TWI682616B - 多輸入源能量擷取系統及其電源轉換裝置與方法 - Google Patents

多輸入源能量擷取系統及其電源轉換裝置與方法 Download PDF

Info

Publication number
TWI682616B
TWI682616B TW107146331A TW107146331A TWI682616B TW I682616 B TWI682616 B TW I682616B TW 107146331 A TW107146331 A TW 107146331A TW 107146331 A TW107146331 A TW 107146331A TW I682616 B TWI682616 B TW I682616B
Authority
TW
Taiwan
Prior art keywords
power supply
circuit
voltage
power
bus
Prior art date
Application number
TW107146331A
Other languages
English (en)
Other versions
TW202002487A (zh
Inventor
劉國基
何昌佑
Original Assignee
立錡科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 立錡科技股份有限公司 filed Critical 立錡科技股份有限公司
Priority to US16/414,811 priority Critical patent/US10819209B2/en
Publication of TW202002487A publication Critical patent/TW202002487A/zh
Application granted granted Critical
Publication of TWI682616B publication Critical patent/TWI682616B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/10Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一種多輸入源能量擷取系統,包括一電源轉換裝置,其中第一與第二能量擷取器分別擷取第一與第二能量與而分別提供第一與第二輸入電源;電源轉換裝置包括:可調阻抗匹配電路,根據第一輸入電源產生一調整後電源;電源轉換電路,轉換總線電源而產生輸出電源;其中能量擷取系統根據調整後電源及╱或第二輸入電源而控制第一開關電路與第二開關電路,以選擇導通調整後電源或第二輸入電源其中之一而產生總線電源;且調整可調阻抗匹配電路之阻抗值,以最大化調整後電源的電壓。

Description

多輸入源能量擷取系統及其電源轉換裝置與方法
本發明係有關一種電源轉換系統,特別是指一種具有多輸入源的電源轉換系統。本發明也有關於用於電源轉換系統中之電源轉換裝置以及方法。
與本案相關的前案有:美國專利申請US 20180069405 A1以及“An Effective Multi-Source Energy Harvester for Low Power Applications,2011,IEEE”。
第1圖中,美國專利申請US 20180069405 A1揭示一種先前技術之具有多輸入源的電源轉換系統(具有多輸入源的電源轉換系統1),電源轉換系統1包括複數直流-直流升壓轉換器,分別用以對應轉換來自不同能量擷取器(如圖中所示的太陽能面板能量擷取器、壓電面板能量擷取器、風力能量擷取器、磁性感應能量擷取器與無線射頻能量擷取器等)所提供的複數輸入電源,接著藉由輸入選擇開關選擇其中一電源轉換路徑提供輸出電源給後級負載(如電池組)。
第1圖中所示之先前技術,其缺點在於,其分別設置對應複數能量擷取器的複數直流-直流升壓轉換器,使得電源轉換系統1的電路尺寸大 且成本高。此外,此先前技術無法進行最大功率點的追蹤,因此其電源轉換效率不佳。
第2圖中,IEEE論文“An Effective Multi-Source Energy Harvester for Low Power Applications,2011,IEEE”揭示一種先前技術之具有多輸入源的電源轉換系統(具有多輸入源的電源轉換系統2),電源轉換系統2對應於複數輸入源設置了各自對應的最大功率點追蹤電路,另設置了各自對應的二極體,以選擇不同輸入源中電壓最高者,並將選擇後的輸入電源VSC藉由直流-直流轉換器轉換為輸出電源VOUT。
第2圖中所示之先前技術,其缺點在於,由於設置了各自對應的最大功率點追蹤電路,使得電源轉換系統2的電路尺寸大且成本高。此外,以二極體進行輸入源的選擇,只能選擇輸入電源中電壓的最高者。
本發明相較於第1與2圖之先前技術,應於複數輸入源,可共用一最大功率點追蹤電路以及直流-直流轉換電路,因此,可縮小電路尺寸,降低成本,此外,還可藉由可調整阻抗的阻抗匹配電路提高輸入電源的電壓。
就其中一個觀點言,本發明提供了一種電源轉換裝置,其中一第一能量擷取器擷取一第一能量而提供一第一輸入電源,一第二能量擷取器擷取一第二能量而提供一第二輸入電源;該電源轉換裝置包含:一可調阻抗匹配電路,根據該第一輸入電源而於第一節點產生一調整後電源;一第一開關電路,耦接於該第一節點與一總線節點之間;一第二開關電路,耦接於該第二輸入電源與該總線節點之間;一轉換控制電路,用以根據該調整後電源的電壓及/或該第二輸入電源的電壓而控制該第一開關電路與該 第二開關電路,以選擇導通該調整後電源或該第二輸入電源其中之一,於該總線節點產生一總線電源,且該轉換控制電路產生一阻抗控制訊號,用以調整該可調阻抗匹配電路之一阻抗值,以最大化該調整後電源的電壓;以及一電源轉換電路,轉換該總線電源而產生一輸出電源。
在一較佳實施例中,該轉換控制電路根據以下方式之一而產生該總線電源:(1)比較該調整後電源的電壓與該第二輸入電源的電壓,以選擇該調整後電源與該第二輸入電源中,其電壓為最高者作為該總線電源;或者(2)比較該第二輸入電源的電壓與第一預設電壓,當該第二輸入電源的電壓高於該第一預設電壓時,選擇導通該第二輸入電源作為該總線電源。
在一較佳實施例中,該轉換控制電路根據一第一感測訊號而產生一轉換控制訊號,以控制該電源轉換電路,使得該第一輸入電源或該第二輸入電源大致上控制在各自對應的最大功率點;其中該第一感測訊號相關於以下至少之一:(1)該調整後電源的電壓;(2)該第二輸入電源的電壓;或者(3)該總線電源的電壓。
在一較佳實施例中,該轉換控制訊號控制該電源轉換電路的輸出功率,使得該第一感測訊號不低於一第二預設電壓,其中該第二預設電壓相關於對應之該第一輸入電源的最大功率點或該第二輸入電源的最大功率點。
在一較佳實施例中,該轉換控制電路包括:一取樣維持電路,用以於選擇該調整後電源為該總線電源時,取樣並維持該調整後電源的開路電壓的分壓,以作為該第二預設電壓;或者於選擇該第二輸入電源為該總線電源時,取樣並維持該第二輸入電源的開路電壓的分壓,以作為該第二預設電壓。
在一較佳實施例中,該第一輸入電源具有交流形式;其中該電源轉換裝置更包括一整流電路,其中該整流電路包括至少一整流元件,其中該整流電路設置為以下之一:(1)該整流元件耦接於該可調阻抗匹配電路的一輸出端與該第一節點之間,用以將可調阻抗匹配電路的一輸出訊號整流,而於該第一節點產生該調整後電源;或者(2)該整流元件耦接於該第一節點與該總線節點之間,用以將該調整後電源整流,而於該總線節點產生該總線電源;其中該第一開關電路包括該整流元件,該整流元件更用以控制是否導通該調整後電源作為該總線電源。
在一較佳實施例中,該整流元件為一整流二極體。
在一較佳實施例中,該可調阻抗匹配電路包括一可變電容器,用以根據該阻抗控制訊號而類比且連續地調整該可變電容器的電容值,藉此類比且連續地調整該可調阻抗匹配電路的該阻抗值。
在一較佳實施例中,該第二開關電路包括一路徑開關,用以控制該第二輸入電源與該總線電源的導通路徑,該轉換控制電路包括第一比較電路,用以比較該第二輸入電源的電壓與該第一預設電壓而產生第一比較結果,該轉換控制電路根據該第一比較結果而控制該路徑開關是否導通該第二輸入電源作為該總線電源。
在一較佳實施例中,該轉換控制電路更根據該第一比較結果而決定是否致能該阻抗控制訊號,其中當該第二輸入電源的電壓低於該第一預設電壓時,該轉換控制電路致能該阻抗控制訊號。
在一較佳實施例中,該轉換控制電路包括:一偏壓感測電路,耦接於該總線節點與一感測節點之間,用以根據該總線電源的電壓而於該感測節點產生一第二感測訊號;一箝位電路,耦接於該感測節點,用以箝位該第二感測訊號,使得該第二感測訊號不大於一箝位電壓;以及一第二比 較電路,用以根據該第二感測訊號與一第三預設電壓之差值而產生該轉換控制訊號。
在一較佳實施例中,該偏壓感測電路包括:一偏壓電阻,用以提供一偏壓電流;以及一感測電容器,與該偏壓電阻並聯耦接於該總線電源與該感測節點之間。
在一較佳實施例中,該偏壓電阻為該感測電容器之一寄生電阻。
在一較佳實施例中,該箝位電路包括一箝位二極體,其中該箝位電壓相關於該箝位二極體之一順向導通電壓。
在一較佳實施例中,該轉換控制電路更根據該轉換控制訊號而產生該阻抗控制訊號。
在一較佳實施例中,該轉換控制電路週期性地根據該調整後電源的電壓與該第二輸入電源的電壓的比較結果,或週期性地根據該該第二輸入電源的電壓與該第一預設電壓的比較結果而選擇導通該調整後電源或該第二輸入電源為該總線電源。
在一較佳實施例中,該電源轉換電路設置為以下之一:(1)一升壓型切換式電源轉換電路;(2)一降壓型切換式電源轉換電路;(3)一升降壓型切換式電源轉換電路;(4)一線性電源轉換電路;或者(5)一充電電路。
在一較佳實施例中,該第二輸入電源更耦接於該可調阻抗匹配電路,用以控制該可調阻抗匹配電路之該阻抗值,以提高該調整後電源的電壓。
就另一個觀點言,本發明也提供了一種多輸入源能量擷取系統,包含:如上述各實施例中的任一個所述之電源轉換裝置;該第一能量擷取器;以及該第二能量擷取器。
就另一個觀點言,本發明也提供了一種用於控制一多輸入源能量擷取系統的方法,其中該多輸入源能量擷取系統包括一電源轉換裝置,一第一能量擷取器以及一第二能量擷取器,其中該第一能量擷取器擷取一第一能量而提供一第一輸入電源,該第二能量擷取器擷取一第二能量而提供一第二輸入電源;該電源轉換裝置包括:一可調阻抗匹配電路,根據該第一輸入電源而於第一節點產生一調整後電源;一第一開關電路,耦接於該第一節點與一總線節點之間;一第二開關電路,耦接於該第二輸入電源與該總線節點之間;以及一電源轉換電路,轉換該該總線節點上的一總線電源而產生一輸出電源;該方法包含:根據該調整後電源的電壓及/或該第二輸入電源的電壓而控制該第一開關電路與該第二開關電路,以選擇導通該調整後電源或該第二輸入電源其中之一,於該總線節點產生該總線電源;以及調整該可調阻抗匹配電路之一阻抗值,以最大化該調整後電源的電壓。
在一較佳實施例中,產生該總線電源的步驟包括以下之一:(1)比較該調整後電源的電壓與該第二輸入電源的電壓,以選擇該調整後電源與該第二輸入電源中,其電壓為最高者作為該總線電源;或者(2)比較該第二輸入電源的電壓與第一預設電壓,當該第二輸入電源的電壓高於該第一預設電壓時,選擇導通該第二輸入電源作為該總線電源。
在一較佳實施例中,該方法更包含:根據一第一感測訊號而控制該電源轉換電路,使得該第一輸入電源或該第二輸入電源大致上控制在各自對應的最大功率點;其中該第一感測訊號相關於以下至少之一:(1) 該調整後電源的電壓;(2)該第二輸入電源的電壓;或者(3)該總線電源的電壓。
在一較佳實施例中,控制該電源轉換電路的步驟包括:控制該電源轉換電路的輸出功率,使得該第一感測訊號不低於一第二預設電壓,其中該第二預設電壓相關於對應之該第一輸入電源的最大功率點或該第二輸入電源的最大功率點。
在一較佳實施例中,該第二輸入電源更用以控制該可調阻抗匹配電路之該阻抗值,以提高該調整後電源的電壓。
就另一個觀點言,本發明也提供了一種電源轉換裝置,其中一第一能量擷取器擷取一第一能量而提供一第一輸入電源,一第二能量擷取器擷取一第二能量而提供一第二輸入電源;該電源轉換裝置包含:一可調阻抗匹配電路,根據該第一輸入電源而於第一節點產生一調整後電源,其中該第二輸入電源控制該可調阻抗匹配電路之一阻抗值,以最大化該調整後電源的電壓;一電源轉換電路,根據該調整後電源而產生一輸出電源;以及一轉換控制電路,用以產生一轉換控制訊號,以控制該電源轉換電路,使得該調整後電源大致上控制在對應的最大功率點。
在一較佳實施例中,該第一能量擷取器是一射頻天線或是一電磁感應裝置,該第一能量是無線射頻能量,該第一輸入電源為交流形式;且,第二能量擷取器為一光能電池,用以擷取一光能量。
在一較佳實施例中,電源轉換裝置更包含:一第一開關電路,耦接於該第一節點與一總線節點之間;一第二開關電路,耦接於該第二輸入電源與該總線節點之間;其中該轉換控制電路根據該調整後電源的電壓及/或該第二輸入電源的電壓而控制該第一開關電路與該第二開關電路,以 選擇導通該調整後電源或該第二輸入電源其中之一,於該總線節點產生一總線電源;其中該電源轉換電路轉換該總線電源而產生該輸出電源。
在一較佳實施例中,該轉換控制電路更產生一阻抗控制訊號,用以調整該可調阻抗匹配電路之該阻抗值,以最大化該調整後電源的電壓。
底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。
10,10’,10”‧‧‧可調阻抗匹配電路
100,100’,100”‧‧‧電源轉換裝置
20‧‧‧第一開關電路
200,300‧‧‧能量擷取器
3A‧‧‧多輸入源能量擷取系統
30‧‧‧第二開關電路
40‧‧‧電源轉換電路
50,50”‧‧‧轉換控制電路
53,56‧‧‧比較電路
54‧‧‧偏壓感測電路
55‧‧‧箝位電路
58‧‧‧阻抗控制電路
60,60’‧‧‧整流電路
80‧‧‧開關電路
Fr‧‧‧諧振頻率
N1‧‧‧第一節點
NB‧‧‧總線節點
PMAX‧‧‧最大功率點
VA‧‧‧調整後電源
VB‧‧‧阻抗控制訊號
VBUS‧‧‧總線電源
VCTL‧‧‧轉換控制訊號
VI1‧‧‧第一輸入電源
VI2‧‧‧第二輸入電源
VMP‧‧‧最大功率電壓
VOC‧‧‧開路電壓
VR1‧‧‧預設電壓
VR1,VR2,VR3‧‧‧第二預設電壓
第1圖顯示一種先前技術之多輸入源能量擷取系統之方塊圖。
第2圖顯示一種先前技術之多輸入源能量擷取系統之方塊圖。
第3A圖顯示本發明之多輸入源能量擷取系統及其電源轉換裝置之實施例的示意圖。
第3B圖顯示對應於第3A圖之特性曲線圖。
第3C圖顯示能量擷取器的特性曲線圖。
第3D圖顯示本發明之電源轉換裝置之一實施例的示意圖。
第4圖顯示本發明之電源轉換裝置中,可調阻抗匹配電路之一實施例的示意圖。
第5A圖顯示本發明之電源轉換裝置之一實施例的示意圖。
第5B-5C圖顯示本發明之電源轉換裝置中,轉換控制電路之具體實施例的示意圖。
第6A圖顯示本發明之電源轉換裝置中,整流電路之一實施例的示意圖。
第6B圖顯示本發明之電源轉換裝置中,整流電路與開關電路之實施例的示意圖。
第7圖顯示本發明之電源轉換裝置中,整流電路與開關電路之具體實施例的示意圖。
第8圖顯示本發明之電源轉換裝置中,整流電路與開關電路之具體實施例的示意圖。
第9圖顯示本發明之電源轉換裝置中,轉換控制電路之一具體實施例的示意圖。
第10圖顯示本發明之電源轉換裝置中,偏壓感測電路之一具體實施例的示意圖。
第11圖顯示本發明之電源轉換裝置中,轉換控制電路之一具體實施例的示意圖。
第12圖顯示本發明之多輸入源能量擷取系統及其電源轉換裝置之另一實施例的示意圖。
第13圖顯示本發明之多輸入源能量擷取系統及其電源轉換裝置之又一實施例的示意圖。
第14圖顯示本發明之多輸入源能量擷取系統及其電源轉換裝置之再一實施例的示意圖。
第15圖顯示本發明之電源轉換裝置中,可調阻抗匹配電路之另一具體實施例的示意圖。
第16圖顯示本發明之電源轉換裝置中,可調阻抗匹配電路之又一具體實施例的示意圖。
本發明中的圖式均屬示意,主要意在表示各電路間之耦接關係,以及各訊號波形之間之關係,至於電路、訊號波形與頻率則並未依照比例繪製。
請參閱第3A圖,第3A圖顯示本發明之多輸入源能量擷取系統及其電源轉換裝置之實施例的示意圖(多輸入源能量擷取系統3A與電源轉換裝置100)。多輸入源能量擷取系統3A包括複數能量擷取器200與300,以及電源轉換裝置100。
能量擷取器200與300可分別用以擷取其對應形式的第一能量與第二能量而分別轉換為第一輸入電源VI1與第二輸入電源VI2。在一實施例中,能量擷取器200可擷取交流形式的能量,並轉換為交流形式的第一輸入電源VI1,舉例來說,能量擷取器200可以是壓電能量擷取器,用以擷取轉換震動壓力能量並轉換為交流形式的第一輸入電源VI1,又如,能量擷取器200可以是射頻天線或是電磁感應裝置,用以擷取轉換無線射頻能量或電磁能量並轉換為交流形式的第一輸入電源VI1。在一實施例中,能量擷取器300可擷取直流形式的能量,並轉換為直流形式的第二輸入電源VI2,舉例來說,能量擷取器300可以是光能電池或熱電元件,用以擷取光能量或熱能並轉換為直流形式的第二輸入電源VI2。當然,多輸入源能量擷取系統的複數能量擷取器也可以是上述各種形式的能量擷取器的任意組合。
請繼續參閱第3A圖,電源轉換裝置100包含可調阻抗匹配電路10、第一開關電路20、第二開關電路30、轉換控制電路50以及電源轉換電路40。
可調阻抗匹配電路10用以根據第一輸入電源VI1而於第一節點N1產生調整後電源VA。第一開關電路20耦接於第一節點N1與總線節點NB之間,用以控制第一節點N1與總線節點NB之間的導通路徑。第二開關電路30耦接於第二輸入電源VI2與總線節點NB之間,用以控制第二輸入電源VI2與總線節點NB之間的導通路徑。
轉換控制電路50用以根據調整後電源VA的電壓及/或第二輸入電源VI2的電壓而控制第一開關電路20與第二開關電路30,以選擇導通調整後電源VA或第二輸入電源VI2其中之一,於總線節點NB產生總線電源VBUS。根據本發明,轉換控制電路50可以多種不同方式選擇調整後電源VA或第二輸入電源VI2作為總線電源VBUS。在一實施例中,轉換控制電路50比較調整後電源VA的電壓與第二輸入電源VI2的電壓,以選擇調整後電源VA與第二輸入電源VI2中,其電壓為最高者作為總線電源VBUS。在另一實施例中,轉換控制電路50比較第二輸入電源VI2的電壓與第一預設電壓,當第二輸入電源VI2的電壓高於第一預設電壓時,選擇導通第二輸入電源VI2作為總線電源VBUS。
此外,根據本發明,可選地,轉換控制電路50可以週期性地根據調整後電源VA的電壓與第二輸入電源VI2的電壓的比較結果,或週期性地根據第二輸入電源VI2的電壓與第一預設電壓VR1的比較結果而選擇導通調整後電源VA或第二輸入電源VI2為總線電源VBUS。
電源轉換電路40則用以轉換總線電源VBUS而產生輸出電源VO。電源轉換電路40可設置為例如但不限於升壓型切換式電源轉換電路、降壓型切換式電源轉換電路、升降壓型切換式電源轉換電路、線性電源轉換電路或者充電電路。需說明的是,所述的充電電路係指至少可進行定電流電源轉換模式及定電壓電源轉換模式的電源轉換電路,用以在對充電電池的 不同充電階段進行對應的電源轉換模式。電源轉換電路的實施細節在本發明的教示下,本領域人員當可推知,在此不予贅述。
此外,根據本發明,在一實施例中,轉換控制電路50還用以產生阻抗控制訊號VB,調整可調阻抗匹配電路10之阻抗值,進而控制或調整調整後電源VA的特性參數。請同時參閱第3B圖,第3B圖顯示對應於第3A圖之特性曲線圖,如圖所示,在第一能量例如是射頻能量而能量擷取器200是射頻天線的實施例中,調整可調阻抗匹配電路10之阻抗值可改變能量擷取器200的諧振頻率,例如使其對應於第3B圖中的諧振頻率Fr,因而可使能量擷取器200擷取最大的能量,而在一實施例中,藉由調整可調阻抗匹配電路10之阻抗值,則可控制調整後電源VA的電壓,在一實施例中,轉換控制電路50藉由阻抗控制訊號VB來調整可調阻抗匹配電路10之阻抗值,以最大化調整後電源VA的電壓。
請同時參閱第3A、3C與第3D圖,第3C圖顯示典型的能量擷取器(如光能擷取器)的特性曲線圖,第3D圖顯示本發明之電源轉換裝置之一實施例的示意圖。如第3C圖所示,典型的能量擷取器的最大功率點PMAX,其對應的電壓約在其開路電壓VOC稍低處(最大功率電壓VMP)。在一實施例中,如第3D圖所示,轉換控制電路50還用以根據第一感測訊號VSEN1而產生轉換控制訊號VCTL,以控制電源轉換電路40,使得第一輸入電源VI1或第二輸入電源VI2大致上控制在各自對應的最大功率點。在一實施例中,轉換控制訊號VCTL是藉由控制電源轉換電路40的輸出功率,以使得第一輸入電源VI1或第二輸入電源VI2大致上控制在各自對應的最大功率點。需說明的是,第3D圖中的輸入電源VI對應於前述實施例中的調整後電源VA或第二輸入電源VI2,而開關電路80則是相應的第一開關電路20或第二開關電路30,下同。
第一感測訊號VSEN1可以多種實施方式實施之,具體而言,根據本發明,第一感測訊號VSEN1相關於以下至少之一:(1)調整後電源VA的電壓;(2)第二輸入電源VI2的電壓;或者(3)總線電源VBUS的電壓。更具體的說,當轉換控制電路50選擇導通調整後電源VA而於總線節點NB產生總線電源VBUS時,轉換控制電路50根據調整後電源VA的電壓或是總線電源VBUS的電壓而產生轉換控制訊號VCTL,以控制電源轉換電路40,使得第一輸入電源VI1大致上控制在其最大功率點。當轉換控制電路50選擇導通第二輸入電源VI2而於總線節點NB產生總線電源VBUS時,轉換控制電路50根據第二輸入電源VI2的電壓VVI2或是總線電源VBUS的電壓而產生轉換控制訊號VCTL,以控制電源轉換電路40,使得第二輸入電源VI2大致上控制在其最大功率點。
需說明的是:因電路零件的本身之寄生效應或是零件間相互的匹配不一定為理想,因此,雖然欲使第一或第二輸入電源控制在其各自對應的最大功率點,但實際上,第一或第二輸入電源可能並無法精確控制在其各自對應的最大功率點,而僅是接近最大功率點,亦即,根據本發明,可接受由於電路的不理想性而與最大功率點具有一定程度的誤差,此即前述之「大致上」控制在其最大功率點之意,本文中其他提到「大致上」之處亦同。
可調阻抗匹配電路10可包括基本的阻抗匹配元件,例如電感器與電容器,其中可藉由將阻抗匹配元件設置為可調整,藉此可調整可調阻抗匹配電路10的阻抗值,並進而調整多輸入源能量擷取系統與電源轉換裝置的阻抗值(輸入或輸出阻抗)。請參閱第4圖,第4圖顯示本發明之電源轉換裝置中,可調阻抗匹配電路之一實施例的示意圖。如圖所示,在本實施例中,可調阻抗匹配電路10包括可變電容器11,用以根據阻抗控制訊號VB而類比且連續地調整可變電容器11的電容值,藉此類比且連續地調整可調阻 抗匹配電路10的阻抗值。在本具體的實施例中,可調阻抗匹配電路10還包括電感器L1以及電容器C12。在一實施例中,可變電容器11例如可為壓控可變電容器或壓控可變電容二極體D11。在一實施例中,轉換控制電路50可對應包括阻抗控制電路58,用以產生阻抗控制訊號VB。
需說明的是,在其他實施例中,可變電容器11也可以是電容器與開關的組合,在此情況下,阻抗控制訊號VB控制開關以調整可變電容器11的電容值。
在一實施例中,轉換控制訊號VCTL控制電源轉換電路40的輸出功率,使得第一感測訊號VSEN1不低於第二預設電壓,其中第二預設電壓相關於對應之第一輸入電源VI1的最大功率點或第二輸入電源VI2的最大功率點。請參閱第5A圖,第5A圖顯示本發明之電源轉換裝置之一實施例的示意圖,如第5A圖所示,在具體的實施例中,轉換控制電路50可包括比較電路51,用以比較第一感測訊號VSEN1與第二預設電壓VR2而產生轉換控制訊號VCTL,以控制電源轉換電路40的輸出功率,使得第一感測訊號VSEN1不低於第二預設電壓VR2。
具體來說,當轉換控制電路50選擇導通調整後電源VA而於總線節點NB產生總線電源VBUS時,第二預設電壓VR2相關於第一輸入電源VI1(或對應於調整後電源VA)的最大功率點。另一方面,當轉換控制電路50選擇導通第二輸入電源VI2而於總線節點NB產生總線電源VBUS時,第二預設電壓VR2相關於第二輸入電源VI2的最大功率點。請同時回閱第3C圖,第二預設電壓VR2例如可為最大功率電壓VMP或與其相近的電壓。需說明的是,比較電路中的正負端係為相對概念,其僅為舉例而非限制。
第5B-5C圖顯示本發明之電源轉換裝置中,轉換控制電路之具體實施例的示意圖。如第5B圖所示,在一實施例中,轉換控制電路50包 括取樣維持電路52,用以於選擇調整後電源VA為總線電源VBUS時,取樣並維持調整後電源VA的開路電壓的分壓,以作為第二預設電壓VR2;或者於選擇第二輸入電源VI2為總線電源VBUS時,取樣並維持第二輸入電源VI2的開路電壓的分壓,以作為第二預設電壓VR2。其中上述的開路電壓可對應於例如第3C圖的VOC,開路電壓係指當調整後電源VA、第一輸入電源VI1或第二輸入電源VI2的電流為0時,其各自對應的電壓。在一實施例中,可例如以圖中所示的R51與R52取得前述開路電壓的分壓。在一實施例中,取樣維持電路52包括開關S51與電容器C51。請同時參閱第5C圖,在一實施例中,第二開關電路30(或第一開關電路20)可包括路徑開關SP,用以控制前述的導通路徑,在一較佳實施例中,取樣並維持的時間點是在對應的第一開關電路或第二開關電路控制為關斷時,在如第5C圖的實施例中,亦即,路徑開關SP為關斷時,在此同時,轉換控制電路50可以開關S51與電容器C51取樣並維持前述開路電壓的分壓以產生第二預設電壓VR2。
第6A圖顯示本發明之電源轉換裝置中,整流電路之一實施例的示意圖。如前所述,在一實施例中,第一輸入電源VI1可為交流形式,在此情況下,電源轉換裝置100可更包括整流電路60,其中整流電路60包括至少一整流元件61。如第6A圖所示,本實施例中,整流元件61耦接於可調阻抗匹配電路10的輸出端與第一節點N1之間,用以將可調阻抗匹配電路10的輸出訊號PAC整流,而於第一節點N1產生調整後電源VA。
第6B圖顯示本發明之電源轉換裝置中,整流電路與開關電路之實施例的示意圖。在一實施例中,整流電路可共用開關電路的部分或全部元件。舉例而言,如第6B圖所示,整流電路60’耦接於第一節點N1與總線節點NB之間,更具體地說,整流元件61’耦接於第一節點N1與總線節點NB之間,用以將調整後電源VA整流,而於總線節點NB產生總線電源VBUS;本 實施例中,第一開關電路20也同時包括整流元件61’,整流元件61’更用以控制是否導通調整後電源VA作為總線電源VBUS,換言之,整流元件61’可對應於前述的路徑開關。如第6A-6B圖所示,在一實施例中,整流元件61(或61’)為整流二極體D61。在其他實施例中,整流元件也可以是整流開關,以同步整流方式進行整流。
第7圖顯示本發明之電源轉換裝置中,整流電路與開關電路之一更具體的實施例之示意圖。本實施例中,整流電路60’包括整流二極體D61與D62,用以將調整後電源VA整流,而於總線節點NB產生總線電源VBUS,此外,第一開關電路20也包括了整流二極體D61(對應於前述的整流元件),本實施例中,整流二極體D61可對應於前述的路徑開關,具體而言,當調整後電源VA的電壓高於總線電源VBUS的電壓時,整流二極體D61為導通,亦即,導通第一輸入電源VI1作為總線電源VBUS,另一方面,當調整後電源VA的電壓低於總線電源VBUS的電壓時,整流二極體D61為關斷,亦即,關斷第一輸入電源VI1與總線電源VBUS的導通路徑。
第8圖顯示本發明之電源轉換裝置中,整流電路、開關電路之具體實施例的示意圖。如圖所示,在一實施例中,第二開關電路30包括路徑開關SP,用以控制第二輸入電源VI2與總線電源VBUS的導通路徑,本實施例中,轉換控制電路50包括比較電路53,用以比較第二輸入電源VI2的電壓與預設電壓VR1(例如對應於前述的第一預設電壓)而產生比較結果CP1,轉換控制電路50則根據比較結果CP1而控制路徑開關SP是否導通第二輸入電源VI2作為總線電源VBUS。在一實施例中,當第二輸入電源VI2的電壓高於預設電壓VR1時,路徑開關SP會控制為導通而選擇導通第二輸入電源VI2作為總線電源VBUS。在一實施例中,當第二輸入電源VI2的電壓低於預設電壓VR1時,路徑開關SP會控制為關斷,亦即關斷第二輸入電源VI2關斷總 線電源VBUS的導通路徑,在此情況下,本實施例中的整流二極體D61會在總線電源VBUS的電壓低於調整後電源VA的電壓時導通,亦即,導通第一輸入電源VI1作為總線電源VBUS。
請繼續參閱第8圖,在一實施例中,轉換控制電路50更根據第一比較結果CP1而決定是否致能阻抗控制訊號VB,具體而言,第一比較結果CP1可控制阻抗控制電路58是否致能阻抗控制訊號VB(例如藉由致能訊號EN,其相關於第一比較結果CP1),以控制前述可調阻抗匹配電路10的阻抗值。更進一步說,在一實施例中,當第二輸入電源VI2的電壓低於預設電壓VR1時,第二開關電路會關斷,此時,轉換控制電路50可致能阻抗控制訊號VB,以控制前述可調阻抗匹配電路10的阻抗值,使第一輸入電源的功率或電壓最大化。另一方面,在一實施例中,當第二輸入電源VI2的電壓高於預設電壓VR1時,此時,轉換控制電路50則禁能阻抗控制訊號VB。
第9圖顯示本發明之電源轉換裝置中,轉換控制電路用以追蹤最大功率點的另一具體實施例的示意圖。在一實施例中,轉換控制電路50包括偏壓感測電路54、箝位電路55以及第二比較電路56。
偏壓感測電路54耦接於總線節點NB與感測節點NS之間,用以根據總線電源VBUS的電壓而於感測節點NS產生第二感測訊號VSEN2。箝位電路55耦接於感測節點NS,用以箝位第二感測訊號VSEN2,使得第二感測訊號VSEN2不大於箝位電壓。第二比較電路56用以根據第二感測訊號VSEN2與第三預設電壓VR3之差值而產生轉換控制訊號VCTL,藉此使得第一輸入電源VI1或第二輸入電源VI2大致上控制在各自對應的最大功率點。
第10圖顯示本發明之電源轉換裝置中,偏壓感測電路之一具體實施例的示意圖。在一實施例中,偏壓感測電路54包括偏壓電阻R53以及感測電容器C52。偏壓電阻R53用以提供偏壓電流;感測電容器C52與偏壓電 阻R53並聯耦接於總線電源VBUS與感測節點NS之間。在一實施例中,偏壓電阻R53為感測電容器C52之寄生電阻,亦即,就實際的電路而言,僅需於偏壓感測電路54中設置感測電容器。
請繼續參閱第10圖,在一實施例中,箝位電路55包括箝位二極體D51,其中箝位電壓相關於箝位二極體D51之順向導通電壓。
第11圖顯示本發明之電源轉換裝置中,轉換控制電路之一具體實施例的示意圖。本實施例中,轉換控制電路50有關最大功率點追蹤的電路設置同第9或10圖,如第11圖所示,在一實施例中,轉換控制電路50根據轉換控制訊號VCTL而產生阻抗控制訊號VB,具體而言,阻抗控制電路58還可根據轉換控制訊號VCTL而產生阻抗控制訊號VB。
第12圖顯示本發明之多輸入源能量擷取系統及其電源轉換裝置之另一實施例的示意圖。本實施例中,多輸入源能量擷取系統12及電源轉換裝置100’與第3A圖的實施例相似,其差別在於,電源轉換裝置100’中,第二輸入電源VI2更耦接於可調阻抗匹配電路10’,用以控制可調阻抗匹配電路10’之阻抗值,以最大化調整後電源VA的電壓。具體而言,在一實施例中,可調阻抗匹配電路10’更根據第二輸入電源VI2的電壓而調整可調阻抗匹配電路10’的阻抗值。
請繼續參閱第12圖,根據本發明,上述的設置具有特別的功效,多輸入源能量擷取系統12可以在第一與第二能量都處於相對不佳的狀態下,仍可順利開機工作而輸出電源給後級電路(例如電池等),舉例而言,本實施例中,第一與第二能量例如分別為無線射頻能量及光能量,而第一與第二能量200與300則分別為對應的射頻天線及光能電池,在無線射頻能量相對低的情況下,可能無法提供足夠的電壓使得轉換控制電路50得以產生適當位準的阻抗控制訊號VB,以控制可調阻抗匹配電路10’之阻抗值,以最 大化調整後電源VA的電壓,在此情況下,本實施例中,可藉由第二輸入電源VI2來提供適當的偏壓(例如藉由第二輸入電源VI2的電壓)給可調阻抗匹配電路10’,以控制可調阻抗匹配電路10’之阻抗值,以提高調整後電源VA的電壓(較佳為最大化)。而當調整後電源VA的電壓被適當提高後,轉換控制電路50即可產生適當位準的阻抗控制訊號VB,以控制可調阻抗匹配電路10’之阻抗值,以最大化調整後電源VA的電壓,達成前述的諸項功能。本實施例中,第二輸入電源VI2的電壓也可能不高,但卻足以提供適當的偏壓給可調阻抗匹配電路10’,以控制可調阻抗匹配電路10’之阻抗值,以提高調整後電源VA的電壓。在一實施例中,作為提供給可調阻抗匹配電路10’的偏壓,第二輸入電源VI2的電壓可小於1V,在一實施例中,第二輸入電源VI2的電壓可小於0.5V。
第13圖顯示本發明之多輸入源能量擷取系統及其電源轉換裝置之又一實施例的示意圖。本實施例的電源轉換裝置100’與第12圖的電源轉換裝置100”相似,其差別在於,可調阻抗匹配電路10”可不受阻抗控制訊號VB的控制,而以第二輸入電源VI2控制可調阻抗匹配電路10”之阻抗值,換言之,轉換控制電路50”可省略阻抗控制訊號VB,其中轉換控制電路50”的其他功能可對應於前述其他實施例中(例如第3A圖)的轉換控制電路50。
第14圖顯示本發明之多輸入源能量擷取系統及其電源轉換裝置之再一實施例的示意圖。第14圖的電源轉換裝置100”與第13圖的電源轉換裝置100”相似,其差別在於,第14圖的電源轉換裝置100”中,可進一步省略第一開關電路與第二開關電路。具體而言,本實施例中,電源轉換裝置100”中,第一能量擷取器擷取第一能量而提供第一輸入電源VI1,第二能量擷取器擷取第二能量而提供第二輸入電源,其中第一與第二能量擷取器及分別對應的第一與第二能量可參考前述第3A圖的相關敘述,在此不予重複。 本實施例中,電源轉換裝置100”包含可調阻抗匹配電路10”、轉換控制電路50”以及電源轉換電路40。
在第13與14圖的實施例中,與第12圖的實施例相似,可藉由第二輸入電源VI2來提供適當的偏壓(例如藉由第二輸入電源VI2的電壓)給可調阻抗匹配電路10’,以控制可調阻抗匹配電路10’之阻抗值,以提高調整後電源VA的電壓(較佳為最大化)。
請繼續參閱第14圖,可調阻抗匹配電路10”根據第一輸入電源VI1而於第一節點N1產生調整後電源VA,其中第二輸入電源VI2控制可調阻抗匹配電路10”之阻抗值,以最大化調整後電源VA的電壓。電源轉換電路40根據調整後電源VA而產生輸出電源VO。在一具體的實施例中,電源轉換電路40轉換調整後電源VA而產生輸出電源VO。轉換控制電路50”用以產生轉換控制訊號VCTL以控制電源轉換電路40,使得調整後電源VA大致上控制在對應的最大功率點。實際上,當調整後電源VA大致上控制在對應的最大功率點時,一般而言,也意謂著第一輸入電源VI1大致上控制在對應的最大功率點。
第15圖顯示本發明之電源轉換裝置中,可調阻抗匹配電路之另一具體實施例的示意圖。第15圖的電源轉換裝置100”與可調阻抗匹配電路10”可與第13及14圖的實施例相對應。如第15圖所示,本實施例中,可調阻抗匹配電路10”的可變電容器11根據第二輸入電源VI2而類比且連續地調整可變電容器11的電容值,藉此類比且連續地調整可調阻抗匹配電路10的阻抗值。在一具體實施例中,可變電容器11是根據第二輸入電源VI2的電壓而類比且連續地調整可變電容器11的電容值。
第16圖顯示本發明之電源轉換裝置中,可調阻抗匹配電路之又一具體實施例的示意圖。第16圖的電源轉換裝置100’與可調阻抗匹配電路 10’可與第12圖的實施例相對應。如第16圖所示,本實施例中,可調阻抗匹配電路10’的可變電容器11可同時根據阻抗控制訊號VB及/或第二輸入電源VI2而類比且連續地調整可變電容器11的電容值,藉此類比且連續地調整可調阻抗匹配電路10的阻抗值。在一具體實施例中,可變電容器11是根據第二輸入電源VI2的電壓而類比且連續地調整可變電容器11的電容值。
以上已針對較佳實施例來說明本發明,唯以上所述者,僅係為使熟悉本技術者易於了解本發明的內容而已,並非用來限定本發明之權利範圍。所說明之各個實施例,並不限於單獨應用,亦可以組合應用,舉例而言,兩個或以上之實施例可以組合運用,而一實施例中之部分組成亦可用以取代另一實施例中對應之組成部件。此外,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,舉例而言,本發明所稱「根據某訊號進行處理或運算或產生某輸出結果」,不限於根據該訊號的本身,亦包含於必要時,將該訊號進行電壓電流轉換、電流電壓轉換、及/或比例轉換等,之後根據轉換後的訊號進行處理或運算產生某輸出結果。由此可知,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,其組合方式甚多,在此不一一列舉說明。因此,本發明的範圍應涵蓋上述及其他所有等效變化。
10                            可調阻抗匹配電路 100                          電源轉換裝置 20                            第一開關電路 200, 300                  能量擷取器 3A                           多輸入源能量擷取系統 30                            第二開關電路 40                            電源轉換電路 50                            轉換控制電路 N1                           第一節點 NB                           總線節點 VA                          調整後電源 VB                           阻抗控制訊號 VBUS                      總線電源 VCTL                      轉換控制訊號 VI1                          第一輸入電源 VI2                          第二輸入電源

Claims (28)

  1. 一種電源轉換裝置,耦接於一第一能量擷取器與一第二能量擷取器,其中該第一能量擷取器擷取一第一能量而提供一第一輸入電源,該第二能量擷取器擷取一第二能量而提供一第二輸入電源;該電源轉換裝置包含:一可調阻抗匹配電路,根據該第一輸入電源而於第一節點產生一調整後電源;一第一開關電路,耦接於該第一節點與一總線節點之間;一第二開關電路,耦接於該第二輸入電源與該總線節點之間;一轉換控制電路,用以根據該調整後電源的電壓及/或該第二輸入電源的電壓而控制該第一開關電路與該第二開關電路,以選擇導通該調整後電源或該第二輸入電源其中之一,於該總線節點產生一總線電源,且該轉換控制電路產生一阻抗控制訊號,用以調整該可調阻抗匹配電路之一阻抗值,以最大化該調整後電源的電壓;以及一電源轉換電路,轉換該總線電源而產生一輸出電源。
  2. 如申請專利範圍第1項所述之電源轉換裝置,其中該轉換控制電路根據以下方式之一而產生該總線電源:(1)比較該調整後電源的電壓與該第二輸入電源的電壓,以選擇該調整後電源與該第二輸入電源中,其電壓為最高者作為該總線電源;或者 (2)比較該第二輸入電源的電壓與第一預設電壓,當該第二輸入電源的電壓高於該第一預設電壓時,選擇導通該第二輸入電源作為該總線電源。
  3. 如申請專利範圍第1項所述之電源轉換裝置,其中該轉換控制電路根據一第一感測訊號而產生一轉換控制訊號,以控制該電源轉換電路,使得該第一輸入電源或該第二輸入電源大致上控制在各自對應的最大功率點;其中該第一感測訊號相關於以下至少之一:(1)該調整後電源的電壓;(2)該第二輸入電源的電壓;或者(3)該總線電源的電壓。
  4. 如申請專利範圍第3項所述之電源轉換裝置,其中該轉換控制訊號控制該電源轉換電路的輸出功率,使得該第一感測訊號不低於一第二預設電壓,其中該第二預設電壓相關於對應之該第一輸入電源的最大功率點或該第二輸入電源的最大功率點。
  5. 如申請專利範圍第4項所述之電源轉換裝置,其中該轉換控制電路包括:一取樣維持電路,用以於選擇該調整後電源為該總線電源時,取樣並維持該調整後電源的開路電壓的分壓,以作為該第二預設電壓;或者於選擇該第二輸入電源為該總線電源時,取樣並維持該第二輸入電源的開路電壓的分壓,以作為該第二預設電壓。
  6. 如申請專利範圍第1項所述之電源轉換裝置,其中該第一輸入電源具有交流形式;其中該電源轉換裝置更包括一整流電路,其中該整流電路包括至少一整流元件,其中該整流電路設置為以下之一:(1)該整流元件耦接於該可調阻抗匹配電路的一輸出端與該第一節點之間,用以將可調阻抗匹配電路的一輸出訊號整流,而於該第一節點產生該調整後電源;或者(2)該整流元件耦接於該第一節點與該總線節點之間,用以將該調整後電源整流,而於該總線節點產生該總線電源;其中該第一開關電路包括該整流元件,該整流元件更用以控制是否導通該調整後電源作為該總線電源。
  7. 如申請專利範圍第6項所述之電源轉換裝置,其中該整流元件為一整流二極體。
  8. 如申請專利範圍第1項所述之電源轉換裝置,其中該可調阻抗匹配電路包括一可變電容器,用以根據該阻抗控制訊號而類比且連續地調整該可變電容器的電容值,藉此類比且連續地調整該可調阻抗匹配電路的該阻抗值。
  9. 如申請專利範圍第2項所述之電源轉換裝置,其中該第二開關電路包括一路徑開關,用以控制該第二輸入電源與該總線電源的導通路徑,該轉換控制電路包括第一比較電路,用以比較該第二輸入電源的電壓與該第一預設電壓而產生第一比較結果,該轉換控制電路根據該第一比較結果而控制該路徑開關是否導通該第二輸入電源作為該總線電源。
  10. 如申請專利範圍第9項所述之電源轉換裝置,其中該轉換控制電路更根據該第一比較結果而決定是否致能該阻抗控制訊號,其中當該 第二輸入電源的電壓低於該第一預設電壓時,該轉換控制電路致能該阻抗控制訊號。
  11. 如申請專利範圍第3項所述之電源轉換裝置,其中該轉換控制電路包括:一偏壓感測電路,耦接於該總線節點與一感測節點之間,用以根據該總線電源的電壓而於該感測節點產生一第二感測訊號;一箝位電路,耦接於該感測節點,用以箝位該第二感測訊號,使得該第二感測訊號不大於一箝位電壓;以及一第二比較電路,用以根據該第二感測訊號與一第三預設電壓之差值而產生該轉換控制訊號。
  12. 如申請專利範圍第11項所述之電源轉換裝置,其中該偏壓感測電路包括:一偏壓電阻,用以提供一偏壓電流;以及一感測電容器,與該偏壓電阻並聯耦接於該總線電源與該感測節點之間。
  13. 如申請專利範圍第12項所述之電源轉換裝置,其中該偏壓電阻為該感測電容器之一寄生電阻。
  14. 如申請專利範圍第11項所述之電源轉換裝置,其中該箝位電路包括一箝位二極體,其中該箝位電壓相關於該箝位二極體之一順向導通電壓。
  15. 如申請專利範圍第11項所述之電源轉換裝置,其中該轉換控制電路更根據該轉換控制訊號而產生該阻抗控制訊號。
  16. 如申請專利範圍第2項所述之電源轉換裝置,其中該轉換控制電路週期性地根據該調整後電源的電壓與該第二輸入電源的電壓的比較 結果,或週期性地根據該該第二輸入電源的電壓與該第一預設電壓的比較結果而選擇導通該調整後電源或該第二輸入電源為該總線電源。
  17. 如申請專利範圍第11項所述之電源轉換裝置,其中該電源轉換電路設置為以下之一:(1)一升壓型切換式電源轉換電路;(2)一降壓型切換式電源轉換電路;(3)一升降壓型切換式電源轉換電路;(4)一線性電源轉換電路;或者(5)一充電電路。
  18. 如申請專利範圍第1項所述之電源轉換裝置,其中該第二輸入電源更耦接於該可調阻抗匹配電路,用以控制該可調阻抗匹配電路之該阻抗值,以提高該調整後電源的電壓。
  19. 一種多輸入源能量擷取系統,包含:如申請專利範圍第1至18項中任一項所述之電源轉換裝置;該第一能量擷取器;以及該第二能量擷取器。
  20. 一種用於控制一多輸入源能量擷取系統的方法,其中該多輸入源能量擷取系統包括一電源轉換裝置,一第一能量擷取器以及一第二能量擷取器,其中該第一能量擷取器擷取一第一能量而提供一第一輸入電源,該第二能量擷取器擷取一第二能量而提供一第二輸入電源;該電源轉換裝置包括:一可調阻抗匹配電路,根據該第一輸入電源而於第一節點產生一調整後電源;一第一開關電路,耦接於該第一節點與一總線節點之間;一第二開關電路,耦接於該第二輸入電源與該總線節點之間;以及一電源轉換電路,轉換該總線節點上的一總線電源而產生一輸出電源;該方法包含: 根據該調整後電源的電壓及/或該第二輸入電源的電壓而控制該第一開關電路與該第二開關電路,以選擇導通該調整後電源或該第二輸入電源其中之一,於該總線節點產生該總線電源;以及調整該可調阻抗匹配電路之一阻抗值,以最大化該調整後電源的電壓。
  21. 如申請專利範圍第20項所述之方法,其中產生該總線電源的步驟包括以下之一:(1)比較該調整後電源的電壓與該第二輸入電源的電壓,以選擇該調整後電源與該第二輸入電源中,其電壓為最高者作為該總線電源;或者(2)比較該第二輸入電源的電壓與第一預設電壓,當該第二輸入電源的電壓高於該第一預設電壓時,選擇導通該第二輸入電源作為該總線電源。
  22. 如申請專利範圍第20項所述之方法,更包含:根據一第一感測訊號而控制該電源轉換電路,使得該第一輸入電源或該第二輸入電源大致上控制在各自對應的最大功率點;其中該第一感測訊號相關於以下至少之一:(1)該調整後電源的電壓;(2)該第二輸入電源的電壓;或者(3)該總線電源的電壓。
  23. 如申請專利範圍第22項所述之方法,其中控制該電源轉換電路的步驟包括: 控制該電源轉換電路的輸出功率,使得該第一感測訊號不低於一第二預設電壓,其中該第二預設電壓相關於對應之該第一輸入電源的最大功率點或該第二輸入電源的最大功率點。
  24. 如申請專利範圍第20項所述之方法,其中該第二輸入電源更用以控制該可調阻抗匹配電路之該阻抗值,以提高該調整後電源的電壓。
  25. 一種電源轉換裝置,其中一第一能量擷取器擷取一第一能量而提供一第一輸入電源,一第二能量擷取器擷取一第二能量而提供一第二輸入電源;該電源轉換裝置包含:一可調阻抗匹配電路,根據該第一輸入電源而於第一節點產生一調整後電源,其中該第二輸入電源耦接於該可調阻抗匹配電路,該第二輸入電源用以控制該可調阻抗匹配電路之一阻抗值,以最大化該調整後電源的電壓;一電源轉換電路,根據該調整後電源而產生一輸出電源;以及一轉換控制電路,用以產生一轉換控制訊號,以控制該電源轉換電路,使得該調整後電源大致上控制在對應的最大功率點。
  26. 如申請專利範圍第25項所述之電源轉換裝置,該第一能量擷取器是一射頻天線或是一電磁感應裝置,該第一能量是無線射頻能量,該第一輸入電源為交流形式;且,第二能量擷取器為一光能電池,用以擷取一光能量。
  27. 如申請專利範圍第25項所述之電源轉換裝置,更包含:一第一開關電路,耦接於該第一節點與一總線節點之間;一第二開關電路,耦接於該第二輸入電源與該總線節點之間;其中該轉換控制電路根據該調整後電源的電壓及/或該第二輸入電源的電壓而控制該第一開關電路與該第二開關電路,以選擇導通該 調整後電源或該第二輸入電源其中之一,於該總線節點產生一總線電源;其中該電源轉換電路轉換該總線電源而產生該輸出電源。
  28. 如申請專利範圍第27項所述之電源轉換裝置,其中該轉換控制電路更產生一阻抗控制訊號,用以調整該可調阻抗匹配電路之該阻抗值,以最大化該調整後電源的電壓。
TW107146331A 2018-06-13 2018-12-21 多輸入源能量擷取系統及其電源轉換裝置與方法 TWI682616B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/414,811 US10819209B2 (en) 2018-06-13 2019-05-17 Multi-source energy harvester system and power conversion apparatus and method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862684710P 2018-06-13 2018-06-13
US62/684710 2018-06-13

Publications (2)

Publication Number Publication Date
TW202002487A TW202002487A (zh) 2020-01-01
TWI682616B true TWI682616B (zh) 2020-01-11

Family

ID=68849287

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107146331A TWI682616B (zh) 2018-06-13 2018-12-21 多輸入源能量擷取系統及其電源轉換裝置與方法

Country Status (2)

Country Link
CN (1) CN110601513B (zh)
TW (1) TWI682616B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111490716B (zh) * 2020-04-30 2021-09-03 浙江师范大学 一种光伏电池供电装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101647172A (zh) * 2007-02-06 2010-02-10 艾克斯兰能源技术公司 具有功率提取器的多电源多负载***
US20160211742A1 (en) * 2015-01-21 2016-07-21 Khalifa University of Science, Technology & Research (KUSTAR) Autonomous Multi-Source Energy Harvesting System
TW201631888A (zh) * 2015-02-26 2016-09-01 立錡科技股份有限公司 諧振式無線電源接收電路及其控制方法
TW201723718A (zh) * 2015-12-21 2017-07-01 新唐科技股份有限公司 用於能量採集設備之功率最佳化裝置及方法
US20170201099A1 (en) * 2014-06-17 2017-07-13 Arm Limited Harvesting power from ambient energy in an electronic device
US9806527B1 (en) * 2011-06-01 2017-10-31 Banpil Photonics, Inc. Integrated electronics for perpetual energy harvesting

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5429050B2 (ja) * 2010-05-27 2014-02-26 株式会社日本自動車部品総合研究所 電力変換装置
JP6414894B2 (ja) * 2015-06-29 2018-10-31 ニチコン株式会社 蓄電システムに備えられた電源装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101647172A (zh) * 2007-02-06 2010-02-10 艾克斯兰能源技术公司 具有功率提取器的多电源多负载***
US9806527B1 (en) * 2011-06-01 2017-10-31 Banpil Photonics, Inc. Integrated electronics for perpetual energy harvesting
US20170201099A1 (en) * 2014-06-17 2017-07-13 Arm Limited Harvesting power from ambient energy in an electronic device
US20160211742A1 (en) * 2015-01-21 2016-07-21 Khalifa University of Science, Technology & Research (KUSTAR) Autonomous Multi-Source Energy Harvesting System
TW201631888A (zh) * 2015-02-26 2016-09-01 立錡科技股份有限公司 諧振式無線電源接收電路及其控制方法
TWI626827B (zh) * 2015-02-26 2018-06-11 立錡科技股份有限公司 諧振式無線電源接收電路及其控制方法
TW201723718A (zh) * 2015-12-21 2017-07-01 新唐科技股份有限公司 用於能量採集設備之功率最佳化裝置及方法

Also Published As

Publication number Publication date
CN110601513A (zh) 2019-12-20
TW202002487A (zh) 2020-01-01
CN110601513B (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
US9853505B2 (en) Resonant wireless power receiver circuit and control circuit and wireless power conversion method thereof
Jotham Jeremy et al. Non-isolated conventional DC-DC converter comparison for a photovoltaic system: A review
CN106852182B (zh) 具有固定调谐和功率限制的可变距离无线功率传输***
US20130121033A1 (en) Dc-dc converter circuit using llc circuit in the region of voltage gain above unity
US9680323B2 (en) Single inductor DC-DC converter with regulated output and energy harvesting system
CN108141047B (zh) 无线充电接收器
US20110089886A1 (en) Maximum Power Point Tracking Bidirectional Charge Controllers for Photovoltaic Systems
US20200185949A1 (en) Battery charging circuit, control circuit and associated control method
JP2010041891A (ja) 充電器
TW201020712A (en) Frequency-varied incremental conductance maximum power point tracking controller and algorithm for PV converter
US20080122405A1 (en) Constant voltage and constant current power source
TWI682616B (zh) 多輸入源能量擷取系統及其電源轉換裝置與方法
US10819209B2 (en) Multi-source energy harvester system and power conversion apparatus and method thereof
US20200083733A1 (en) Multi-Channel Intelligent Charger
US10958079B2 (en) Energy harvester with multiple-input multiple-output switched-capacitor (MIMOSC) circuitry
Kim et al. A single-input four-output (SIFO) AC–DC rectifying system for vibration energy harvesting
Mao et al. A single-stage current-mode active rectifier with accurate output-current regulation for IoT
JP6307334B2 (ja) 太陽電池制御装置
US20190148948A1 (en) Photovoltaic power circuit and resonant circuit thereof
Yue et al. A bias-flip rectifier with duty-cycle-based MPPT for piezoelectric energy harvesting
US10642301B2 (en) Power conversion apparatus for tracking maximum power point and control method thereof
KR102136982B1 (ko) 양방향 벅 컨버터를 이용한 태양광 가로등 장치 및 제어방법
JP5062386B1 (ja) 電力変換装置
US11340645B2 (en) Power conversion apparatus for tracking maximum power point and control method thereof
Kimura et al. A Wireless Sensor Node Driving System with Bridgeless Bipolar Boost Rectifier Using Thermoelectric Energy Harvesting