:微波導入機構,對前述微波放射構件導入微 波,前述微波放射構件,係具有:金屬製之本體部;慢波材,由設置於前述本體部之導入有微波之側的介電質所構成;複數個槽孔,被前述慢波材覆蓋,以全體成為圓周狀的方式彼此分離而設置,並放射經由前述慢波材所導入的微波;微波穿透構件,設置於前述本體部的前述腔室側表面,以覆蓋前述槽孔之配置區域的方式而設置,由在前述腔室側的表面形成有表面波的介電質所構成;及複數個介電質層,在前述複數個槽孔與前述微波穿透構件之間,與前述複數個槽孔相對應地彼此分離而設置,並藉由來自前述槽孔的微波電場,以形成有單一之磁場迴路的方式而設置。
在將前述介電質層內之微波的有效波長設成為λg時,前述介電質層之周方向的長度,係λg/2以下為較佳。前述介電質層,係可由空氣層或介電質材料層來構成。
前述槽孔,係可構成為由真空或介電質材料所構成,形成為圓弧狀,沿著圓周方向配置成一列。在將槽孔內之微波的有效波長設成為λg,並將微調整成分設成為δ(包含0)時,前述槽孔之周方向的長度,係(λg/2)-δ為較佳。
前述微波導入機構,係可構成為在與前述微波放射構件上之前述腔室內之周緣部分相對應的周緣部,沿著圓周方向設置有複數個。
在該情況下,前述慢波材,係亦可構成為沿 著包含有前述複數個微波導入機構的配置部分之形成圓環狀的微波導入機構配置區域,以全體形狀成為圓環狀的方式設置有複數個,前述複數個慢波材,係在相鄰者以金屬構件分離的狀態下而配置,且為前述微波導入機構的數量之2倍的片數,並配置成從與前述各微波導入機構相對應的位置而往兩側延伸。
前述微波放射構件,係亦可構成為形成圓板狀,更具有配置於其上方之與前述腔室內之中央部分相對應之中央部的其他微波導入機構,且從前述微波放射構件之中央至前述腔室內之中央部皆生成表面波電漿。
在上述第1觀點中,前述微波放射構件,係可構成為更具有:氣體導入部,對前述腔室內,導入電漿處理所使用的氣體。
在上述第2觀點中,前述氣體供給機構,係可構成為設置於前述微波放射構件,其具有導入第1氣體的第1氣體導入部。在該情況下,在前述腔室內設置有載置被處理基板的載置台,前述氣體供給機構,係可構成為具有對前述微波放射構件與前述載置台之間導入電漿處理所使用之第2氣體的第2氣體導入部。
又,在上述第2觀點中,前述微波放射構件,係可構成為形成與前述腔室內之周緣部相對應的環狀,前述電漿處理裝置,係更具備有:載置台,載置被處理體基板;噴頭,在前述微波放射構件的內側部分,對前述腔室內噴淋狀地導入電漿處理所使用的氣體;及高頻電 場形成機構,在前述噴頭與前述載置台之間形成高頻電場,藉由前述高頻電場形成機構,在前述腔室內形成電容耦合電漿。
根據本發明,構成為具有:複數個槽孔,將微波放射構件以全體成為圓周狀的方式彼此分離而設置,並放射經由慢波材所導入的微波;及複數個介電質層,在與由介電質所構成的微波穿透構件之間,與複數個槽孔相對應地彼此分離而設置,並藉由來自槽孔的微波電場,以形成有單一之磁場迴路的方式而設置。因此,藉由介電質層內之單一的磁場迴路,可防止在微波穿透構件內形成與介電質層之磁場迴路相對應的磁場迴路,而在微波穿透構件內產生磁場耦合的情形。因此,可防止在微波穿透構件122內出現因磁場迴路產生或不產生而導致的複數個表面波模式,並可實現不產生模式跳動之穩定的電漿處理。又,由於複數個槽孔,係形成為圓周狀,因此,可在周方向形成均勻的電漿。
1‧‧‧腔室
2‧‧‧微波電漿源
3‧‧‧全體控制部
11‧‧‧基座
12‧‧‧支撐構件
15‧‧‧排氣管
16‧‧‧排氣裝置
17‧‧‧搬入搬出口
21‧‧‧第1氣體導入部
22‧‧‧第1氣體供給源
23‧‧‧第2氣體導入部
28‧‧‧第2氣體供給源
30‧‧‧微波輸出部
31‧‧‧微波電源
32‧‧‧微波振盪器
40‧‧‧微波傳送部
42‧‧‧放大器部
43a‧‧‧周緣微波導入機構
43b‧‧‧中心微波導入機構
44‧‧‧微波傳送路
50、50’、50”‧‧‧微波放射構件
52‧‧‧外側導體
53‧‧‧內側導體
54‧‧‧供電機構
55‧‧‧微波電力導入埠
60‧‧‧導入機構本體
100‧‧‧電漿處理裝置
121、121’‧‧‧慢波材
122‧‧‧微波穿透構件
123、123’‧‧‧槽孔
124‧‧‧介電質層
W‧‧‧半導體晶圓
[圖1]表示本發明之第1實施形態之電漿處理裝置之概略構成的剖面圖。
[圖2]表示圖1之電漿處理裝置所使用之微波電漿源 之構成的方塊圖。
[圖3]表示本發明之第1實施形態之電漿處理裝置的微波電漿源中之微波放射構件的剖面圖。
[圖4]表示圖3之微波放射構件的周緣部中之槽孔及介電質層即空氣層之配置的平面圖。
[圖5]表示圖3之微波放射構件的周緣部中之槽孔及介電質層即空氣層之配置之周方向的剖面圖。
[圖6]表示與中心微波導入機構相對應之槽孔之形狀例的示意圖。
[圖7]表示周緣微波導入機構的剖面圖。
[圖8]表示周緣微波導入機構之供電機構的圖7之AA’線的橫剖面圖。
[圖9]表示周緣微波導入機構中之芯塊與滑動構件的圖7之BB’線的橫剖面圖。
[圖10]表示在配置成圓周狀之複數個槽孔的正下方配置了微波穿透構件的情形,與在於複數個槽孔與微波穿透構件之間配置了與槽孔相對應而設置之介電質層的情形中之磁場之狀態的示意圖。
[圖11]示意地表示本發明之第2實施形態之電漿處理裝置所使用的微波電漿源中之微波導入機構之配置的平面圖。
[圖12]表示在本發明之第2實施形態之微波放射構件的剖面圖。
[圖13]表示本發明之第2實施形態之設置於微波放射 構件之周緣部之慢波材之配置的平面圖。
[圖14]表示本發明之第2實施形態中之設置於微波放射構件之周緣部的慢波材所致之微波電力之分配之狀態的平面圖。
[圖15]表示本發明之第2實施形態之微波放射構件之周緣部之槽孔之形狀及配置的概略圖。
[圖16]表示針對在以本發明之第2實施形態之電漿處理裝置作為基礎,於槽孔下未設置與設置介電質層的情形及導入了微波的情形,在相當於壓力的介電損失(tanδ)與相當於電漿密度之介電常數的座標中,使該些產生變化時之表面波模式的圖。
[圖17]表示本發明之其他實施形態之電漿處理裝置之概略構成的剖面圖。
以下,參閱圖面,詳細說明關於本發明的實施方式。
<第1實施形態>
首先,說明關於第1實施形態。
(電漿處理裝置之構成)
圖1,係表示本發明之第1實施形態之電漿處理裝置之概略構成的剖面圖;圖2,係表示圖1之電漿處理裝置 所使用之微波電漿源之構成的方塊圖。
電漿處理裝置100,係藉由微波形成表面波電漿而對晶圓進行預定之電漿處理者。作為電漿處理,係例示有成膜處理或蝕刻處理。
電漿處理裝置100,係具有:大致圓筒狀之被接地之腔室1,其構成為氣密,且由鋁或不鏽鋼等的金屬材料所構成;及微波電漿源2,用以對腔室1內導入微波而形成表面波電漿。在腔室1的上部,係形成有開口部1a,微波電漿源2,係以從該開口部1a面對腔室1之內部的方式而設置。
又,電漿處理裝置100,係具有:全體控制部3,具備有微處理器。全體控制部3,係可控制電漿處理裝置100的各部。全體控制部3,係具備有記憶著電漿處理裝置100之製程順序及控制參數即製程配方的記憶部、或輸入手段及顯示器等,可隨著所選擇的製程配方進行預定之控制。
在腔室1內,係於藉由經由絕緣構件12a而豎立設置於腔室1的底部中央之筒狀之支撐構件12所支撐的狀態下,設置有用以水平地支撐被處理體即半導體晶圓W(以下,記載為晶圓W)的基座(載置台)11。作為構成基座11及支撐構件12的材料,係例示有表面被施予耐酸鋁處理(陽極氧化處理)之鋁等的金屬或內部具有高頻用之電極的絕緣性構件(陶瓷等)。
又,雖未圖示,但在基座11,係設置有用以 靜電吸附晶圓W的靜電夾具、溫度控制機構、對晶圓W之背面供給熱傳達用氣體的氣體流路及為了搬送晶圓W而進行升降的升降銷等。而且,在基座11,係經由匹配器13電性連接有高頻偏壓電源14。藉由從該高頻偏壓電源14對基座11供給高頻電力的方式,電漿中的離子會被引入至晶圓W側。另外,高頻偏壓電源14,係亦可藉由電漿處理的特性而不進行設置。在該情況下,係即便使用由如AlN般之陶瓷等所構成的絕緣性構件作為基座11,亦不需要電極。
在腔室1的底部,係連接有排氣管15,在該排氣管15,係連接有包含真空泵的排氣裝置16。而且,藉由使該排氣裝置16動作,腔室1內被排氣,可將腔室1內高速地減壓至預定真空度。又,在腔室1的側壁,係設置有:搬入搬出口17,用以執行晶圓W之搬入搬出;及閘閥18,開關該搬入搬出口17。
微波電漿源2,係具有:微波輸出部30,分配成複數個路徑以輸出微波;微波傳送部40,傳送從微波輸出部30所輸出的微波;及微波放射構件50,於氣密地被密封在設置於腔室1之上部的支撐環29的狀態下予以設置,用以對腔室1內放射從微波傳送部40所傳送的微波。微波放射構件50,係構成腔室1的頂壁。在微波放射構件50,係設置有噴淋構造的第1氣體導入部21,在第1氣體導入部21,係從第1氣體供給源22供給電漿生成用之氣體例如Ar氣體,或欲以高能量來分解之氣體 例如O2氣體或N2氣體等的第1氣體。另外,關於包含有微波放射構件50之微波電漿源2的詳細構造,係如後述。
又,在腔室1的基座11與微波放射構件50之間的位置,係水平地設置有構成為噴淋板的第2氣體導入部23。該第2氣體導入部23,係具有形成為格子狀的氣體流路24與形成於該氣體流路24的多數個氣體吐出孔25,格子狀的氣體流路24之間,係形成為空間部26。在該第2氣體導入部23的氣體流路24,係連接有往腔室1之外側延伸的氣體供給配管27,在該氣體供給配管27,係連接有第2氣體供給源28。在成膜處理或蝕刻處理等的電漿處理之際,從第2氣體供給源28,係供給盡量不分解而欲供給的處理氣體,例如SiH4氣體或C5F8氣體等的第2處理氣體。
另外,作為從第1氣體供給源22及第2氣體供給源28所供給的氣體,係可使用因應電漿處理之內容的各種氣體。
(微波電漿源)
微波電漿源2,係如上述,具有微波輸出部30、微波傳送部40及微波放射構件50。
如圖2所示,微波輸出部30,係具有:微波電源31;微波振盪器32;放大器33,放大被振盪的微波;及分配器34,將被放大的微波分配成複數個。
微波振盪器32,係使預定頻率(例如,860MHz)的微波進行例如PLL振盪。分配器34,係以盡量不引起微波損失的方式,一面取得輸入側和輸出側之阻抗匹配,一面分配由放大器33所放大的微波。另外,作為微波的頻率,係除了860MHz以外,可使用915MHz等、從700MHz至3GHz之範圍的各種頻率。
微波傳送部40,係具有:複數個放大器部42;及周緣微波導入機構43a和中心微波導入機構43b,與放大器部42相對應而設置。周緣微波導入機構43a,係在微波放射構件50之周緣部之上,沿著周方向設置有複數個,中心微波導入機構43b,係在微波放射構件50之中央部之上設置有1個。周緣微波導入機構43a的數量,雖係只要2以上即可,但3以上為較佳例如3~6。
微波傳送部40的放大器部42,係如圖2所示,將由分配器所分配的微波引導至各周緣微波導入機構43a及中心微波導入機構43b。放大器部43,係具有相位器46、可變增益放大器47、構成固態放大器的主放大器48及隔離器49。
相位器46,係構成為可使微波的相位變化,藉由調整此可使放射特性調製。例如,藉由對每個微波導入機構進行相位調整的方式,可控制指向性而使電漿分布變化。又,可使相鄰的微波導入機構各錯開90°相位而獲得圓偏振波。又,相位器46,係可調整放大器內之零件間的延遲特性,並進行調諧器內之空間合成作為目的而使 用。但是,在不需要像這樣的放射特性之調製或放大器內之零件間的延遲特性之調整時,係不需要設置相位器46。
可變增益放大器47,係用以調整朝主放大器48輸入之微波的電力位準,且進行電漿強度調整的放大器。藉由使可變增益放大器47在每個天線模組變化的方式,亦可使發生的電漿產生分布。
構成固態放大器的主放大器48,係可設成為具有例如輸入匹配電路、半導體放大元件、輸出匹配電路及高Q諧振電路的構成。
隔離器49,係將以後述之槽孔天線反射而朝主放大器48的反射微波進行分離者,具有循環器與虛擬負載(同軸終端器)。循環器,係將反射後的微波引導至虛擬負載,虛擬負載,係將循環器所引導的反射微波轉換成熱。
周緣微波導入機構43a及中心微波導入機構43b,係如後述般,具有對微波放射構件50導入從放大器部42所輸出之微波的功能及匹配阻抗的功能。
(微波放射構件)
其次,詳細說明關於微波電漿源2的微波放射構件50。圖3,係表示微波放射構件50之主要部的剖面圖;圖4,係表示微波放射構件50的周緣部中之槽孔及介電質層即空氣層之配置的平面圖;圖5,係表示微波放射構 件50的周緣部中之槽孔及介電質層即空氣層之配置之周方向的剖面圖。
微波放射構件50,係具有金屬製之本體部120,且具有:周緣部,配置有周緣微波導入機構43a;及中央部,配置有中心微波導入機構43b。而且,周緣部,係與晶圓W的周緣區域相對應,中央部,係與晶圓的中央區域相對應。
在本體部120之周緣部的上部,係沿著包含有周緣微波導入機構43a的配置部分之圓環狀的周緣微波導入機構配置區域,嵌入有形成圓環狀的慢波材121,在本體部120周緣部的下面,係嵌入有沿著周緣微波導入機構配置區域而設置之形成圓環狀的微波穿透構件122。而且,在本體部120的慢波材121與微波穿透構件122之間的部分,係上下形成有複數個槽孔123及介電質層124。
慢波材121,係具有比真空大的介電常數,藉由例如石英、陶瓷、聚四氟乙烯等的氟系樹脂或聚醯亞胺系樹脂所構成。亦即,由於在真空中,微波之波長變長,因此,慢波材121,係藉由以介電常數比真空大之材料所構成的方式,具有縮短微波之波長且縮小包含有槽孔123之天線的功能。
微波穿透構件122,係由穿透微波的材料即介電質材料所構成,具有在周方向形成均勻之表面波電漿的功能。作為微波穿透構件122,係與慢波材121相同地,可藉由例如石英、陶瓷、聚四氟乙烯等的氟系樹脂或聚醯 亞胺系樹脂來構成。另外,微波穿透構件122,係亦可沿著周方向,分割成複數個。
槽孔123,係如圖3所示,從與本體部120之慢波材121相接的上面位置到達介電質層124的上面,決定從周緣微波導入機構43a所傳送來之微波的放射特性。本體部120的慢波材121與介電質層124之間的區域,係構成為包含有槽孔123的槽孔天線。
槽孔123,係具有將從周緣微波導入機構43a傳送來作為TEM波之微波模式轉換成TE波的功能。而且,從槽孔123所放射的微波,係經由介電質層124及微波穿透構件122而到達腔室1內。
如圖4所示,槽孔123,係形成圓弧狀,複數個槽孔123,係沿著形成圓環狀之周緣微波導入機構配置區域的周方向,以全體形狀形成圓周狀的方式,配置成一列。鄰接之槽孔123,係藉由金屬製之本體120而分離。微波之放射特性雖係藉由槽孔123的形狀及配置而決定,但像這樣藉由使形成複數個圓弧狀之槽孔123設置為全體形狀形成圓周狀的方式,可使電場均勻地被分散。在圖4中,雖係表示將12個圓弧狀之槽孔123設置成一列的例子,但槽孔123之形狀及個數,係因應微波穿透構件122的尺寸及微波的波長而適當地設定。
槽孔123內雖係亦可為真空,但填充介電質為較佳。藉由將介電質填充於槽孔123的方式,微波之有效波長變短,可使槽孔的厚度變薄。作為填充於槽孔123 的介電質,係可使用例如石英、陶瓷、聚四氟乙烯等的氟系樹脂或聚醯亞胺系樹脂。
一個槽孔123之圓周方向的長度,係從提高電場強度而獲得良好之效率的觀點來看,λg/2為較佳。在此,λg,係微波之有效波長,可表示為λg=λ/εs1/2。εs,係填充於槽孔之介電質的介電常數;λ,係真空中之微波的波長。當考慮在圓周方向進行微調整以使電場強度之均勻性變高的微調整成分δ(包含0)時,則(λg/2)-δ為較佳。
另外,槽孔123,雖係設置於慢波材121及微波穿透構件122的寬度方向(徑方向)中央,但微波導入機構43a,係設置於比寬度方向中央更內側。這是因為,考慮慢波材121之內周與外周部之長度的不同,使電場在內側與外側均勻地分散。
複數個介電質層124,係如圖4、圖5所示,設置為分別與槽孔123相對應。在本例中,係對12個槽孔123分別設置有合計12個介電質層124。鄰接之介電質層124,係藉由金屬製之本體120而分離。在介電質層124內,係藉由從相對應之槽孔123所放射的微波,可形成單迴路的磁場,且在其下之微波穿透構件122中不會產生磁場迴路的耦合。藉此,可防止複數個表面波模式出現的情形,且可實現單一之表面波模式。介電質層124之周方向的長度,係從防止複數個表面波模式出現的觀點來看,λg/2以下為佳。又,介電質層124的厚度,係1~ 5mm為較佳。
介電質層124,係亦可為空氣(真空),且亦可為介電質陶瓷或樹脂等的介電質材料,作為介電質材料,係可使用例如石英、陶瓷、聚四氟乙烯等的氟系樹脂或聚醯亞胺系樹脂。由於電漿處理裝置100,係對300mm晶圓進行處理者,因此,在使用介電常數為10左右之氧化鋁作為慢波材121或微波穿透構件122及槽孔123內的介電質時,係可適當地使用空氣層(真空層)作為介電質層124。
另一方面,在本體部120之中央部的上部,係於與中心微波導入機構43b相對應的中心微波導入機構配置區域,嵌入有形成圓板狀的慢波材131,於與中央部之下面的慢波材131相對應的部分,嵌入有形成圓板狀的微波穿透構件132。而且,本體部120的慢波材131與微波穿透構件132之間的部分,係形成為具有槽孔133的槽孔天線部。槽孔133之形狀或大小,係適當地進行調整,以抑制模式跳動之發生,且可獲得均勻的電場強度。例如,槽孔133,係如圖6所示,形成為環狀。藉此,不存在有槽孔間的接縫,可形成均勻的電場,亦難以發生模式跳動。
在槽孔133內雖亦與槽孔123相同,但填充介電質為較佳。作為填充於槽孔133的介電質,係可使用與槽孔123所使用者相同者。又,關於構成慢波材131及微波穿透構件132的介電質,亦可使用與上述之慢波材 121及微波穿透構件122相同者。
在本體部129的上面,係於周緣微波導入機構配置區域與中心微波導入機構配置區域之間,形成有圓環狀的溝126。藉此,可抑制周緣微波導入機構43a與中心微波導入機構43b之間的微波干涉。
又,本體部120,係設置有上述的第1氣體導入部21。第1氣體導入部21,係在具有周緣微波導入機構配置區域的周緣部與具有中心微波導入機構配置區域的中央部之間形成環狀,且具有形成為同心狀的外側氣體擴散空間141與內側氣體擴散空間142。在外側氣體擴散空間141的上面,係形成有從本體部120之上面連接的氣體導入孔143,在外側氣體擴散空間141的下面,係形成有到達本體部120之下面的複數個氣體吐出孔144。另一方面,在內側氣體擴散空間142的上面,係形成有從本體部120之上面連接的氣體導入孔145,在內側氣體擴散空間142的下面,係形成有到達本體部120之下面的複數個氣體吐出孔146。在氣體導入孔143及145,係連接有用以供給來自第1氣體供給源22之第1氣體的氣體供給配管111。
作為構成本體部120的金屬,係如鋁或銅般之高熱傳導率的金屬為較佳。
(微波導入機構)
其次,詳細說明關於微波導入機構。
在以下的說明中,係說明關於周緣微波導入機構43a。圖7,係表示周緣微波導入機構43a的剖面圖;圖8,係表示周緣微波導入機構43a之供電機構的圖7之AA’線的橫剖面圖;圖9,係表示周緣微波導入機構43a中之芯塊與滑動構件的圖7之BB’線的橫剖面圖。
如圖7所示,周緣微波導入機構43a,係具有構成為芯塊調諧器的導入機構本體60與驅動芯塊的芯塊驅動部70。而且,微波,係經由微波放射構件50之慢波材121、槽孔123、微波穿透構件122,從導入機構本體60放射微波至腔室1內,藉由其微波,在腔室1內形成表面波電漿。
導入機構本體60,係具有:微波傳送路44,筒狀之外側導體52及設置於其內側之筒狀的內側導體53被配置成同軸狀而形成;及第1芯塊61a、第2芯塊61b,在外側導體52與內側導體53之間上下移動。第1芯塊61a,係設置於上側,第2芯塊61b,係設置於下側。而且,內側導體53形成為供電側,外側導體52形成為接地側。外側導體52及內側導體53的上端,係形成為反射板58,下端,係連接於本體部120的慢波材121與介電質層124之間的區域。具有如下述之功能:藉由使第1芯塊61a及第2芯塊61b移動的方式,使腔室1內之負載(電漿)的阻抗與微波輸出部30中之微波電源的特性阻抗匹配。
在微波傳送路44的基端側,係設置有對微波 (電磁波)供電的供電機構54。供電機構54,係具有設置於微波傳送路44(外側導體52)的側面之用以導入微波電力的微波電力微波電力導入埠55。在微波電力導入埠55,係連接有由內側導體56a及外側導體56b所構成的同軸線路56,以作為用以供給從放大部42所放大之微波的供電線。且,在同軸線路56之內側導體56a的前端,係連接有朝向外側導體52之內部而水平延伸的供電天線90。
供電天線90,係於對例如鋁等的金屬板進行切削加工後,嵌入鐵氟龍(註冊商標)等之介電體構件的模具而形成。在從反射板58至供電天線90之間,係設置有由用以縮短反射波之有效波長之鐵氟龍(註冊商標)等之介電質所構成的慢波材59。另外,在使用2.45GHz等之高頻率的微波時,係亦可不設置慢波材59。此時,使從供電天線90至反射板58的距離最佳化,並以反射板58使從供電天線90所放射的電磁波反射,藉此,使最大之電磁波傳送至同軸構造的微波傳送路44內。
供電天線90,係如圖8所示,構成具有:天線體91,在微波電力導入埠55被連接於同軸線路56的內側導體56a,具有供給有電磁波的第1極92及放射所供給之電磁波的第2極93;及反射部94,從天線體91的兩側,沿著導入機構本體60之內側導體53的外側延伸,形成環狀,以射入至天線體91的電磁波與由反射部94所反射的電磁波形成駐波。天線體91的第2極93,係與導 入機構本體60的內側導體53接觸。
藉由供電天線90放射微波(電磁波)的方式,微波電力被供電至外側導體52與內側導體53之間。而且,供給至供電機構54的微波電力會朝向微波放射構件50傳播。
在內側導體53的內部空間,係沿著其長邊方向,設置有例如由形成有梯形螺紋之螺桿所構成的芯塊移動用之2根芯塊移動軸64a,64b。
如圖9所示,第1芯塊61a,係形成由介電質所構成的圓環狀,在其內側被嵌入具有滑動性之由樹脂所構成的滑動構件63。在滑動構件63,係設置有芯塊移動軸64a螺合的螺孔65a與插通芯塊移動軸64b的通孔65b。另一方面,第2芯塊61b雖亦相同地具有螺孔65a與通孔65b,但與芯塊61a相反,螺孔65a,係被螺合於芯塊移動軸64b,在通孔65b,係插通芯塊移動軸64a。藉此,藉由使芯塊移動軸64a旋轉的方式,第1芯塊61a便升降移動,藉由使芯塊移動軸64b旋轉的方式,第2芯塊61b便升降移動。亦即,藉由由芯塊移動軸64a,64b與滑動構件63所構成的螺紋機構,使第1芯塊61a及第2芯塊61b升降移動。
在內側導體53,係沿著長邊方向等間隔地形成有3個縫隙53a。另一方面,滑動構件63,係以與該些槽孔53a相對應的方式,等間隔地設置有3個突出部63a。而且,於該些突出部63a抵接於第1芯塊61a及第2 芯塊61b之內周的狀態下,滑動構件63被嵌入於第1芯塊61a及第2芯塊61b的內部。滑動構件63的外周面,係與內側導體53之內周面無間隙地接觸,藉由芯塊移動軸64a,64b旋轉的方式,滑動構件63便在內側導體53滑動而升降。亦即,內側導體53的內周面具有第1芯塊61a及第2芯塊61b之滑動導件的功能。
上述芯塊移動軸64a,64b,係貫通反射板58而在芯塊驅動部70延伸。芯塊移動軸64a,64b與反射板58之間,係設置有軸承(未圖示)。
芯塊驅動部70,係具有殼體71,芯塊移動軸64a及64b,係在殼體71內延伸,在芯塊移動軸64a及64b的上端,係分別安裝有齒輪72a及72b。又,在芯塊驅動部70,係設置有使芯塊移動軸64a旋轉的馬達73a與使芯塊移動軸64b旋轉的馬達73b。在馬達73a的軸,係安裝有齒輪74a,在馬達73b的軸,係安裝有齒輪74b,齒輪74a與齒輪72a咬合,齒輪74b與齒輪72b咬合。因此,芯塊移動軸64a藉由馬達73a經齒輪74a及72a而被旋轉,芯塊移動軸64b藉由馬達73b經齒輪74b及72b而被旋轉。另外,馬達73a,73b,係例如步進馬達。
另外,芯塊移動軸64b,係比芯塊移動軸64a長,到達至更上方,因此,由於齒輪72a及72b的位置上下偏移,馬達73a及73b亦上下偏移,故馬達及齒輪等之動力傳達機構的空間小,殼體71成為與外側導體52相同的直徑。
在馬達73a及73b上,係以與該些輸出軸直接連結的方式,設置有分別用以檢測芯塊61a及61b之位置的增量型之編碼器75a及75b。
第1芯塊61a及第2芯塊61b的位置,係藉由芯塊控制器68予以控制。具體而言,係根據藉由未圖示之阻抗檢測器所檢測到之輸入端的阻抗值與藉由編碼器75a及75b所檢測到之第1芯塊61a及第2芯塊61b的位置資訊,芯塊控制器68將控制訊號發送至馬達73a及73b,控制第1芯塊61a及第2芯塊61b的位置,藉此調整阻抗。芯塊控制器68,係以終端成為例如50Ω的方式,執行阻抗匹配。當兩個芯塊中的僅一方移動時,描繪出通過史密斯圖之原點的軌跡,當雙方同時移動時,僅相位旋轉。
在微波傳送路44的前端部,係設置有阻抗調整構件140。阻抗調整構件140,係可由介電質所構成,藉由其介電常數調整微波傳送路44的阻抗。在微波傳送路44之前端的底板67,係設置有圓柱構件82,該圓柱構件82被連接於槽孔天線部124。慢波材121,係可藉由其厚度調整微波的相位,以槽孔天線部124之上面(微波放射面)成為駐波之「腹」的方式,調整其厚度。藉此,可使反射成為最小,微波的放射能成為最大。
在本實施型態中,主放大器48、構成芯塊調諧器的導入機構本體60、微波放射構件50的槽孔天線部124,係靠近配置。而且,芯塊調諧器60與槽孔天線部 124,係構成存在於1/2波長內的集中常數電路,且由於槽孔天線部124及慢波材121,係組合電阻被設定為50Ω,因此,芯塊調諧器,係直接對電漿負載進行調諧,可效率良好地將能量傳達至電漿。
另外,中心微波導入機構43b,係經由慢波材131,將微波傳送至槽孔天線部134,除此之外,與上述周緣微波導入機構43a同樣地被構成,且具有同樣的功能。
<電漿處理裝置之動作>
其次,說明關於如上述所構成之電漿處理裝置100中的動作。
首先,將晶圓W搬入至腔室1內,並載置於基座11上。而且,從第1氣體供給源22,經由氣體供給配管111及微波放射構件50的第1氣體導入部21,將電漿生成氣體例如Ar氣體或欲以高能量來分解的第1氣體朝腔室1內吐出。
具體而言,係從第1氣體供給源22,經由氣體供給配管11,將電漿生成氣體或處理氣體經由氣體導入孔143及145供給至第1氣體導入部21的外側氣體擴散空間141與內側氣體擴散空間142,並從氣體吐出孔144及146朝腔室1吐出。
另一方面,從微波電漿源2的微波輸出部30,將從微波傳送部40之複數放大器部42及複數個微波 導入機構43所傳送來的微波經由微波放射構件50而放射至腔室1內,在微波放射構件50的表面部分,藉由高電場能量使第1氣體電漿化而生成表面波電漿。
又,從第2氣體供給源28,將盡量不分解而欲供給之處理氣體等的第2氣體經由氣體供給配管27及第2氣體導入部23吐出至腔室1內。從第2氣體導入部所吐出的第2氣體,係藉由第1氣體的電漿而被激發。此時,由於第2氣體吐出位置,係與遠離微波放射構件50之表面相比為能量較低的位置,因此,第2氣體,係於抑制了不需要的分解之狀態下被激發。而且,藉由第1氣體及第2氣體的電漿,對晶圓W施予電漿處理例如成膜處理或蝕刻處理。
此時,朝3根的周緣微波導入機構43a,供電有從微波輸出部30之微波振盪器32被振盪,且被放大器33放大後,藉由分配器34分配成複數個,經過放大器42的微波電力。供電至該些周緣微波導入機構43a的微波電力,係在微波傳送路44傳送,被導入至微波放射構件50的周緣部。此時,藉由導入機構本體60的第1芯塊61a及第2芯塊61b來自動匹配阻抗,於實質上無電力反射的狀態下,微波便被導入,所導入的微波,係穿透慢波材121,經由槽孔123、介電質層124及微波穿透構件122被放射至腔室1內,在微波穿透構件122及本體部120之下表面的對應部分形成表面波,藉由該表面波,在腔室1內之微波放射構件50的正下方部分生成表面波電漿。
此時,如以往,於在配置成圓周狀之複數個槽孔123的正下方配置微波穿透構件122時,係如圖10(a)所示,藉由從各槽孔123所放射之微波而產生的磁場有時會在微波穿透構件122耦合。而且,由於磁場在微波穿透構件122耦合或未耦合,因而出現複數個表面波模式。當出現複數個表面波模式時,則有在處理之際產生模式跳動的情形,故處理並不穩定。
表面波模式之出現機率,係由微波穿透構件因子(形狀、材料)與槽孔因子(形狀、材料)決定,可藉由調整該些的方式來實現單模。但是,微波穿透構件,係預先被設計的,難以變更。因此,調整槽孔因子,係有效的。於是,本實施形態,係在複數個槽孔123下,與各槽孔123相對應而相互分離地設置複數個介電質層124。藉此,如圖10(a)所示,藉由從各槽孔123所放射的微波,可在各介電質層124內產生單迴路之磁場,藉由此,可防止在微波穿透構件122內形成與介電質層124之磁場迴路相對應的磁場迴路,從而在微波穿透構件122內產生磁場耦合的情形。因此,可防止在微波穿透構件122內出現因磁場迴路產生或不產生而導致的複數個表面波模式,並可實現不產生模式跳動之穩定的電漿處理。
在該情況下,當在介電質層124存在有複數個駐波的「腹」或「節」時,由於容易出現複數個模式,因此,介電質層124之周方向的長度,係λg/2以下為較佳。
又,由於是將複數個槽孔123配置成圓周狀,因此,可圓周狀地放射微波,並可提高周方向之電漿的均勻性。
而且,由於是將小型構成的複數個周緣微波導入機構43a配置成圓周狀,並從該處對槽孔123導入微波,因此,可使微波電漿源2成為小型者。再者,藉由使用複數個周緣微波導入機構43a的方式,可個別地調整從各周緣微波導入機構43a所導入之微波的相位或強度,並可比較容易地進行電漿分布的調整。
再者,在本體部120的上面,係由於在周緣微波導入機構配置區域與中心微波導入機構配置區域之間形成有圓環狀的溝126,因此,可抑制周緣微波導入機構43a與中心微波導入機構43b之間的微波干涉。
再者,從中心微波導入機構43b對微波放射構件50的中央部導入微波。從中心微波導入機構43b所導入的微波,係穿透慢波材131,經由槽孔天線部134的槽孔133及微波穿透構件132而放射至腔室1內,在腔室1內的中央部亦生成表面波電漿。因此,可在腔室1內的晶圓配置區域全體形成均勻的電漿。
再者,由於是在微波放射構件50設置第1氣體導入部21,從第1氣體供給源22對放射有微波之腔室1的上面區域供給第1氣體,因此,可以高能量激發第1氣體而形成氣體已分解之狀態的電漿。又,在比腔室1之頂部低的位置設置第2氣體導入部23而供給第2氣體, 藉此,可以更低能量使其電漿化而不分解第2氣體。藉此,可因應所要求的電漿處理,可形成較佳的電漿狀態。
<第2實施形態>
其次,說明關於第2實施形態。
第2實施形態之電漿處理裝置,係微波放射構件之周緣部中的慢波材被分割於周方向,除了與該分割的慢波材相對應地設置有周緣微波導入機構及槽孔該點以外,係其他基本上構成為與第1實施形態的電漿處理裝置相同。因此,與第1實施形態相同的部分,係省略說明。
本實施形態,係具有微波放射構件50’來代替第1實施形態之微波放射構件50。微波放射構件50’,係具有:周緣部,配置有周緣微波導入機構43a;及中央部,配置有中心微波導入機構43b。而且,周緣部,係與晶圓W的周緣區域相對應,中央部,係與晶圓的中央區域相對應。
如圖11所示,在微波放射構件50’的周緣部上,係沿著周方向而等間隔地設置有3個周緣微波導入機構43a,在微波放射構件50’的中央部上,係設置有1個中心微波導入機構43b。
如圖12所示,微波放射構件50’,係具有金屬製之本體部120。在本體部120之周緣部的上部,係沿著包含有周緣微波導入機構43a之配置部分之圓環狀的周緣微波導入機構配置區域,嵌入複數個慢波材121’。又, 與第1實施形態相同地,在本體部120周緣部的下面,係嵌入有由沿著周緣微波導入機構配置區域而設置之形成圓環狀之介電質所構成的微波穿透構件122。而且,在複數個慢波材121’與微波穿透構件122之間的部分,係上下形成有複數個槽孔123’及介電質層124’。
慢波材121’,係如圖13所示,形成圓弧狀,設置有周緣微波導入機構43a之2倍的數量亦即6片,配置成全體形成圓環狀。該些6片慢波材121’,係等間隔地設置,鄰接的慢波材121’之間,係以形成本體部120之一部分的金屬構件125分離。
如圖14所示,周緣微波導入機構43a,係配置成分別跨越2片慢波材121’之間。亦即,6片慢波材121’,係配置成從分別與3個周緣微波導入機構43a相對應的位置而往兩側延伸。如此一來,由於在周緣微波導入機構43a的正下方位置,係配置有金屬構件125,因此,從周緣微波導入機構43a所傳送來的微波電力,係以金屬構件125分離,被均等地分配至其兩側的慢波材121’。
慢波材121’,係具有與第1慢波材121相同之比真空大的介電常數,由於在真空中,微波的波長變長,因此,具有縮短微波之波長而縮小天線的功能。
槽孔123’,係從與本體部120之慢波材121’相接的上面位置到達介電質層124的上面,決定從周緣微波導入機構43a所傳送來之微波的放射特性。本體部120的慢波材121’與介電質層124之間的區域,係構成為包含 有槽孔123’的槽孔天線。
槽孔123’,係與第1實施形態的槽孔123相同地,具有將從周緣微波導入機構43a傳送來作為TEM波之微波模式轉換成TE波的功能。而且,從槽孔123’所放射的微波,係經由介電質層124及微波穿透構件122而到達腔室1內。
槽孔123’,係形成圓弧狀,如圖15所示,沿著形成圓環狀之周緣微波導入機構配置區域的周方向,以全體形狀形成圓周狀的方式配置複數個,與各慢波材121’相對應地設置各2個槽孔123’。鄰接之槽孔123’,係藉由金屬製之本體120而分離。微波之放射特性雖係藉由槽孔123’的形狀及配置而決定,但像這樣藉由使形成複數個圓弧狀之槽孔123設置為全體形狀形成圓周狀的方式,可使電場均勻地被分散。在圖15中,雖係表示將12個圓弧狀之槽孔123’設置成一列的例子,但槽孔123’之形狀及個數,係因應微波穿透構件122的尺寸及微波的波長而適當地設定。
與第1實施形態之槽孔123相同地,槽孔123’內雖亦可為真空,但從縮短微波之有效波長而使槽孔之厚度變薄的觀點來看,填充有介電質為較佳。一個槽孔123’之圓周方向的長度,係與槽孔123相同地,λg/2為較佳。當考慮在圓周方向進行微調整以使電場強度之均勻性變高的微調整成分δ(包含0)時,則(λg/2)-δ為較佳。
複數個介電質層124,係設置為分別與槽孔123相對應。在圖15的例子中,係對12個槽孔123’分別設置有合計12個介電質層124。
與第1實施形態相同地,鄰接之介電質層124,係藉由金屬製之本體120而分離。在介電質層124內,係藉由從相對應之槽孔123’所放射的微波,可形成單迴路的磁場,且在其下之微波穿透構件122中不會產生磁場迴路的耦合。藉此,與第1實施形態相同地,可防止複數個表面波模式出現的情形,且可實現單一之表面波模式。介電質層124之周方向的長度,係從防止複數個表面波模式出現的觀點來看,λg/2以下為佳。
在像這樣構成的電漿處理裝置中,係與第1實施形態相同地,將晶圓W搬入至腔室1內,並載置於基座11上,從第1氣體供給源22,經由氣體供給配管111及微波放射構件50的第1氣體導入部21,將電漿生成氣體例如Ar氣體或欲以高能量來分解的第1氣體朝腔室1內吐出。
而且,從微波電漿源2的微波輸出部30,將從微波傳送部40之複數放大器部42及複數個微波導入機構43所傳送來的微波經由微波放射構件50’而放射至腔室1內,在微波放射構件50’的表面部分,藉由高電場能量使第1氣體電漿化而生成表面波電漿。
又,從第2氣體導入部所吐出的第2氣體,係藉由第1氣體的電漿而被激發。此時,由於第2氣體吐 出位置,係與遠離微波放射構件50’之表面相比為能量較低的位置,因此,第2氣體,係於抑制了不需要的分解之狀態下被激發。而且,藉由第1氣體及第2氣體的電漿,對晶圓W施予電漿處理例如成膜處理或蝕刻處理。
此時,圓弧狀的6片慢波材121’沿著周緣微波導入機構配置區域,配置成全體形成圓環狀,該些以形成本體部120之一部分的金屬構件125分離,周緣微波導入機構43a,係配置成分別跨越2片慢波材121’之間。亦即,6片慢波材121’,係配置成從分別與3個周緣微波導入機構43a相對應的位置而往兩側延伸。如此一來,由於在周緣微波導入機構43a的正下方位置,係配置有金屬構件125,因此,從周緣微波導入機構43a所傳送來的微波電力,係以金屬構件125分離。
在周方向配置複數個微波導入機構時,雖可獲得在周方向上有一定程度之均勻的微波電場,但當從複數個微波導入機構將微波導入時,則有正下方部分之電場強度變大的傾向,且根據所要求之均勻性的程度,在周方向有微波電場之均勻性未必充分的情形。
對此,如本實施形態般,以金屬構件125分離複數個慢波材121’,並以金屬構件125分離從周緣微波導入機構43a所傳送來的微波,藉此,周緣微波導入機構43a正下方部分的電場強度不會變大,而被均等地分配至其兩側的慢波材121’。藉此,周方向的電場強度被充分均勻化。而且,由於微波,係從槽孔123’(該槽孔123’, 係沿著周緣微波導入機構配置區域,以全體形狀形成圓周狀的方式而設置)放射,且以覆蓋槽孔123’的方式,圓環狀地設置有微波穿透構件122,因此,可在槽孔123’均勻地放射在慢波材121’被均勻分配的微波電力,且更經由介電質層124,在微波穿透構件122擴展成圓周狀。因此,在微波穿透構件122的正下方,係可沿著周緣微波導入機構配置區域,充分地形成均勻的微波電場,並可於腔室1內,以較高水平在周方向形成均勻的表面波電漿。又,由於可像這樣在周方向擴展微波電力,因此,可使周緣微波導入機構43a成為較少的根數,並可降低裝置成本。
又,於在像這樣配置成圓周狀之複數個槽孔123的正下方配置微波穿透構件122時,係如上述,磁場在微波穿透構件122耦合或未耦合,因而出現複數個表面波模式。
對此,在本實施形態中,係與第1實施形態相同地,由於在複數個槽孔123’下,與各槽孔123相對應而相互分離地設置複數個介電質層124,因此,可藉由從各槽孔123’所放射的微波,在各介電質層124內產生單迴路之磁場,藉由此,可防止在微波穿透構件122產生磁場迴路之耦合的情形。因此,可防止在微波穿透構件122內出現因磁場迴路產生或不產生而導致的複數個表面波模式。因此,可實現不產生模式跳動之穩定的電漿處理。另外,與第1實施形態相同地,介電質層124之周方向的長度,係λg/2以下為較佳。
又,由於是將小型構成的複數個周緣微波導入機構43a配置成圓周狀,並從該處對槽孔123’導入微波,因此,可使微波電漿源2成為小型者。而且,藉由使用複數個周緣微波導入機構43a的方式,可個別地調整從各周緣微波導入機構43a所導入之微波的相位或強度,並可比較容易地進行電漿分布的調整。
再者,與第1實施形態相同地,在本體部120的上面,係由於在周緣微波導入機構配置區域與中心微波導入機構配置區域之間形成有圓環狀的溝126,因此,可抑制周緣微波導入機構43a與中心微波導入機構43b之間的微波干涉。
再者,從中心微波導入機構43b,對微波放射構件50’的中央部導入微波,在腔室1內的中央部亦生成表面波電漿。因此,可在腔室1內的晶圓配置區域全體形成均勻的電漿。
另外,在第2實施形態中,雖係表示在微波放射構件電力50’的周緣部上,沿著周方向設置3個周緣微波導入機構43a,且對應於此,與各周緣微波導入機構43a相對應地設置各2個合計6片慢波材121’的例子,但周緣微波導入機構43a的數量並不限於3個,亦可為2個以上,又,慢波材121’的數量,係只要為周緣微波導入機構43a的2倍即可,該些數量,係以可獲得上述效果的方式來進行適當地設定即可。
<實驗結果>
其次,說明關於確認了本發明之效果的實驗結果。
圖16,係表示針對在以第2實施形態之裝置作為基礎,於槽孔下未設置與設置介電質層的情形及導入了微波的情形,在相當於壓力的介電損失(tanδ)與相當於電漿密度之介電常數的座標中,使該些產生變化時之表面波模式的圖。在未設置介電質層時,係如(a)所示,藉由條件的變化,出現了TM01、TM21、TM61、TMxx之4種模式。對此,在設置空氣層作為介電質層時,係如(b)所示,為TM61之單模。
又,在設置了厚度2~4mm之空氣層作為介電質層的實際裝置中,使條件產生變化而生成表面波電漿的結果,與圖16(b)相同地,為TM61之單模。
<其他適用>
以上,雖參閱附加圖面而說明了關於本發明之實施形態,但本發明,係不限定於上述兩種實施形態,可在本發明的思想範圍內,進行各種變形。
上述實施形態,雖係在微波放射構件的中央部設置中心微波導入機構,亦在與腔室1內之晶圓W之中央區域相對應的部分生成表面波電漿,但中央部的構成並不限定於上述實施形態,另可設成為例如圖17的構成。
圖17的電漿裝置100’,係設置包含有周緣微 波放射機構43a的配置區域之環狀的微波放射構件50”來代替第1實施形態的微波放射構件50或第2實施形態的微波放射構件50’,在其內側的中央部份,經由絕緣構件151設置有具有與晶圓W大致同等大小之形成導電性的噴頭150。噴頭150,係具有:氣體擴散空間152,形成為圓板狀;多數個氣體吐出孔153,以從氣體擴散空間152面對腔室1內的方式而形成;及氣體導入孔154。在氣體導入孔154,係連接有氣體供給配管158,在氣體供給配管158,係連接有氣體供給源157。在噴頭150,係經由匹配器155,電性連接有電漿生成用之高頻電源156。基座11,係具有導電性部分,且具有作為噴頭150之對向電極的功能。從氣體供給源157,經由氣體供給配管158及噴頭150對腔室1內一併供給電漿處理所需要的氣體,並從該高頻電源156對噴頭150供給高頻電力,藉此,在噴頭150與基座11之間形成高頻電場,且在晶圓W之正下方的空間形成電容耦合電漿。由於像這樣之構成的電漿處理裝置100’,係中央部份之構成與對晶圓進行電漿蝕刻之平行平板型的電漿蝕刻裝置相同,因此,可作為以使用微波的表面波電漿進行例如晶圓之周緣之電漿密度調整的電漿蝕刻裝置而使用。
又,亦可在中央部不設置生成電漿的機構。
而且,微波輸出部30或微波傳送部40的構成等,係並不限定於上述實施型態,例如在不需要進行從槽孔天線部所放射之微波的指向性控制或使成為圓偏振波 時,係不需要相位器。
而且,上述實施形態,雖係說明了關於在將微波電漿源導入至微波放射構件之際,使用複數個微波導入機構的例子,但本發明,係只要可在從配置成圓周狀的複數個槽孔放射微波而生成表面波電漿之際,獲得單一的表面波模式即可,微波導入機構,係亦可為1個,且亦不限定微波的導入態樣。又,亦可在中央部不設置生成電漿的機構。
再者,在上述實施型態中,雖然例示了成膜裝置及蝕刻裝置作為電漿處理裝置,但並不限於此,亦可使用於包含有氧化處理及氮化處理的氧氮化膜形成處理、灰化處理等的其他電漿處理。而且,被處理體,係不限定於半導體晶圓W,亦可為以LCD(液晶顯示器)用基板為代表的FPD(平板顯示器)基板或陶瓷基板等的其他基板。
50‧‧‧微波放射構件
120‧‧‧本體部
122‧‧‧微波穿透構件
123‧‧‧槽孔
124‧‧‧介電質層

Claims (20)

  1. 一種微波電漿源,其係對電漿處理裝置的腔室內放射微波,從而形成表面波電漿,該微波電漿源,其特徵係,具備有:微波輸出部,生成微波而予以輸出;微波傳送部,用以傳送從前述微波輸出部所輸出的微波;及微波放射構件,構成前述腔室的頂壁,用以對前述腔室內放射從前述微波傳送部所供給的微波,前述微波傳送部,係具有:微波導入機構,對前述微波放射構件導入微波,前述微波放射構件,係具有:金屬製之本體部;慢波材,由設置於前述本體部之導入有微波之側的介電質所構成;複數個槽孔,被前述慢波材覆蓋,以全體成為圓周狀的方式彼此分離而設置,並放射經由前述慢波材所導入的微波;微波穿透構件,設置於前述本體部的前述腔室側表面,以覆蓋前述槽孔之配置區域的方式而設置,由在前述腔室側的表面形成有表面波的介電質所構成;及複數個介電質層,在前述複數個槽孔與前述微波穿透構件之間,與前述複數個槽孔相對應地彼此分離而設置,並藉由來自前述槽孔的微波電場,以形成有單一之磁場迴路的方式而設置, 在將前述介電質層內之微波的有效波長設成為λg時,前述介電質層之周方向的長度,係λg/2以下。
  2. 如申請專利範圍第1項之微波電漿源,其中,前述介電質層,係空氣層或介電質材料層。
  3. 如申請專利範圍第1或2項之微波電漿源,其中,前述槽孔,係由真空或介電質材料所構成,形成為圓弧狀,沿著圓周方向配置成一列。
  4. 如申請專利範圍第3項之微波電漿源,其中,在將槽孔內之微波的有效波長設成為λg,並將微調整成分設成為δ(包含0)時,前述槽孔之周方向的長度,係(λg/2)-δ。
  5. 如申請專利範圍第1或2項之微波電漿源,其中,前述微波導入機構,係在與前述微波放射構件上之前述腔室內之周緣部分相對應的周緣部,沿著圓周方向設置有複數個。
  6. 如申請專利範圍第5項之微波電漿源,其中,前述慢波材,係沿著包含有前述複數個微波導入機構的配置部分之形成圓環狀的微波導入機構配置區域,以全體形狀成為圓環狀的方式設置有複數個,前述複數個慢波材,係在相鄰者以金屬構件分離的狀態下而配置,且為前述微波導入機構的數量之2倍的片數,並配置成從與前述各微波導入機構相對應的位置而往兩側延伸。
  7. 如申請專利範圍第1或2項之微波電漿源,其中, 前述微波放射構件,係形成圓板狀,更具有配置於其上方之與前述腔室內之中央部分相對應之中央部的其他微波導入機構,且從前述微波放射構件之中央至前述腔室內之中央部皆生成表面波電漿。
  8. 如申請專利範圍第1或2項之微波電漿源,其中,前述微波放射構件,係更具有:氣體導入部,對前述腔室內,導入電漿處理所使用的氣體。
  9. 如申請專利範圍第8項之微波電漿源,其中,在前述微波放射構件的上面之前述微波導入機構配置區域與配置有前述其他微波導入機構的區域之間的部分,形成有圓環狀的溝。
  10. 一種電漿處理裝置,其係具備有收容被處理基板的腔室、對前述腔室內供給氣體的氣體供給機構及對前述腔室內放射微波而形成表面波電漿的微波電漿源,藉由前述表面波電漿對被處理基板施予電漿處理,該電漿處理裝置,其特徵係,前述微波電漿源,係具備有:微波輸出部,生成微波而予以輸出;微波傳送部,用以傳送從前述微波輸出部所輸出的微波;及微波放射構件,構成前述腔室的頂壁,用以對前述腔室內放射從前述微波傳送部所供給的微波,前述微波傳送部,係具有:微波導入機構,對前述微波放射構件導入微波,前述微波放射構件,係具有: 金屬製之本體部;慢波材,由設置於前述本體部之導入有微波之側的介電質所構成;複數個槽孔,被前述慢波材覆蓋,以全體成為圓周狀的方式彼此分離而設置,並放射經由前述慢波材所導入的微波;微波穿透構件,設置於前述本體部的前述腔室側表面,以覆蓋前述槽孔之配置區域的方式而設置,由在前述腔室側的表面形成有表面波的介電質所構成;及複數個介電質層,在前述複數個槽孔與前述微波穿透構件之間,與前述複數個槽孔相對應地彼此分離而設置,並藉由來自前述槽孔的微波電場,以形成有單一之磁場迴路的方式而設置,在將前述介電質層內之微波的有效波長設成為λg時,前述介電質層之周方向的長度,係λg/2以下。
  11. 如申請專利範圍第10項之電漿處理裝置,其中,前述介電質層,係空氣層或介電質材料層。
  12. 如申請專利範圍第10或11項之電漿處理裝置,其中,前述槽孔,係由真空或介電質材料所構成,形成為圓弧狀,沿著圓周方向配置成一列。
  13. 如申請專利範圍第12項之電漿處理裝置,其中,在將槽孔內之微波的有效波長設成為λg,並將微調整成分設成為δ(包含0)時,前述槽孔之周方向的長 度,係(λg/2)-δ。
  14. 如申請專利範圍第10或11項之電漿處理裝置,其中,前述微波導入機構,係在與前述微波放射構件上之前述腔室內之周緣部分相對應的周緣部,沿著圓周方向設置有複數個。
  15. 如申請專利範圍第14項之電漿處理裝置,其中,前述慢波材,係沿著包含有前述複數個微波導入機構的配置部分之形成圓環狀的微波導入機構配置區域,以全體形狀成為圓環狀的方式設置有複數個,前述複數個慢波材,係在相鄰者以金屬構件分離的狀態下而配置,且為前述微波導入機構的數量之2倍的片數,並配置成從與前述各微波導入機構相對應的位置而往兩側延伸。
  16. 如申請專利範圍第10或11項之電漿處理裝置,其中,前述微波放射構件,係形成圓板狀,更具有配置於其上方之與前述腔室內之中央部分相對應之中央部的其他微波導入機構,且從前述微波放射構件之中央至前述腔室內之中央部皆生成表面波電漿。
  17. 如申請專利範圍第10或11項之電漿處理裝置,其中,前述氣體供給機構,係設置於前述微波放射構件,其具有導入第1氣體的第1氣體導入部。
  18. 如申請專利範圍第17項之電漿處理裝置,其中,在前述腔室內設置有載置被處理基板的載置台,前述氣體供給機構,係具有對前述微波放射構件與前述載置台之間導入電漿處理所使用之第2氣體的第2氣體導入部。
  19. 如申請專利範圍第18項之電漿處理裝置,其中,在前述微波放射構件的上面之前述微波導入機構配置區域與配置有前述其他微波導入機構的區域之間的部分,形成有圓環狀的溝。
  20. 如申請專利範圍第10或11項之電漿處理裝置,其中,前述微波放射構件,係形成與前述腔室內之周緣部相對應的環狀,前述電漿處理裝置,係更具備有:載置台,載置被處理體基板;噴頭,在前述微波放射構件的內側部分,對前述腔室內噴淋狀地導入電漿處理所使用的氣體;及高頻電場形成機構,在前述噴頭與前述載置台之間形成高頻電場,藉由前述高頻電場形成機構,在前述腔室內形成電容耦合電漿。
TW105116274A 2015-06-05 2016-05-25 微波電漿源及電漿處理裝置 TWI685015B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015114659A JP6509049B2 (ja) 2015-06-05 2015-06-05 マイクロ波プラズマ源およびプラズマ処理装置
JP2015-114659 2015-06-05

Publications (2)

Publication Number Publication Date
TW201711080A TW201711080A (zh) 2017-03-16
TWI685015B true TWI685015B (zh) 2020-02-11

Family

ID=57451008

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105116274A TWI685015B (zh) 2015-06-05 2016-05-25 微波電漿源及電漿處理裝置

Country Status (4)

Country Link
US (1) US10727030B2 (zh)
JP (1) JP6509049B2 (zh)
KR (1) KR101833127B1 (zh)
TW (1) TWI685015B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6700127B2 (ja) * 2016-07-07 2020-05-27 東京エレクトロン株式会社 マイクロ波プラズマ処理装置
JP6700128B2 (ja) * 2016-07-07 2020-05-27 東京エレクトロン株式会社 マイクロ波プラズマ処理装置
US10431429B2 (en) * 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
JP6890459B2 (ja) * 2017-04-14 2021-06-18 東京エレクトロン株式会社 プラズマ処理装置及び制御方法
CN108735567B (zh) * 2017-04-20 2019-11-29 北京北方华创微电子装备有限公司 表面波等离子体加工设备
CN108933075B (zh) * 2017-05-25 2020-08-21 北京北方华创微电子装备有限公司 表面波等离子体加工设备
CN109755088B (zh) * 2017-11-06 2021-04-09 北京北方华创微电子装备有限公司 表面波等离子体设备
US10504699B2 (en) * 2018-04-20 2019-12-10 Applied Materials, Inc. Phased array modular high-frequency source
CN110797248A (zh) * 2018-08-01 2020-02-14 北京北方华创微电子装备有限公司 表面波等离子体装置和半导体处理设备
CN108950522B (zh) * 2018-09-10 2020-07-10 南京苏博工业设计有限公司 一种观察组件及其mocvd设备
CA3186082A1 (en) 2020-09-24 2022-03-31 6K Inc. Systems, devices, and methods for starting plasma
JP2023548325A (ja) 2020-10-30 2023-11-16 シックスケー インコーポレイテッド 球状化金属粉末の合成のためのシステムおよび方法
CA3214233A1 (en) 2021-03-31 2022-10-06 Sunil Bhalchandra BADWE Systems and methods for additive manufacturing of metal nitride ceramics
US12040162B2 (en) * 2022-06-09 2024-07-16 6K Inc. Plasma apparatus and methods for processing feed material utilizing an upstream swirl module and composite gas flows

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040134613A1 (en) * 2001-03-28 2004-07-15 Tadahiro Ohmi Device and method for plasma processing, and slow-wave plate
US20050160987A1 (en) * 2002-10-07 2005-07-28 Tokyo Electron Limited Plasma processing apparatus
US20060090704A1 (en) * 2004-10-29 2006-05-04 Tetsuya Ide Plasma processing apparatus
JP2007273636A (ja) * 2006-03-30 2007-10-18 Tokyo Electron Ltd プラズマ処理装置およびプラズマ処理方法
US20080099447A1 (en) * 2006-10-06 2008-05-01 Makoto Ando Plasma processing apparatus and plasma processing method
US20110174778A1 (en) * 2008-07-11 2011-07-21 Tokyo Electron Limited Plasma processing apparatus and method
US20120090782A1 (en) * 2010-10-19 2012-04-19 Tokyo Electron Limited Microwave plasma source and plasma processing apparatus
US20120247675A1 (en) * 2011-03-31 2012-10-04 Tokyo Electron Limited Plasma processing apparatus and plasma generation antenna
KR20130095225A (ko) * 2012-02-17 2013-08-27 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치 및 플라즈마의 모니터링 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142444A (ja) * 1993-11-12 1995-06-02 Hitachi Ltd マイクロ波プラズマ処理装置および処理方法
JP2000277296A (ja) * 1999-03-26 2000-10-06 Sumitomo Metal Ind Ltd プラズマ処理装置およびプラズマ処理方法
JP3599619B2 (ja) * 1999-11-09 2004-12-08 シャープ株式会社 プラズマプロセス装置
KR101240842B1 (ko) * 2006-07-28 2013-03-08 도쿄엘렉트론가부시키가이샤 마이크로파 플라즈마원 및 플라즈마 처리장치
JP5893865B2 (ja) * 2011-03-31 2016-03-23 東京エレクトロン株式会社 プラズマ処理装置およびマイクロ波導入装置
US9552966B2 (en) * 2011-12-12 2017-01-24 Tokyo Electron Limited Antenna for plasma generation, plasma processing apparatus and plasma processing method
JP6010406B2 (ja) * 2012-01-27 2016-10-19 東京エレクトロン株式会社 マイクロ波放射機構、マイクロ波プラズマ源および表面波プラズマ処理装置
JP5836144B2 (ja) 2012-01-31 2015-12-24 東京エレクトロン株式会社 マイクロ波放射機構および表面波プラズマ処理装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040134613A1 (en) * 2001-03-28 2004-07-15 Tadahiro Ohmi Device and method for plasma processing, and slow-wave plate
US20050160987A1 (en) * 2002-10-07 2005-07-28 Tokyo Electron Limited Plasma processing apparatus
US20060090704A1 (en) * 2004-10-29 2006-05-04 Tetsuya Ide Plasma processing apparatus
JP2007273636A (ja) * 2006-03-30 2007-10-18 Tokyo Electron Ltd プラズマ処理装置およびプラズマ処理方法
US20080099447A1 (en) * 2006-10-06 2008-05-01 Makoto Ando Plasma processing apparatus and plasma processing method
US20110174778A1 (en) * 2008-07-11 2011-07-21 Tokyo Electron Limited Plasma processing apparatus and method
US20120090782A1 (en) * 2010-10-19 2012-04-19 Tokyo Electron Limited Microwave plasma source and plasma processing apparatus
US20120247675A1 (en) * 2011-03-31 2012-10-04 Tokyo Electron Limited Plasma processing apparatus and plasma generation antenna
KR20130095225A (ko) * 2012-02-17 2013-08-27 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치 및 플라즈마의 모니터링 방법
TW201346973A (zh) * 2012-02-17 2013-11-16 Tokyo Electron Ltd 電漿處理裝置及電漿的監控方法

Also Published As

Publication number Publication date
KR101833127B1 (ko) 2018-02-27
JP6509049B2 (ja) 2019-05-08
US10727030B2 (en) 2020-07-28
JP2017004641A (ja) 2017-01-05
US20160358757A1 (en) 2016-12-08
KR20160143521A (ko) 2016-12-14
TW201711080A (zh) 2017-03-16

Similar Documents

Publication Publication Date Title
TWI685015B (zh) 微波電漿源及電漿處理裝置
TWI674042B (zh) 微波電漿源及電漿處理裝置
JP5836144B2 (ja) マイクロ波放射機構および表面波プラズマ処理装置
TWI658751B (zh) Microwave plasma source device and plasma processing device
JP6144902B2 (ja) マイクロ波放射アンテナ、マイクロ波プラズマ源およびプラズマ処理装置
CN102655708B (zh) 表面波等离子体产生用天线及表面波等离子体处理装置
JP6624833B2 (ja) マイクロ波プラズマ源およびプラズマ処理装置
JP2012089334A (ja) マイクロ波プラズマ源およびプラズマ処理装置
WO2013105358A1 (ja) 表面波プラズマ処理装置
TWI587751B (zh) Microwave radiation antenna, microwave plasma source and plasma processing device
JP6283438B2 (ja) マイクロ波放射アンテナ、マイクロ波プラズマ源およびプラズマ処理装置
JP6700128B2 (ja) マイクロ波プラズマ処理装置
JP6700127B2 (ja) マイクロ波プラズマ処理装置