TWI679445B - Lens assembly - Google Patents

Lens assembly Download PDF

Info

Publication number
TWI679445B
TWI679445B TW105115485A TW105115485A TWI679445B TW I679445 B TWI679445 B TW I679445B TW 105115485 A TW105115485 A TW 105115485A TW 105115485 A TW105115485 A TW 105115485A TW I679445 B TWI679445 B TW I679445B
Authority
TW
Taiwan
Prior art keywords
lens
refractive power
imaging
object side
lens unit
Prior art date
Application number
TW105115485A
Other languages
Chinese (zh)
Other versions
TW201741713A (en
Inventor
陳柏瑜
Po Yu Chen
葉精中
Ching Chung Yeh
Original Assignee
大陸商信泰光學(深圳)有限公司
Sintai Optical (Shenzhen) Co., Ltd.
亞洲光學股份有限公司
Asia Optical Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商信泰光學(深圳)有限公司, Sintai Optical (Shenzhen) Co., Ltd., 亞洲光學股份有限公司, Asia Optical Co., Inc. filed Critical 大陸商信泰光學(深圳)有限公司
Priority to TW105115485A priority Critical patent/TWI679445B/en
Publication of TW201741713A publication Critical patent/TW201741713A/en
Application granted granted Critical
Publication of TWI679445B publication Critical patent/TWI679445B/en

Links

Landscapes

  • Lenses (AREA)

Abstract

一種成像鏡頭沿著一光軸從一物側至一像側依序包括一第一透鏡群及一第二透鏡群。第一透鏡群沿著光軸從物側至像側依序包括一第一透鏡、一第二透鏡、一第三透鏡及一第四透鏡。第一透鏡具有負屈光力。第二透鏡具有負屈光力。第三透鏡具有正屈光力。第四透鏡具有正屈光力。第二透鏡群沿著光軸從物側至像側依序包括一第一透鏡單元、一第二透鏡單元、一第三透鏡單元及一第四透鏡單元。第一透鏡單元具有負屈光力。第二透鏡單元具有屈光力。第三透鏡單元具有屈光力。第四透鏡單元具有正屈光力。 An imaging lens includes a first lens group and a second lens group in order from an object side to an image side along an optical axis. The first lens group includes a first lens, a second lens, a third lens, and a fourth lens in this order from the object side to the image side along the optical axis. The first lens has negative refractive power. The second lens has negative refractive power. The third lens has a positive refractive power. The fourth lens has positive refractive power. The second lens group includes a first lens unit, a second lens unit, a third lens unit, and a fourth lens unit in this order from the object side to the image side along the optical axis. The first lens unit has a negative refractive power. The second lens unit has a refractive power. The third lens unit has a refractive power. The fourth lens unit has a positive refractive power.

Description

成像鏡頭(十一) Imaging lens (11)

本發明係有關於一種成像鏡頭。 The invention relates to an imaging lens.

現今的成像鏡頭隨著不同的應用需求,有時需具備高解析度與抗環境溫度變化的能力,有時需具備高像高與較大視角的特性,習知的成像鏡頭已經無法滿足現今的需求,需要有另一種新架構的成像鏡頭,才能滿足高解析度及抗環境溫度變化的能力或者高像高與較大視角的特性。 With the different application requirements of today's imaging lenses, sometimes they need to have high resolution and resistance to environmental temperature changes, and sometimes they need to have high image height and large viewing angle characteristics. The conventional imaging lenses can no longer meet today's The requirements require another imaging lens with a new architecture in order to meet the characteristics of high resolution and resistance to environmental temperature changes or high image height and large viewing angle.

有鑑於此,本發明之主要目的在於提供一種成像鏡頭,其具備高解析度及抗環境溫度變化的能力或者具備高像高與較大視角的特性,但是仍具有良好的光學性能。 In view of this, the main object of the present invention is to provide an imaging lens which has high resolution and resistance to environmental temperature changes or has characteristics of high image height and large viewing angle, but still has good optical performance.

本發明之成像鏡頭沿著一光軸從一物側至一像側依序包括一第一透鏡群具有正屈光力。第一透鏡群沿著光軸從物側至像側依序包括一第一透鏡、一第二透鏡、一第三透鏡及一第四透鏡。第三透鏡具有正屈光力。第四透鏡具有正屈光力。以及一第二透鏡群具有負屈光力。 The imaging lens of the present invention includes a first lens group with a positive refractive power in order from an object side to an image side along an optical axis. The first lens group includes a first lens, a second lens, a third lens, and a fourth lens in this order from the object side to the image side along the optical axis. The third lens has a positive refractive power. The fourth lens has positive refractive power. And a second lens group has a negative refractive power.

本發明之另一實施態樣中,成像鏡頭沿著一光軸從一物側至一像側依序包括一第一透鏡群具有正屈光力。第一透鏡群沿著光軸從物側至像側依序包括一第一透鏡、一第二透鏡、一第三透鏡及一第四透鏡。 第三透鏡具有正屈光力。第四透鏡具有正屈光力。以及一第二透鏡群具有正屈光力。 In another aspect of the present invention, the imaging lens includes a first lens group with a positive refractive power in order from an object side to an image side along an optical axis. The first lens group includes a first lens, a second lens, a third lens, and a fourth lens in this order from the object side to the image side along the optical axis. The third lens has a positive refractive power. The fourth lens has positive refractive power. And a second lens group has a positive refractive power.

其中第一透鏡與第二透鏡至少之一具有負屈光力。 At least one of the first lens and the second lens has a negative refractive power.

其中第二透鏡群沿著光軸從物側至像側依序包括一第一透鏡單元、一第二透鏡單元、一第三透鏡單元及一第四透鏡單元。第二透鏡群至少具有二透鏡單元為正屈光力。 The second lens group includes a first lens unit, a second lens unit, a third lens unit, and a fourth lens unit in this order from the object side to the image side along the optical axis. The second lens group has at least two lens units with positive refractive power.

其中成像鏡頭滿足以下條件:2.09<|f2/f<3.23;0.95<|f6/f|<2.37;0.71<|f7/f|<1.85;6.3<|TTL/BFL|<10.5;以及|f/TTL|>0.06;其中,f2為第二透鏡之有效焦距,f為成像鏡頭之有效焦距,f6為第二透鏡單元之有效焦距,f7為第三透鏡單元之有效焦距,TTL為第一透鏡之物側面至成像面於光軸上之間距,BFL為第四透鏡單元之像側面至成像面於光軸上之間距。 The imaging lens satisfies the following conditions: 2.09 <| f 2 /f<3.23 ; 0.95 <| f 6 /f|<2.37; 0.71 <| f 7 /f|<1.85; 6.3 <| TTL / BFL | <10.5; and | f / TTL |>0.06; where f 2 is the effective focal length of the second lens, f is the effective focal length of the imaging lens, f 6 is the effective focal length of the second lens unit, and f 7 is the effective focal length of the third lens unit, TTL is the distance from the object side of the first lens to the imaging plane on the optical axis, and BFL is the distance from the image side of the fourth lens unit to the imaging plane on the optical axis.

其中第一透鏡可更包括一凹面朝向像側,第二透鏡為彎月型透鏡,第二透鏡之凸面朝向物側凹面朝向像側,第三透鏡為彎月型透鏡,第三透鏡之凹面朝向物側凸面朝向像側,第四透鏡為雙凸透鏡。 The first lens may further include a concave surface facing the image side, the second lens is a meniscus lens, the convex surface of the second lens is facing the object side, and the concave surface is facing the image side. The object-side convex surface faces the image side, and the fourth lens is a lenticular lens.

其中第一透鏡以及第二透鏡皆為負屈光力,且第二透鏡群沿著光軸從物側至像側依序包括一第一透鏡單元、一第二透鏡單元、一第三透鏡單元以及一第四透鏡單元,第一透鏡單元具有負屈光力,第四透鏡單元具有正屈光力。 The first lens and the second lens have negative refractive power, and the second lens group includes a first lens unit, a second lens unit, a third lens unit, and a lens lens in order from the object side to the image side along the optical axis. A fourth lens unit, the first lens unit has a negative refractive power, and the fourth lens unit has a positive refractive power.

本發明之成像鏡頭可更包括一光圈,設置於第三透鏡與第一透鏡之間。 The imaging lens of the present invention may further include an aperture disposed between the third lens and the first lens.

其中第一透鏡單元為雙凹透鏡,第二透鏡單元為雙凸透鏡 具有正屈光力,第三透鏡單元為雙凹透鏡具有負屈光力,第二透鏡單元以及第三透鏡單元膠合成一膠合透鏡,第四透鏡單元為非球面雙凸透鏡。 The first lens unit is a biconcave lens, and the second lens unit is a biconvex lens. It has positive refractive power, the third lens unit is a biconcave lens with negative refractive power, the second lens unit and the third lens unit are glued to form a cemented lens, and the fourth lens unit is an aspherical biconvex lens.

其中第一透鏡可更包括一凸面朝向物側,第二透鏡可更包括一凸面朝向物側。 The first lens may further include a convex surface facing the object side, and the second lens may further include a convex surface facing the object side.

其中成像鏡頭滿足以下條件:0.45

Figure TWI679445B_D0001
f/fG2
Figure TWI679445B_D0002
0.55;以及4.36
Figure TWI679445B_D0003
TTL/Y
Figure TWI679445B_D0004
6.36;其中,f為成像鏡頭之有效焦距,fG2為第二透鏡群之有效焦距,TTL為第一透鏡之物側面至成像面於光軸上之間距,Y為成像面上之最大像高。 The imaging lens meets the following conditions: 0.45
Figure TWI679445B_D0001
f / f G2
Figure TWI679445B_D0002
0.55; and 4.36
Figure TWI679445B_D0003
TTL / Y
Figure TWI679445B_D0004
6.36; where f is the effective focal length of the imaging lens, f G2 is the effective focal length of the second lens group, TTL is the distance from the object side of the first lens to the imaging surface on the optical axis, and Y is the maximum image height on the imaging surface .

其中第四透鏡可更包括一凹面朝向該像側,該第三透鏡單元可更包括一凸面朝向該像側,第二透鏡單元具有正屈光力,第三透鏡單元具有負屈光力。 The fourth lens may further include a concave surface toward the image side, and the third lens unit may further include a convex surface toward the image side. The second lens unit has a positive refractive power and the third lens unit has a negative refractive power.

其中成像鏡頭滿足以下條件:Vd6>85;60

Figure TWI679445B_D0005
Vd6-Vd7
Figure TWI679445B_D0006
80;D23/TTL
Figure TWI679445B_D0007
0.19;以及D45/TTL
Figure TWI679445B_D0008
0.145;其中,Vd6為第二透鏡單元之阿貝係數,Vd7為第三透鏡單元之阿貝係數,D23為第二透鏡之像側面至第三透鏡之物側面於光軸上之間距,D45為第四透鏡之像側面至第一透鏡單元之物側面於光軸上之間距,TTL為第一透鏡之物側面至成像面於光軸上之間距。 The imaging lens meets the following conditions: Vd 6 >85; 60
Figure TWI679445B_D0005
Vd 6 -Vd 7
Figure TWI679445B_D0006
80; D 23 / TTL
Figure TWI679445B_D0007
0.19; and D 45 / TTL
Figure TWI679445B_D0008
0.145; where Vd 6 is the Abbe coefficient of the second lens unit, Vd 7 is the Abbe coefficient of the third lens unit, and D 23 is the distance between the image side of the second lens and the object side of the third lens on the optical axis , the pitch of the optical axis to the image plane side surface of the fourth lens D 45 of the image side surface thereof to the side surface of the first lens unit in the pitch axis, TTL object of the first lens.

其中第二透鏡群屈光力可為正或負。 The refractive power of the second lens group may be positive or negative.

為使本發明之上述目的、特徵、和優點能更明顯易懂,下文特舉較佳實施例並配合所附圖式做詳細說明。 In order to make the above-mentioned objects, features, and advantages of the present invention more comprehensible, preferred embodiments are described in detail below in conjunction with the accompanying drawings.

1、2、3、4、5‧‧‧成像鏡頭 1, 2, 3, 4, 5‧‧‧ imaging lenses

L11、L21、L31、L41、L51‧‧‧第一透鏡 L11, L21, L31, L41, L51‧‧‧ First lens

L12、L22、L32、L42、L52‧‧‧第二透鏡 L12, L22, L32, L42, L52‧‧‧Second lens

L13、L23、L33、L43、L53‧‧‧第三透鏡 L13, L23, L33, L43, L53‧‧‧ Third lens

L14、L24、L34、L44、L54‧‧‧第四透鏡 L14, L24, L34, L44, L54‧‧‧ Fourth lens

L15、L25、L35、L45、L55‧‧‧第一透鏡單元 L15, L25, L35, L45, L55‧‧‧ First lens unit

L16、L26、L36、L46、L56‧‧‧第二透鏡單元 L16, L26, L36, L46, L56‧‧‧Second lens unit

L17、L27、L37、L47、L57‧‧‧第三透鏡單元 L17, L27, L37, L47, L57‧‧‧ Third lens unit

L18、L28、L38、L48、L58‧‧‧第四透鏡單元 L18, L28, L38, L48, L58‧‧‧ Fourth lens unit

L1G1、L2G1、L3G1、L4G1、L5G1‧‧‧第一透鏡群 L1 G1 , L2 G1 , L3 G1 , L4 G1 , L5 G1 ‧‧‧ the first lens group

L1G2、L2G2、L3G2、L4G2、L5G2‧‧‧第二透鏡群 L1 G2 , L2 G2 , L3 G2 , L4 G2 , L5 G2 ‧‧‧ second lens group

L3C、L4C、L5C‧‧‧膠合透鏡 L3 C , L4 C , L5 C ‧‧‧Cemented Lenses

ST1、ST3、ST4、ST5‧‧‧光圈 ST1, ST3, ST4, ST5

OF1、OF3、OF4、OF5‧‧‧濾光片 OF1, OF3, OF4, OF5‧‧‧ filters

OA1、OA2、OA3、OA4、OA5‧‧‧光軸 OA1, OA2, OA3, OA4, OA5‧‧‧ Optical axis

IMA1、IMA2、IMA3、IMA4、IMA5‧‧‧成像面 IMA1, IMA2, IMA3, IMA4, IMA5‧‧‧ imaging surface

Y3、Y4、Y5‧‧‧最大像高 Y3, Y4, Y5‧‧‧‧Maximum image height

S11、S12、S13、S14、S15、S16‧‧‧面 S11, S12, S13, S14, S15, S16‧‧‧ faces

S17、S18、S19、S110、S111、S112‧‧‧面 S17, S18, S19, S110, S111, S112‧‧‧ faces

S113、S114、S115、S116、S117‧‧‧面 S113, S114, S115, S116, S117‧‧‧ faces

S118、S119‧‧‧面 S118, S119‧‧‧ faces

S21、S22、S23、S24、S25、S26‧‧‧面 S21, S22, S23, S24, S25, S26

S27、S28、S29、S210、S211、S212‧‧‧面 S27, S28, S29, S210, S211, S212‧‧‧ faces

S213、S214、S215、S216‧‧‧面 S213, S214, S215, S216‧‧‧ faces

S31、S32、S33、S34、S35、S36‧‧‧面 S31, S32, S33, S34, S35, S36‧‧‧ faces

S37、S38、S39、S310、S311、S312‧‧‧面 S37, S38, S39, S310, S311, S312‧‧‧ faces

S313、S314、S315、S316、S317‧‧‧面 S313, S314, S315, S316, S317 ‧‧‧ faces

S318‧‧‧面 S318‧‧‧face

S41、S42、S43、S44、S45、S46‧‧‧面 S41, S42, S43, S44, S45, S46‧‧‧ faces

S47、S48、S49、S410、S411、S412‧‧‧面 S47, S48, S49, S410, S411, S412‧‧‧ faces

S413、S414、S415、S416、S417‧‧‧面 S413, S414, S415, S416, S417‧‧‧ faces

S418‧‧‧面 S418‧‧‧face

S51、S52、S53、S54、S55、S56‧‧‧面 S51, S52, S53, S54, S55, S56‧‧‧ faces

S57、S58、S59、S510、S511、S512‧‧‧面 S57, S58, S59, S510, S511, S512‧‧‧ faces

S513、S514、S515、S516、S517‧‧‧面 S513, S514, S515, S516, S517‧‧‧ faces

S518‧‧‧面 S518‧‧‧face

第1圖係依據本發明之成像鏡頭之第一實施例的透鏡配置示意圖。 FIG. 1 is a schematic diagram of a lens configuration of a first embodiment of an imaging lens according to the present invention.

第2A圖係第1圖之成像鏡頭之縱向像差圖。 FIG. 2A is a longitudinal aberration diagram of the imaging lens of FIG. 1.

第2B圖係第1圖之成像鏡頭之場曲圖。 FIG. 2B is a field curvature diagram of the imaging lens of FIG. 1.

第2C圖係第1圖之成像鏡頭之畸變圖。 Figure 2C is a distortion diagram of the imaging lens of Figure 1.

第2D圖係第1圖之成像鏡頭之橫向色差圖。 Figure 2D is a lateral chromatic aberration diagram of the imaging lens of Figure 1.

第2E圖係第1圖之成像鏡頭之相對照度圖。 FIG. 2E is a comparison diagram of the imaging lens of FIG. 1.

第2F圖係第1圖之成像鏡頭之調變轉換函數圖。 Figure 2F is a modulation transfer function diagram of the imaging lens of Figure 1.

第2G圖係第1圖之成像鏡頭之離焦調變轉換函數圖。 Figure 2G is a graph of the defocus modulation transfer function of the imaging lens of Figure 1.

第3圖係依據本發明之成像鏡頭之第二實施例的透鏡配置示意圖。 FIG. 3 is a schematic diagram of a lens configuration of a second embodiment of an imaging lens according to the present invention.

第4A圖係第3圖之成像鏡頭之縱向像差圖。 FIG. 4A is a longitudinal aberration diagram of the imaging lens of FIG. 3.

第4B圖係第3圖之成像鏡頭之場曲圖。 FIG. 4B is a field curvature diagram of the imaging lens in FIG. 3.

第4C圖係第3圖之成像鏡頭之畸變圖。 Figure 4C is a distortion diagram of the imaging lens of Figure 3.

第4D圖係第3圖之成像鏡頭之橫向色差圖。 Figure 4D is a lateral chromatic aberration diagram of the imaging lens of Figure 3.

第4E圖係第3圖之成像鏡頭之相對照度圖。 FIG. 4E is a comparison diagram of the imaging lens of FIG. 3.

第4F圖係第3圖之成像鏡頭之調變轉換函數圖。 FIG. 4F is a modulation transfer function diagram of the imaging lens in FIG. 3.

第4G圖係第3圖之成像鏡頭之離焦調變轉換函數圖。 Figure 4G is a defocus modulation transfer function diagram of the imaging lens of Figure 3.

第5圖係依據本發明之成像鏡頭之第三實施例的透鏡配置與光路示意圖。 FIG. 5 is a schematic diagram of a lens configuration and an optical path of a third embodiment of an imaging lens according to the present invention.

第6A圖係第5圖之成像鏡頭之縱向像差圖。 FIG. 6A is a longitudinal aberration diagram of the imaging lens of FIG. 5.

第6B圖係第5圖之成像鏡頭之場曲圖。 FIG. 6B is a field curvature diagram of the imaging lens of FIG. 5.

第6C圖係第5圖之成像鏡頭之畸變圖。 FIG. 6C is a distortion diagram of the imaging lens of FIG. 5.

第7圖係依據本發明之成像鏡頭之第四實施例的透鏡配置與光路示意圖。 FIG. 7 is a schematic diagram of a lens configuration and an optical path of a fourth embodiment of an imaging lens according to the present invention.

第8A圖係第7圖之成像鏡頭之縱向像差圖。 FIG. 8A is a longitudinal aberration diagram of the imaging lens of FIG. 7.

第8B圖係第7圖之成像鏡頭之場曲圖。 FIG. 8B is a field curvature diagram of the imaging lens of FIG. 7.

第8C圖係第7圖之成像鏡頭之畸變圖。 FIG. 8C is a distortion diagram of the imaging lens of FIG. 7.

第9圖係依據本發明之成像鏡頭之第五實施例的透鏡配置與光路示意圖。 FIG. 9 is a schematic diagram of a lens configuration and an optical path of a fifth embodiment of an imaging lens according to the present invention.

第10A圖係第9圖之成像鏡頭之縱向像差圖。 FIG. 10A is a longitudinal aberration diagram of the imaging lens of FIG. 9.

第10B圖係第9圖之成像鏡頭之場曲圖。 FIG. 10B is a field curvature diagram of the imaging lens of FIG. 9.

第10C圖係第9圖之成像鏡頭之畸變圖。 FIG. 10C is a distortion diagram of the imaging lens of FIG. 9.

請參閱第1圖,第1圖係依據本發明之成像鏡頭之第一實施例的透鏡配置示意圖。成像鏡頭1沿著一光軸OA1從一物側至一像側依序包括一第一透鏡群L1G1、一第二透鏡群L1G2及一濾光片OF1。第一透鏡群L1G1沿著光軸OA1從物側至像側依序包括一第一透鏡L11、一第二透鏡L12、一第三透鏡L13、一光圈ST1及一第四透鏡L14。第二透鏡群L1G2沿著光軸OA1從物側至像側依序包括一第一透鏡單元L15、一第二透鏡單元L16、一第三透鏡單元L17及一第四透鏡單元L18。成像時,來自物側之光線最後成像於一成像面IMA1上。第一透鏡L11為彎月型透鏡具有負屈光力由玻璃材質製成,其物側面S11為凸面,像側面S12為凹面,物側面S11與像側面S12皆為球面表面。第二透鏡L12為彎月型透鏡具有負屈光力由玻璃材質製成,其物側面S13為凸面,像側面S14為凹面,物側面S13與像側面S14皆為球面表面。第三透鏡L13為彎月型透鏡具有正屈光力由塑膠材質製成,其物側面S15為凹面,像側面S16為凸面,物側面S15與像側面 S16皆為非球面表面。第四透鏡L14為雙凸透鏡具有正屈光力由塑膠材質製成,其物側面S18為凸面,像側面S19為凸面,物側面S18與像側面S19皆為非球面表面。第一透鏡單元L15為雙凹透鏡具有負屈光力由塑膠材質製成,其物側面S110為凹面,像側面S111為凹面,物側面S110與像側面S111皆為非球面表面。第二透鏡單元L16為雙凸透鏡具有正屈光力由玻璃材質製成,其物側面S112為凸面,像側面S113為凸面,物側面S112與像側面S113皆為非球面表面。第三透鏡單元L17為雙凹透鏡具有負屈光力由塑膠材質製成,其物側面S114為凹面,像側面S115為凹面,物側面S114與像側面S115皆為非球面表面。第四透鏡單元L18為雙凸透鏡具有正屈光力由塑膠材質製成,其物側面S116為凸面,像側面S117為凸面,物側面S116與像側面S117皆為非球面表面。濾光片OF1其物側面S118與像側面S119皆為平面。 Please refer to FIG. 1, which is a schematic diagram of a lens configuration of a first embodiment of an imaging lens according to the present invention. The imaging lens 1 includes a first lens group L1 G1 , a second lens group L1 G2, and a filter OF1 in order from an object side to an image side along an optical axis OA1. The first lens group L1 G1 includes a first lens L11, a second lens L12, a third lens L13, an aperture ST1, and a fourth lens L14 in this order from the object side to the image side along the optical axis OA1. The second lens group L1 G2 includes a first lens unit L15, a second lens unit L16, a third lens unit L17, and a fourth lens unit L18 in this order from the object side to the image side along the optical axis OA1. During imaging, the light from the object side is finally imaged on an imaging surface IMA1. The first lens L11 is a meniscus lens with negative refractive power and is made of glass. The object side S11 is convex, the image side S12 is concave, and both the object side S11 and the image side S12 are spherical surfaces. The second lens L12 is a meniscus lens with negative refractive power and is made of glass material. The object side S13 is convex, the image side S14 is concave, and both the object side S13 and the image side S14 are spherical surfaces. The third lens L13 is a meniscus lens with positive refractive power and is made of a plastic material. The object side S15 is concave, the image side S16 is convex, and both the object side S15 and the image side S16 are aspherical surfaces. The fourth lens L14 is a biconvex lens with positive refractive power and is made of a plastic material. The object side S18 is convex, the image side S19 is convex, and the object side S18 and the image side S19 are aspherical surfaces. The first lens unit L15 is a biconcave lens with negative refractive power and is made of a plastic material. Its object side S110 is concave, the image side S111 is concave, and both the object side S110 and the image side S111 are aspherical surfaces. The second lens unit L16 is a lenticular lens with positive refractive power and is made of glass material. The object side surface S112 is convex, the image side S113 is convex, and both the object side S112 and the image side S113 are aspherical surfaces. The third lens unit L17 is a biconcave lens and has negative refractive power. The third lens unit L17 is made of plastic. The object side S114 is concave, the image side S115 is concave, and both the object side S114 and the image side S115 are aspherical surfaces. The fourth lens unit L18 is a biconvex lens and has a positive refractive power and is made of a plastic material. The object side S116 is convex, the image side S117 is convex, and both the object side S116 and the image side S117 are aspherical surfaces. Both the object side S118 and the image side S119 of the filter OF1 are flat.

另外,為使本發明之成像鏡頭能保持良好的光學性能,第一實施例中的成像鏡頭1需滿足底下五條件:2.09<|f12/f1|<3.23 (1) In addition, in order to maintain good optical performance of the imaging lens of the present invention, the imaging lens 1 in the first embodiment must satisfy the following five conditions: 2.09 <| f1 2 /f1|<3.23 (1)

0.95<|f16/f1|<2.37 (2) 0.95 <| f1 6 /f1|<2.37 (2)

0.71<|f17/f1|<1.85 (3) 0.71 <| f1 7 /f1|<1.85 (3)

6.3<|TTL1/BFL1|<10.5 (4) 6.3 <| TTL1 / BFL1 | <10.5 (4)

|f1/TTL1|>0.06 (5) | f1 / TTL1 |> 0.06 (5)

其中,f12為第二透鏡L12之有效焦距,f16為第二透鏡單元L16之有效焦距,f17為第三透鏡單元L17之有效焦距,f1為成像鏡頭1之有效焦距,TTL1為第一透鏡L11之物側面S11至成像面IMA1 於光軸OA1上之間距,BFL1為第四透鏡單元L18之像側面S117至成像面IMA1於光軸OA1上之間距。 Among them, f1 2 is the effective focal length of the second lens unit L12, f1 6 is the effective focal length of the second lens unit L16, f1 7 is the effective focal length of the third lens unit L17, f1 is the effective focal length of the imaging lens 1, and TTL1 is the first The distance between the object side S11 of the lens L11 and the imaging plane IMA1 on the optical axis OA1, and BFL1 is the distance between the image side S117 of the fourth lens unit L18 and the imaging plane IMA1 on the optical axis OA1.

利用上述透鏡與光圈ST1之設計,使得成像鏡頭1能具備高解析度、降低溫度變化對成像品質的影響、有效的修正像差。 By using the design of the lens and the aperture ST1, the imaging lens 1 can have high resolution, reduce the influence of temperature change on imaging quality, and effectively correct aberrations.

表一為第1圖中成像鏡頭1之各透鏡之相關參數表,表一資料顯示,第一實施例之成像鏡頭1之有效焦距等於2.204mm、光圈值等於2.0、鏡頭總長度等於19.912mm。 Table 1 is a related parameter table of each lens of the imaging lens 1 in the first figure. The data in Table 1 shows that the effective focal length of the imaging lens 1 of the first embodiment is equal to 2.204 mm, the aperture value is equal to 2.0, and the total lens length is equal to 19.912 mm.

表一中各個透鏡之非球面表面凹陷度z由下列公式所得到:z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10 The aspheric surface depression z of each lens in Table 1 is obtained by the following formula: z = ch 2 / {1+ [1- (k + 1) c 2 h 2 ] 1/2 } + Ah 4 + Bh 6 + Ch 8 + Dh 10

其中:c:曲率;h:透鏡表面任一點至光軸之垂直距離;k:圓錐係數;A~D:非球面係數。 Where: c: curvature; h: vertical distance from any point on the lens surface to the optical axis; k: conic coefficient; A ~ D: aspherical coefficient.

表二為表一中各個透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~D為非球面係數。 Table 2 is a table of related parameters of the aspheric surface of each lens in Table 1, where k is the Conic Constant and A ~ D are aspheric coefficients.

第一實施例之成像鏡頭1,其第二透鏡L12之有效焦距f12=-5.715mm,第二透鏡單元L16之有效焦距f16=3.204mm,第三透鏡單元L17之有效焦距f17=-2.679mm,成像鏡頭1之有效焦距f1=2.204mm,第二 透鏡群L1G2之有效焦距f1G2=-33.308mm,第一透鏡L11之物側面S11至成像面IMA1於光軸OA1上之間距TTL1=19.912mm,第四透鏡單元L18之像側面S117至成像面IMA1於光軸OA1上之間距BFL1=2.111mm。由上述資料可得到|f12/f1|=2.593、|f16/f1|=1.454、|f17/f1|=1.216、|TTL1/BFL1|=9.432、|f1/TTL1|=0.111,皆能滿足上述條件(1)至條件(5)之要求。 The imaging lens 1 of the first embodiment has an effective focal length f1 2 of the second lens L12 = -5.715mm, an effective focal length f1 6 of the second lens unit L16 = 3.204mm, and an effective focal length f1 7 of the third lens unit L17 =- 2.679mm, effective focal length f1 of imaging lens 1 = 2.204mm, effective focal length f2 of second lens group L1 G2 G2 = -33.308mm, distance from object side S11 to imaging surface IMA1 of first lens L11 on optical axis OA1, TTL1 = 19.912mm, the distance from the image side S117 of the fourth lens unit L18 to the imaging plane IMA1 on the optical axis OA1 is BFL1 = 2.111mm. From the above data, we can get | f1 2 /f1|=2.593, | f1 6 /f1|=1.454, | f1 7 /f1|=1.216, | TTL1 / BFL1 | = 9.432, | f1 / TTL1 | = 0.111, both can Meet the requirements of the above conditions (1) to (5).

另外,第一實施例之成像鏡頭1的光學性能也可達到要求,這可從第2A至第2G圖看出。第2A圖所示的,是第一實施例之成像鏡頭1的縱向像差(Longitudinal Aberration)圖。第2B圖所示的,是第一實施例之成像鏡頭1的場曲(Field Curvature)圖。第2C圖所示的,是第一實施例之成像鏡頭1的畸變(Distortion)圖。第2D圖所示的,是第一實施例之成像鏡頭1的橫向色差(Lateral Color)圖。第2E圖所示的,是第一實施例之成像鏡頭1的相對照度(Relative Illumination)圖。第2F圖所示的,是第一實施例之成像鏡頭1的調變轉換函數(Modulation Transfer Function)圖。第2G圖所示的,是第一實施例之成像鏡頭1的離焦調變轉換函數(Through Focus Modulation Transfer Function)圖。 In addition, the optical performance of the imaging lens 1 of the first embodiment can also meet the requirements, which can be seen from FIGS. 2A to 2G. FIG. 2A is a longitudinal aberration diagram of the imaging lens 1 of the first embodiment. FIG. 2B is a Field Curvature diagram of the imaging lens 1 of the first embodiment. FIG. 2C is a distortion diagram of the imaging lens 1 of the first embodiment. FIG. 2D is a lateral color aberration diagram of the imaging lens 1 of the first embodiment. FIG. 2E is a relative illumination diagram of the imaging lens 1 of the first embodiment. Shown in FIG. 2F is a diagram of a Modulation Transfer Function of the imaging lens 1 of the first embodiment. FIG. 2G is a diagram of a Through Focus Modulation Transfer Function of the imaging lens 1 of the first embodiment.

由第2A圖可看出,第一實施例之成像鏡頭1對波長為0.436μm、0.486μm、0.546μm、0.587μm、0.656μm之光線所產生的縱向像差值介於-0.01mm至0.02mm之間。由第2B圖可看出,第一實施例之成像鏡頭1對波長為0.436μm、0.486μm、0.546μm、0.587μm、0.656μm之光線,於子午(Tangential)方向與弧矢(Sagittal)方向之場曲介於-0.03mm至0.02mm之間。由第2C圖(圖中的5條線幾乎重合,以致於看起來只有一條線)可看出,第一實施例之成像鏡頭1對波長為0.436μm、0.486μm、0.546 μm、0.587μm、0.656μm之光線所產生的畸變介於-100%至0%之間。由第2D圖可看出,第一實施例之成像鏡頭1以波長為0.546μm之光線為參考波長,對波長為0.436μm、0.486μm、0.546μm、0.587μm、0.656μm之光線於不同視場角度所產生的橫向色差值介於-0.5μm至4.0μm之間。由第2E圖可看出,第一實施例之成像鏡頭1對波長為0.546μm之光線,於Y視場介於0度至95度之間其相對照度介於0.55至1.0之間。由第2F圖可看出,第一實施例之成像鏡頭1對波長範圍介於0.436μm至0.656μm之光線,分別於子午(Tangential)方向與弧矢(Sagittal)方向,視場角度分別為0.00度、19.00度、38.00度、57.00度、76.00度、95.00度,空間頻率介於0lp/mm至77.2lp/mm,其調變轉換函數值介於0.68至1.0之間。由第2G圖可看出,第一實施例之成像鏡頭1對波長範圍介於0.436μm至0.656μm之光線,分別於子午(Tangential)方向與弧矢(Sagittal)方向,視場角度分別為0.00度、19.00度、38.00度、57.00度、76.00度、95.00度,空間頻率等於77.2lp/mm時,當焦點偏移介於-0.025mm至0.024mm之間其調變轉換函數值皆大於0.2。顯見第一實施例之成像鏡頭1之縱向像差、場曲、畸變、橫向色差都能被有效修正,相對照度、鏡頭解析度、焦深也都能滿足要求,從而得到較佳的光學性能。 It can be seen from FIG. 2A that the longitudinal aberration value generated by the imaging lens 1 of the first embodiment for light having a wavelength of 0.436 μm, 0.486 μm, 0.546 μm, 0.587 μm, and 0.656 μm is between -0.01 mm and 0.02 mm. between. It can be seen from FIG. 2B that the imaging lens 1 of the first embodiment has a pair of rays with a wavelength of 0.436 μm, 0.486 μm, 0.546 μm, 0.587 μm, and 0.656 μm in the direction of the Tangential and Sagittal directions. The field curvature is between -0.03mm and 0.02mm. From Figure 2C (the five lines in the figure are almost superimposed so that only one line appears), it can be seen that the pair of imaging lenses of the first embodiment has a wavelength of 0.436 μm, 0.486 μm, 0.546 The distortion caused by the light of μm, 0.587μm, and 0.656μm is between -100% and 0%. As can be seen from the 2D diagram, the imaging lens 1 of the first embodiment uses light with a wavelength of 0.546 μm as a reference wavelength, and uses light with a wavelength of 0.436 μm, 0.486 μm, 0.546 μm, 0.587 μm, 0.656 μm in different fields of view. The lateral chromatic aberration value produced by the angle is between -0.5 μm and 4.0 μm. It can be seen from FIG. 2E that the imaging lens 1 of the first embodiment has a wavelength of 0.546 μm in the Y field of view between 0 degrees and 95 degrees and its contrast degree is between 0.55 and 1.0. As can be seen from Figure 2F, the imaging lens 1 of the first embodiment has a pair of rays with a wavelength ranging from 0.436 μm to 0.656 μm, respectively in the Tangential direction and the Sagittal direction, and the field angles are 0.00 Degrees, 19.00 degrees, 38.00 degrees, 57.00 degrees, 76.00 degrees, 95.00 degrees, the spatial frequency is between 0 lp / mm to 77.2 lp / mm, and its modulation conversion function value is between 0.68 to 1.0. As can be seen from Figure 2G, the imaging lens 1 of the first embodiment has a pair of rays with a wavelength ranging from 0.436 μm to 0.656 μm, respectively in the Tangential direction and the Sagittal direction, and the field angles are 0.00 Degrees, 19.00 degrees, 38.00 degrees, 57.00 degrees, 76.00 degrees, 95.00 degrees, when the spatial frequency is equal to 77.2lp / mm, when the focus shift is between -0.025mm and 0.024mm, its modulation conversion function values are all greater than 0.2. It is obvious that the longitudinal aberration, field curvature, distortion, and lateral chromatic aberration of the imaging lens 1 of the first embodiment can be effectively corrected, and the contrast, lens resolution, and focal depth can also meet the requirements, thereby obtaining better optical performance.

請參閱第3圖,第3圖係依據本發明之成像鏡頭之第二實施例的透鏡配置示意圖。成像鏡頭2沿著一光軸OA2從一物側至一像側依序包括一第一透鏡群L2G1及一第二透鏡群L2G2。第一透鏡群L2G1沿著光軸OA2從物側至像側依序包括一第一透鏡L21、一第二透鏡L22、一第三透鏡L23及一第四透鏡L24。第二透鏡群L2G2沿著光軸OA2從物側至像側依序包 括一第一透鏡單元L25、一第二透鏡單元L26、一第三透鏡單元L27及一第四透鏡單元L28。成像時,來自物側之光線最後成像於一成像面IMA2上。第一透鏡L21為彎月型透鏡具有負屈光力由玻璃材質製成,其物側面S21為凸面,像側面S22為凹面,物側面S21與像側面S22皆為球面表面。第二透鏡L22為彎月型透鏡具有負屈光力由玻璃材質製成,其物側面S23為凸面,像側面S24為凹面,物側面S23與像側面S24皆為球面表面。第三透鏡L23為彎月型透鏡具有正屈光力由塑膠材質製成,其物側面S25為凹面,像側面S26為凸面,物側面S25與像側面S26皆為非球面表面。第四透鏡L24為雙凸透鏡具有正屈光力由塑膠材質製成,其物側面S27為凸面,像側面S28為凸面,物側面S27與像側面S28皆為非球面表面。第一透鏡單元L25為雙凹透鏡具有負屈光力由塑膠材質製成,其物側面S29為凹面,像側面S210為凹面,物側面S29與像側面S210皆為非球面表面。第二透鏡單元L26為雙凸透鏡具有正屈光力由塑膠材質製成,其物側面S211為凸面,像側面S212為凸面,物側面S211與像側面S212皆為非球面表面。第三透鏡單元L27為雙凹透鏡具有負屈光力由塑膠材質製成,其物側面S213為凹面,像側面S214為凹面,物側面S213與像側面S214皆為非球面表面。第四透鏡單元L28為雙凸透鏡具有正屈光力由塑膠材質製成,其物側面S215為凸面,像側面S216為凸面,物側面S215與像側面S216皆為非球面表面。 Please refer to FIG. 3, which is a schematic diagram of a lens configuration of a second embodiment of an imaging lens according to the present invention. The imaging lens 2 includes a first lens group L2 G1 and a second lens group L2 G2 in this order from an object side to an image side along an optical axis OA2. The first lens group L2 G1 includes a first lens L21, a second lens L22, a third lens L23, and a fourth lens L24 in this order from the object side to the image side along the optical axis OA2. The second lens group L2 G2 includes a first lens unit L25, a second lens unit L26, a third lens unit L27, and a fourth lens unit L28 in this order from the object side to the image side along the optical axis OA2. During imaging, the light from the object side is finally imaged on an imaging surface IMA2. The first lens L21 is a meniscus lens and has negative refractive power and is made of glass material. The object side S21 is convex, the image side S22 is concave, and the object side S21 and the image side S22 are spherical surfaces. The second lens L22 is a meniscus lens with negative refractive power and is made of glass. The object side S23 is convex, the image side S24 is concave, and the object side S23 and the image side S24 are spherical surfaces. The third lens L23 is a meniscus lens with positive refractive power and is made of a plastic material. The object side S25 is concave, the image side S26 is convex, and both the object side S25 and the image side S26 are aspherical surfaces. The fourth lens L24 is a biconvex lens and has a positive refractive power and is made of a plastic material. The object side S27 is convex, the image side S28 is convex, and the object side S27 and the image side S28 are aspherical surfaces. The first lens unit L25 is a biconcave lens and has negative refractive power. The first lens unit L25 is made of plastic. The object side S29 is concave, the image side S210 is concave, and the object side S29 and the image side S210 are aspherical surfaces. The second lens unit L26 is a biconvex lens and has a positive refractive power and is made of a plastic material. The object side S211 is convex, the image side S212 is convex, and the object side S211 and the image side S212 are aspherical surfaces. The third lens unit L27 is a biconcave lens with negative refractive power and is made of plastic material. The object side S213 is concave, the image side S214 is concave, and the object side S213 and the image side S214 are aspherical surfaces. The fourth lens unit L28 is a biconvex lens and has a positive refractive power and is made of a plastic material. The object side S215 is convex, the image side S216 is convex, and the object side S215 and the image side S216 are aspherical surfaces.

另外,為使本發明之成像鏡頭能保持良好的光學性能,第二實施例中的成像鏡頭2需滿足底下五條件:2.09<|f22/f2|<3.23 (6) In addition, in order for the imaging lens of the present invention to maintain good optical performance, the imaging lens 2 in the second embodiment must satisfy the following five conditions: 2.09 <| f2 2 /f2|<3.23 (6)

0.95<|f26/f2|<2.37 (7) 0.95 <| f2 6 /f2|<2.37 (7)

0.71<|f27/f2|<1.85 (8) 0.71 <| f2 7 /f2|<1.85 (8)

6.3<|TTL2/BFL2|<10.5 (9) 6.3 <| TTL2 / BFL2 | <10.5 (9)

|f2/TTL2|>0.06 (10) | f2 / TTL2 |> 0.06 (10)

其中,f22為第二透鏡L22之有效焦距,f26為第二透鏡單元L26之有效焦距,f27為第三透鏡單元L27之有效焦距,f2為成像鏡頭2之有效焦距,TTL2為第一透鏡L21之物側面S21至成像面IMA2於光軸OA2上之間距,BFL2為第四透鏡單元L28之像側面S216至成像面IMA2於光軸OA2上之間距。 Among them, f2 2 is the effective focal length of the second lens unit L22, f2 6 is the effective focal length of the second lens unit L26, f2 7 is the effective focal length of the third lens unit L27, f2 is the effective focal length of the imaging lens 2, and TTL2 is the first The distance between the object side S21 of the lens L21 and the imaging plane IMA2 on the optical axis OA2, and BFL2 is the distance between the image side S216 of the fourth lens unit L28 and the imaging plane IMA2 on the optical axis OA2.

利用上述透鏡之設計,使得成像鏡頭2能具備高解析度、降低溫度變化對成像品質的影響、有效的修正像差。 With the design of the above lens, the imaging lens 2 can have high resolution, reduce the influence of temperature change on imaging quality, and effectively correct aberrations.

表三為第3圖中成像鏡頭2之各透鏡之相關參數表,表三資料顯示,第二實施例之成像鏡頭2之有效焦距等於1.828mm、光圈值等於2.0、鏡頭總長度等於20.989mm。 Table 3 is a table of related parameters of each lens of imaging lens 2 in FIG. 3. The data in Table 3 shows that the effective focal length of imaging lens 2 of the second embodiment is equal to 1.828 mm, the aperture value is equal to 2.0, and the total lens length is equal to 20.989 mm.

表三中各個透鏡之非球面表面凹陷度z由下列公式所得到:z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10 The aspheric surface depression z of each lens in Table 3 is obtained by the following formula: z = ch 2 / {1+ [1- (k + 1) c 2 h 2 ] 1/2 } + Ah 4 + Bh 6 + Ch 8 + Dh 10

其中:c:曲率;h:透鏡表面任一點至光軸之垂直距離; k:圓錐係數;A~D:非球面係數。 Where: c: curvature; h: vertical distance from any point on the lens surface to the optical axis; k: conic coefficient; A ~ D: aspherical coefficient.

表四為表三中各個透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~D為非球面係數。 Table 4 is a table of related parameters of the aspheric surface of each lens in Table 3, where k is the Conic Constant and A ~ D are aspheric coefficients.

第二實施例之成像鏡頭2,其第二透鏡L22之有效焦距 f22=-4.976mm,第二透鏡單元L26之有效焦距f26=3.411mm,第三透鏡單元L27之有效焦距f27=-2.459mm,成像鏡頭2之有效焦距f1=1.828mm,第二透鏡群L2G2之有效焦距f2G2=-296.864mm,第一透鏡L21之物側面S21至成像面IMA2於光軸OA2上之間距TTL2=20.989mm,第四透鏡單元L28之像側面S216至成像面IMA2於光軸OA2上之間距BFL2=2.863mm。由上述資料可得到|f22/f2|=2.722、|f26/f2|=1.866、|f27/f2|=1.345、|TTL2/BFL2|=7.331、|f2/TTL2|=0.087,皆能滿足上述條件(6)至條件(10)之要求。 The imaging lens 2 of the second embodiment has an effective focal length f2 2 of the second lens L22 = -4.976mm, an effective focal length f2 6 of the second lens unit L26 = 3.411mm, and an effective focal length f2 7 of the third lens unit L27 =- 2.459mm, effective focal length f1 of imaging lens 2 = 1.828mm, effective focal length f2 of second lens group L2 G2 G2 = -296.864mm, distance from object side S21 to imaging surface IMA2 of first lens L21 on optical axis OA2, TTL2 = 20.989mm, the distance from the image side S216 of the fourth lens unit L28 to the imaging plane IMA2 on the optical axis OA2 is BFL2 = 2.863mm. From the above data, we can get | f2 2 /f2|=2.722, | f2 6 /f2|=1.866, | f2 7 /f2|=1.345, | TTL2 / BFL2 | = 7.331, | f2 / TTL2 | = 0.087, both can Meet the requirements of the above conditions (6) to (10).

另外,第二實施例之成像鏡頭2的光學性能也可達到要求,這可從第4A至第4G圖看出。第4A圖所示的,是第二實施例之成像鏡頭2的縱向像差(Longitudinal Aberration)圖。第4B圖所示的,是第二實施例之成像鏡頭2的場曲(Field Curvature)圖。第4C圖所示的,是第二實施例之成像鏡頭2的畸變(Distortion)圖。第4D圖所示的,是第二實施例之成像鏡頭2的橫向色差(Lateral Color)圖。第4E圖所示的,是第二實施例之成像鏡頭2的相對照度(Relative Illumination)圖。第4F圖所示的,是第二實施例之成像鏡頭2的調變轉換函數(Modulation Transfer Function)圖。第4G圖所示的,是第二實施例之成像鏡頭2的離焦調變轉換函數(Through Focus Modulation Transfer Function)圖。 In addition, the optical performance of the imaging lens 2 of the second embodiment can also meet the requirements, which can be seen from FIGS. 4A to 4G. FIG. 4A is a longitudinal aberration diagram of the imaging lens 2 of the second embodiment. FIG. 4B is a Field Curvature diagram of the imaging lens 2 of the second embodiment. FIG. 4C is a distortion diagram of the imaging lens 2 of the second embodiment. 4D is a lateral color aberration diagram of the imaging lens 2 of the second embodiment. FIG. 4E is a relative illumination diagram of the imaging lens 2 of the second embodiment. FIG. 4F is a Modulation Transfer Function diagram of the imaging lens 2 of the second embodiment. Shown in FIG. 4G is a diagram of a Through Focus Modulation Transfer Function of the imaging lens 2 of the second embodiment.

由第4A圖可看出,第二實施例之成像鏡頭2對波長為0.436μm、0.486μm、0.546μm、0.587μm、0.656μm之光線所產生的縱向像差值介於-0.005mm至0.025mm之間。由第4B圖可看出,第二實施例之成像鏡頭2對波長為0.436μm、0.486μm、0.546μm、0.587μm、0.656 μm之光線,於子午(Tangential)方向與弧矢(Sagittal)方向之場曲介於-0.01mm至0.05mm之間。由第4C圖(圖中的5條線幾乎重合,以致於看起來只有一條線)可看出,第二實施例之成像鏡頭2對波長為0.436μm、0.486μm、0.546μm、0.587μm、0.656μm之光線所產生的畸變介於-100%至0%之間。由第4D圖可看出,第二實施例之成像鏡頭2以波長為0.546μm之光線為參考波長,對波長為0.436μm、0.486μm、0.546μm、0.587μm、0.656μm之光線於不同視場角度所產生的橫向色差值介於0.0μm至5.0μm之間。由第4E圖可看出,第二實施例之成像鏡頭2對波長為0.546μm之光線,於Y視場介於0度至95度之間其相對照度介於0.55至1.0之間。由第4F圖可看出,第二實施例之成像鏡頭2對波長範圍介於0.436μm至0.656μm之光線,分別於子午(Tangential)方向與弧矢(Sagittal)方向,視場角度分別為0.00度、19.00度、38.00度、57.00度、76.00度、95.00度,空間頻率介於0lp/mm至77.21p/mm,其調變轉換函數值介於0.64至1.0之間。由第4G圖可看出,第二實施例之成像鏡頭2對波長範圍介於0.436μm至0.656μm之光線,分別於子午(Tangential)方向與弧矢(Sagittal)方向,視場角度分別為0.00度、19.00度、38.00度、57.00度、76.00度、95.00度,空間頻率等於77.2lp/mm時,當焦點偏移介於-0.028mm至0.024mm之間其調變轉換函數值皆大於0.2。顯見第二實施例之成像鏡頭2之縱向像差、場曲、畸變、橫向色差都能被有效修正,相對照度、鏡頭解析度、焦深也都能滿足要求,從而得到較佳的光學性能。 It can be seen from FIG. 4A that the longitudinal aberration value generated by the imaging lens 2 of the second embodiment for light having a wavelength of 0.436 μm, 0.486 μm, 0.546 μm, 0.587 μm, and 0.656 μm is between -0.005 mm and 0.025 mm. between. As can be seen from FIG. 4B, the imaging lens 2 of the second embodiment has a wavelength of 0.436 μm, 0.486 μm, 0.546 μm, 0.587 μm, and 0.656. The light field of μm has a field curvature between -0.01mm and 0.05mm in the Tangential and Sagittal directions. From Figure 4C (the five lines in the figure almost overlap so that only one line appears), it can be seen that the pair of imaging lenses 2 of the second embodiment has a wavelength of 0.436 μm, 0.486 μm, 0.546 μm, 0.587 μm, 0.656 The distortion caused by the light of μm is between -100% and 0%. As can be seen from the 4D diagram, the imaging lens 2 of the second embodiment uses light with a wavelength of 0.546 μm as a reference wavelength, and uses light with a wavelength of 0.436 μm, 0.486 μm, 0.546 μm, 0.587 μm, 0.656 μm in different fields of view. The lateral chromatic aberration value produced by the angle is between 0.0 μm and 5.0 μm. It can be seen from FIG. 4E that the imaging lens 2 of the second embodiment has a wavelength of 0.546 μm in the Y field of view between 0 degrees and 95 degrees and its contrast degree is between 0.55 and 1.0. As can be seen from Figure 4F, the imaging lens 2 of the second embodiment has a pair of rays with a wavelength ranging from 0.436 μm to 0.656 μm, respectively in the Tangential direction and the Sagittal direction, and the field angles are 0.00 Degrees, 19.00 degrees, 38.00 degrees, 57.00 degrees, 76.00 degrees, 95.00 degrees, the spatial frequency is between 0lp / mm to 77.21p / mm, and its modulation conversion function value is between 0.64 to 1.0. As can be seen in Figure 4G, the imaging lens 2 of the second embodiment has a pair of rays with a wavelength range of 0.436 μm to 0.656 μm, respectively in the Tangential direction and the Sagittal direction, and the field angles are 0.00 Degrees, 19.00 degrees, 38.00 degrees, 57.00 degrees, 76.00 degrees, 95.00 degrees, when the spatial frequency is equal to 77.2lp / mm, when the focus shift is between -0.028mm and 0.024mm, its modulation conversion function values are all greater than 0.2. It is obvious that the longitudinal aberration, field curvature, distortion, and lateral chromatic aberration of the imaging lens 2 of the second embodiment can be effectively corrected, and the contrast, lens resolution, and focal depth can also meet the requirements, thereby obtaining better optical performance.

請參閱第5圖,第5圖係依據本發明之成像鏡頭之第三實施例的透鏡配置與光路示意圖。成像鏡頭3沿著一光軸OA3從一物側至一 像側依序包括一第一透鏡群L3G1、一光圈ST3、一第二透鏡群L3G2及一濾光片OF3。第一透鏡群L3G1沿著光軸OA3從物側至像側依序包括一第一透鏡L31、一第二透鏡L32、一第三透鏡L33及一第四透鏡L34。第二透鏡群L3G2沿著光軸OA3從物側至像側依序包括一第一透鏡單元L35、一第二透鏡單元L36、一第三透鏡單元L37及一第四透鏡單元L38。上述第二透鏡單元L36與第三透鏡單元L37膠合成一膠合透鏡L3C。成像時,來自物側之光線最後成像於一成像面IMA3上。當被攝物(未圖示)位於近距離時,成像鏡頭3可經由調整第一透鏡群L3G1至第二透鏡群L3G2於光軸OA3上之間距D3G1G2以完成近距離對焦。第一透鏡L31為彎月型透鏡具有負屈光力,其物側面S31為凸面,像側面S32為凹面,物側面S31與像側面S32皆為球面表面。第二透鏡L32為彎月型透鏡具有負屈光力,其物側面S33為凸面,像側面S34為凹面,物側面S33與像側面S34皆為非球面表面。第三透鏡L33為彎月型透鏡具有正屈光力,其物側面S35為凹面,像側面S36為凸面,物側面S35與像側面S36皆為球面表面。第四透鏡L34為彎月型透鏡具有正屈光力,其物側面S37為凸面,像側面S38為凹面,物側面S37與像側面S38皆為球面表面。第一透鏡單元L35為雙凹透鏡具有負屈光力,其物側面S310為凹面,像側面S311為凹面,物側面S310與像側面S311皆為球面表面。第二透鏡單元L36為雙凸透鏡具有正屈光力,其物側面S312為凸面,像側面S313為凸面,物側面S312與像側面S313皆為球面表面。第三透鏡單元L37為彎月型透鏡具有負屈光力,其物側面S313為凹面,像側面S314為凸面,物側面S313與像側面S314皆為球面表面。第四透鏡單元L38為雙凸透鏡具有正屈光力,其物側面S315為凸面,像側面S316為凸面,物側面S315 與像側面S316皆為非球面表面。濾光片OF3其物側面S317與像側面S318皆為平面。 Please refer to FIG. 5, which is a schematic diagram of a lens configuration and an optical path of a third embodiment of an imaging lens according to the present invention. The imaging lens 3 includes a first lens group L3 G1 , an aperture ST3, a second lens group L3 G2, and a filter OF3 in order from an object side to an image side along an optical axis OA3. The first lens group L3 G1 includes a first lens L31, a second lens L32, a third lens L33, and a fourth lens L34 in this order from the object side to the image side along the optical axis OA3. The second lens group L3 G2 includes a first lens unit L35, a second lens unit L36, a third lens unit L37, and a fourth lens unit L38 in this order from the object side to the image side along the optical axis OA3. The second lens unit L36 and the third lens unit L37 are glued to form a cemented lens L3 C. During imaging, the light from the object side is finally imaged on an imaging surface IMA3. When the subject (not shown) is located at a short distance, the imaging lens 3 can complete the close focus by adjusting the distance D3 G1G2 between the first lens group L3 G1 to the second lens group L3 G2 on the optical axis OA3. The first lens L31 is a meniscus lens with negative refractive power. The object side surface S31 is a convex surface, the image side surface S32 is a concave surface, and the object side surface S31 and the image side surface S32 are spherical surfaces. The second lens L32 is a meniscus lens with negative refractive power. The object side surface S33 is convex, the image side S34 is concave, and both the object side S33 and the image side S34 are aspherical surfaces. The third lens L33 is a meniscus lens with positive refractive power. The object side surface S35 is a concave surface, the image side surface S36 is a convex surface, and the object side surface S35 and the image side surface S36 are spherical surfaces. The fourth lens L34 is a meniscus lens with positive refractive power. The object side surface S37 is a convex surface, the image side surface S38 is a concave surface, and the object side surface S37 and the image side surface S38 are spherical surfaces. The first lens unit L35 is a biconcave lens with negative refractive power. The object side surface S310 is a concave surface, the image side surface S311 is a concave surface, and the object side surface S310 and the image side surface S311 are spherical surfaces. The second lens unit L36 is a biconvex lens with positive refractive power. The object side surface S312 is a convex surface, the image side surface S313 is a convex surface, and the object side surface S312 and the image side surface S313 are spherical surfaces. The third lens unit L37 is a meniscus lens with negative refractive power. The object side surface S313 is a concave surface, the image side surface S314 is a convex surface, and the object side surface S313 and the image side surface S314 are spherical surfaces. The fourth lens unit L38 is a biconvex lens with positive refractive power. The object side S315 is convex, the image side S316 is convex, and the object side S315 and the image side S316 are aspherical surfaces. The filter OF3 has a flat object side S317 and an image side S318.

另外,為使本發明之成像鏡頭能保持良好的光學性能,第三實施例中的成像鏡頭3需滿足底下六條件:

Figure TWI679445B_D0015
In addition, in order for the imaging lens of the present invention to maintain good optical performance, the imaging lens 3 in the third embodiment needs to meet the following six conditions:
Figure TWI679445B_D0015

Figure TWI679445B_D0016
Figure TWI679445B_D0016

Vd36>85 (13) Vd3 6 > 85 (13)

Figure TWI679445B_D0017
Figure TWI679445B_D0017

Figure TWI679445B_D0018
Figure TWI679445B_D0018

Figure TWI679445B_D0019
Figure TWI679445B_D0019

其中,f3為成像鏡頭3之有效焦距,f3G2為第二透鏡群L3G2之有效焦距,TTL3為第一透鏡L31之物側面S31至成像面IMA3於光軸OA3上之間距,Y3為成像面IMA3上之最大像高,Vd36為第二透鏡單元L36之阿貝係數,Vd37為第三透鏡單元L37之阿貝係數,D323為第二透鏡L32之像側面S34至第三透鏡L33之物側面S35於光軸OA3上之間距,D345為第四透鏡L34之像側面S38至第一透鏡單元L35之物側面S310於光軸OA3上之間距。 Among them, f3 is the effective focal length of the imaging lens 3, f3 G2 is the effective focal length of the second lens group L3 G2 , TTL3 is the distance between the object side S31 of the first lens L31 and the imaging surface IMA3 on the optical axis OA3, and Y3 is the imaging surface The maximum image height on IMA3, Vd3 6 is the Abbe coefficient of the second lens unit L36, Vd3 7 is the Abbe coefficient of the third lens unit L37, D3 23 is the image side S34 of the second lens L32 to the third lens L33 The distance between the object side S35 on the optical axis OA3 and D3 45 is the distance between the image side S38 of the fourth lens L34 and the object side S310 of the first lens unit L35 on the optical axis OA3.

利用上述透鏡與光圈ST3之設計,使得成像鏡頭3能具備高像高與較大視角的特性、有效的修正像差。 By using the design of the lens and the aperture ST3 described above, the imaging lens 3 can have characteristics of high image height and large viewing angle, and can effectively correct aberrations.

表五為第5圖中成像鏡頭3之各透鏡之相關參數表,表五資料顯示,第三實施例之成像鏡頭3之有效焦距等於10.7969mm、鏡頭總長度等於58mm。 Table 5 is a table of related parameters of each lens of the imaging lens 3 in FIG. 5. The data in Table 5 shows that the effective focal length of the imaging lens 3 of the third embodiment is equal to 10.7969 mm, and the total length of the lens is 58 mm.

表五中各個透鏡之非球面表面凹陷度z由下列公式所得到:z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12+Fh14+Gh16 The aspheric surface depression z of each lens in Table 5 is obtained by the following formula: z = ch 2 / {1+ [1- (k + 1) c 2 h 2 ] 1/2 } + Ah 4 + Bh 6 + Ch 8 + Dh 10 + Eh 12 + Fh 14 + Gh 16

其中:c:曲率;h:透鏡表面任一點至光軸之垂直距離;k:圓錐係數;A~G:非球面係數。 Where: c: curvature; h: vertical distance from any point on the lens surface to the optical axis; k: conic coefficient; A ~ G: aspheric coefficient.

表六為表五中各個透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~G為非球面係數。 Table 6 is a table of related parameters of the aspheric surface of each lens in Table 5, where k is Conic Constant and A ~ G are aspheric coefficients.

第三實施例之成像鏡頭3,其有效焦距f3=10.7969mm,第二透鏡群L3G2之有效焦距f3G2=21.73mm,第一透鏡L31之物側面S31至成像面IMA3於光軸OA3上之間距TTL3=58mm,成像面IMA3上之最大像高Y3=10.815mm,第二透鏡單元L36之阿貝係數Vd36=93,第三透鏡單元L37之阿貝係數Vd37=32,第二透鏡L32之像側面S34至第三透鏡L33之物側面S35於光軸OA3上之間距D323=9.08mm,第四透鏡L34之像側面S38至第一透鏡單元L35之物側面S310於光軸OA3上之間距D345=7.47mm。由上述資料可得到f3/f3G2=0.497、TTL3/Y3=5.363、Vd36=93、Vd36-Vd37=61、D323/TTL3=0.157、D345/TTL3=0.129,皆能滿足上述條件(11)至條件(16)之要求。 The third embodiment of the imaging lens 3, which is the effective focal length f3 = 10.7969mm, effective focal length of the second lens group L3 G2 f3 G2 = 21.73mm, a first object side surface S31 of the lens L31 to the image plane on the optical axis OA3 of IMA3 Pitch TTL3 = 58mm, maximum image height Y3 = 10.815mm on imaging surface IMA3, Abbe coefficient Vd3 6 = 93 of second lens unit L36, Abbe coefficient Vd3 7 = 32 of third lens unit L37, second lens L32 The distance from the image side S34 to the object side S35 of the third lens L33 on the optical axis OA3 is D3 23 = 9.08 mm. The image side S4 of the fourth lens L34 to the object side S310 of the first lens unit L35 is on the optical axis OA3. The distance D3 45 = 7.47mm. From the above data, we can get f3 / f3 G2 = 0.497, TTL3 / Y3 = 5.363, Vd3 6 = 93, Vd3 6 -Vd3 7 = 61, D3 23 /TTL3=0.157, D3 45 /TTL3=0.129, which can meet the above conditions. (11) to the requirements of condition (16).

另外,第三實施例之成像鏡頭3的光學性能也可達到要求,這可從第6A至第6C圖看出。第6A圖所示的,是第三實施例之成像鏡頭3的縱向像差(Longitudinal Aberration)圖。第6B圖所示的,是第三實施例之成像鏡頭3的場曲(Field Curvature)圖。第6C圖所示的,是第三實施例之成像鏡頭3的畸變(Distortion)圖。 In addition, the optical performance of the imaging lens 3 of the third embodiment can also meet the requirements, which can be seen from FIGS. 6A to 6C. FIG. 6A is a longitudinal aberration diagram of the imaging lens 3 of the third embodiment. FIG. 6B is a Field Curvature diagram of the imaging lens 3 of the third embodiment. FIG. 6C is a distortion diagram of the imaging lens 3 of the third embodiment.

由第6A圖可看出,第三實施例之成像鏡頭3對波長為0.436μm、0.486μm、0.546μm、0.588μm、0.656μm之光線所產生的縱向 像差值介於-0.1mm至0.05mm之間。由第6B圖可看出,第三實施例之成像鏡頭3對波長為0.436μm、0.486μm、0.546μm、0.588μm、0.656μm之光線,於子午(Tangential)方向與弧矢(Sagittal)方向之場曲介於-0.16mm至0.10mm之間。由第6C圖(圖中的5條線幾乎重合,以致於看起來只有一條線)可看出,第三實施例之成像鏡頭3對波長為0.436μm、0.486μm、0.546μm、0.588μm、0.656μm之光線所產生的畸變介於-5%至0%之間。顯見第三實施例之成像鏡頭3之縱向像差、場曲、畸變都能被有效修正,從而得到較佳的光學性能。 It can be seen from FIG. 6A that the longitudinal direction of the imaging lens 3 of the third embodiment is 0.436 μm, 0.486 μm, 0.546 μm, 0.588 μm, and 0.656 μm. The aberration value is between -0.1mm and 0.05mm. It can be seen from FIG. 6B that the imaging lens 3 of the third embodiment has a pair of rays with a wavelength of 0.436 μm, 0.486 μm, 0.546 μm, 0.588 μm, and 0.656 μm in the direction of the Tangential and Sagittal directions. The field curvature is between -0.16mm and 0.10mm. From Figure 6C (the five lines in the figure are almost superimposed so that only one line appears), it can be seen that the third pair of imaging lenses of the third embodiment has a wavelength of 0.436 μm, 0.486 μm, 0.546 μm, 0.588 μm, 0.656. The distortion caused by μm light is between -5% and 0%. It is obvious that the longitudinal aberration, field curvature, and distortion of the imaging lens 3 of the third embodiment can be effectively corrected, thereby obtaining better optical performance.

請參閱第7圖,第7圖係依據本發明之成像鏡頭之第四實施例的透鏡配置與光路示意圖。成像鏡頭4沿著一光軸OA4從一物側至一像側依序包括一第一透鏡群L4G1、一光圈ST4、一第二透鏡群L4G2及一濾光片OF4。第一透鏡群L4G1沿著光軸OA4從物側至像側依序包括一第一透鏡L41、一第二透鏡L42、一第三透鏡L43及一第四透鏡L44。第二透鏡群L4G2沿著光軸OA4從物側至像側依序包括一第一透鏡單元L45、一第二透鏡單元L46、一第三透鏡單元L47及一第四透鏡單元L48。上述第二透鏡單元L46與第三透鏡單元L47膠合成一膠合透鏡L4C。成像時,來自物側之光線最後成像於一成像面IMA4上。當被攝物(未圖示)位於近距離時,成像鏡頭4可經由調整第一透鏡群L4G1至第二透鏡群L4G2於光軸OA4上之間距D4G1G2以完成近距離對焦。第一透鏡L41為彎月型透鏡具有負屈光力,其物側面S41為凸面,像側面S42為凹面,物側面S41與像側面S42皆為球面表面。第二透鏡L42為彎月型透鏡具有負屈光力,其物側面S43為凸面,像側面S44為凹面,物側面S43與像側面S44皆為非球面表面。第三透鏡L43為彎月 型透鏡具有正屈光力,其物側面S45為凹面,像側面S46為凸面,物側面S45與像側面S46皆為球面表面。第四透鏡L44為彎月型透鏡具有正屈光力,其物側面S47為凸面,像側面S48為凹面,物側面S47與像側面S48皆為球面表面。第一透鏡單元L45為雙凹透鏡具有負屈光力,其物側面S410為凹面,像側面S411為凹面,物側面S410與像側面S411皆為球面表面。第二透鏡單元L46為雙凸透鏡具有正屈光力,其物側面S412為凸面,像側面S413為凸面,物側面S412與像側面S413皆為球面表面。第三透鏡單元L47為彎月型透鏡具有負屈光力,其物側面S313為凹面,像側面S314為凸面,物側面S413與像側面S414皆為球面表面。第四透鏡單元L48為雙凸透鏡具有正屈光力,其物側面S415為凸面,像側面S416為凸面,物側面S415與像側面S416皆為非球面表面。濾光片OF4其物側面S417與像側面S418皆為平面。 Please refer to FIG. 7, which is a schematic diagram of a lens configuration and an optical path of a fourth embodiment of an imaging lens according to the present invention. The imaging lens 4 includes a first lens group L4 G1 , an aperture ST4, a second lens group L4 G2, and a filter OF4 in order from an object side to an image side along an optical axis OA4. The first lens group L4 G1 includes a first lens L41, a second lens L42, a third lens L43, and a fourth lens L44 in this order from the object side to the image side along the optical axis OA4. The second lens group L4 G2 includes a first lens unit L45, a second lens unit L46, a third lens unit L47, and a fourth lens unit L48 in this order from the object side to the image side along the optical axis OA4. The second lens unit L46 and the third lens unit L47 are glued to form a cemented lens L4 C. During imaging, the light from the object side is finally imaged on an imaging surface IMA4. When the subject (not shown) is located at a short distance, the imaging lens 4 can adjust the distance D4 G1G2 between the first lens group L4 G1 to the second lens group L4 G2 on the optical axis OA4 to complete the close focus. The first lens L41 is a meniscus lens with negative refractive power. The object side surface S41 is a convex surface, the image side surface S42 is a concave surface, and both the object side surface S41 and the image side surface S42 are spherical surfaces. The second lens L42 is a meniscus lens with negative refractive power. The object side S43 is convex, the image side S44 is concave, and both the object side S43 and the image side S44 are aspherical surfaces. The third lens L43 is a meniscus lens with positive refractive power. The object side S45 is concave, the image side S46 is convex, and both the object side S45 and the image side S46 are spherical surfaces. The fourth lens L44 is a meniscus lens with positive refractive power. The object side S47 is convex, the image side S48 is concave, and both the object side S47 and the image side S48 are spherical surfaces. The first lens unit L45 is a biconcave lens with negative refractive power. The object side surface S410 is a concave surface, the image side surface S411 is a concave surface, and the object side surface S410 and the image side surface S411 are spherical surfaces. The second lens unit L46 is a biconvex lens with positive refractive power. The object side surface S412 is convex, the image side S413 is convex, and the object side S412 and the image side S413 are spherical surfaces. The third lens unit L47 is a meniscus lens with negative refractive power. The object side surface S313 is a concave surface, the image side surface S314 is a convex surface, and the object side surface S413 and the image side surface S414 are spherical surfaces. The fourth lens unit L48 is a biconvex lens with positive refractive power. The object side S415 is convex, the image side S416 is convex, and both the object side S415 and the image side S416 are aspherical surfaces. The optical filter OF4 has a flat object side S417 and an image side S418.

另外,為使本發明之成像鏡頭能保持良好的光學性能,第四實施例中的成像鏡頭4需滿足底下六條件:

Figure TWI679445B_D0024
In addition, in order for the imaging lens of the present invention to maintain good optical performance, the imaging lens 4 in the fourth embodiment needs to meet the following six conditions:
Figure TWI679445B_D0024

Figure TWI679445B_D0025
Figure TWI679445B_D0025

Vd46>85 (19) Vd4 6 > 85 (19)

Figure TWI679445B_D0026
Figure TWI679445B_D0026

Figure TWI679445B_D0027
Figure TWI679445B_D0027

Figure TWI679445B_D0028
Figure TWI679445B_D0028

其中,f4為成像鏡頭4之有效焦距,f4G2為第二透鏡群L4G2之有效焦距,TTL4為第一透鏡L41之物側面S41至成像面IMA4於光軸OA4 上之間距,Y4為成像面IMA4上之最大像高,Vd46為第二透鏡單元L46之阿貝係數,Vd47為第三透鏡單元L47之阿貝係數,D423為第二透鏡L42之像側面S44至第三透鏡L43之物側面S45於光軸OA4上之間距,D445為第四透鏡L44之像側面S48至第一透鏡單元L45之物側面S410於光軸OA4上之間距。 Among them, f4 is the effective focal length of the imaging lens 4, f4 G2 is the effective focal length of the second lens group L4 G2 , TTL4 is the distance from the object side S41 of the first lens L41 to the imaging surface IMA4 on the optical axis OA4, and Y4 is the imaging surface The maximum image height on IMA4, Vd4 6 is the Abbe coefficient of the second lens unit L46, Vd4 7 is the Abbe coefficient of the third lens unit L47, D4 23 is the image side S44 of the second lens L42 to the third lens L43 The distance between the object side S45 on the optical axis OA4 and D4 45 is the distance between the image side S48 of the fourth lens L44 and the object side S410 of the first lens unit L45 on the optical axis OA4.

利用上述透鏡與光圈ST4之設計,使得成像鏡頭4能具備高像高與較大視角的特性、有效的修正像差。 By using the design of the lens and the aperture ST4, the imaging lens 4 can have the characteristics of high image height and large viewing angle, and can effectively correct aberrations.

表七為第7圖中成像鏡頭4之各透鏡之相關參數表,表七資料顯示,第四實施例之成像鏡頭4之有效焦距等於11.08mm、鏡頭總長度等於58.02mm。 Table 7 is a table of related parameters of each lens of the imaging lens 4 in FIG. 7. The data in Table 7 shows that the effective focal length of the imaging lens 4 of the fourth embodiment is equal to 11.08 mm and the total lens length is 58.02 mm.

表七中各個透鏡之非球面表面凹陷度z由下列公式所得到:z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12+Fh14+Gh16 The aspheric surface depression z of each lens in Table 7 is obtained by the following formula: z = ch 2 / {1+ [1- (k + 1) c 2 h 2 ] 1/2 } + Ah 4 + Bh 6 + Ch 8 + Dh 10 + Eh 12 + Fh 14 + Gh 16

其中:c:曲率;h:透鏡表面任一點至光軸之垂直距離;k:圓錐係數; A~G:非球面係數。 Where: c: curvature; h: vertical distance from any point on the lens surface to the optical axis; k: conic coefficient; A ~ G: Aspheric coefficient.

表八為表七中各個透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~G為非球面係數。 Table 8 is a table of related parameters of the aspheric surface of each lens in Table 7, where k is the Conic Constant and A ~ G are the aspheric coefficients.

第四實施例之成像鏡頭4,其有效焦距f4=11.08mm,第二透鏡群L4G2之有效焦距f4G2=21.369mm,第一透鏡L41之物側面S41至成像面IMA4於光軸OA4上之間距TTL4=58.02mm,成像面IMA4上之最大像高Y4=11.1mm,第二透鏡單元L46之阿貝係數Vd46=85,第三透鏡單元L47之阿貝係數Vd47=25,第二透鏡L42之像側面S44至第三透鏡L43之物側面S45於光軸OA4上之間距D423=8.53mm,第四透鏡L44之像側面S48至第一透鏡單元L45之物側面S410於光軸OA4上之間距D445=6.71mm。由上述資料可得到f4/f4G2=0.519、TTL4/Y4=5.227、Vd46=85、Vd46-Vd47=60、D423/TTL4=0.147、D445/TTL4=0.116,皆能滿足上述條件(17)至條件(22)之要求。 The imaging lens 4 of the fourth embodiment, the effective focal length f4 = 11.08mm, the effective focal length of the second lens group L4 G2 of f4 G2 = 21.369mm, a first object side surface S41 of the lens L41 to the image plane on the optical axis OA4 IMA4 Pitch TTL4 = 58.02mm, maximum image height Y4 = 11.1mm on imaging surface IMA4, Abbe coefficient Vd4 6 = 85 of second lens unit L46, Abbe coefficient Vd4 7 = 25 of third lens unit L47, second lens The distance from the image side S44 of L42 to the object side S45 of the third lens L43 on the optical axis OA4 is D4 23 = 8.53mm. The image side S48 of the fourth lens L44 to the object side S410 of the first lens unit L45 is on the optical axis OA4. The distance D4 45 = 6.71mm. From the above data, we can get f4 / f4 G2 = 0.519, TTL4 / Y4 = 5.227, Vd4 6 = 85, Vd4 6 -Vd4 7 = 60, D4 23 /TTL4=0.147, D4 45 /TTL4=0.116, which can meet the above conditions. (17) to the requirements of condition (22).

另外,第四實施例之成像鏡頭4的光學性能也可達到要求,這可從第8A至第8C圖看出。第8A圖所示的,是第四實施例之成像鏡頭4的縱向像差(Longitudinal Aberration)圖。第8B圖所示的,是第四實施例之成像鏡頭4的場曲(Field Curvature)圖。第8C圖所示的,是第四實施例之成像鏡頭4的畸變(Distortion)圖。 In addition, the optical performance of the imaging lens 4 of the fourth embodiment can also meet the requirements, which can be seen from FIGS. 8A to 8C. FIG. 8A is a longitudinal aberration diagram of the imaging lens 4 of the fourth embodiment. FIG. 8B is a Field Curvature diagram of the imaging lens 4 of the fourth embodiment. FIG. 8C is a distortion diagram of the imaging lens 4 of the fourth embodiment.

由第8A圖可看出,第四實施例之成像鏡頭4對波長為0.436μm、0.486μm、0.546μm、0.588μm、0.656μm之光線所產生的縱向像差值介於-0.1mm至0.05mm之間。由第8B圖可看出,第四實施例之成像鏡頭4對波長為0.436μm、0.486μm、0.546μm、0.588μm、0.656μm之光線,於子午(Tangential)方向與弧矢(Sagittal)方向之場曲介於-0.16mm至0.10mm之間。由第8C圖(圖中的5條線幾乎重合,以致於看起來只有一條線)可看出,第四實施例之成像鏡頭4對波長為0.436μm、0.486μm、0.546μm、0.588μm、0.656μm之光線所產生的畸變介於-5%至0%之間。顯見第四實施例之成像鏡頭4之縱向像差、場曲、畸變都能被有效修正,從而得到較佳的光學性能。 It can be seen from FIG. 8A that the longitudinal lens aberration value of the fourth embodiment of the imaging lens 4 for light having a wavelength of 0.436 μm, 0.486 μm, 0.546 μm, 0.588 μm, and 0.656 μm is between -0.1 mm and 0.05 mm. between. It can be seen from FIG. 8B that the imaging lens 4 of the fourth embodiment has a pair of rays with a wavelength of 0.436 μm, 0.486 μm, 0.546 μm, 0.588 μm, and 0.656 μm in the direction of the Tangential and Sagittal directions. The field curvature is between -0.16mm and 0.10mm. From Figure 8C (the five lines in the figure are almost superimposed so that only one line appears), it can be seen that the fourth pair of imaging lenses of the fourth embodiment has a wavelength of 0.436 μm, 0.486 μm, 0.546 μm, 0.588 μm, 0.656 The distortion caused by μm light is between -5% and 0%. It is apparent that the longitudinal aberration, field curvature, and distortion of the imaging lens 4 of the fourth embodiment can be effectively corrected, thereby obtaining better optical performance.

請參閱第9圖,第9圖係依據本發明之成像鏡頭之第五實施例的透鏡配置與光路示意圖。成像鏡頭5沿著一光軸OA5從一物側至一像側依序包括一第一透鏡群L5G1、一光圈ST5、一第二透鏡群L5G2及一濾光片OF5。第一透鏡群L5G1沿著光軸OA5從物側至像側依序包括一第一透鏡L51、一第二透鏡L52、一第三透鏡L53及一第四透鏡L54。第二透鏡群L5G2沿著光軸OA5從物側至像側依序包括一第一透鏡單元L55、一第二透鏡單元L56、一第三透鏡單元L57及一第四透鏡單元L58。上述第二透鏡單元L56 與第三透鏡單元L57膠合成一膠合透鏡L5C。成像時,來自物側之光線最後成像於一成像面IMA5上。當被攝物(未圖示)位於近距離時,成像鏡頭5可經由調整第一透鏡群L5G1至第二透鏡群L5G2於光軸OA5上之間距D5G1G2以完成近距離對焦。第一透鏡L51為彎月型透鏡具有負屈光力,其物側面S51為凸面,像側面S52為凹面,物側面S51與像側面S52皆為球面表面。第二透鏡L52為彎月型透鏡具有負屈光力,其物側面S53為凸面,像側面S54為凹面,物側面S53與像側面S54皆為非球面表面。第三透鏡L53為彎月型透鏡具有正屈光力,其物側面S55為凹面,像側面S56為凸面,物側面S55與像側面S56皆為球面表面。第四透鏡L54為彎月型透鏡具有正屈光力,其物側面S57為凸面,像側面S58為凹面,物側面S57與像側面S58皆為球面表面。第一透鏡單元L55為雙凹透鏡具有負屈光力,其物側面S510為凹面,像側面S511為凹面,物側面S510與像側面S511皆為球面表面。第二透鏡單元L56為雙凸透鏡具有正屈光力,其物側面S512為凸面,像側面S513為凸面,物側面S512與像側面S513皆為球面表面。第三透鏡單元L57為彎月型透鏡具有負屈光力,其物側面S513為凹面,像側面S514為凸面,物側面S513與像側面S514皆為球面表面。第四透鏡單元L58為雙凸透鏡具有正屈光力,其物側面S515為凸面,像側面S516為凸面,物側面S515與像側面S516皆為非球面表面。濾光片OF5其物側面S517與像側面S518皆為平面。 Please refer to FIG. 9, which is a schematic diagram of a lens configuration and an optical path of a fifth embodiment of an imaging lens according to the present invention. The imaging lens 5 includes a first lens group L5 G1 , an aperture ST5, a second lens group L5 G2, and a filter OF5 in order from an object side to an image side along an optical axis OA5. The first lens group L5 G1 includes a first lens L51, a second lens L52, a third lens L53, and a fourth lens L54 in this order from the object side to the image side along the optical axis OA5. The second lens group L5 G2 includes a first lens unit L55, a second lens unit L56, a third lens unit L57, and a fourth lens unit L58 in this order from the object side to the image side along the optical axis OA5. The second lens unit L56 and the third lens unit L57 are glued to form a cemented lens L5 C. During imaging, the light from the object side is finally imaged on an imaging surface IMA5. When the subject (not shown) is located at a short distance, the imaging lens 5 can complete the close focus by adjusting the distance D5 G1G2 between the first lens group L5 G1 to the second lens group L5 G2 on the optical axis OA5. The first lens L51 is a meniscus lens with negative refractive power. The object side surface S51 is a convex surface, the image side surface S52 is a concave surface, and the object side surface S51 and the image side surface S52 are spherical surfaces. The second lens L52 is a meniscus lens with negative refractive power. The object side S53 is convex, the image side S54 is concave, and both the object side S53 and the image side S54 are aspherical surfaces. The third lens L53 is a meniscus lens with positive refractive power. The object side S55 is concave, the image side S56 is convex, and both the object side S55 and the image side S56 are spherical surfaces. The fourth lens L54 is a meniscus lens with positive refractive power. The object side S57 is convex, the image side S58 is concave, and both the object side S57 and the image side S58 are spherical surfaces. The first lens unit L55 is a biconcave lens with negative refractive power. The object side surface S510 is a concave surface, the image side surface S511 is a concave surface, and the object side surface S510 and the image side surface S511 are spherical surfaces. The second lens unit L56 is a biconvex lens with positive refractive power. The object side S512 is convex, the image side S513 is convex, and the object side S512 and the image side S513 are spherical surfaces. The third lens unit L57 is a meniscus lens with negative refractive power. Its object side S513 is concave, the image side S514 is convex, and both the object side S513 and the image side S514 are spherical surfaces. The fourth lens unit L58 is a biconvex lens with positive refractive power. The object side S515 is convex, the image side S516 is convex, and the object side S515 and the image side S516 are aspherical surfaces. The optical filter OF5 has a flat object side S517 and an image side S518.

另外,為使本發明之成像鏡頭能保持良好的光學性能,第五實施例中的成像鏡頭5需滿足底下六條件:

Figure TWI679445B_D0032
In addition, in order for the imaging lens of the present invention to maintain good optical performance, the imaging lens 5 in the fifth embodiment needs to meet the following six conditions:
Figure TWI679445B_D0032

Figure TWI679445B_D0033
Figure TWI679445B_D0033

Vd56>85 (25) Vd5 6 > 85 (25)

Figure TWI679445B_D0034
Figure TWI679445B_D0034

Figure TWI679445B_D0035
Figure TWI679445B_D0035

Figure TWI679445B_D0036
Figure TWI679445B_D0036

其中,f5為成像鏡頭5之有效焦距,f5G2為第二透鏡群L5G2之有效焦距,TTL5為第一透鏡L51之物側面S51至成像面IMA5於光軸OA5上之間距,Y5為成像面IMA5上之最大像高,Vd56為第二透鏡單元L56之阿貝係數,Vd57為第三透鏡單元L57之阿貝係數,D523為第二透鏡L52之像側面S54至第三透鏡L53之物側面S55於光軸OA5上之間距,D545為第四透鏡L54之像側面S58至第一透鏡單元L55之物側面S510於光軸OA5上之間距。 Among them, f5 is the effective focal length of the imaging lens 5, f5 G2 is the effective focal length of the second lens group L5 G2 , TTL5 is the distance from the object side S51 of the first lens L51 to the imaging surface IMA5 on the optical axis OA5, and Y5 is the imaging surface The maximum image height on IMA5, Vd5 6 is the Abbe coefficient of the second lens unit L56, Vd5 7 is the Abbe coefficient of the third lens unit L57, D5 23 is the image side S54 of the second lens L52 to the third lens L53 The distance between the object side S55 on the optical axis OA5 and D5 45 is the distance between the image side S58 of the fourth lens L54 and the object side S510 of the first lens unit L55 on the optical axis OA5.

利用上述透鏡與光圈ST5之設計,使得成像鏡頭5能具備高像高與較大視角的特性、有效的修正像差。 By using the design of the lens and the aperture ST5, the imaging lens 5 can have the characteristics of high image height and large viewing angle, and can effectively correct aberrations.

表九為第9圖中成像鏡頭5之各透鏡之相關參數表,表九資料顯示,第五實施例之成像鏡頭5之有效焦距等於10.799mm、鏡頭總長度等於55mm。 Table 9 is a table of related parameters of each lens of the imaging lens 5 in Fig. 9. The data in Table 9 shows that the effective focal length of the imaging lens 5 of the fifth embodiment is equal to 10.799 mm, and the total length of the lens is 55 mm.

表九中各個透鏡之非球面表面凹陷度z由下列公式所得到:z=ch2/{1+[1-(k+1)c2h2]1/2}+Ah4+Bh6+Ch8+Dh10+Eh12+Fh14+Gh16 The aspheric surface depression z of each lens in Table 9 is obtained by the following formula: z = ch 2 / {1+ [1- (k + 1) c 2 h 2 ] 1/2 } + Ah 4 + Bh 6 + Ch 8 + Dh 10 + Eh 12 + Fh 14 + Gh 16

其中:c:曲率;h:透鏡表面任一點至光軸之垂直距離;k:圓錐係數;A~G:非球面係數。 Where: c: curvature; h: vertical distance from any point on the lens surface to the optical axis; k: conic coefficient; A ~ G: aspheric coefficient.

表十為表九中各個透鏡之非球面表面之相關參數表,其中k為圓錐係數(Conic Constant)、A~G為非球面係數。 Table 10 is a table of related parameters of the aspheric surface of each lens in Table 9, where k is the Conic Constant and A ~ G are aspheric coefficients.

第五實施例之成像鏡頭5,其有效焦距f5=10.799mm,第二透鏡群L5G2之有效焦距f5G2=21.6mm,第一透鏡L51之物側面S51至成像面 IMA5於光軸OA5上之間距TTL5=55mm,成像面IMA5上之最大像高Y5=10.815mm,第二透鏡單元L56之阿貝係數Vd56=88,第三透鏡單元L57之阿貝係數Vd57=23,第二透鏡L52之像側面S54至第三透鏡L53之物側面S55於光軸OA5上之間距D523=8.05mm,第四透鏡L54之像側面S58至第一透鏡單元L55之物側面S510於光軸OA5上之間距D545=7.30mm。由上述資料可得到f5/f5G2=0.500、TTL5/Y5=5.086、Vd56=88、Vd56-Vd57=65、D523/TTL5=0.146、D545/TTL5=0.133,皆能滿足上述條件(23)至條件(28)之要求。 The imaging lens 5 of the fifth embodiment has an effective focal length f5 = 10.799mm, an effective focal length of the second lens group L5 G2 f5 G2 = 21.6mm, an object side S51 of the first lens L51 to an imaging surface IMA5 on the optical axis OA5 Pitch TTL5 = 55mm, maximum image height Y5 = 10.815mm on imaging surface IMA5, Abbe coefficient Vd5 6 = 88 of second lens unit L56, Abbe coefficient Vd5 7 = 23 of third lens unit L57, second lens L52 The distance from the image side S54 to the object side S55 of the third lens L53 on the optical axis OA5 is D5 23 = 8.05mm. The image side S4 of the fourth lens L54 to the object side S510 of the first lens unit L55 is on the optical axis OA5. The pitch D5 45 = 7.30mm. From the above information, we can get f5 / f5 G2 = 0.500, TTL5 / Y5 = 5.086, Vd5 6 = 88, Vd5 6 -Vd5 7 = 65, D5 23 /TTL5=0.146, D5 45 /TTL5=0.133, all of which can meet the above conditions. (23) to the requirements of condition (28).

另外,第五實施例之成像鏡頭5的光學性能也可達到要求,這可從第10A至第10C圖看出。第10A圖所示的,是第五實施例之成像鏡頭5的縱向像差(Longitudinal Aberration)圖。第10B圖所示的,是第五實施例之成像鏡頭5的場曲(Field Curvature)圖。第10C圖所示的,是第五實施例之成像鏡頭5的畸變(Distortion)圖。 In addition, the optical performance of the imaging lens 5 of the fifth embodiment can also meet requirements, which can be seen from FIGS. 10A to 10C. FIG. 10A is a Longitudinal Aberration diagram of the imaging lens 5 of the fifth embodiment. FIG. 10B is a Field Curvature diagram of the imaging lens 5 of the fifth embodiment. FIG. 10C is a distortion diagram of the imaging lens 5 of the fifth embodiment.

由第10A圖可看出,第五實施例之成像鏡頭5對波長為0.436μm、0.486μm、0.546μm、0.588μm、0.656μm之光線所產生的縱向像差值介於-0.06mm至0.06mm之間。由第10B圖可看出,第五實施例之成像鏡頭5對波長為0.436μm、0.486μm、0.546μm、0.588μm、0.656μm之光線,於子午(Tangential)方向與弧矢(Sagittal)方向之場曲介於-0.25mm至0.25mm之間。由第10C圖(圖中的5條線幾乎重合,以致於看起來只有一條線)可看出,第五實施例之成像鏡頭5對波長為0.436μm、0.486μm、0.546μm、0.588μm、0.656μm之光線所產生的畸變介於-5%至0%之間。顯見第五實施例之成像鏡頭5之縱向像差、場曲、畸變都能被有效修正,從而 得到較佳的光學性能。 It can be seen from FIG. 10A that the longitudinal aberration value generated by the imaging lens 5 of the fifth embodiment for light having a wavelength of 0.436 μm, 0.486 μm, 0.546 μm, 0.588 μm, and 0.656 μm is between -0.06 mm to 0.06 mm between. It can be seen from FIG. 10B that the imaging lens 5 of the fifth embodiment has a pair of rays having a wavelength of 0.436 μm, 0.486 μm, 0.546 μm, 0.588 μm, and 0.656 μm in the direction of the Tangential and Sagittal directions. The field curvature is between -0.25mm and 0.25mm. From Figure 10C (the five lines in the figure almost overlap so that only one line appears), it can be seen that the fifth pair of imaging lenses of the fifth embodiment has a wavelength of 0.436 μm, 0.486 μm, 0.546 μm, 0.588 μm, 0.656 The distortion caused by μm light is between -5% and 0%. It is obvious that the longitudinal aberration, field curvature, and distortion of the imaging lens 5 of the fifth embodiment can be effectively corrected, so that Get better optical performance.

上述第一實施例中,光圈ST1設置於第三透鏡L13及第四透鏡L14之間,然而可以了解到,若光圈ST1設置於第三透鏡L13及第一透鏡單元L15之間,亦應屬本發明之範疇。 In the first embodiment described above, the aperture ST1 is disposed between the third lens L13 and the fourth lens L14. However, it can be understood that if the aperture ST1 is disposed between the third lens L13 and the first lens unit L15, it should also be a feature of this lens. The scope of the invention.

上述第五實施例中,光圈ST5設置於第四透鏡L54及第一透鏡單元L55之間,然而可以了解到,若光圈ST5設置於第三透鏡L53及第一透鏡單元L55之間,亦應屬本發明之範疇。 In the above fifth embodiment, the aperture ST5 is disposed between the fourth lens L54 and the first lens unit L55, but it can be understood that if the aperture ST5 is disposed between the third lens L53 and the first lens unit L55, it should also be The scope of the invention.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Those with ordinary knowledge in the technical field to which the present invention pertains may make various changes and modifications without departing from the spirit and scope of the present invention. Retouching, so the scope of protection of the present invention shall be determined by the scope of the attached patent application.

Claims (10)

一種成像鏡頭,沿著一光軸從一物側至一像側依序包括:一第一透鏡群,具有正屈光力,該第一透鏡群沿著該光軸從該物側至該像側依序包括一第一透鏡、一第二透鏡、一第三透鏡以及一第四透鏡,且該第一透鏡具有負屈光力,該第二透鏡具有負屈光力,該第三透鏡具有正屈光力,該第四透鏡具有正屈光力;以及一第二透鏡群,具有負屈光力,該第二透鏡群沿著該光軸從該物側至該像側依序包括一第一透鏡單元、一第二透鏡單元、一第三透鏡單元以及一第四透鏡單元,且該第一透鏡單元具有負屈光力,該第二透鏡單元具有正屈光力,該第三透鏡單元具有負屈光力,該第四透鏡單元具有正屈光力。An imaging lens includes, in order from an object side to an image side along an optical axis, a first lens group with positive refractive power, the first lens group along the optical axis from the object side to the image side The sequence includes a first lens, a second lens, a third lens, and a fourth lens, and the first lens has negative refractive power, the second lens has negative refractive power, the third lens has positive refractive power, and the fourth The lens has a positive refractive power; and a second lens group with a negative refractive power, the second lens group includes a first lens unit, a second lens unit, a in order from the object side to the image side along the optical axis A third lens unit and a fourth lens unit, and the first lens unit has negative refractive power, the second lens unit has positive refractive power, the third lens unit has negative refractive power, and the fourth lens unit has positive refractive power. 一種成像鏡頭,沿著一光軸從一物側至一像側依序包括:一第一透鏡群,具有正屈光力,該第一透鏡群沿著該光軸從該物側至該像側依序包括一第一透鏡、一第二透鏡、一第三透鏡以及一第四透鏡,且該第一透鏡具有負屈光力,該第二透鏡具有負屈光力,該第三透鏡具有正屈光力,該第四透鏡具有正屈光力;以及一第二透鏡群,具有正屈光力,該第二透鏡群沿著該光軸從該物側至該像側依序包括一第一透鏡單元、一第二透鏡單元、一第三透鏡單元以及一第四透鏡單元,且該第一透鏡單元具有負屈光力,該第二透鏡單元具有正屈光力,該第三透鏡單元具有負屈光力,該第四透鏡單元具有正屈光力。An imaging lens includes, in order from an object side to an image side along an optical axis, a first lens group with positive refractive power, the first lens group along the optical axis from the object side to the image side The sequence includes a first lens, a second lens, a third lens, and a fourth lens, and the first lens has negative refractive power, the second lens has negative refractive power, the third lens has positive refractive power, and the fourth The lens has a positive refractive power; and a second lens group having a positive refractive power, the second lens group includes a first lens unit, a second lens unit, a in order from the object side to the image side along the optical axis A third lens unit and a fourth lens unit, and the first lens unit has negative refractive power, the second lens unit has positive refractive power, the third lens unit has negative refractive power, and the fourth lens unit has positive refractive power. 如申請專利範圍第1或2項所述之成像鏡頭,其中該成像鏡頭滿足以下條件:2.09<|f2/f|<3.23;0.95<|f6/f|<2.37;0.71<|f7/f|<1.85;6.3<|TTL/BFL|<10.5;以及|f/TTL|>0.06;其中,f2為該第二透鏡之有效焦距,f為該成像鏡頭之有效焦距,f6為該第二透鏡單元之有效焦距,f7為該第三透鏡單元之有效焦距,TTL為該第一透鏡之物側面至一成像面於該光軸上之一間距,BFL為該第四透鏡單元之像側面至該成像面於該光軸上之一間距。The imaging lens as described in item 1 or 2 of the patent application scope, wherein the imaging lens satisfies the following conditions: 2.09<|f 2 /f|<3.23 ; 0.95<|f 6 /f|<2.37 ; 0.71<|f 7 /f|<1.85;6.3<|TTL/BFL|<10.5; and |f/TTL|>0.06; where f 2 is the effective focal length of the second lens, f is the effective focal length of the imaging lens, and f 6 is The effective focal length of the second lens unit, f 7 is the effective focal length of the third lens unit, TTL is the distance between the object side of the first lens and an imaging plane on the optical axis, and BFL is the fourth lens unit The distance from the image side to the imaging plane on the optical axis. 如申請專利範圍第1或2項所述之成像鏡頭,其中該第一透鏡更包括一凹面朝向該像側,該第二透鏡為彎月型透鏡,該第二透鏡之凸面朝向該物側凹面朝向該像側,該第三透鏡為彎月型透鏡,該第三透鏡之凹面朝向該物側凸面朝向該像側,該第四透鏡為雙凸透鏡。The imaging lens as described in item 1 or 2 of the patent application range, wherein the first lens further includes a concave surface facing the image side, the second lens is a meniscus lens, and the convex surface of the second lens is concave toward the object side Towards the image side, the third lens is a meniscus lens, the concave surface of the third lens faces the object side convex surface to the image side, and the fourth lens is a biconvex lens. 如申請專利範圍第3項所述之成像鏡頭,其更包括一光圈,設置於該第三透鏡與該第一透鏡單元之間。The imaging lens as described in item 3 of the patent application scope further includes an aperture disposed between the third lens and the first lens unit. 如申請專利範圍第1或2項所述之成像鏡頭,其中該第一透鏡單元為雙凹透鏡,該第二透鏡單元為雙凸透鏡具有正屈光力,該第三透鏡單元為雙凹透鏡具有負屈光力,且該第二透鏡單元以及該第三透鏡單元膠合成一膠合透鏡,該第四透鏡單元為非球面雙凸透鏡。The imaging lens as described in item 1 or 2 of the patent application, wherein the first lens unit is a biconcave lens, the second lens unit is a biconvex lens with positive refractive power, and the third lens unit is a biconcave lens with negative refractive power, and The second lens unit and the third lens unit are cemented into a cemented lens, and the fourth lens unit is an aspheric biconvex lens. 如申請專利範圍第4項所述之成像鏡頭,其中該第一透鏡更包括一凸面朝向該物側,該第二透鏡更包括一凸面朝向該物側。The imaging lens as described in item 4 of the patent application range, wherein the first lens further includes a convex surface facing the object side, and the second lens further includes a convex surface facing the object side. 如申請專利範圍第2項所述之成像鏡頭,其中該成像鏡頭滿足以下條件:0.45
Figure TWI679445B_C0001
f/fG2
Figure TWI679445B_C0002
0.55;以及4.36
Figure TWI679445B_C0003
TTL/Y
Figure TWI679445B_C0004
6.36;其中,f為該成像鏡頭之有效焦距,fG2為該第二透鏡群之有效焦距,TTL為該第一透鏡之物側面至一成像面於該光軸上之一間距,Y為該成像面上之一最大像高。
The imaging lens as described in item 2 of the patent application scope, wherein the imaging lens satisfies the following conditions: 0.45
Figure TWI679445B_C0001
f/f G2
Figure TWI679445B_C0002
0.55; and 4.36
Figure TWI679445B_C0003
TTL/Y
Figure TWI679445B_C0004
6.36; where f is the effective focal length of the imaging lens, f G2 is the effective focal length of the second lens group, TTL is the distance from the object side of the first lens to an imaging plane on the optical axis, and Y is the One of the largest image heights on the imaging plane.
如申請專利範圍第6項所述之成像鏡頭,其中該第四透鏡更包括一凹面朝向該像側,該第三透鏡單元更包括一凸面朝向該像側,該第二透鏡單元具有正屈光力,該第三透鏡單元具有負屈光力。The imaging lens as described in Item 6 of the patent application range, wherein the fourth lens further includes a concave surface facing the image side, the third lens unit further includes a convex surface facing the image side, and the second lens unit has positive refractive power, The third lens unit has negative refractive power. 如申請專利範圍第6項所述之成像鏡頭,其中該成像鏡頭滿足以下條件:Vd6>85;60
Figure TWI679445B_C0005
Vd6-Vd7
Figure TWI679445B_C0006
80;D23/TTL
Figure TWI679445B_C0007
0.19;以及D45/TTL
Figure TWI679445B_C0008
0.145;其中,Vd6為該第二透鏡單元之阿貝係數,Vd7為該第三透鏡單元之阿貝係數,D23為該第二透鏡之像側面至該第三透鏡之物側面於該光軸上之一間距,D45為該第四透鏡之像側面至該第一透鏡單元之物側面於該光軸上之一間距,TTL為該第一透鏡之物側面至一成像面於該光軸上之一間距。
The imaging lens as described in item 6 of the patent application scope, wherein the imaging lens satisfies the following conditions: Vd 6 >85; 60
Figure TWI679445B_C0005
Vd 6 -Vd 7
Figure TWI679445B_C0006
80; D 23 /TTL
Figure TWI679445B_C0007
0.19; and D 45 /TTL
Figure TWI679445B_C0008
0.145; where Vd 6 is the Abbe coefficient of the second lens unit, Vd 7 is the Abbe coefficient of the third lens unit, and D 23 is the image side of the second lens to the object side of the third lens at the A pitch on the optical axis, D 45 is a pitch between the image side of the fourth lens and the object side of the first lens unit on the optical axis, and TTL is an object side of the first lens to an imaging plane on the One pitch on the optical axis.
TW105115485A 2016-05-19 2016-05-19 Lens assembly TWI679445B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105115485A TWI679445B (en) 2016-05-19 2016-05-19 Lens assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105115485A TWI679445B (en) 2016-05-19 2016-05-19 Lens assembly

Publications (2)

Publication Number Publication Date
TW201741713A TW201741713A (en) 2017-12-01
TWI679445B true TWI679445B (en) 2019-12-11

Family

ID=61230225

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105115485A TWI679445B (en) 2016-05-19 2016-05-19 Lens assembly

Country Status (1)

Country Link
TW (1) TWI679445B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004252101A (en) * 2003-02-19 2004-09-09 Nikon Corp Super wide angle lens
JP2004325753A (en) * 2003-04-24 2004-11-18 Canon Inc Zoom lens
TW201135279A (en) * 2010-04-14 2011-10-16 Young Optics Inc Zoom lens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004252101A (en) * 2003-02-19 2004-09-09 Nikon Corp Super wide angle lens
JP2004325753A (en) * 2003-04-24 2004-11-18 Canon Inc Zoom lens
TW201135279A (en) * 2010-04-14 2011-10-16 Young Optics Inc Zoom lens

Also Published As

Publication number Publication date
TW201741713A (en) 2017-12-01

Similar Documents

Publication Publication Date Title
TWI491915B (en) Wide-angle lens
TWI534471B (en) Wide-angle lens
TWI518357B (en) Lens assembly
TWI537594B (en) Near infrared lens assembly
TWI676835B (en) Wide-angle lens assembly
TWI526712B (en) Lens assembly
TW201730619A (en) Wide-angle lens
TW201939088A (en) Lens assembly
TWI556004B (en) Lens assembly
TWI690725B (en) Lens assembly
TWI676819B (en) Camera device
CN107402429B (en) Imaging lens
TWI534461B (en) Slim lens assembly
TWI743117B (en) Lens assembly
TWI792526B (en) Wide-angle lens assembly
TW202016599A (en) Lens assembly
TWI679445B (en) Lens assembly
TWI687730B (en) Lens assembly
TWI724567B (en) Lens assembly
TWI808056B (en) Wide-angle lens assembly
TWI735653B (en) Lens assembly
TWI808581B (en) Lens assembly
TWI752152B (en) Wide-angle lens assembly
TW201910853A (en) Wide-angle lens
TWI821702B (en) Wide-angle lens assembly