TWI679783B - Sensing components and pulse measuring method - Google Patents

Sensing components and pulse measuring method Download PDF

Info

Publication number
TWI679783B
TWI679783B TW108101871A TW108101871A TWI679783B TW I679783 B TWI679783 B TW I679783B TW 108101871 A TW108101871 A TW 108101871A TW 108101871 A TW108101871 A TW 108101871A TW I679783 B TWI679783 B TW I679783B
Authority
TW
Taiwan
Prior art keywords
display
pulse
pressure sensor
signal
piezoelectric
Prior art date
Application number
TW108101871A
Other languages
Chinese (zh)
Other versions
TW202010155A (en
Inventor
盧文哲
Wen Je Lu
劉育榮
Yu Jung Liu
Original Assignee
友達光電股份有限公司
Au Optronics Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司, Au Optronics Corporation filed Critical 友達光電股份有限公司
Priority to CN201910271675.2A priority Critical patent/CN109965854B/en
Priority to US16/513,870 priority patent/US11262863B2/en
Application granted granted Critical
Publication of TWI679783B publication Critical patent/TWI679783B/en
Publication of TW202010155A publication Critical patent/TW202010155A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02444Details of sensor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/043Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves
    • G06F3/0436Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves in which generating transducers and detecting transducers are attached to a single acoustic waves transmission substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04106Multi-sensing digitiser, i.e. digitiser using at least two different sensing technologies simultaneously or alternatively, e.g. for detecting pen and finger, for saving power or for improving position detection

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Acoustics & Sound (AREA)
  • Medical Informatics (AREA)
  • Physiology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一種感測部件包含壓電式壓力感測器。壓電式壓力感測器包含壓電材料層、薄膜電晶體陣列和感測電極。壓電材料層用以量測複數個位置的脈搏以產生相應的複數個脈象訊號。薄膜電晶體陣列耦接壓電材料層。薄膜電晶體陣列包含複數個電晶體。電晶體包含第一端、第二端和控制端。第一端用於接收脈象訊號的其中一者。第二端耦接於資料傳輸線,用於依據脈象訊號的其中該者輸出第一偵測訊號。控制端用於接收時脈訊號。感測電極耦接壓電材料層,用以接收脈象訊號的其中另一者以輸出第二偵測訊號。 A sensing component includes a piezoelectric pressure sensor. The piezoelectric pressure sensor includes a layer of piezoelectric material, a thin film transistor array, and a sensing electrode. The piezoelectric material layer is used to measure pulses at a plurality of positions to generate corresponding pulse signals. The thin film transistor array is coupled to a piezoelectric material layer. The thin-film transistor array includes a plurality of transistors. The transistor includes a first terminal, a second terminal, and a control terminal. The first end is used to receive one of the pulse signals. The second end is coupled to the data transmission line, and is configured to output the first detection signal according to the pulse signal. The control end is used to receive the clock signal. The sensing electrode is coupled to the piezoelectric material layer, and is used for receiving the other one of the pulse signals to output a second detection signal.

Description

感測部件及脈象量測方法 Sensing component and pulse measurement method

本揭示內容係關於一種感測部件及脈象量測方法,且特別是有關於一種具有補償功能的感測部件及脈象量測方法。 The present disclosure relates to a sensing component and a pulse measurement method, and more particularly, to a sensing component and a pulse measurement method having a compensation function.

透過把脈取得病人的脈象,並根據脈象推測人體生理、病理狀況是中醫進行診察常用的方法。 Obtaining the patient's pulse pattern by taking the pulse, and inferring the physiological and pathological conditions of the human body based on the pulse pattern are common methods used in TCM diagnosis.

因此,如何改善脈象量測的方法以提高脈象量測結果的精準度是本領域重要的課題之一。 Therefore, how to improve the pulse measurement method to improve the accuracy of the pulse measurement results is one of the important topics in the field.

本揭示內容之一態樣係關於一種感測部件。感測部件包含壓電式壓力感測器。壓電式壓力感測器包含壓電材料層、薄膜電晶體陣列和感測電極。壓電材料層用以量測複數個位置的脈搏以產生相應的複數個脈象訊號。薄膜電晶體陣列耦接壓電材料層。薄膜電晶體陣列包含複數個電晶體。電晶體包含第一端、第二端和控制端。第一端用於接收脈象訊號的其中一者。第二端耦接於資料傳輸線,用於依據脈象訊號的其中該 者輸出第一偵測訊號。控制端用於接收時脈訊號。感測電極耦接壓電材料層,用以接收脈象訊號的其中另一者以輸出第二偵測訊號。 One aspect of the present disclosure relates to a sensing component. The sensing component includes a piezoelectric pressure sensor. The piezoelectric pressure sensor includes a layer of piezoelectric material, a thin film transistor array, and a sensing electrode. The piezoelectric material layer is used to measure pulses at a plurality of positions to generate corresponding pulse signals. The thin film transistor array is coupled to a piezoelectric material layer. The thin-film transistor array includes a plurality of transistors. The transistor includes a first terminal, a second terminal, and a control terminal. The first end is used to receive one of the pulse signals. The second end is coupled to the data transmission line, and is used for The person outputs a first detection signal. The control end is used to receive the clock signal. The sensing electrode is coupled to the piezoelectric material layer, and is used for receiving the other one of the pulse signals to output a second detection signal.

本揭示內容之另一態樣係關於一種脈象量測方法。脈象量測方法包含由壓電式壓力感測器中壓電材料層量測複數個位置的脈搏以產生相應的複數個脈象訊號;由壓電式壓力感測器中薄膜電晶體陣列中複數個電晶體的第一端分別接收相應的脈象訊號;由電晶體的控制端根據時脈訊號以透過電晶體的第二端輸出第一偵測訊號;以及由壓電式壓力感測器中至少一感測電極接收脈象訊號相應之一者以輸出第二偵測訊號。 Another aspect of the present disclosure relates to a pulse measurement method. The pulse measurement method includes measuring pulses at a plurality of positions from a piezoelectric material layer in a piezoelectric pressure sensor to generate corresponding pulse signals; and a plurality of thin film transistor arrays in a piezoelectric pressure sensor. The first end of the transistor receives the corresponding pulse signal; the control end of the transistor outputs the first detection signal through the second end of the transistor according to the clock signal; and at least one of the piezoelectric pressure sensors The sensing electrode receives a corresponding one of the pulse signals to output a second detection signal.

100‧‧‧感測部件 100‧‧‧sensing component

120‧‧‧壓電式壓力感測器 120‧‧‧ Piezoelectric pressure sensor

122、P11~Pmn‧‧‧薄膜電晶體陣列 122 、 P11 ~ Pmn‧‧‧Thin-film transistor array

124、124a~124d‧‧‧壓電材料層 124、124a ~ 124d‧‧‧Piezoelectric material layer

140‧‧‧電容式壓力感測器 140‧‧‧capacitive pressure sensor

200‧‧‧顯示器 200‧‧‧ Display

300‧‧‧處理器 300‧‧‧ processor

500‧‧‧脈象量測方法 500‧‧‧pulse measurement method

S510~S580‧‧‧操作 S510 ~ S580‧‧‧‧operation

900‧‧‧手腕 900‧‧‧ wrist

A1~A3‧‧‧區域 A1 ~ A3‧‧‧area

CLK、CLK1、CLK2、CLK3~CLKN‧‧‧時脈訊號 CLK, CLK1, CLK2, CLK3 ~ CLKN‧‧‧ clock signal

D1、D2、D11‧‧‧偵測訊號 D1, D2, D11‧‧‧ detection signals

Da、Dd、DATA‧‧‧資料訊號 Da, Dd, DATA‧‧‧ data signal

VSin、VSout‧‧‧靜態壓力訊號 VSin, VSout‧‧‧static pressure signal

Cgd、Cgs‧‧‧耦合電容 Cgd, Cgs‧‧‧Coupling capacitor

U11、U12、U13、U21、U23、U31、U32、U33‧‧‧偵測單元 U11, U12, U13, U21, U23, U31, U32, U33‧‧‧ detection units

T11、T12、T13、T21、T23、T31、T32、T33‧‧‧電晶體 T11, T12, T13, T21, T23, T31, T32, T33‧‧‧ Transistors

ITO、ITO11~ITOmn、T11_ITO‧‧‧感測電極 ITO, ITO11 ~ ITOmn, T11_ITO‧‧‧Sense electrode

LC1~LCN‧‧‧時脈傳輸線 LC1 ~ LCN‧‧‧Clock Transmission Line

LD1-1、LD1-2、LD1-3、LD1-1[1,1]~LD1-1[1,n]、LD1-2[1,1]~LD1-2[1,n]、LD1-3[1,1]~LD1-3[1,n]、LD2、LD2[1,1]~LD2[m,n]‧‧‧資料傳輸線 LD1-1, LD1-2, LD1-3, LD1-1 [1,1] ~ LD1-1 [1, n], LD1-2 [1,1] ~ LD1-2 [1, n], LD1- 3 [1,1] ~ LD1-3 [1, n], LD2, LD2 [1,1] ~ LD2 [m, n] ‧‧‧ data transmission line

Z1~Z3‧‧‧顯示區塊 Z1 ~ Z3‧‧‧‧Display block

X1~X8、Y0‧‧‧顯示區域 X1 ~ X8, Y0‧‧‧ display area

h1‧‧‧振幅 h1‧‧‧ amplitude

第1A圖、第1B圖係依據本揭示內容之部分實施例所繪示的一種感測部件的使用情境示意圖。 FIG. 1A and FIG. 1B are schematic diagrams of a usage scenario of a sensing component according to some embodiments of the present disclosure.

第2圖係依據本揭示內容之部分實施例所繪示的一種脈象量測裝置的示意圖。 FIG. 2 is a schematic diagram of a pulse measurement device according to some embodiments of the present disclosure.

第3A圖係根據本揭示內容之部分實施例繪示的一種壓電式壓力感測器的示意圖。 FIG. 3A is a schematic diagram of a piezoelectric pressure sensor according to some embodiments of the present disclosure.

第3B圖係根據本揭示內容之部分實施例繪示的一種時脈訊號的示意圖。第3C圖係根據本揭示內容之部分實施例繪示的一種偵測單元的示意圖。 FIG. 3B is a schematic diagram of a clock signal according to some embodiments of the present disclosure. FIG. 3C is a schematic diagram of a detection unit according to some embodiments of the present disclosure.

第4A圖係依據本揭示內容之其他部分實施例所繪示的一 種壓電式壓力感測器的示意圖。 FIG. 4A is a schematic drawing according to other embodiments of the present disclosure. A schematic diagram of a piezoelectric pressure sensor.

第4B圖係依據本揭示內容之其他部分實施例所繪示的另一種壓電式壓力感測器的示意圖。 FIG. 4B is a schematic diagram of another piezoelectric pressure sensor according to other embodiments of the present disclosure.

第5圖係根據本揭示內容之部分實施例繪示一種脈象量測方法的流程圖。 FIG. 5 is a flowchart illustrating a pulse measurement method according to some embodiments of the present disclosure.

第6圖係根據本揭示內容之部分實施例繪示的顯示器的顯示畫面的示意圖。 FIG. 6 is a schematic diagram of a display screen of a display according to some embodiments of the present disclosure.

下文係舉實施例配合所附圖式作詳細說明,但所提供之實施例並非用以限制本揭示所涵蓋的範圍,而結構運作之描述非用以限制其執行之順序,任何由元件重新組合之結構,所產生具有均等功效的裝置,皆為本揭示所涵蓋的範圍。另外,圖式僅以說明為目的,並未依照原尺寸作圖。為使便於理解,下述說明中相同元件或相似元件將以相同之符號標示來說明。 The following is a detailed description with examples and the accompanying drawings, but the examples provided are not intended to limit the scope covered by this disclosure, and the description of the structure operation is not intended to limit the order of its execution, and any recombination of components The structure of the device and the device with the same effect are all covered by the present disclosure. In addition, the drawings are for illustrative purposes only, and are not drawn to the original dimensions. In order to facilitate understanding, the same elements or similar elements in the following description will be described with the same symbols.

在全篇說明書與申請專利範圍所使用之用詞(terms),除有特別註明外,通常具有每個用詞使用在此領域中、在此揭示之內容中與特殊內容中的平常意義。 The terms used throughout the specification and the scope of patent applications, unless otherwise specified, usually have the ordinary meaning of each term used in this field, in the content disclosed herein, and in special content.

關於本文中所使用之「第一」、「第二」、「第三」...等,並非特別指稱次序或順位的意思,亦非用以限定本揭示,其僅僅是為了區別以相同技術用語描述的元件或操作而已。 Regarding the "first", "second", "third", etc. used in this article, they do not specifically refer to the order or order, nor are they used to limit the present disclosure. They are only used to distinguish the same technology Elements or operations described by words.

另外,關於本文中所使用之「耦接」或「連接」, 均可指二或多個元件相互直接作實體或電性接觸,或是相互間接作實體或電性接觸,亦可指二或多個元件相互操作或動作。 In addition, with regard to "coupling" or "connection" used in this article, Both can refer to two or more components making direct physical or electrical contact with each other, or indirect physical or electrical contact with each other, or two or more components to operate or act on each other.

請參考第1A圖和第1B圖。第1A圖和第1B圖係依據本揭示內容之部分實施例所繪示的一種脈象量測裝置中感測部件100的使用情境示意圖。如第1A圖和第1B圖分別所示,操作本揭示內容之脈象量測裝置時,脈象量測裝置中的一或多個感測部件100係置於手腕900上以量測手腕中橈動脈的脈象。舉例來說,感測部件100可為一個、二個或三個。 Please refer to Figures 1A and 1B. FIG. 1A and FIG. 1B are schematic diagrams of a usage scenario of the sensing component 100 in a pulse measurement device according to some embodiments of the present disclosure. As shown in FIG. 1A and FIG. 1B, when the pulse measurement device of the present disclosure is operated, one or more sensing components 100 in the pulse measurement device are placed on the wrist 900 to measure the radial radial artery of the wrist. Pulse. For example, the sensing components 100 may be one, two, or three.

在部分實施例中,如第1A圖所示,感測部件100包含壓電式壓力感測器120和電容式壓力感測器140。壓電式壓力感測器120包含壓電材料層124和薄膜電晶體陣列122。結構上,電容式壓力感測器140耦接壓電式壓力感測器120中的壓電材料層124。壓電材料層124耦接薄膜電晶體陣列122。薄膜電晶體陣列122置於手腕900上。在部分實施例中,壓電材料層124可由聚偏二氟乙烯(PVDF)據以實施,但本揭示文件並不以此為限,於其他實施例中,壓電材料層124也可以由聚氟乙烯、聚氯乙烯、聚-γ-甲基-L-穀氨酸酯和尼龍-11或具相等性的其他壓電材料加以實現。 In some embodiments, as shown in FIG. 1A, the sensing component 100 includes a piezoelectric pressure sensor 120 and a capacitive pressure sensor 140. The piezoelectric pressure sensor 120 includes a piezoelectric material layer 124 and a thin film transistor array 122. Structurally, the capacitive pressure sensor 140 is coupled to the piezoelectric material layer 124 in the piezoelectric pressure sensor 120. The piezoelectric material layer 124 is coupled to the thin film transistor array 122. The thin film transistor array 122 is placed on the wrist 900. In some embodiments, the piezoelectric material layer 124 may be implemented based on polyvinylidene fluoride (PVDF), but this disclosure is not limited thereto. In other embodiments, the piezoelectric material layer 124 may also be composed of a polymer material. Fluorinated ethylene, polyvinyl chloride, poly-γ-methyl-L-glutamate, and nylon-11 or other piezoelectric materials with equivalent properties are implemented.

操作上,在進行脈象量測時,脈象量測裝置的三個壓頭(圖中未示)分別位於第1A圖和第1B圖中區域A1、A2和A3的上方,用以透過脈象量測裝置的感測部件100分別施加一浮、中或沉的力道於手腕900上尺的位置,施加一浮、中或沉的力道於手腕900上關的位置,及/或施加一浮、中或沉的力道於手腕900上寸的位置,以模擬中醫師的把脈手法。當脈 象量測裝置的壓頭施加壓力於區域A1、A2或A3的位置時,脈象量測裝置的感測部件100中的電容式壓力感測器140用以量測相應位置(尺、關或寸)及相應力道(浮、中或沉)的靜態壓力值。而脈象量測裝置的感測部件100中的壓電式壓力感測器120用以量測相應位置(尺、關或寸)及相應力道(浮、中或沉)的脈搏的脈象。 Operationally, when performing pulse measurement, the three indenters (not shown) of the pulse measurement device are located above the areas A1, A2, and A3 in Figures 1A and 1B, respectively, for transmitting pulse measurements. The sensing component 100 of the device applies a floating, medium or heavy force to the position on the wrist 900, a floating, medium or heavy force to the position on the wrist 900, and / or applies a floating, medium or heavy force, respectively. Shen's strength is at the position of 900 inches on the wrist, in order to simulate the pulse manipulation of a traditional Chinese physician. When the pulse When the indenter of the image measuring device applies pressure to the position of the area A1, A2 or A3, the capacitive pressure sensor 140 in the sensing part 100 of the pulse measuring device is used to measure the corresponding position (foot, close or inch ) And the static pressure value of the corresponding force (floating, medium or sinking). The piezoelectric pressure sensor 120 in the sensing component 100 of the pulse measurement device is used to measure the pulse of the pulse at the corresponding position (foot, close or inch) and the corresponding force (floating, medium or sinking).

舉例來說,當壓頭施加力道於手腕900的區域A1(即,手腕尺處)時,電容式壓力感測器140對應於區域A1處所受到的壓力以量測壓頭施加的力道大小。又例如,當壓頭分別施加第一壓力、第二壓力和第三壓力的力道於手腕900的區域A1(即,手腕尺處)時,壓電式壓力感測器120分別量測對應於區域A1(手腕尺處)浮、中及沉的脈搏頻率及大小。 For example, when the indenter applies a force to the area A1 of the wrist 900 (ie, at the wrist ruler), the capacitive pressure sensor 140 corresponds to the pressure applied to the area A1 to measure the amount of force applied by the indenter. For another example, when the indenter applies the first pressure, the second pressure, and the third pressure to the area A1 of the wrist 900 (ie, at the wrist ruler), the piezoelectric pressure sensor 120 measures the areas corresponding to the areas. A1 (wrist scale) pulse frequency and magnitude of floating, middle and deep pulses.

值得注意的是,上述壓頭的數量、區域A1~A3的大小或位置僅為方便說明的示例,並非用以限制本案。本領域具通常知識者可根據實際需求設定不同數量或調整涵蓋面積的大小。 It is worth noting that the number of the above-mentioned indenters and the size or position of the areas A1 to A3 are merely examples for convenience of explanation, and are not intended to limit the case. Those skilled in the art can set different numbers or adjust the size of the coverage area according to actual needs.

請參考第2圖。第2圖係依據本揭示內容之部分實施例所繪示的一種脈象量測裝置的示意圖。如第2圖所示,在部分實施例中,脈象量測裝置包含感測部件100、顯示器200和處理器300。在其他部份實施例中,脈象量測裝置更包含一或多個壓頭(圖中未示)。結構上,處理器300電性耦接感測部件100、顯示器200和壓頭。具體而言,處理器300可透過軟性電路板(Flexible Printed Circuit,FPC)電性耦接感測部件100,並透過數據傳輸線電性耦接顯示器200。 Please refer to Figure 2. FIG. 2 is a schematic diagram of a pulse measurement device according to some embodiments of the present disclosure. As shown in FIG. 2, in some embodiments, the pulse measurement device includes a sensing component 100, a display 200, and a processor 300. In other embodiments, the pulse measurement device further includes one or more indenters (not shown). Structurally, the processor 300 is electrically coupled to the sensing component 100, the display 200, and the indenter. Specifically, the processor 300 may be electrically coupled to the sensing component 100 through a flexible printed circuit (FPC), and electrically coupled to the display 200 through a data transmission line.

實作上,處理器300可以是積體電路如微控制單元(micro controller)、中央處理器、微處理器(microprocessor)、數位訊號處理器(Digital Signal Processor,DSP)、特殊應用積體電路(application specific integrated circuit,ASIC)、複雜型可編程邏輯元件(Complex Programmable Logic Device,CPLD)或邏輯電路,用以進行運算或資料處理。在部分實施例中,顯示器可為人機介面,如:電腦、示波器等輸出裝置。 In practice, the processor 300 may be an integrated circuit such as a micro controller, a central processing unit, a microprocessor, a digital signal processor (DSP), and a special application integrated circuit ( application specific integrated circuit (ASIC), complex programmable logic device (Complex Programmable Logic Device, CPLD), or logic circuit for computing or data processing. In some embodiments, the display may be a human-machine interface, such as a computer, an oscilloscope and other output devices.

如第2圖所示,處理器300包含讀取電路(readout system)、類比數位訊號轉換器(Analog-to-Digital Converter,ADC)、現場可程式化閘陣列(Field-programmable gate array,FPGA)和靜態壓力電路(static pressure circuit)。結構上,感測部件100的壓電式壓力感測器120電性耦接讀取電路和現場可程式化閘陣列。類比數位訊號轉換器ADC耦接讀取電路和現場可程式化閘陣列。感測部件100的電容式壓力感測器140電性耦接靜態壓力電路。顯示器200電性耦接處理器300中的現場可程式化閘陣列和靜態壓力電路。 As shown in FIG. 2, the processor 300 includes a readout system, an analog-to-digital converter (ADC), and a field-programmable gate array (FPGA). And static pressure circuit. Structurally, the piezoelectric pressure sensor 120 of the sensing component 100 is electrically coupled to the reading circuit and the field programmable gate array. The analog digital signal converter ADC is coupled to the read circuit and the field programmable gate array. The capacitive pressure sensor 140 of the sensing component 100 is electrically coupled to the static pressure circuit. The display 200 is electrically coupled to a field programmable gate array and a static pressure circuit in the processor 300.

操作上,壓電式壓力感測器120用以自處理器300中的現場可程式化閘陣列接收時脈訊號CLK,量測相應位置的脈象後將偵測訊號D1、D2傳送至處理器300中的讀取電路。讀取電路將偵測訊號D1、D2放大及/或轉換後作為類比資料訊號Da傳送至類比數位訊號轉換器ADC。類比數位訊號轉換器ADC將類比資料訊號Da編碼轉換成數位資料訊號Dd後傳 送至現場可程式化閘陣列。現場可程式化閘陣列根據接收到的數位資料訊號Dd進行運算、資料處理後輸出顯示資料訊號DATA至顯示器200。 In operation, the piezoelectric pressure sensor 120 is used to receive the clock signal CLK from the on-site programmable gate array in the processor 300, measure the pulse at the corresponding position, and transmit the detection signals D1 and D2 to the processor 300. The read circuit in. The read circuit amplifies and / or converts the detection signals D1 and D2 and sends them to the analog digital signal converter ADC as an analog data signal Da. Analog digital signal converter ADC converts the analog data signal Da to digital data signal Dd and then transmits Send to the field programmable gate array. The field programmable gate array performs calculations according to the received digital data signal Dd, and outputs the display data signal DATA to the display 200 after data processing.

在部分實施例中,感測部件100中的電容式壓力感測器140用以取得靜態壓力訊號VSin,並透過處理器300中的靜態壓力電路傳送放大及/或校正後之靜態壓力訊號VSout至顯示器200。顯示器200用以接收處理器300的顯示資料訊號DATA和放大及/或校正後之靜態壓力訊號VSout以進行輸出顯示。此外,在其他部分實施例中,處理器300用以控制壓頭以施加不同力道於手腕900。 In some embodiments, the capacitive pressure sensor 140 in the sensing component 100 is used to obtain the static pressure signal VSin, and transmits the amplified and / or corrected static pressure signal VSout to the static pressure circuit in the processor 300 to Display 200. The display 200 is configured to receive the display data signal DATA of the processor 300 and the amplified and / or corrected static pressure signal VSout for output display. In addition, in other embodiments, the processor 300 is used to control the indenter to apply different forces to the wrist 900.

請參考第3A圖。第3A圖係根據本揭示內容之部分實施例繪示的壓電式壓力感測器120的示意圖。如第3A圖所示,壓電式壓力感測器120包含壓電材料層124、薄膜電晶體陣列122及感測電極ITO。薄膜電晶體陣列122包含八個偵測單元U11~U33。如圖所示,偵測單元U11~U33當中各自包含一個電晶體T11~T33。在部分實施例中,偵測單元U11~U33圍繞感測電極ITO設置。在其他部份實施例中,感測電極ITO可設置於薄膜電晶體陣列122中的任一位置。此外,雖然第3A圖中繪示八個偵測單元U11~U33和一個感測電極ITO,但其數量僅為方便說明起見之示例,並非用以限制本揭示內容。換言之,電晶體和感測電極的數量、設置方向、排列分佈僅為例示,本揭示內容並不以此為限。本領域具通常知識者可根據實際需求調整。 Please refer to Figure 3A. FIG. 3A is a schematic diagram of a piezoelectric pressure sensor 120 according to some embodiments of the present disclosure. As shown in FIG. 3A, the piezoelectric pressure sensor 120 includes a piezoelectric material layer 124, a thin-film transistor array 122, and a sensing electrode ITO. The thin film transistor array 122 includes eight detection units U11 to U33. As shown in the figure, each of the detection units U11 to U33 includes a transistor T11 to T33. In some embodiments, the detection units U11 to U33 are disposed around the sensing electrode ITO. In other embodiments, the sensing electrode ITO may be disposed at any position in the thin film transistor array 122. In addition, although the eight detection units U11 to U33 and one sensing electrode ITO are shown in FIG. 3A, the numbers are only examples for convenience of description, and are not intended to limit the present disclosure. In other words, the number, arrangement direction, and arrangement of the transistor and the sensing electrode are merely examples, and the present disclosure is not limited thereto. Those with ordinary knowledge in the field can adjust according to actual needs.

結構上,壓電材料層124覆蓋於薄膜電晶體陣列 122及感測電極ITO上方,且壓電材料層124耦接感測電極ITO的第一端。電晶體T11、T12、T13的控制端耦接於時脈傳輸線LC1,電晶體T21、T23的控制端耦接於時脈傳輸線LC2,電晶體T31、T32、T33的控制端耦接於時脈傳輸線LC3。電晶體T11、T12、T13的第二端耦接於資料傳輸線LD1-1,電晶體T21、T23的第二端耦接於資料傳輸線LD1-2,電晶體T31、T32、T33的第二端耦接於資料傳輸線LD1-3。請一併參閱第3C圖,其為根據本揭示內容之部分實施例繪示的偵測單元U11的示意圖。 Structurally, the piezoelectric material layer 124 covers the thin film transistor array 122 and the sensing electrode ITO, and the piezoelectric material layer 124 is coupled to the first end of the sensing electrode ITO. The control terminals of the transistors T11, T12, and T13 are coupled to the clock transmission line LC1. The control terminals of the transistors T21 and T23 are coupled to the clock transmission line LC2. The control terminals of the transistors T31, T32, and T33 are coupled to the clock transmission line. LC3. The second terminals of the transistors T11, T12, and T13 are coupled to the data transmission line LD1-1. The second terminals of the transistors T21 and T23 are coupled to the data transmission line LD1-2. The second terminals of the transistors T31, T32, and T33 are coupled. Connected to the data transmission line LD1-3. Please refer to FIG. 3C together, which is a schematic diagram of the detection unit U11 according to some embodiments of the present disclosure.

如第3C圖所示,偵測單元U11包含電晶體T11以及感測電極T11_ITO。電晶體T11的第一端耦接到感測電極T11_ITO的第二端。感測電極T11_ITO的第一端耦接至壓電材料層124。第3A圖當中其他偵測單元U12~U33的內部結構與第3C圖中的偵測單元U11大致相似。換句話說,第3A圖中的偵測單元U12~U33各自包含一感測電極(第3A圖中未示,可參閱第3C圖的感測電極T11_ITO),電晶體T12~T33的第一端透過各自的感測電極耦接到壓電材料層124。 As shown in FIG. 3C, the detection unit U11 includes a transistor T11 and a sensing electrode T11_ITO. A first terminal of the transistor T11 is coupled to a second terminal of the sensing electrode T11_ITO. The first end of the sensing electrode T11_ITO is coupled to the piezoelectric material layer 124. The internal structure of the other detection units U12 to U33 in FIG. 3A is substantially similar to the detection unit U11 in FIG. 3C. In other words, each of the detection units U12 to U33 in FIG. 3A includes a sensing electrode (not shown in FIG. 3A, see the sensing electrode T11_ITO in FIG. 3C), and the first ends of the transistors T12 to T33 The piezoelectric material layers 124 are coupled through respective sensing electrodes.

感測電極ITO的第二端耦接於資料傳輸線LD2。換言之,感測電極ITO與電晶體T11~T33之任一者不透過傳輸線LC1~LC3、LD1-1~LD1-3互相耦接。在部分實施例中,感測電極ITO和電晶體T11~T33可藉由壓電材料層電性連接。此外,當壓電式壓力感測器120包含複數個感測電極ITO時,複數個感測電極ITO彼此之間亦不透過傳輸線互相耦接,具體內容將於後續說明。 The second end of the sensing electrode ITO is coupled to the data transmission line LD2. In other words, the sensing electrode ITO and any one of the transistors T11 to T33 are not coupled to each other through the transmission lines LC1 to LC3 and LD1-1 to LD1-3. In some embodiments, the sensing electrode ITO and the transistors T11 to T33 may be electrically connected by a piezoelectric material layer. In addition, when the piezoelectric pressure sensor 120 includes a plurality of sensing electrodes ITO, the plurality of sensing electrodes ITO are not coupled to each other through a transmission line. The details will be described later.

操作上,壓電材料層124用以量測複數個位置的脈搏以產生相應的複數個脈象訊號。電晶體T11~T33的多個第一端用於分別相應接收自壓電材料層124產生的多個脈象訊號。電晶體T11~T33的多個第二端用於依據相應的多個脈象訊號分別輸出複數個第一偵測訊號D1。電晶體T11~T33的多個控制端用於分別接收複數個時脈訊號CLK(如第3B圖所示)。感測電極ITO用以接收脈象訊號的其中相應另一者以輸出第二偵測訊號D2。 In operation, the piezoelectric material layer 124 is used to measure pulses at a plurality of positions to generate corresponding pulse signals. The plurality of first ends of the transistors T11 to T33 are respectively used to respectively receive a plurality of pulse signals generated from the piezoelectric material layer 124. The plurality of second ends of the transistors T11 to T33 are used to respectively output a plurality of first detection signals D1 according to the corresponding plurality of pulse signals. The multiple control terminals of the transistors T11 ~ T33 are used to receive a plurality of clock signals CLK (as shown in FIG. 3B). The sensing electrode ITO is used to receive a corresponding one of the pulse signals to output a second detection signal D2.

如第3C圖所示,結構上,電晶體T11之第一端耦接感測電極T11_ITO,而感測電極T11_ITO耦接壓電材料層124。電晶體T11之控制端耦接時脈傳輸線LC1。電晶體T11之第二端耦接資料傳輸線LD1-1。操作上,電晶體T11之控制端用以透過時脈傳輸線LC1接收時脈訊號CLK1。電晶體T11之第一端用以透過感測電極T11_ITO接收壓電材料層124所產生的脈象訊號。電晶體T11用以根據時脈訊號CLK1和脈象訊號產生偵測訊號D11,並由電晶體T11之第二端透過資料傳輸線LD1-1輸出偵測訊號D11。 As shown in FIG. 3C, in structure, the first end of the transistor T11 is coupled to the sensing electrode T11_ITO, and the sensing electrode T11_ITO is coupled to the piezoelectric material layer 124. The control terminal of the transistor T11 is coupled to the clock transmission line LC1. The second terminal of the transistor T11 is coupled to the data transmission line LD1-1. In operation, the control terminal of the transistor T11 is used to receive the clock signal CLK1 through the clock transmission line LC1. The first end of the transistor T11 is used to receive the pulse signal generated by the piezoelectric material layer 124 through the sensing electrode T11_ITO. The transistor T11 is used to generate a detection signal D11 according to the clock signal CLK1 and the pulse signal, and the second end of the transistor T11 outputs a detection signal D11 through the data transmission line LD1-1.

值得注意的是,電晶體T11之控制端和第一端、第二端之間會分別產生耦合電容Cgd、Cgs。由於在時脈傳輸線、資料傳輸線等等之間產生的耦合電容無明確的放電路徑,為避免訊號不準確,需等待完全放電後在進行下一次的偵測。因此,決定採樣頻率的時脈訊號的切換將有所上限,而可能造成讀取到的偵測訊號無法完全反映出實際訊號的最大值或波形。換言之,時脈訊號的切換頻率可能因耦合電容的產生而過 慢。反之,如第3A圖所示的感測電極ITO,由於不具有開關且不受時脈訊號限制,因此可量測到脈象訊號的實際峰值,不會產生失真。 It is worth noting that the coupling capacitors Cgd and Cgs are generated between the control terminal and the first terminal and the second terminal of the transistor T11, respectively. Because the coupling capacitors generated between the clock transmission line, data transmission line, etc. have no clear discharge path, in order to avoid inaccurate signals, it is necessary to wait for the full discharge before performing the next detection. Therefore, the switching of the clock signal that determines the sampling frequency will have an upper limit, and the read detection signal may not fully reflect the maximum value or waveform of the actual signal. In other words, the switching frequency of the clock signal may be changed by the generation of the coupling capacitor. slow. In contrast, the sensing electrode ITO shown in FIG. 3A has no switch and is not restricted by the clock signal, so the actual peak value of the pulse signal can be measured without distortion.

在部分實施例中,舉例來說,當壓電材料層124量測到手腕900上寸處(如第1A圖、第1B圖中的區域A3)的脈象訊號時,設置於寸處上方相對應的薄膜電晶體陣列122將接收壓電材料層124所量測脈象訊號以輸出複數個第一偵測訊號D1。且設置於相對應的薄膜電晶體陣列122中的感測電極ITO亦將接收壓電材料層124所量測脈象訊號以輸出第二偵測訊號D2。 In some embodiments, for example, when the piezoelectric material layer 124 measures the pulse signal at the inch position on the wrist 900 (such as the area A3 in FIG. 1A and FIG. 1B), it is set corresponding to the position above the inch position. The thin film transistor array 122 will receive the pulse signals measured by the piezoelectric material layer 124 to output a plurality of first detection signals D1. The sensing electrode ITO disposed in the corresponding thin film transistor array 122 will also receive the pulse signal measured by the piezoelectric material layer 124 to output a second detection signal D2.

進一步說明,若將寸處的位置細分為九宮格,當位於九宮格中左上方位置的壓電材料層124量測到脈象訊號時,第3A圖中的薄膜電晶體陣列122中的電晶體T11的第一端將接收此脈象訊號。並且,薄膜電晶體陣列122中的電晶體T11的控制端將依據時脈訊號CLK以透過電晶體T11的第二端輸出第一偵測訊號D1。此外,當位於九宮格中正中央位置的壓電材料層124量測到脈象訊號時,感測電極ITO的第一端將接收此脈象訊號以透過感測電極ITO的第二端輸出第二偵測訊號D2。 To further explain, if the position at the inch is subdivided into nine grids, when the pulse signal is measured by the piezoelectric material layer 124 located at the upper left position in the nine grids, the first transistor T11 in the thin film transistor array 122 in FIG. 3A is One end will receive this pulse signal. In addition, the control terminal of the transistor T11 in the thin-film transistor array 122 will output the first detection signal D1 through the second terminal of the transistor T11 according to the clock signal CLK. In addition, when the pulse signal is measured by the piezoelectric material layer 124 located in the center of the Jiugong grid, the first end of the sensing electrode ITO will receive the pulse signal to output a second detection signal through the second end of the sensing electrode ITO. D2.

如此一來,藉由薄膜電晶體陣列122中不同的電晶體或設置於薄膜電晶體陣列122中的感測電極ITO,便可量測到多個不同位置的脈象,而取得脈象的範圍大小。此外,藉由沒有開關的感測電極ITO,便可量測到脈象訊號的實際峰值,而不受到時脈訊號CLK的頻率或開關造成訊號失真等等影 響。 In this way, by using different transistors in the thin-film transistor array 122 or the sensing electrode ITO provided in the thin-film transistor array 122, the pulse images at multiple different positions can be measured, and the range of the pulse images can be obtained. In addition, with the non-switching sensing electrode ITO, the actual peak value of the pulse signal can be measured without being affected by the frequency of the clock signal CLK or the signal distortion caused by the switch. ring.

請參考第4A圖。第4A圖係依據本揭示內容之其他部分實施例所繪示的一種壓電式壓力感測器120的示意圖。如第4A圖所示,壓電式壓力感測器120包含壓電材料層124和薄膜電晶體陣列P11~Pmn。每個薄膜電晶體陣列P11~Pmn中包含八個電晶體。八個電晶體中設置一個感測電極ITO。亦即,每個薄膜電晶體陣列P11~Pmn中設置一個感測電極ITO11~ITOmn。然,其數量僅為方便說明起見之示例,並非用以限制本揭示內容。此外,本揭示文件中的壓電材料層124並不僅限於第4A圖所示的單一層完整的壓電材料結構,於其他實施例中,壓電材料層124可由多個壓電材料區塊共同構成。如第4B圖所示,壓電式壓力感測器120的壓電材料層包含複數個壓電材料區塊124a~124d,壓電材料區塊124a~124d分別覆蓋一或多個薄膜電晶體陣列,以提升靈敏度,如第4B圖的實施例中,壓電材料區塊124a用以覆蓋薄膜電晶體陣列P11,壓電材料區塊124b用以覆蓋薄膜電晶體陣列P1n,壓電材料區塊124c用以覆蓋薄膜電晶體陣列Pm1,壓電材料區塊124d用以覆蓋薄膜電晶體陣列Pmn。壓電材料層中的壓電材料區塊的總數是根據實際薄膜電晶體陣列的個數而定,並不以第4B圖所示的例子為限。在其他部分實施例中,薄膜電晶體陣列可包含任意整數個的電晶體。薄膜電晶體陣列中亦可設置一或多個感測電極ITO。 Please refer to Figure 4A. FIG. 4A is a schematic diagram of a piezoelectric pressure sensor 120 according to other embodiments of the present disclosure. As shown in FIG. 4A, the piezoelectric pressure sensor 120 includes a piezoelectric material layer 124 and thin film transistor arrays P11 to Pmn. Each thin film transistor array P11 ~ Pmn contains eight transistors. One of the eight transistors is provided with a sensing electrode ITO. That is, one sensing electrode ITO11 to ITOmn is provided in each thin film transistor array P11 to Pmn. However, the number is only an example for convenience of description, and is not intended to limit the present disclosure. In addition, the piezoelectric material layer 124 in this disclosure is not limited to a single layer complete piezoelectric material structure shown in FIG. 4A. In other embodiments, the piezoelectric material layer 124 may be shared by multiple piezoelectric material blocks. Make up. As shown in FIG. 4B, the piezoelectric material layer of the piezoelectric pressure sensor 120 includes a plurality of piezoelectric material blocks 124a to 124d, and the piezoelectric material blocks 124a to 124d respectively cover one or more thin film transistor arrays. To improve the sensitivity, as in the embodiment of FIG. 4B, the piezoelectric material block 124a is used to cover the thin film transistor array P11, the piezoelectric material block 124b is used to cover the thin film transistor array P1n, and the piezoelectric material block 124c The thin film transistor array Pm1 is used to cover the thin film transistor array Pm1, and the piezoelectric material block 124d is used to cover the thin film transistor array Pmn. The total number of piezoelectric material blocks in the piezoelectric material layer is determined based on the actual number of thin film transistor arrays, and is not limited to the example shown in FIG. 4B. In other embodiments, the thin film transistor array may include any integer number of transistors. One or more sensing electrodes ITO can also be provided in the thin film transistor array.

結構上,壓電材料層124覆蓋於薄膜電晶體陣列P11~Pmn及複數個感測電極ITO11~ITOmn上方,且壓電材 料層124耦接於薄膜電晶體陣列P11~Pmn中的電晶體的第一端和感測電極ITO11~ITOmn的第一端。處理器300透過時脈傳輸線LC1~LCN分別連接第一行到第N行的電晶體。亦即,同一行的電晶體可透過同一條時脈傳輸線耦接處理器300以接收時脈訊號。相似地,第一列到第3n列的電晶體分別透過資料傳輸線LD1-1[1,1]~LD1-3[1,n]連接處理器300。亦即,同一列的電晶體可透過同一條資料傳輸線耦接處理器300以輸出第一偵測訊號D1。 Structurally, the piezoelectric material layer 124 covers the thin film transistor array P11 ~ Pmn and the plurality of sensing electrodes ITO11 ~ ITOmn, and the piezoelectric material The material layer 124 is coupled to the first ends of the transistors in the thin film transistor arrays P11 to Pmn and the first ends of the sensing electrodes ITO11 to ITOmn. The processor 300 connects the transistors in the first row to the Nth row through the clock transmission lines LC1 to LCN, respectively. That is, the transistors in the same row can be coupled to the processor 300 through the same clock transmission line to receive clock signals. Similarly, the transistors in the first to third n columns are connected to the processor 300 through the data transmission lines LD1-1 [1,1] ~ LD1-3 [1, n], respectively. That is, the transistors in the same row can be coupled to the processor 300 through the same data transmission line to output the first detection signal D1.

另外,設置於薄膜電晶體陣列P11~Pmn中的複數個感測電極ITO11~ITOmn分別透過資料傳輸線LD2[1,1]~LD2[m,n]連接處理器300。亦即,每個感測電極ITO11~ITOmn單獨耦接於單一資料傳輸線LD2[1,1]~LD2[m,n]以分別輸出第二偵測訊號D2。 In addition, the plurality of sensing electrodes ITO11 to ITOmn provided in the thin film transistor arrays P11 to Pmn are connected to the processor 300 through the data transmission lines LD2 [1,1] to LD2 [m, n], respectively. That is, each of the sensing electrodes ITO11 ~ ITOmn is separately coupled to a single data transmission line LD2 [1,1] ~ LD2 [m, n] to output the second detection signals D2 respectively.

請參考第5圖。第5圖係根據本揭示內容之部分實施例繪示一個脈象量測方法500的流程圖。為方便及清楚說明起見,下述脈象量測方法500是配合第1A圖~第5圖所示實施例進行說明,但不以此為限,任何熟習此技藝者,在不脫離本案之精神和範圍內,當可對作各種更動與潤飾。如第5圖所示,脈象量測方法500包含操作S510~S580。 Please refer to Figure 5. FIG. 5 is a flowchart illustrating a pulse measurement method 500 according to some embodiments of the present disclosure. For the sake of convenience and clear explanation, the following pulse measurement method 500 is described in conjunction with the embodiments shown in FIGS. 1A to 5, but it is not limited thereto. Anyone skilled in this art will not depart from the spirit of the case. Within the range, you can make various changes and retouching. As shown in FIG. 5, the pulse measurement method 500 includes operations S510 to S580.

首先,在操作S510中,由壓頭施加壓力於一或多個位置。具體而言,選定於手腕900的尺、關和寸處其中一或多者,並藉由脈象量測裝置中的處理器300控制壓頭分別施加第一壓力、第二壓力或第三壓力於手腕900的相應位置,以模擬中醫師診察浮、中或沉之脈象時的不同把脈力道。 First, in operation S510, pressure is applied to one or more positions by an indenter. Specifically, one or more of the rulers, gates, and inches of the wrist 900 are selected, and the indenter is controlled by the processor 300 in the pulse measurement device to apply the first pressure, the second pressure, or the third pressure respectively. Corresponding positions of the wrist 900 are used to simulate the different pulses of a traditional Chinese medicine practitioner when examining the pulses of floating, middle, or sinking pulses.

接著,在操作S520中,由電容式壓力感測器140量測相應位置的靜態壓力。具體而言,於手腕900選定的位置,由電容式壓力感測器140分別量測此位置對應第一壓力、第二壓力或第三壓力的第一靜態壓力、第二靜態壓力或第三靜態壓力。 Next, in operation S520, the static pressure at the corresponding position is measured by the capacitive pressure sensor 140. Specifically, at the position selected by the wrist 900, the capacitive pressure sensor 140 measures the first static pressure, the second static pressure, or the third static pressure corresponding to the first pressure, the second pressure, or the third pressure at this position, respectively. pressure.

此外,在部分實施例中,由處理器300接收對應第一靜態壓力、第二靜態壓力和第三靜態壓力的靜態壓力訊號VSin,以確認壓頭施加的力道係能對應搜集到浮、中或沉的不同脈象。並可由處理器300控制顯示器200顯示相應於靜態壓力訊號VSin的靜態壓力訊號VSout的大小。 In addition, in some embodiments, the processor 300 receives a static pressure signal VSin corresponding to the first static pressure, the second static pressure, and the third static pressure to confirm that the force applied by the indenter can be collected correspondingly to the floating, intermediate or Different pulses of Shen. The processor 300 can control the display 200 to display the size of the static pressure signal VSout corresponding to the static pressure signal VSin.

接著,在操作S530中,由壓電式壓力感測器120中壓電材料層124量測相應位置的脈搏以產生相應的複數個脈象訊號。舉例來說,當壓頭施加第一壓力於手腕900的關處時,壓電式壓力感測器120中壓電材料層124將量測相應位置(如第1圖中區域A2)的脈搏以產生相應的複數個脈象訊號。 Next, in operation S530, the pulse at the corresponding position is measured by the piezoelectric material layer 124 in the piezoelectric pressure sensor 120 to generate corresponding pulse signals. For example, when the indenter applies the first pressure to the close of the wrist 900, the piezoelectric material layer 124 in the piezoelectric pressure sensor 120 will measure the pulse at the corresponding position (such as area A2 in the first figure) to Generate a corresponding plurality of pulse signals.

接著,在操作S540中,由壓電式壓力感測器120中薄膜電晶體陣列122中複數個電晶體T11~T33接收相應的脈象訊號以輸出複數個第一偵測訊號D1。具體而言,由複數個電晶體T11~T33的複數個第一端分別接收相應的脈象訊號。並由電晶體T11~T33的複數個控制端分別根據複數個時脈訊號CLK以透過電晶體T11~T33的複數個第二端分別輸出複數個第一偵測訊號D1。 Then, in operation S540, the plurality of transistors T11 ~ T33 in the thin film transistor array 122 in the piezoelectric pressure sensor 120 receive corresponding pulse signals to output a plurality of first detection signals D1. Specifically, the respective first ends of the plurality of transistors T11 to T33 receive corresponding pulse signals. The plurality of control terminals of the transistors T11 ~ T33 respectively output a plurality of first detection signals D1 through the plurality of second terminals of the transistors T11 ~ T33 according to the plurality of clock signals CLK.

接著,在操作S550中,由薄膜電晶體陣列122中至少一感測電極ITO接收脈象訊號相應之一者以輸出第二偵 測訊號D2。具體而言,由感測電極ITO的第一端分別接收相應的脈象訊號,並由感測電極ITO的第二端輸出第二偵測訊號D2。 Next, in operation S550, at least one of the sensing electrodes ITO in the thin film transistor array 122 receives a corresponding one of the pulse signals to output a second detection signal. Test signal D2. Specifically, the first end of the sensing electrode ITO receives a corresponding pulse signal, and the second end of the sensing electrode ITO outputs a second detection signal D2.

接著,在操作S560中,由處理器300接收第一偵測訊號D1和第二偵測訊號D2。 Then, in operation S560, the processor 300 receives the first detection signal D1 and the second detection signal D2.

接著,在操作S570中,由處理器將作為第一偵測訊號D1的峰值調整為相同於第二偵測訊號D2的峰值。具體而言,由於電晶體會隨時間或使用次數老化而產生變異,因此由不同電晶體所量測的第一偵測訊號D1的振幅大小可能無法精準反映出脈象訊號的大小。此外,由於電晶體係根據時脈訊號的切換頻率進行取值,因此可能因為時脈訊號的切換頻率過慢而有所誤差,無法確定讀取到的第一偵測訊號D1能反映出實際訊號的最大值或波形。而由於感測電極ITO係不具備開關的感測器,因此由感測電極ITO所量測的第二偵測訊號D2的振幅大小較能精準反映出脈象訊號的實際大小。據此,由處理器根據第二偵測訊號D2的峰值將第一偵測訊號D1的峰值調整為相同。 Then, in operation S570, the peak value of the first detection signal D1 is adjusted by the processor to be the same as the peak value of the second detection signal D2. Specifically, since the transistor will change with time or usage, the amplitude of the first detection signal D1 measured by different transistors may not accurately reflect the size of the pulse signal. In addition, because the transistor system takes values according to the switching frequency of the clock signal, there may be an error because the switching frequency of the clock signal is too slow. It cannot be determined that the first detection signal D1 read can reflect the actual signal. The maximum value or waveform. And because the sensing electrode ITO is a sensor without a switch, the amplitude of the second detection signal D2 measured by the sensing electrode ITO can more accurately reflect the actual size of the pulse signal. Accordingly, the processor adjusts the peak value of the first detection signal D1 to be the same according to the peak value of the second detection signal D2.

接著,在操作S580中,由處理器300根據位置控制顯示器200將調整後的第一偵測訊號D1或第二偵測訊號D2所對應的顯示資料訊號DATA輸出顯示。 Next, in operation S580, the processor 300 controls the display 200 according to the position to output and display the adjusted display data signal DATA corresponding to the first detection signal D1 or the second detection signal D2.

具體而言,請參考第6圖。第6圖係根據本揭示內容之部分實施例繪示的顯示器200的顯示畫面的示意圖。在部份實施例中,顯示器200的顯示畫面可包含心率(heart rate)。如第6圖所示,心率約為0.19Hz。在部分實施例中,顯示器200 的顯示畫面可包含偵測訊號D1、D2所對應的顯示資料訊號DATA的動態波形圖。如第6圖所示,顯示器200的顯示畫面中的下半部為第二偵測訊號D2所對應的顯示資料訊號DATA的動態波形圖,其中X軸為時間,Y軸為電壓大小,振幅h1代表脈象的強弱。 Specifically, please refer to Figure 6. FIG. 6 is a schematic diagram of a display screen of the display 200 according to some embodiments of the present disclosure. In some embodiments, the display screen of the display 200 may include a heart rate. As shown in Figure 6, the heart rate is approximately 0.19 Hz. In some embodiments, the display 200 The display screen may include a dynamic waveform diagram of the display data signal DATA corresponding to the detection signals D1 and D2. As shown in FIG. 6, the lower half of the display screen of the display 200 is a dynamic waveform diagram of the display data signal DATA corresponding to the second detection signal D2, where the X-axis is time, the Y-axis is the magnitude of the voltage, and the amplitude h1 Represents the strength of the pulse.

另外,在其他部分實施例中,如第6圖所示,顯示器200的顯示畫面中的上半部可包含分別代表浮、中和沉脈象的顯示區塊Z1、Z2和Z3。此外,以顯示區塊Z1為例,顯示區塊Z1可細分為多個顯示區域X1~X8和Y0,分別代表相應位置脈象的分布面積。 In addition, in other embodiments, as shown in FIG. 6, the upper half of the display screen of the display 200 may include display blocks Z1, Z2, and Z3 that respectively represent floating, middle, and deep pulses. In addition, taking the display block Z1 as an example, the display block Z1 can be subdivided into a plurality of display regions X1 to X8 and Y0, which respectively represent the distribution areas of the pulses at the corresponding positions.

具體而言,由薄膜電晶體陣列122所量測的第一偵測訊號D1係對應於第一位置(如第3圖中電晶體T11~T33所在之處),而由感測電極ITO所量測的第二偵測訊號D2係對應於第二位置(如第3圖中感測電極ITO所在之處)。處理器300用以根據第一位置,控制顯示器200分別將複數個第一偵測訊號D1之一者所對應的顯示資料訊號DATA顯示於顯示器200的多個顯示區域X1~X8的其中一者。並且,處理器300用以根據第二位置,控制顯示器200將第二偵測訊號D2所對應的顯示資料訊號DATA顯示於顯示器200的顯示區域Y0。 Specifically, the first detection signal D1 measured by the thin-film transistor array 122 corresponds to the first position (as shown by the transistors T11 to T33 in FIG. 3), and is measured by the sensing electrode ITO. The measured second detection signal D2 corresponds to the second position (such as where the sensing electrode ITO is located in FIG. 3). The processor 300 is configured to control the display 200 to display the display data signal DATA corresponding to one of the plurality of first detection signals D1 in one of the multiple display areas X1 to X8 of the display 200 according to the first position. In addition, the processor 300 is configured to control the display 200 to display the display data signal DATA corresponding to the second detection signal D2 in the display area Y0 of the display 200 according to the second position.

此外,在其他部份實施例中,處理器300用以接收第一偵測訊號D1和第二偵測訊號D2,並將第一偵測訊號D1的峰值調整為相同於第二偵測訊號D2的峰值。並且,處理器300用以控制顯示器200顯示調整後的第一偵測訊號D1或第二偵測訊號D2所對應的顯示資料訊號DATA於相應的顯示區域 X1~X8或Y0。 In addition, in other embodiments, the processor 300 is configured to receive the first detection signal D1 and the second detection signal D2, and adjust the peak value of the first detection signal D1 to be the same as the second detection signal D2. Peak. In addition, the processor 300 is configured to control the display 200 to display the adjusted display data signal DATA corresponding to the first detection signal D1 or the second detection signal D2 in the corresponding display area. X1 ~ X8 or Y0.

另外,當壓頭分別施加第一壓力、一第二壓力或一第三壓力於手腕900時,處理器300從電容式壓力感測器140分別接收對應第一靜態壓力、第二靜態壓力或第三靜態壓力的靜態壓力訊號VSin,並且,處理器300從壓電式壓力感測器120分別接收到第一組偵測訊號、第二組偵測訊號或第三組偵測訊號。處理器300根據對應第一靜態壓力、第二靜態壓力或第三靜態壓力的靜態壓力訊號VSin控制顯示器200將相應的第一偵測訊號所對應的顯示資料訊號DATA輸出顯示。換言之,處理器300控制顯示器200分別將第一組偵測訊號、第二組偵測訊號或第三組偵測訊號所對應的顯示資料訊號DATA顯示於顯示區塊Z1、Z2或Z3。在其他部分實施例中,處理器300用以判斷第一組偵測訊號、第二組偵測訊號或第三組偵測訊號的大小,以控制顯示器200顯示第一組偵測訊號、第二組偵測訊號或第三組偵測訊號所分別對應的顯示資料訊號DATA之中最大者。 In addition, when the indenter applies a first pressure, a second pressure, or a third pressure to the wrist 900, the processor 300 receives the corresponding first static pressure, second static pressure, or first pressure from the capacitive pressure sensor 140, respectively. The static pressure signal VSin with three static pressures, and the processor 300 receives the first set of detection signals, the second set of detection signals, or the third set of detection signals from the piezoelectric pressure sensor 120, respectively. The processor 300 controls the display 200 to output the display data signal DATA corresponding to the corresponding first detection signal according to the static pressure signal VSin corresponding to the first static pressure, the second static pressure, or the third static pressure. In other words, the processor 300 controls the display 200 to display the display data signals DATA corresponding to the first set of detection signals, the second set of detection signals or the third set of detection signals in the display blocks Z1, Z2 or Z3, respectively. In other embodiments, the processor 300 is configured to determine the size of the first set of detection signals, the second set of detection signals, or the third set of detection signals to control the display 200 to display the first set of detection signals, the second set of detection signals, and the second set of detection signals. The largest of the display data signals DATA corresponding to the group detection signal or the third group detection signal.

值得注意的是,上述顯示畫面的分佈、顯示區域的數量、劃分方式或面積大小僅為方便說明的示例,並非用以限制本案。本領域具通常知識者可根據實際需求設計。 It is worth noting that the above-mentioned distribution of display screens, the number of display areas, the division method, or the area size are merely examples for convenience of explanation, and are not intended to limit the case. Those skilled in the art can design according to actual needs.

如此一來,根據上述步驟S510~S580可量測左手或右手之尺、關或寸其中之一者,並對此者施加浮、中或沉的力道以取得三個對應波形。在部分實施例中,脈象量測方法500可循環執行步驟S510~S580以量測左手或右手之尺、關或寸其中之另一者。在其他部分實施例中,亦可透過脈象量測 方法500同時量測尺、關或寸其中之二者或全部。 In this way, according to the above steps S510 to S580, one of the left-handed or right-handed ruler, level, or inch can be measured, and a floating, middle, or heavy force can be applied to the left to obtain three corresponding waveforms. In some embodiments, the pulse measurement method 500 may execute steps S510 to S580 in a loop to measure the other one of the left-handed or right-handed ruler, the off, or the inch. In other parts of the embodiment, pulse measurement can also be used. Method 500 measures both or all of the ruler, off, or inch simultaneously.

所屬技術領域具有通常知識者可直接瞭解此脈象量測方法500如何基於上述多個不同實施例中的脈象量測裝置以執行該等操作及功能,故不在此贅述。 Those with ordinary knowledge in the art can directly understand how the pulse measurement method 500 performs these operations and functions based on the pulse measurement device in the multiple different embodiments described above, so they are not described in detail here.

綜上所述,在本揭示內容的脈象量測裝置和脈象量測方法,可取得左右手在尺、關、寸處施予浮、中、沉力道所反映的脈象速率及大小,以此推測不同臟器的健康狀況。並藉由感測電極量測脈象訊號以輸出第二偵測訊號,校正薄膜電晶體陣列所量測的第一偵測訊號的峰值,使得脈象量測結果的精準度得以提高,因而脈象量測的方法得以獲得改善。 In summary, in the pulse measurement device and the pulse measurement method of the present disclosure, the pulse rate and size reflected by the left, right, and left feet on the ruler, the gate, and the inch can be obtained. Organ health. The pulse signal is measured by the sensing electrode to output the second detection signal, and the peak value of the first detection signal measured by the thin film transistor array is corrected, so that the accuracy of the pulse measurement result is improved, so the pulse measurement Method was improved.

雖然本揭示已以實施方式揭示如上,然其並非用以限定本揭示,任何本領域具通常知識者,在不脫離本揭示之精神和範圍內,當可作各種之更動與潤飾,因此本揭示之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present disclosure has been disclosed as above in the form of implementation, it is not intended to limit the present disclosure. Any person with ordinary knowledge in the field can make various changes and modifications without departing from the spirit and scope of the present disclosure. The scope of protection shall be determined by the scope of the attached patent application.

Claims (10)

一種感測部件,包含:一處理器;以及一壓電式壓力感測器,該壓電式壓力感測器包含:一壓電材料層,用以量測複數個位置的脈搏以產生相應的複數個脈象訊號;一薄膜電晶體陣列,其中該薄膜電晶體陣列包含複數個電晶體,該些電晶體中之一者包含:一控制端,用於接收一時脈訊號;一第一端,耦接該壓電材料層,用於接收該些脈象訊號的其中一者;以及一第二端,耦接於該處理器,用於依據該些脈象訊號的其中該者輸出一第一偵測訊號;以及一感測電極,耦接該壓電材料層,用以接收該些脈象訊號的其中另一者以輸出一第二偵測訊號,其中該處理器用以接收該些第一偵測訊號和該第二偵測訊號,並將該第一偵測訊號的峰值調整為相同於該第二偵測訊號的峰值。A sensing component includes: a processor; and a piezoelectric pressure sensor. The piezoelectric pressure sensor includes: a piezoelectric material layer for measuring pulses at a plurality of positions to generate corresponding pulses. A plurality of pulse signal signals; a thin film transistor array, wherein the thin film transistor array includes a plurality of transistors, one of the transistors includes: a control terminal for receiving a clock signal; a first terminal, coupled Connected to the piezoelectric material layer for receiving one of the pulse signals; and a second terminal coupled to the processor for outputting a first detection signal according to which one of the pulse signals And a sensing electrode coupled to the piezoelectric material layer for receiving another one of the pulse signals to output a second detection signal, wherein the processor is used for receiving the first detection signals and The second detection signal, and the peak value of the first detection signal is adjusted to be the same as the peak value of the second detection signal. 如請求項1所述之感測部件,其中該感測電極與該些電晶體之任一者不互相耦接。The sensing component according to claim 1, wherein the sensing electrode and any one of the transistors are not coupled to each other. 如請求項1所述之感測部件,其中該些電晶體圍繞該感測電極設置。The sensing component according to claim 1, wherein the transistors are disposed around the sensing electrode. 如請求項1所述之感測部件,更包含:一電容式壓力感測器,耦接該壓電式壓力感測器,當一脈象量測裝置施加一壓力於該些位置時,該電容式壓力感測器用以量測該些位置的一靜態壓力值。The sensing component according to claim 1, further comprising: a capacitive pressure sensor coupled to the piezoelectric pressure sensor. When a pulse measurement device applies a pressure to the positions, the capacitance The pressure sensor is used to measure a static pressure value at the positions. 如請求項1所述之感測部件,其中該處理器用以控制一顯示器根據調整後的該第一偵測訊號顯示對應的一顯示資料訊號。The sensing component according to claim 1, wherein the processor is configured to control a display to display a display data signal corresponding to the adjusted first detection signal. 如請求項5所述之感測部件,其中該第一偵測訊號對應於該些位置中的一第一位置,該處理器用於根據該第一位置,控制該顯示器根據調整後的該第一偵測訊號顯示對應的該顯示資料訊號於該顯示器的多個顯示區域的其中一者。The sensing component according to claim 5, wherein the first detection signal corresponds to a first position among the positions, and the processor is configured to control the display according to the first position adjusted according to the first position. The detection signal displays the corresponding display data signal in one of the multiple display areas of the display. 如請求項5所述之感測部件,更包含:一電容式壓力感測器,耦接該壓電式壓力感測器,其中當一脈象量測裝置分別施加一第一壓力、一第二壓力或一第三壓力於該些位置時,該電容式壓力感測器分別量測該些位置的一第一靜態壓力、一第二靜態壓力或一第三靜態壓力,該壓電式壓力感測器分別量測該些位置的一第一組偵測訊號、一第二組偵測訊號或一第三組偵測訊號,該處理器根據該第一靜態壓力、該第二靜態壓力或該第三靜態壓力,控制該顯示器將相應的該第一組偵測訊號、該第二組偵測訊號或該第三組偵測訊號之一者輸出顯示。The sensing component according to claim 5, further comprising: a capacitive pressure sensor coupled to the piezoelectric pressure sensor, wherein when a pulse measurement device applies a first pressure and a second pressure, respectively When the pressure or a third pressure is at the positions, the capacitive pressure sensor measures a first static pressure, a second static pressure, or a third static pressure at the positions, respectively. The piezoelectric pressure sensor The detector measures a first set of detection signals, a second set of detection signals, or a third set of detection signals at the positions respectively, and the processor measures the first static pressure, the second static pressure, or the The third static pressure controls the display to output and display the corresponding one of the first set of detection signals, the second set of detection signals, or the third set of detection signals. 一種脈象量測方法,包含:由一壓電式壓力感測器中一壓電材料層量測複數個位置的脈搏以產生相應的複數個脈象訊號;由該壓電式壓力感測器中一薄膜電晶體陣列中複數個電晶體分別接收相應的該些脈象訊號以輸出複數個第一偵測訊號;由該壓電式壓力感測器中至少一感測電極接收該些脈象訊號相應之一者以輸出一第二偵測訊號;由一處理器接收該些第一偵測訊號和該第二偵測訊號;以及由該處理器將該些第一偵測訊號的峰值調整為相同於該第二偵測訊號的峰值。A pulse measurement method includes: measuring pulses at a plurality of positions by a piezoelectric material layer in a piezoelectric pressure sensor to generate corresponding pulse signals; and one of the piezoelectric pressure sensors The plurality of transistors in the thin film transistor array respectively receive the corresponding pulse signals to output a plurality of first detection signals; at least one sensing electrode in the piezoelectric pressure sensor receives a corresponding one of the pulse signals A second detection signal is output; a processor receives the first detection signals and the second detection signal; and the processor adjusts the peak values of the first detection signals to be the same as the Peak value of the second detection signal. 如請求項8所述之脈象量測方法,其中更包含:由一壓頭施加一壓力於該些位置;以及由一電容式壓力感測器量測該些位置的一靜態壓力。The pulse measurement method according to claim 8, further comprising: applying a pressure to the positions by an indenter; and measuring a static pressure of the positions by a capacitive pressure sensor. 如請求項8所述之脈象量測方法,其中更包含:由該處理器根據該些位置控制一顯示器將調整後的該些第一偵測訊號或該第二偵測訊號對應的一顯示資歷訊號輸出顯示。The pulse measurement method according to claim 8, further comprising: controlling, by the processor, a display according to the positions to adjust the first detection signals or a display qualification corresponding to the second detection signals. The signal output is displayed.
TW108101871A 2018-08-29 2019-01-17 Sensing components and pulse measuring method TWI679783B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910271675.2A CN109965854B (en) 2018-08-29 2019-04-04 Sensing component and pulse condition measuring method
US16/513,870 US11262863B2 (en) 2018-08-29 2019-07-17 Sensing component and pulse measuring method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
TW107130167 2018-08-29
CN107130167 2018-08-29
TW107130167 2018-08-29

Publications (2)

Publication Number Publication Date
TWI679783B true TWI679783B (en) 2019-12-11
TW202010155A TW202010155A (en) 2020-03-01

Family

ID=69582737

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108101871A TWI679783B (en) 2018-08-29 2019-01-17 Sensing components and pulse measuring method

Country Status (1)

Country Link
TW (1) TWI679783B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100052880A1 (en) * 2007-04-12 2010-03-04 Nokia Corporation Keypad
US20110049579A1 (en) * 2009-08-25 2011-03-03 Honeywell International Inc. Thin-film transistor based piezoelectric strain sensor and method
US20150070305A1 (en) * 2013-09-11 2015-03-12 Samsung Display Co., Ltd. Touch sensing display device
US20150123931A1 (en) * 2013-11-04 2015-05-07 Qualcomm Incorporated Piezoelectric force sensing array

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100052880A1 (en) * 2007-04-12 2010-03-04 Nokia Corporation Keypad
US20110049579A1 (en) * 2009-08-25 2011-03-03 Honeywell International Inc. Thin-film transistor based piezoelectric strain sensor and method
US20150070305A1 (en) * 2013-09-11 2015-03-12 Samsung Display Co., Ltd. Touch sensing display device
US20150123931A1 (en) * 2013-11-04 2015-05-07 Qualcomm Incorporated Piezoelectric force sensing array

Also Published As

Publication number Publication date
TW202010155A (en) 2020-03-01

Similar Documents

Publication Publication Date Title
KR102565832B1 (en) Pressure sensing apparatus and method
US8069735B1 (en) Tactile sensor array for soft tissue elasticity imaging
CN105117058B (en) A kind of touch panel, touch-control display panel and electronic equipment
US20140132560A1 (en) In-cell multi-touch I display panel system
CN109965854B (en) Sensing component and pulse condition measuring method
TWI496227B (en) Method and system for improved testing of transistor arrays
US10732779B2 (en) Touch panel including pad electrodes and a drive/readout circuit, and touch display including same
EP2666409A1 (en) Measurement devices for bio-signals
CN103040448A (en) Pulse apparatus
WO2011147221A1 (en) Dual-sensing pulse diagnosis apparatus
TW201115928A (en) Apparatus using a differential analog-to-digital converter
CN105078439B (en) The method of display device, heart rate monitoring system and rhythm of the heart
CN105559941A (en) Gel thin film array capacitor sensor and method for measuring total teeth dynamic occluding
JP5863992B2 (en) Touch screen panel capacity measuring device
TWI679783B (en) Sensing components and pulse measuring method
CN109414200A (en) Surface strain detection device and its surface strain sensor
Wei et al. A portable three-channel data collector for Chinese medicine pulses
CN104665780A (en) Pulse condition sensing method
WO2019010616A1 (en) Pulse wave sensor, sensor array and pulse wave measurement apparatus using same
TWI443571B (en) Touch sensing apparatus
CN103505190A (en) Measuring device
Zhu et al. EIS: a wearable device for epidermal pressure sensing
CN111248878A (en) Flexible pressure sensor and pulse condition measuring device
CN111248873A (en) Flexible pressure sensor and pulse condition measuring device
Feng et al. A portable applanation tonometer for accurate intraocular pressure measurements