TWI666846B - Capacitive energy storage cell, capacitive energy storage module, and capacitive energy storage system - Google Patents

Capacitive energy storage cell, capacitive energy storage module, and capacitive energy storage system Download PDF

Info

Publication number
TWI666846B
TWI666846B TW106104498A TW106104498A TWI666846B TW I666846 B TWI666846 B TW I666846B TW 106104498 A TW106104498 A TW 106104498A TW 106104498 A TW106104498 A TW 106104498A TW I666846 B TWI666846 B TW I666846B
Authority
TW
Taiwan
Prior art keywords
energy storage
meta
voltage
storage unit
converter
Prior art date
Application number
TW106104498A
Other languages
Chinese (zh)
Other versions
TW201801438A (en
Inventor
保羅 古田
貝瑞 夏普
帕維爾 拉薩瑞夫
Original Assignee
美商電容器科學公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/043,315 external-priority patent/US10305295B2/en
Priority claimed from US15/043,247 external-priority patent/US20170233528A1/en
Priority claimed from US15/043,186 external-priority patent/US20170236641A1/en
Priority claimed from US15/043,209 external-priority patent/US20170236642A1/en
Application filed by 美商電容器科學公司 filed Critical 美商電容器科學公司
Publication of TW201801438A publication Critical patent/TW201801438A/en
Application granted granted Critical
Publication of TWI666846B publication Critical patent/TWI666846B/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本發明提供一種儲能單元,包括至少一個電容式儲能裝置、直流電壓轉換裝置。該電容式儲能裝置包括至少一個meta-電容器。電容式儲能裝置的輸出電壓為直流電壓轉換裝置的輸入電壓。本發明還提供一種電容式儲能模組和電容式儲能系統。 The invention provides an energy storage unit including at least one capacitive energy storage device and a DC voltage conversion device. The capacitive energy storage device includes at least one meta-capacitor. The output voltage of the capacitive energy storage device is the input voltage of the DC voltage conversion device. The invention also provides a capacitive energy storage module and a capacitive energy storage system.

Description

電容式儲能單元、電容式儲能模組、以及電容式儲能系統 Capacitive energy storage unit, capacitive energy storage module, and capacitive energy storage system [優先權主張] [Priority claim]

本發明申請案主張下列的優先權:於2016年2月12日申請的美國專利申請案第15/043,315號,第15/043,186號,第15/043,209號和第15/043,247號,上述申請案的整體內容合併於此作為參考。 This application claims the following priority: U.S. Patent Application Nos. 15 / 043,315, 15 / 043,186, 15 / 043,209, and 15 / 043,247, filed on February 12, 2016, the above applications The entire content of is incorporated herein by reference.

本發明整體關於一種能夠同時進行多種應用的模組化儲能系統,更具體地關於包括至少一個電容式儲能裝置和直流電壓轉換裝置的儲能單元。 The present invention generally relates to a modular energy storage system capable of performing multiple applications simultaneously, and more particularly to an energy storage unit including at least one capacitive energy storage device and a DC voltage conversion device.

許多技術應用受益於可充電的電能儲存裝置。大多數可充電的電能儲存系統是以可充電電池為基礎。可充電電 池藉由電化學反應以儲存和釋放電能。可充電電池用於汽車起動器、可擕式消費設備、輕型車輛(如機動輪椅、高爾夫球車、電動自行車、電動堆高機)、工具、和不斷電供應系統。混合內燃電池和電動汽車的新興應用推動技術往降低成本、重量和尺寸,並增加壽命的方向發展。電網儲能應用使用可充電電池作為負載均衡(Load-leveling),在低需求時儲存電能以為在高峰期間使用,而為了使用再生能源,例如儲存在白天從光伏陣列產生的電能並在夜間使用。負載均衡降低了發電廠必須能夠產生的最大功率,降低了資本成本和發電廠的峰值需要。小型充電電池使用於對可擕式電子設備、電動工具、電器等進行充電。重型電池被用於對從摩托車到機車和船舶的電動運載工具充電。充電電池也用於分散式發電和獨立電力系統。這些應用通常結合電池管理系統(BMS)使用充電電池,電池管理系統監測電池的參數如電壓、電流、溫度、充電狀態、以及放電狀態,而防止在其安全工作區以外操作電池。充電電池由於每單位儲能的重量較大,而具有以下的缺點:存在自放電的傾向,如果放電過深則可能受到損傷,如果充電過深也有可能發生災難性的失敗,每單位重量的電力利用率有限,每單位能量的電力利用率有限,充電時間比較長,以及隨著充放電週期數增加,儲存容量會退化。 Many technical applications benefit from rechargeable electrical energy storage devices. Most rechargeable electrical energy storage systems are based on rechargeable batteries. Rechargeable electricity Cells use electrochemical reactions to store and release electrical energy. Rechargeable batteries are used in car starters, portable consumer devices, light vehicles (such as motorized wheelchairs, golf carts, electric bicycles, electric stackers), tools, and uninterruptible power supply systems. Emerging applications for hybrid internal combustion batteries and electric vehicles are driving technology to reduce costs, weight and size, and increase life. Grid energy storage applications use rechargeable batteries as load-leveling to store electrical energy during low demand for peak use, and to use renewable energy, such as storing electrical energy generated from photovoltaic arrays during the day and using it at night. Load balancing reduces the maximum power that a power plant must be able to produce, reducing capital costs and peak demand for the power plant. Small rechargeable batteries are used to charge portable electronic devices, power tools, and appliances. Heavy batteries are used to charge electric vehicles from motorcycles to locomotives and ships. Rechargeable batteries are also used in decentralized power generation and independent power systems. These applications often use rechargeable batteries in conjunction with a battery management system (BMS), which monitors battery parameters such as voltage, current, temperature, charge status, and discharge status to prevent the battery from being operated outside its safe working area. Rechargeable batteries have the following disadvantages due to the large weight of energy stored per unit: there is a tendency to self-discharge, if the discharge is too deep, it may be damaged, if it is charged too deeply, catastrophic failure may occur, the electricity per unit weight Limited utilization, limited power utilization per unit of energy, longer charging time, and storage capacity degradation as the number of charge and discharge cycles increases.

用於可充電儲能裝置的電池的替代方案包括基於電容器的系統。電容器以被電介質層隔開的一對電極之間的靜 電場形式儲存能量。當兩個電極之間被施加電壓時,在電介質層中出現電場。與電池不同的是,電容器的充電速度相對較快,可以深放電而不受損害,並能夠承受大量的充放電次數而不受損壞。電容器的重量也比同類電池低。除了電容器技術的改進以外,隨著超級電容器的發展,充電電池每單位體積能夠儲存更多能量。與電池相比,電容器的一個缺點是終端電壓在放電過程中迅速下降。相比之下,電池系統的終端電壓在幾乎耗盡之前不會迅速下降。此外,由於儲存在電容器上的能量隨著線性電介質的電壓的平方而增加,電力大於或等於2的為meta-電介質,用於儲能應用的電容器通常工作在比電池高得多的電壓下。此外,如果在充電和放電過程中不使用固定電流模式,能量就會喪失。使用meta-電容器的電力電子設計較為複雜,使得meta-電容器管理系統與當前使用的電池管理系統非常不同。 Alternatives to batteries for rechargeable energy storage devices include capacitor-based systems. A capacitor is separated by a pair of electrodes separated by a dielectric layer. Electric fields store energy. When a voltage is applied between two electrodes, an electric field occurs in the dielectric layer. Unlike batteries, capacitors charge relatively quickly, can be deeply discharged without being damaged, and can withstand a large number of charge and discharge times without being damaged. Capacitors also weigh less than similar batteries. In addition to improvements in capacitor technology, with the development of supercapacitors, rechargeable batteries can store more energy per unit volume. One disadvantage of capacitors compared to batteries is that the terminal voltage drops rapidly during discharge. In contrast, the terminal voltage of a battery system does not drop rapidly until it is almost depleted. In addition, since the energy stored on the capacitor increases with the square of the voltage of the linear dielectric, a power greater than or equal to 2 is a meta-dielectric. Capacitors for energy storage applications typically operate at much higher voltages than batteries. In addition, energy is lost if the fixed current mode is not used during charging and discharging. The design of power electronics using meta-capacitors is more complex, making the meta-capacitor management system very different from the battery management systems currently in use.

本發明即為了解決上述層面的問題。 The present invention is to solve the above-mentioned problems.

本發明的一個層面著眼於現有的可充電電能儲存技術的問題,提出了一種電容式儲能裝置,其具有一個或多個meta-電容器,該meta-電容器具備直流電壓轉換裝置,其具有連接電容式儲能裝置的終端的一或多個開關模式電壓轉換器轉換裝置。meta-電容器與現有的超級電容器相比,具有更大的儲能能力。直流電壓轉換裝置在充電和放電過程中調節電容式儲能裝置的電壓。 One aspect of the present invention focuses on the problems of the existing rechargeable electrical energy storage technology, and proposes a capacitive energy storage device having one or more meta-capacitors. The meta-capacitors are provided with a DC voltage conversion device and have a connection capacitor. One or more switch-mode voltage converter conversion devices at the terminals of the energy storage device. Meta-capacitors have greater energy storage capacity than existing supercapacitors. The DC voltage conversion device regulates the voltage of the capacitive energy storage device during charging and discharging.

電壓轉換裝置通常包括一個電壓源(輸入)、一個或 多個主動或被動控制開關、一個或多個電感元件(對於一些先進的轉換器而言,例如電荷泵電路,雖然在電路板和/或佈線上存在寄生電感,但並不特別使用電感本身)、一個或多個儲能元件(例如電容器和/或電感)、某種感測輸出電壓和/或電流的裝置、以及某種用於控制開關而產生特定的輸出電壓或電流的裝置、以及將本設備連接到各種負載的外部輸入和輸出的終端。用於產生低於輸入電壓Vin的輸出電壓Vout(Vout/Vin<1)的標準電路被稱為降壓(buck)轉換器,而產生高於輸入電壓的輸出電壓(Vout/Vin>1)的標準電路被稱為升壓(boost)轉換器。通常用來描述降壓變換的基本電路是開關LC濾波器(圖1)。負載可以視為是一個電阻,改變其電阻從而實現流過其電阻的設定電流。實際上,這是具備並聯的電容和電阻的LCR低通濾波器。當開關接通時,LC電路開始吸收能量,而電流開始流過電感。當開關斷開時,電流流過,電感試圖維持電流i(t),並產生以下等式(1)的反向電壓v(t)。 Voltage conversion devices usually include a voltage source (input), one or more active or passively controlled switches, one or more inductive elements (for some advanced converters, such as charge pump circuits, although on the circuit board and / or There is parasitic inductance on the wiring, but the inductor itself is not specifically used), one or more energy storage elements (such as capacitors and / or inductors), some kind of device that senses output voltage and / or current, and some kind of control for control A device that switches to produce a specific output voltage or current, and terminals that connect the device to external inputs and outputs of various loads. A standard circuit for generating an output voltage V out (V out / V in <1) below the input voltage V in is called a buck converter, and generates an output voltage (V out / A standard circuit of V in > 1) is called a boost converter. The basic circuit commonly used to describe a buck converter is a switched LC filter (Figure 1). The load can be regarded as a resistor, and its resistance is changed to realize a set current flowing through its resistance. In fact, this is an LCR low-pass filter with capacitors and resistors in parallel. When the switch is turned on, the LC circuit begins to absorb energy, and the current begins to flow through the inductor. When the switch is turned off, a current flows, and the inductor attempts to maintain the current i ( t ) and generates a reverse voltage v ( t ) of the following equation (1).

如果在相當短的時間增量dt內產生電流的增量di,則所產生的反向電壓會非常高,這可能損害或破壞開關元件SW1。因此,需要提供一個接地的路徑,使電流可以繼續流動。可以用二極體來實現該路徑,其作為一個單向閥地動作,在電感試圖從開關元件SW1匯出電流時自動斷 開(參見圖2)。因為二極體自動地與功率電晶體(例如金屬氧化物半導體場效應電晶體(MOSFET))的開關同步,所以被稱為非同步降壓轉換器。此種轉換器不需要主動進行同步。這種類型的電路存在一個可能的問題,即在開關元件SW1斷開和二極體啟動時,需要達到並保持二極體的導通電壓。這意味著,由於電流流過,因此在二極體的兩端總會存在約0.6v的電壓降,由此會產生功率損耗。這可以透過同步轉換器的設計來改進,即由第二開關SW2取代二極體(參見圖3),而控制器主動地使兩個開關的動作同步,使得它們不會在同一時刻接通。 If an increase in current di is generated within a relatively short time increment dt, the resulting reverse voltage will be very high, which may damage or destroy the switching element SW1. Therefore, a path to ground needs to be provided so that current can continue to flow. This path can be implemented with a diode, which acts as a one-way valve ground, automatically breaking when the inductor tries to export current from the switching element SW1 On (see Figure 2). Because the diode automatically synchronizes with the switching of a power transistor, such as a metal-oxide-semiconductor field-effect transistor (MOSFET), it is called an asynchronous buck converter. This converter does not require active synchronization. One possible problem with this type of circuit is that when the switching element SW1 is turned off and the diode is turned on, the on-voltage of the diode needs to be reached and maintained. This means that, as current flows, there will always be a voltage drop of about 0.6v across the diode, which will cause power loss. This can be improved through the design of the synchronous converter, that is, the diode is replaced by the second switch SW2 (see FIG. 3), and the controller actively synchronizes the actions of the two switches so that they do not turn on at the same time.

必須確保同步設計下的MOSFET的導通和斷開之間的延遲不會造成擊穿。雖然可以對兩個單獨的脈衝設置一個延遲,但更好的解決方案是只需要設置單一的PWM通道而自動地獲得第二信號。一種簡單的方法可以是如圖3所示那樣,透過數位緩衝器(或反向器)向施加於開關SW1和SW2的開關信號引入時間延遲。典型的閘具有2~10ns傳播延遲,但例如複雜可程式設計邏輯裝置(CPLD)或現場可程式設計閘陣列(FPGA)的可程式設計邏輯裝置能夠被程式設計為各種傳播延遲。圖4演示了產生一對信號S’和!S&&!S”所需的信號處理,只輸入脈衝寬度調變信號S、以及時間延遲tdelay,就能根據所要求的時間延遲間距使開關SW1、SW2對應地進行開關。其中,S’(t)=S(t+tdelay),並且S”(t)=S(t+2×tdelay)。在圖4中,假設在開關信號為高態,開關“閉合(closed)”即 導通,在開關信號為低態時,開關“斷開(open)”即非導通。在圖4中,S是輸入PWM輸入信號。S’是延遲了tdelay後的輸入信號S。S”是延遲了2×tdelay後的S’,!S是輸入信號S的反向,!S”是信號S”的反向,!S&&!S”是!S和!S”的邏輯AND。 Care must be taken to ensure that the delay between on and off of the MOSFET in a synchronous design does not cause breakdown. Although it is possible to set a delay for two separate pulses, a better solution is to set a single PWM channel and automatically obtain the second signal. A simple method may be to introduce a time delay to the switching signals applied to the switches SW1 and SW2 through a digital buffer (or inverter) as shown in FIG. 3. A typical gate has a propagation delay of 2-10 ns, but a programmable logic device such as a complex programmable logic device (CPLD) or a field programmable gate array (FPGA) can be programmed with various propagation delays. Figure 4 illustrates the generation of a pair of signals S 'and! S &&! The signal processing required for "S", only by inputting the pulse width modulation signal S and the time delay t delay , the switches SW1 and SW2 can be switched correspondingly according to the required time delay interval. Among them, S '(t) = S (t + t delay ), and S ”(t) = S (t + 2 × t delay ). In FIG. 4, it is assumed that when the switching signal is high, the switch is “closed” and is turned on, and when the switching signal is low, the switch is “open” and is not conductive. In Figure 4, S is the input PWM input signal. S 'is the input signal S delayed by t delay . S "is S 'after being delayed by 2 × t delay , S is the reverse of the input signal S,! S" is the reverse of the signal S ",! S &&! S" is! S and! S "logical AND.

在決定同步或非同步時,重要的是考慮由於開關動作(例如,能量需要從MOSFET的閘極移動電荷進出)產生的效率損失和由於二極體的傳導產生的效率損失。同步轉換器往往具有高變換比的優點。因為需要額外的開關來提供兩用的降壓器或升壓器,所以它們也是產生分段PI雙向轉換器(split-pi-bidirectional converter)的基礎建構模組。 When deciding on synchronization or non-synchronization, it is important to consider the efficiency loss due to switching actions (eg, energy needs to move charges in and out of the gate of the MOSFET) and the efficiency loss due to diode conduction. Synchronous converters often have the advantage of high conversion ratios. Since additional switches are needed to provide dual-purpose buck or booster, they are also the basic building blocks for generating split-pi-bidirectional converters.

在斷開(off)狀態下,升壓轉換器透過圖5中的第二開關元件SW2,將電源電壓直接施加到負載。透過斷開開關元件SW2並接通開關元件SW1,而開始對負載進行增壓的過程(圖6)。由於在電感L1上產生附加的電壓降,流過電感L1的電流會隨著時間而增加(參見等式(2))。 In the off state, the boost converter directly applies the power supply voltage to the load through the second switching element SW2 in FIG. 5. By turning off the switching element SW2 and turning on the switching element SW1, the process of boosting the load is started (FIG. 6). Due to the additional voltage drop across inductor L1, the current flowing through inductor L1 increases over time (see equation (2)).

當電路恢復為“斷開(OFF)”狀態時,電感會通過提高與電流變化成正比的電壓降來保持相同的電流(參見等式(3))。 When the circuit returns to the "OFF" state, the inductor maintains the same current by increasing the voltage drop proportional to the current change (see equation (3)).

在“斷開(OFF)”狀態下,開關元件SW2閉合(closed),從而該增壓後的電壓被傳輸到輸出電容。該輸出電容器提供濾波;對輸入電壓和電感的電壓尖峰進行平均。 In the “OFF” state, the switching element SW2 is closed, so that the boosted voltage is transmitted to the output capacitor. This output capacitor provides filtering; the voltage spikes of the input voltage and inductance are averaged.

在以下論文中記載了用於完整實施霍尼韋爾(Honeywell)的150nm SOI抗輻射加固工藝的堆疊式(stacked)MOSFET的N溝道MOSFET(NMOS)、P溝道MOS(PMOS)、以及推挽互補金屬氧化物半導體(CMOS)的拓撲結構(Jennifer E等人所著,“用於納米尺度CMOS技術的高電壓開關電路”原稿,2007年4月30日),在此作為參考而引用。堆疊式MOSFET是高電壓開關電路。在輸入信號為低電壓時,使MOSFET裝置的堆疊(stack)中的第一個MOSFET裝置接通(turn on),由於藉由寄生和***的電容產生的電荷注入,整個裝置的堆疊接通。電壓分流同時產生靜態和動態的電壓平衡,防止電路中的任意一個裝置超過額定工作電壓。說明了用於實現這些拓撲結構的設計等式。針對霍尼韋爾150nm工藝中實現的5個裝置堆疊的類比確認了輸出信號的靜態和動態電壓平衡。所類比的堆疊顯示對額定工作電壓進行了五次處理。 The following papers describe N-channel MOSFETs (NMOS), P-channel MOS (PMOS), and MOSFETs for stacked MOSFETs used to fully implement Honeywell's 150nm SOI radiation hardening process. A complementary metal-oxide-semiconductor (CMOS) topology (manufactured by Jennifer E et al., "High-Voltage Switching Circuits for Nanoscale CMOS Technology", April 30, 2007) is hereby incorporated by reference. Stacked MOSFETs are high-voltage switching circuits. When the input signal is a low voltage, the first MOSFET device in the MOSFET device stack is turned on, and the entire device stack is turned on due to the charge injection generated by the parasitic and inserted capacitors. Voltage shunting produces both static and dynamic voltage balances, preventing any device in the circuit from exceeding the rated operating voltage. Design equations for implementing these topologies are illustrated. An analogy of the five device stacks implemented in Honeywell's 150nm process confirms the static and dynamic voltage balance of the output signal. The analogous stack display shows that the rated operating voltage has been processed five times.

例如在R.J.Baker和B.P.Johnson所著之“用於高速儀器的堆疊功率MOSFET(Stacking Power MOSFETs for Use in High Speed Instrumentation)”,Rev.Sci.Instrum.,63卷,12號,1992年12月,第799~801頁中,說明了用於堆疊功率金屬氧化物半導體場效應電晶體(MOSFET)的可靠電路配置實例,作為參考進行引用。由此產生的電路具有N倍大於單個功率MOSFET的耐壓,其中N是所採用的功率MOSFET的個數。實現了以下的功能,即在與單個裝置幾乎相同的時間內,能夠對50歐姆的負載切換更高的電壓,從而切換更大的功率。為了選擇功率MOSFET而提出了設計思路。使用該設計方法,設計了SO 50歐姆、2ns升壓時間以及微小抖動的1.4千伏脈衝發生器。 For example, in R.J. Baker and B.P. Johnson, "Stacking Power MOSFETs for Use in High Speed Instrumentation ", Rev. Sci. Instrum., Vol. 63, No. 12, December 1992, pages 799-801, describes stacking power metal oxide semiconductor field effect transistors (MOSFETs) An example of a reliable circuit configuration is used as a reference. The resulting circuit has a withstand voltage that is N times greater than that of a single power MOSFET, where N is the number of power MOSFETs used. Almost the same time, it is possible to switch higher voltages to 50 ohm loads, thereby switching more power. A design idea was proposed to select the power MOSFET. Using this design method, SO 50 ohms and 2 ns boost time were designed And a tiny 1.4 kV pulse generator.

另一個電壓變換電路的配置是基於積體閘極換流閘流體(IGCT)。如果轉換器的額定功率不超過5~6MVA,則一個封裝中的10kV IGCT和快速二極體的積體電路是電壓範圍6kV~7.2kV的中壓轉換器的有效解決方案(參見Sven Tschirley等,“10kV IGCT的設計和反向導通特性(Design and Characteristics of Reverse Conducting 10-kV-IGCTs)”,第三十九屆年度電力電子專家會議,第92~98頁,2008年),在此作為參考而引用。Tschirley等描述了世界第一個反向導通的68mm 10kV IGCT的設計和特性,其透過實驗研究了不同的IGCT和二極體樣本的接通狀態、阻斷(blocking)、開關動作。實驗結果清楚地表明,10kV RC IGCT是用於6~7.2kV中壓轉換器的一個有吸引力的功率半導體。 Another configuration of the voltage conversion circuit is based on the Integrated Gate Inverter Gate Fluid (IGCT). If the rated power of the converter does not exceed 5 ~ 6MVA, the integrated circuit of 10kV IGCT and fast diode in a package is an effective solution for medium voltage converters with a voltage range of 6kV ~ 7.2kV (see Sven Tschirley et al., "Design and Characteristics of Reverse Conducting 10-kV-IGCTs" of the 10kV IGCT, 39th Annual Power Electronics Expert Meeting, pp. 92 ~ 98, 2008), here for reference And quote. Tschirley et al. Described the design and characteristics of the world's first reverse conducting 68mm 10kV IGCT, which experimentally studied the on-state, blocking, and switching actions of different IGCT and diode samples. The experimental results clearly show that 10kV RC IGCT is an attractive power semiconductor for 6 ~ 7.2kV medium voltage converters.

高體積能量密度、高工作溫度、低等效串聯電阻(ESR)、壽命長的電容器是脈衝電力、汽車和工業電子的關鍵部件。電容器中的介電材料的物理特性是電容器性能的主要決定因素。因此,對電容器中的介質材料的一個或多個物理性能的改進能夠改善電容器元件的相應性能,通常會改善所嵌入的電子系統或成品的性能和壽命。由於電容器的電介質的改進能夠直接影響產品的尺寸、產品的可靠性和生產效率,因此這樣的改進具有很高的價值。 High volume energy density, high operating temperature, low equivalent series resistance (ESR), and long life capacitors are key components of pulsed power, automotive, and industrial electronics. The physical characteristics of the dielectric material in a capacitor are the major determinants of capacitor performance. Therefore, the improvement of one or more physical properties of the dielectric material in the capacitor can improve the corresponding performance of the capacitor element, which generally improves the performance and life of the embedded electronic system or finished product. Since the improvement of the capacitor's dielectric can directly affect the size of the product, the reliability of the product, and the production efficiency, such an improvement has a high value.

與電池相比,電容器能夠以很高的功率密度即充放電率來儲存能量,具有長保質期而很少退化,能夠充放電(迴圈)成千上萬或數百萬次。然而,電容器通常不能以電池那樣小的體積或那樣輕的重量儲存能量、或以低儲能成本儲存能量,使得電容器不能用於例如電動汽車的應用。因此,需要儲能技術的改進,而提供具有較高容量和較高質量儲能密度而成本更低的電容器。 Compared with batteries, capacitors can store energy at a high power density, that is, the rate of charge and discharge, have a long shelf life and rarely degrade, and can be charged and discharged (loops) thousands or millions of times. However, capacitors generally cannot store energy with the small size or light weight of a battery, or at a low energy storage cost, making capacitors unusable for applications such as electric vehicles. Therefore, there is a need for improvements in energy storage technology, and to provide capacitors with higher capacity and higher quality energy storage density at a lower cost.

本發明透過將具有一個或多個meta-電容器(將在下面進一步說明)和與電容式儲能裝置的終端連接的具有一個或多個開關型電壓轉換器的直流電壓轉換裝置結合起來,能夠解決現有的充電電能儲存技術的問題。與傳統的雙電層電容器或超級電容器相比,meta-電容器具有更大的儲能能力。直流電壓轉換裝置在充電和放電過程中調節電容式儲能裝置的電壓。 The present invention can solve the problem by combining a DC voltage conversion device having one or more meta-capacitors (to be further described below) and a terminal of a capacitive energy storage device having one or more switching voltage converters. Problems with existing charging energy storage technologies. Compared with traditional electric double layer capacitors or super capacitors, meta-capacitors have greater energy storage capacity. The DC voltage conversion device regulates the voltage of the capacitive energy storage device during charging and discharging.

在此,meta-電容器是電介膜電容器,該電介膜是meta-電介質,配置在第一電極和第二電極之間。在一個實施例中,所述電極是平面和平坦的,且彼此平行。在另一實施例中,該meta-電容器包括兩個彼此平行的筒狀金屬電極。進而,meta-電介質材料由Sharp聚合物和/或Furuta聚合物構成。 Here, the meta-capacitor is a dielectric film capacitor, and the dielectric film is a meta-dielectric, and is disposed between the first electrode and the second electrode. In one embodiment, the electrodes are planar and flat and parallel to each other. In another embodiment, the meta-capacitor includes two cylindrical metal electrodes that are parallel to each other. Furthermore, the meta-dielectric material is composed of a Sharp polymer and / or a Furuta polymer.

本發明提供一種儲能單元,包括具有一個或多個meta-電容器的電容式儲能裝置,以及具有一個或多個開關型電壓轉換器的直流電壓轉換裝置。電容式儲能裝置的電源埠(由正終端和負終端、或陽極和陰極構成)與直流電壓轉換裝置上的電容器側電源埠連接。直流電壓轉換裝置具有一個或多個其他電源埠,能夠與外部電路介接。電源埠用於向單元傳送與本說明書相符的電流和電壓之電源。埠中的每個終端都是導電介面。每個單元可以包括監視和/或控制直流電壓轉換裝置的參數諸如電壓、電流、溫度、其它重要方面的參數的裝置。 The invention provides an energy storage unit, which includes a capacitive energy storage device having one or more meta-capacitors, and a DC voltage conversion device having one or more switch-type voltage converters. The power port (consisting of a positive terminal and a negative terminal, or an anode and a cathode) of the capacitive energy storage device is connected to a capacitor-side power port on the DC voltage conversion device. The DC voltage conversion device has one or more other power ports, which can interface with external circuits. The power port is used to supply power to the unit with current and voltage in accordance with this manual. Each terminal in the port is a conductive interface. Each unit may include a device that monitors and / or controls parameters of the DC voltage conversion device, such as voltage, current, temperature, and other important aspects.

本發明之一層面中,電容儲能模組可以包括一個或多個單獨的電容式儲能單元、由互連系統構成的一個或多個電源匯流排,其中,電源匯流排並聯或串聯地連接單獨的儲能單元的電源埠而成為由電容式儲能模組的公共陽極和公共陰極構成的公共的模組電源埠。該模組可以具有附加的感測器來監測互連系統的溫度、模組功率、電壓和電流,並且可以包括通信匯流排和/或通信匯流排協定轉換器,而傳輸這些感測器值以及來自個別單元的值。 In one aspect of the present invention, the capacitive energy storage module may include one or more individual capacitive energy storage units, and one or more power buses formed by an interconnection system. The power buses are connected in parallel or in series. The power port of the separate energy storage unit becomes a common module power port composed of the common anode and the common cathode of the capacitive energy storage module. The module may have additional sensors to monitor the temperature, module power, voltage, and current of the interconnected system, and may include a communication bus and / or a communication bus protocol converter to transmit these sensor values and Values from individual cells.

本發明另一層面,電容式儲能系統可以包括一個或多個上述的電容式儲能模組、互連系統、以及系統控制電腦,用於監視、處理和控制上述的通信匯流排上的所有值。 In another aspect of the present invention, the capacitive energy storage system may include one or more of the above-mentioned capacitive energy storage modules, an interconnection system, and a system control computer for monitoring, processing, and controlling all of the above communication buses value.

對於本領域習知技術者而言,本發明的其他層面和優點可以根據以下的說明而彰顯,其中本發明揭示僅用於顯示說明本發明的實施例。在不脫離本發明的主要範圍內,本發明能夠進行其他不同實施例的改良,以及不同型式的細節修改。因此,所附圖式和說明只是用於顯示說明,而不是限定本發明。 For those skilled in the art, other aspects and advantages of the present invention can be revealed according to the following description, wherein the disclosure of the present invention is only used to show the embodiments of the present invention. Without departing from the main scope of the present invention, the present invention can be improved in other different embodiments, and modified in detail in different types. Therefore, the drawings and descriptions are only used to illustrate the description, but not to limit the present invention.

合併參考 Merge reference

在本案說明書中提及的所有出版物、專利和專利申請案合併於此作為參考,其參考的內容相同於每個個別出版物,專利或專利申請被具體和個別地合併作為參考。 All publications, patents, and patent applications mentioned in the description of this case are incorporated herein by reference, the contents of which are the same as each individual publication, and the patent or patent application is specifically and individually incorporated as a reference.

1‧‧‧電容式儲能單元 1‧‧‧ Capacitive Energy Storage Unit

2‧‧‧電容式儲能裝置 2‧‧‧ Capacitive Energy Storage Device

3‧‧‧直流電壓轉換裝置/直流電壓轉換器 3‧‧‧DC voltage converter / DC voltage converter

4‧‧‧控制板 4‧‧‧Control Panel

5‧‧‧通信介面 5‧‧‧ communication interface

20‧‧‧meta-電容器 20‧‧‧meta-capacitor

21‧‧‧第一電極 21‧‧‧first electrode

22‧‧‧第二電極 22‧‧‧Second electrode

23‧‧‧meta-介電層 23‧‧‧meta-dielectric layer

30‧‧‧冷卻機構 30‧‧‧cooling mechanism

32‧‧‧換熱器 32‧‧‧ heat exchanger

40‧‧‧儲能模組 40‧‧‧energy storage module

42‧‧‧參數匯流排 42‧‧‧parameter bus

44‧‧‧功率計 44‧‧‧ Power Meter

46‧‧‧網路化控制節點 46‧‧‧Networked Control Node

48‧‧‧資料匯流排 48‧‧‧Data Bus

50‧‧‧電壓控制邏輯電路 50‧‧‧Voltage Control Logic Circuit

52‧‧‧開關控制邏輯電路 52‧‧‧Switch control logic circuit

54‧‧‧網路介面 54‧‧‧Interface

60‧‧‧電容式儲能系統 60‧‧‧Capacitive energy storage system

62‧‧‧系統電源匯流排 62‧‧‧System Power Bus

66‧‧‧系統控制器 66‧‧‧System Controller

68‧‧‧系統資料匯流排 68‧‧‧System data bus

70‧‧‧開關控制邏輯 70‧‧‧Switch control logic

72‧‧‧電壓控制邏輯 72‧‧‧Voltage Control Logic

74‧‧‧系統網路介面 74‧‧‧System Network Interface

90‧‧‧閉迴路控制處理 90‧‧‧ closed-loop control processing

100‧‧‧開關型電壓轉換器 100‧‧‧ Switching Voltage Converter

101‧‧‧電源埠 101‧‧‧Power port

102‧‧‧互連系統 102‧‧‧Interconnected System

103‧‧‧控制網路 103‧‧‧Control Network

104‧‧‧控制介面 104‧‧‧Control Interface

Cin‧‧‧輸入電容 Cin‧‧‧input capacitor

Cout‧‧‧輸出電容 Cout‧‧‧ output capacitor

L‧‧‧電感 L‧‧‧Inductance

PSW‧‧‧電源開關 PSW‧‧‧Power Switch

SW1‧‧‧第一開關 SW1‧‧‧The first switch

SW2‧‧‧第二開關 SW2‧‧‧Second switch

SW3‧‧‧第三開關 SW3‧‧‧Third switch

SW4‧‧‧第四開關 SW4‧‧‧Fourth switch

圖1示意性地示出基於切換LC濾波器的降壓(Buck)轉換裝置。 FIG. 1 schematically illustrates a buck conversion device based on a switched LC filter.

圖2示意性地示出非同步降壓轉換裝置。 FIG. 2 schematically illustrates a non-synchronous buck conversion device.

圖3示意性地示出同步降壓轉換裝置。 FIG. 3 schematically illustrates a synchronous buck conversion device.

圖4表示出以所需的時間延遲間隔產生一對信號所需的信號處理。 Figure 4 shows the signal processing required to generate a pair of signals at the required time delay interval.

圖5示意性地示出“導通(ON)狀態”的升壓轉換 器。 FIG. 5 schematically illustrates a boost transition of an “ON state” Device.

圖6示意性地示出“斷開(OFF)狀態”的升壓轉換器。 FIG. 6 schematically shows a boost converter in an “OFF state”.

圖7A表示包含與雙端埠連接的單一電容式元件的電容式儲能裝置。 FIG. 7A illustrates a capacitive energy storage device including a single capacitive element connected to a double-ended port.

圖7B表示包含與雙端埠連接的多個元件的電容式儲能裝置的另一組態。 FIG. 7B illustrates another configuration of a capacitive energy storage device including a plurality of components connected to a double-ended port.

圖7C表示包含與雙端埠連接的多個元件的電容式儲能裝置的另一組態。 FIG. 7C illustrates another configuration of a capacitive energy storage device including a plurality of components connected to a double-ended port.

圖7D表示包含與雙端埠連接的多個元件的電容式儲能裝置的另一組態。 FIG. 7D illustrates another configuration of a capacitive energy storage device including a plurality of components connected to a double-ended port.

圖8A示意地表示實現標準升壓電路的開關型電壓轉換器。 FIG. 8A schematically illustrates a switching-type voltage converter that implements a standard boost circuit.

圖8B示意地表示實現標準降壓電路的開關型電壓轉換器。 FIG. 8B schematically shows a switching voltage converter implementing a standard buck circuit.

圖8C示意地表示實現標準反向升壓/降壓電路的開關型電壓轉換器。 FIG. 8C schematically shows a switching-type voltage converter implementing a standard reverse boost / buck circuit.

圖8D示意地表示實現標準非反向雙向升壓/降壓電路的開關型電壓轉換器。 FIG. 8D schematically illustrates a switch-type voltage converter that implements a standard non-reverse bidirectional boost / buck circuit.

圖9A示意地表示具有兩個電源埠、用於對meta-電容器進行充電的獨立的一個或多個升壓轉換器和一個或多個降壓轉換器、用於放電meta-電容器的獨立的一個或多個升壓轉換器和一個或多個降壓轉換器的直流電壓轉換裝置。 FIG. 9A schematically shows an independent one or more boost converters and one or more step-down converters having two power ports for charging the meta-capacitor and a separate one for discharging the meta-capacitor. DC voltage conversion device for one or more boost converters and one or more buck converters.

圖9B示意地表示具有兩個電源埠、用於對meta-電容器進行充電的一個或多個降壓轉換器、用於放電meta-電容器的一個或多個升壓降壓轉換器的另一種直流電壓轉換裝置。 FIG. 9B schematically illustrates another DC having two power ports, one or more buck converters for charging meta-capacitors, and one or more boost-buck converters for discharging meta-capacitors. Voltage conversion device.

圖9C示意地表示具有兩個電源埠、用於充電的一個或多個升壓轉換器、用於放電的一個或多個降壓轉換器的另一種直流電壓轉換裝置。 FIG. 9C schematically illustrates another DC voltage conversion device having two power ports, one or more boost converters for charging, and one or more buck converters for discharging.

圖9D示意地表示具有兩個電源埠、用於充電meta-電容器的一個或多個升壓/降壓轉換器、用於放電meta-電容器的一個或多個升壓/降壓轉換器的另一種直流電壓轉換裝置。 FIG. 9D schematically illustrates another one having two power ports, one or more boost / buck converters for charging meta-capacitors, and one or more boost / buck converters for discharging meta-capacitors. A DC voltage conversion device.

圖9E示意地表示具有兩個電源埠、用於充電和放電meta-電容器的一個或多個雙向升壓/降壓轉換器的另一種直流電壓轉換裝置。 FIG. 9E schematically illustrates another DC voltage conversion device having two power ports for one or more bidirectional step-up / step-down converters for charging and discharging meta-capacitors.

圖9F示意地表示具有三個電源埠、用於充電meta-電容器的獨立的一個或多個升壓轉換器和一個或多個降壓轉換器、用於放電meta-電容器的獨立的一個或多個升壓轉換器和一個或多個降壓轉換器的另一種直流電壓轉換裝置。 FIG. 9F schematically illustrates a stand-alone one or more boost converters with three power ports for charging meta-capacitors and one or more buck converters, and one or more independent converters for discharging meta-capacitors Boost converter and one or more buck converters another DC voltage conversion device.

圖9G示意地表示具有三個電源埠、用於充電meta-電容器的一個或多個降壓轉換器、用於放電meta-電容器的一個或多個升壓轉換器的另一種直流電壓轉換裝置。 FIG. 9G schematically illustrates another DC voltage conversion device having three power ports, one or more buck converters for charging meta-capacitors, and one or more boost converters for discharging meta-capacitors.

圖9H示意地表示具有三個電源埠、用於充電meta-電容器的一個或多個升壓/降壓轉換器、用於放電meta-電 容器的一個或多個升壓/降壓轉換器的另一種直流電壓轉換裝置。 Figure 9H schematically shows one or more boost / buck converters with three power ports, for charging meta-capacitors, for discharging meta-power Another DC voltage conversion device for one or more boost / buck converters in a container.

圖9I示意地表示具有三個電源埠、用於充電和放電meta-電容器的一個或多個雙向升壓/降壓轉換器的另一種直流電壓轉換裝置。 FIG. 9I schematically illustrates another DC voltage conversion device having three power ports for one or more bidirectional step-up / step-down converters for charging and discharging meta-capacitors.

圖10示意地表示本發明的一個方面的儲能單元。 FIG. 10 schematically illustrates an energy storage unit according to an aspect of the present invention.

圖10A示意地表示具有平坦和平面狀的電極的所述電容器。 FIG. 10A schematically illustrates the capacitor having flat and planar electrodes.

圖10B示意地表示具有捲筒狀(圓形)的電極的所述電容器 FIG. 10B schematically illustrates the capacitor having a rolled (circular) electrode.

圖11示意地表示本發明另一層面的儲能單元。 FIG. 11 schematically illustrates an energy storage unit in another aspect of the present invention.

圖12示意地表示本發明另一層面的儲能單元。 FIG. 12 schematically illustrates an energy storage unit in another aspect of the present invention.

圖13A表示本發明一層面的向轉換器輸入的固定電壓V_i(t),和在充電時作為從降壓向升壓的轉換器轉換的電容式儲能裝置上的電壓V_c(t)。 FIG. 13A shows a fixed voltage V_i (t) input to the converter and a voltage V_c (t) on the capacitive energy storage device that converts from a buck to a boost converter during charging in one aspect of the present invention.

圖13B表示本發明一層面的從轉換器的輸出側取得的固定電壓V_o(t),和在放電時作為從降壓向升壓的轉換器轉換的電容式儲能裝置上的電壓V_c(t)。 FIG. 13B shows the fixed voltage V_o (t) obtained from the output side of the converter and the voltage V_c (t ).

圖14A表示本發明一層面的向轉換器輸入的固定電壓V_i(t)和在充電時當Vmin,op=V_i(t)時電容式儲能裝置上的電壓V_c(t)。 FIG. 14A shows the fixed voltage V_i (t) input to the converter and the voltage V_c (t) on the capacitive energy storage device when Vmin, op = V_i (t) when charging.

圖14B表示本發明一層面的從轉換器的輸出側取得的固定電壓V_o(t),和在放電時當Vmin,op=V_i(t)時電容式儲能裝置上的電壓V_c(t)。 FIG. 14B shows the fixed voltage V_o (t) obtained from the output side of the converter and the voltage V_c (t) on the capacitive energy storage device when Vmin, op = V_i (t) during discharge according to the present invention.

圖15A表示本發明一層面的一個範例,其能夠在開關型電壓轉換器中實現、並且能夠用於儲能單元中的直流電壓轉換裝置的單開關升壓降壓轉換器。 FIG. 15A shows an example of one aspect of the present invention, which can be implemented in a switch-type voltage converter and can be used as a single-switch step-up and step-down converter of a DC voltage conversion device in an energy storage unit.

圖15B表示本發明一層面的一個範例,其能夠在開關型電壓轉換器中實現、並且能夠用於儲能單元中的直流電壓轉換裝置的四開關升壓降壓轉換器。 FIG. 15B shows an example of one aspect of the present invention, which can be implemented in a switching voltage converter and can be used as a four-switch step-up and step-down converter of a DC voltage conversion device in an energy storage unit.

圖16表示本發明另一層面的具有兩個或多個網路化儲能單元的電容式儲能模組範例。 FIG. 16 shows an example of a capacitive energy storage module having two or more networked energy storage units in another aspect of the present invention.

圖17表示本發明另一層面的具有兩個或多個網路化儲能模組的電容式儲能系統範例。 FIG. 17 shows another example of a capacitive energy storage system having two or more networked energy storage modules according to the present invention.

在此說明和描述的本發明各種實施例,對於本技術領域習知技術者來說,這些實施例明顯只用於示範。在不脫離本發明的情況下,本技術領域習知技術者能夠進行各種變形、修改和替換。應理解的是,本發明所述的不同實施例的各種替代方案。 Various embodiments of the present invention illustrated and described herein will obviously be used for illustration only by those skilled in the art. Those skilled in the art can make various variations, modifications, and replacements without departing from the present invention. It should be understood that there are various alternatives to the different embodiments described herein.

本發明提供一種包括至少一個電容式儲能裝置和直流電壓轉換裝置的儲能單元。圖10示意地表示電容式儲能單元1,其包括具備一個或多個meta-電容器20和直流電壓轉換裝置3的電容儲能裝置2,該直流電壓轉換裝置3由一個或多個開關型電壓轉換器100例如降壓轉換器、升壓轉換器、降壓/升壓轉換器、雙向降壓/升壓(分段PI:split-pi)轉換器、uk轉換器、SEPIC轉換器、反向降壓 /升壓轉換器、或四開關降壓/升壓轉換器構成。 The invention provides an energy storage unit including at least one capacitive energy storage device and a DC voltage conversion device. FIG. 10 schematically shows a capacitive energy storage unit 1 including a capacitive energy storage device 2 provided with one or more meta-capacitors 20 and a DC voltage conversion device 3, which is composed of one or more switching voltage The converter 100 is, for example, a buck converter, a boost converter, a buck / boost converter, a bidirectional buck / boost (split-pi) converter, A uk converter, a SEPIC converter, a reverse buck / boost converter, or a four-switch buck / boost converter.

這裡使用的meta-電容器是一種電容器,其包括電介質膜,該電介質膜是設置在第一電極和第二電極之間的meta-介電材料。在一個實施例中,所述電極是平面和平坦的,且彼此平行(參見圖10A)。在另一實施例中,該meta-電容包括兩個彼此平行的筒狀金屬電極(參見圖10B)。 A meta-capacitor used here is a capacitor that includes a dielectric film, which is a meta-dielectric material disposed between a first electrode and a second electrode. In one embodiment, the electrodes are planar and flat and parallel to each other (see FIG. 10A). In another embodiment, the meta-capacitor includes two cylindrical metal electrodes that are parallel to each other (see FIG. 10B).

在一個實施例中,所述電極是平面和平坦的,如圖10A所示。在這個例子中,meta-電容器包括第一電極21、第二電極22、以及設置在所述第一和第二電極之間的meta-介電層23。電極21和22可以由金屬,如銅、鋅、或鋁、或其它導電材料製成,並且一般呈平面狀。 In one embodiment, the electrodes are planar and flat, as shown in FIG. 10A. In this example, the meta-capacitor includes a first electrode 21, a second electrode 22, and a meta-dielectric layer 23 disposed between the first and second electrodes. The electrodes 21 and 22 may be made of metal, such as copper, zinc, or aluminum, or other conductive materials, and are generally planar.

所述電極21、22可以是平坦和平面的,並且彼此平行。或者,電極可以是平面和平行的,但不一定平坦,例如,它們可以是盤繞、捲成筒狀、彎曲、折疊、或其他形狀,以減少電容器的整體形狀因數。電極也可以是非平坦的、非平面的、或非平行的、或其兩個或多個的組合。在此舉例而不是限定的方式,電極21、22之間能夠與複合電介質膜層23的厚度對應的間距d的範圍為從大約100nm到大約10000μm。如以下的等式(4),電極21、22之間的最大電壓Vbd大約為擊穿電場與電極間距d的乘積。 The electrodes 21, 22 may be flat and planar and parallel to each other. Alternatively, the electrodes may be planar and parallel, but not necessarily flat. For example, they may be coiled, rolled into a tube, bent, folded, or other shapes to reduce the overall form factor of the capacitor. The electrodes may also be non-planar, non-planar, or non-parallel, or a combination of two or more thereof. By way of example and not limitation, the pitch d between the electrodes 21 and 22 that can correspond to the thickness of the composite dielectric film layer 23 ranges from about 100 nm to about 10,000 μm. As in the following equation (4), the maximum voltage V bd between the electrodes 21 and 22 is approximately the product of the breakdown electric field and the electrode distance d.

Vbd=Ebdd (4) V bd = E bd d (4)

例如,如果Ebd=0.1V/nm,電極21、22之間的間距 d為10000微米(100000nm),則最大電壓Vbd是100000伏。 For example, if E bd = 0.1 V / nm and the distance d between the electrodes 21 and 22 is 10,000 micrometers (100000 nm), the maximum voltage V bd is 100,000 volts.

電極21,22可以具有彼此相同的形狀、相同的尺寸、以及相同的面積A。藉由舉例的方式而不是限定,每個電極21、22的面積A可以為約0.01平方米到約1000平方米。藉由舉例方式而不是限定,對於筒狀電容器,電極可以達到例如1000米長、1米寬。 The electrodes 21, 22 may have the same shape, the same size, and the same area A as each other. By way of example and not limitation, the area A of each electrode 21, 22 may be about 0.01 square meters to about 1,000 square meters. By way of example and not limitation, for a cylindrical capacitor, the electrode can be, for example, 1000 meters long and 1 meter wide.

這些範圍是非限定性的。電極間距d和面積A的其它範圍也處於本發明的範疇內。 These ranges are non-limiting. Other ranges of the electrode pitch d and the area A are also within the scope of the present invention.

如果間距d比電極的特性線性尺寸(例如,長度和/或寬度)小,則電容器的電容C可以用以下公式近似:C=κεoA/d, (5)其中,εo是自由空間的介電常數(8.85×10-122/(牛頓.米2)),κ是介質層的介電常數。電容器的儲能容量U可以近似為:U=½ CVbd 2 (6) If the distance d is smaller than the characteristic linear dimension (for example, length and / or width) of the electrode, the capacitance C of the capacitor can be approximated by the following formula: C = κε o A / d, (5) where ε o is free space The dielectric constant (8.85 × 10 -12 library 2 / (Newton. M 2 )), κ is the dielectric constant of the dielectric layer. The energy storage capacity U of the capacitor can be approximated as: U = ½ CV bd 2 (6)

可以用等式(4)和(5)重寫為:U=½ κεoAEbd 2d (7) Can be rewritten with equations (4) and (5) as: U = ½ κε o AE bd 2 d (7)

儲能容量U由介電常數κ、面積A、以及擊穿電場Ebd決定。藉由適當的設計,電容器或電容器組可以被設計成任何所需的儲能容量U。列舉一個例子而不是限定,如果對介電常數κ、電極面積A、和擊穿電場Ebd設置該範圍,則本發明的一個方面的電容器能夠具有範圍為約 500焦耳~約2x1016焦耳的儲能容量U。 The energy storage capacity U is determined by the dielectric constant κ, the area A, and the breakdown electric field E bd . With proper design, the capacitor or capacitor bank can be designed to any desired energy storage capacity U. To give an example rather than a limitation, if the ranges are set for the dielectric constant κ, the electrode area A, and the breakdown electric field E bd , the capacitor of one aspect of the present invention can have a storage range of about 500 Joules to about 2 × 10 16 Joules. Energy capacity U.

如果介電常數κ的範圍例如為約100~約1000000,並且固定的擊穿電場Ebd介於例如0.1和0.5V/nm之間,則所述類型的電容器能夠具有範圍為約10W.h/kg~約100000W.h/kg的特定的每單位品質的能量容量,但並不限於此。 If the range of the dielectric constant κ is, for example, about 100 to about 1,000,000, and the fixed breakdown electric field E bd is, for example, between 0.1 and 0.5 V / nm, the capacitor of the type can have a range of about 10 W. h / kg ~ about 100,000W. The specific energy capacity per unit mass of h / kg is not limited thereto.

在一個實施例中,所述meta-電容器為筒狀的meta-電容器,如圖10B所示。在這個例子中,一個meta-電容器20包括第一電極21、第二電極22、以及設置在該第一和第二電極之間的以上所述類型的meta-介電材料層23。該電極21、22可以由金屬,如銅、鋅、或鋁、或其它導電材料構成,並且大體上呈平面狀。在一個實施例中,電極和meta-介電材料層23形成為材料夾在一起的長條形並與絕緣材料,例如如聚丙烯或聚酯那樣的塑膠薄膜一起繞成筒狀,以防止電極21、22之間的電氣短路。在2015年6月26日申請的美國專利申請案第14/752600號中詳細描述了這種筒狀電容儲能設備的例子,在此納入其全部內容作為參考。 In one embodiment, the meta-capacitor is a cylindrical meta-capacitor, as shown in FIG. 10B. In this example, a meta-capacitor 20 includes a first electrode 21, a second electrode 22, and a meta-dielectric material layer 23 of the type described above disposed between the first and second electrodes. The electrodes 21, 22 may be made of metal, such as copper, zinc, or aluminum, or other conductive materials, and are substantially planar. In one embodiment, the electrode and the meta-dielectric material layer 23 are formed into an elongated shape sandwiched by the material and wound into a cylindrical shape together with an insulating material such as a plastic film such as polypropylene or polyester to prevent the electrode Electrical short between 21 and 22. An example of such a cylindrical capacitor energy storage device is described in detail in US Patent Application No. 14/752600, filed on June 26, 2015, the entire contents of which are incorporated herein by reference.

所述meta-介電材料由具有通過聚合物形成的超分子結構的複合分子構成。所述聚合物的例子包括所謂的Sharp聚合物(Sharp polymer)、Furuta-共聚物、所謂的para-Furuta共聚物,在2016年2月12日提交的通常指定的US專利申請號15/043,247(律師案卷號CSI-046)、15/043,186(律師案卷號CSI-019A)、15/043,209(律師 案卷號CSI-019B)中對其進行了詳細說明,在此作為參考引用其全部內容。 The meta-dielectric material is composed of a composite molecule having a supramolecular structure formed by a polymer. Examples of the polymer include a so-called Sharp polymer, a Furuta-copolymer, a so-called para-Furuta copolymer, and generally designated US Patent Application No. 15 / 043,247 filed on February 12, 2016 ( Attorney's case number CSI-046), 15 / 043,186 (Attorney's case number CSI-019A), 15 / 043,209 (Attorney's case It is described in detail in Case No. CSI-019B), which is hereby incorporated by reference in its entirety.

Sharp聚合物 Sharp Polymer

Sharp聚合物是一種複合材料,可極化核心處於外殼(envelope)中,該外殼為作為線性或支鏈低聚物而與可極化核心共價鍵合的碳氫化合物(飽和或不飽和)、碳氟化合物、氯碳化合物、矽氧烯、和/或聚乙二醇並且作用使得極化核心相互隔離,有利於核心的離散極化而在極化時在核心中產生有限的損耗或沒有損耗。可極化核心具有超電子(hyperelectronic)或離子類型的極化性。“超電子極化可以被認為是由於外部電場而激子的電荷對的適應性相互作用臨時局限於長的高度極化的分子而產生的”(Roger D.Hartman和Herbert A.Pohl,“高分子固體中的超電子極化(Hyper-electronic Polarization in Macromolecular Solids)”,聚合物學報:A-1部分,卷6,第1135~1152頁(1968))”。能夠通過核心分子碎片的離子部分的有限的流動性來實現。 Sharp polymer is a composite material with a polarizable core in an envelope, which is a hydrocarbon (saturated or unsaturated) that is covalently bonded to the polarizable core as a linear or branched oligomer , Fluorocarbons, chlorocarbons, silicones, and / or polyethylene glycols and isolate the polarized cores from each other, which is conducive to the core's discrete polarization and generates limited or no loss in the core during polarization. loss. The polarizable core has a hyperelectronic or ionic type of polarization. "Superelectron polarization can be thought of as the result of the adaptive interaction of exciton charge pairs due to an external electric field temporarily confined to long highly polarized molecules" (Roger D. Hartman and Herbert A. Pohl, "High "Hyper-electronic Polarization in Macromolecular Solids", Journal of Polymers: Part A-1, Volume 6, pp. 1135 ~ 1152 (1968)). Can pass through the ionic portion of core molecular fragments Limited liquidity to achieve.

Sharp聚合物具有以下的一般結構式: Sharp polymers have the following general structural formula:

其中,核心是含有萘嵌苯片段的多環共軛分子。該分子具有平面非等軸結構,通過π-π堆疊而自組裝為柱狀超分子。取代基R1使有機化合物溶解於溶劑中。參數n是取代基R1的個數,等於0、1、2、3、4、5、6、7或8。取代基R2是位於終端位置的電阻性取代基,其產生對電流的電阻率,作為線性或支鏈而包括碳氫化合物(飽和或不飽和)、碳氟化合物、矽氧烯、和/或聚乙二醇。取代基R3和R4是位於側(橫)位置(終端和/或彎曲位置(bay position))的取代基,包括直接例如直接鍵合的SP2-SP3碳、或通過連接官能團而與多環共軛分子(核心)連接的離子液體所使用的離子化合物類型的一個或多個離子官能團。參數m是柱狀超分子中的多環共軛芳香族分子的個數,其範圍為從3到100000。 Among them, the core is a polycyclic conjugated molecule containing a naphthalene fragment. The molecule has a planar asymmetric structure and self-assembles into a columnar supramolecule through π-π stacking. The substituent R1 dissolves the organic compound in a solvent. The parameter n is the number of substituents R1 and is equal to 0, 1, 2, 3, 4, 5, 6, 7, or 8. Substituent R2 is a resistive substituent at the terminal position, which generates resistivity to the current and includes, as linear or branched, hydrocarbons (saturated or unsaturated), fluorocarbons, silicone, and / or Glycol. The substituents R3 and R4 are substituents located at a lateral (horizontal) position (terminal and / or bay position), and include a SP2-SP3 carbon directly or directly conjugated to a polycyclic ring by linking a functional group One or more ionic functional groups of the ionic compound type used by the molecular (core) -linked ionic liquid. The parameter m is the number of polycyclic conjugated aromatic molecules in the columnar supramolecule, and it ranges from 3 to 100,000.

在複合有機化合物的另一個實施例中,多環共軛芳香族分子包括導電的低聚物,如苯、噻吩、或聚並苯奎寧(polyacene quinine)基低聚物、或它們的兩種或兩種以上的組合。在複合有機化合物的另一個實施例中,導電低聚物為phyenlyen、噻吩、或長度範圍為從2到12的取代和/或非取代的聚並苯奎寧基低聚物中的任意一個、或它們的兩個或兩個以上的組合。其中,基於O、S、或NR5、以及R5的環氫的取代基為未取代或取代的C1-C18alkyl、非取代或取代的C2-C18alkenyl、非取代或取代的C2-C18alkynyl、以及未取代或取代的C4-C18aryl。 In another embodiment of the composite organic compound, the polycyclic conjugated aromatic molecule includes a conductive oligomer, such as benzene, thiophene, or polyacene quinine-based oligomer, or both Or a combination of two or more. In another embodiment of the composite organic compound, the conductive oligomer is any one of phyenlyen, thiophene, or substituted and / or unsubstituted polyacene quinine oligomer having a length ranging from 2 to 12, Or a combination of two or more of them. Wherein, the substituents based on O, S, or NR5 and R5's cyclic hydrogen are unsubstituted or substituted C 1 -C 18 alkyl, unsubstituted or substituted C 2 -C 18 alkenyl, unsubstituted or substituted C 2 -C 18 alkynyl, and unsubstituted or substituted C 4 -C 18 aryl.

在一些實施例中,用於複合有機化合物的溶解(R1) 的取代基為CXQ2X+1,其中X1,Q是氫(H)、氟(F)、或氯(Cl)。在複合有機化合物的另一個實施例中,用於複合有機化合物的溶解(R1)的取代基獨立地為烷基、芳基、取代烷基、取代芳基、氟化烷基、氯化烷基、支鏈和複合烷基、支鏈和複合氟化烷基、支鏈和複合氯化烷基中的任意一個、它們的任意組合,其中,烷基為甲基、乙基,丙基、丁基、異丁基、和叔丁基中的任意一個,芳基為苯基、苄基、萘基中的任意一個、或矽氧烯、和/或線性或支鏈的聚乙二醇。 In some embodiments, the substituent used for dissolution (R1) of the composite organic compound is C X Q 2X + 1 , where X 1, Q is hydrogen (H), fluorine (F), or chlorine (Cl). In another embodiment of the composite organic compound, the substituents for dissolving (R1) of the composite organic compound are independently alkyl, aryl, substituted alkyl, substituted aryl, fluorinated alkyl, chlorinated alkyl Any of branched, branched and complex alkyl, branched and complex fluorinated alkyl, branched and complex chlorinated alkyl, and any combination thereof, wherein the alkyl group is methyl, ethyl, propyl, butane Any of aryl, isobutyl, and tert-butyl, and aryl is any of phenyl, benzyl, naphthyl, or siloxane, and / or linear or branched polyethylene glycol.

在一些實施例中,複合有機化合物的至少一個電阻性取代基(R2)為CXQ2X+1,其中X1,Q是氫(H)、氟(F)、或氯(Cl)。在複合有機化合物的另一個實施例中,至少一個電阻性取代基(R2)為-(CH2)n-CH3、-CH((CH--2)-nCH3)2)(其中n1)、烷基、芳基、取代烷基、取代芳基、支鏈烷基,支鏈芳基中的任意一個、它們的任意組合,其中烷基為甲基、乙基、丙基、丁基、異丁基、叔丁基中的任意一個,芳基為苯基、苄基、萘基的任意一個。 In some embodiments, the at least one resistive substituent (R2) of the composite organic compound is C X Q 2X + 1 , where X 1, Q is hydrogen (H), fluorine (F), or chlorine (Cl). In another embodiment of the composite organic compound, at least one resistive substituent (R2) is-(CH 2 ) n -CH 3 , -CH ((CH-- 2 ) -n CH 3 ) 2 ) (wherein n 1), alkyl, aryl, substituted alkyl, substituted aryl, branched alkyl, any of branched aryl, any combination thereof, where alkyl is methyl, ethyl, propyl, butane Any of aryl, isobutyl, and tert-butyl, and aryl is any of phenyl, benzyl, and naphthyl.

在一些實施例中,取代基R1和R2通過至少一個連接官能團連接到芳香族多環共軛分子(核心)。至少一個連接官能團可以為醚、胺、酯、醯胺、取代醯胺、烯基、炔基、磺醯、磺酸鈉、磺醯胺、取代磺醯胺中的任意一個。 In some embodiments, the substituents R1 and R2 are connected to the aromatic polycyclic conjugate molecule (core) through at least one linking functional group. The at least one linking functional group may be any one of an ether, an amine, an ester, an amidine, a substituted amidine, an alkenyl group, an alkynyl group, a sulfonium, a sodium sulfonate, a sulfonamide, and a substituted sulfonamide.

在一些實施例中,取代基R3和/或R4可以通過至少 一個連接官能團連接到多環共軛芳香族分子(核心)。至少一個連接官能團可以為CH2、CF2、SiR2O、CH2CH2O中的任意一個,其中R為H、烷基、氟。在複合有機化合物的另一個實施例中,一個或多個離子官能團為陽離子的[NR4]+、[PR4]+、作為陰離子的[-CO2]-、[-SO3]-、[-SR5]-、[-PO3R]-、[-PR5]-中的任意一個,其中R為H、烷基、氟中的任意一個。 In some embodiments, the substituents R3 and / or R4 may be connected to the polycyclic conjugated aromatic molecule (core) through at least one linking functional group. At least one linking functional group may be any one of CH 2 , CF 2 , SiR 2 O, and CH 2 CH 2 O, where R is H, alkyl, or fluorine. In another embodiment of the composite organic compound, one or more of the ionic functional groups are [NR 4 ] + , [PR 4 ] + , [-CO 2 ] - , [-SO 3 ] - , [ -SR 5 ] - , [-PO 3 R] - , [-PR 5 ] - , wherein R is any one of H, alkyl, and fluorine.

本發明提供一種複合有機化合物類型的sharp-聚合物。在複合有機化合物的一個實施例中,芳香族多環共軛分子(核心)包括萘嵌苯片段。在複合有機化合物的另一個實施例中,該片段為表1所示的結構1~21中的一個。 The invention provides a sharp-polymer of the compound organic compound type. In one embodiment of the composite organic compound, the aromatic polycyclic conjugated molecule (core) comprises a naphthalene fragment. In another embodiment of the composite organic compound, the fragment is one of the structures 1 to 21 shown in Table 1.

在複合有機化合物的另一個實施例中,芳香族多環共軛分子包括導電的低聚物,如苯、噻吩、或多並苯奎寧基低聚物(polyacene quinine radical oligomer)、或兩個或兩個以上的組合。在複合有機化合物的另一個實施例中,導電低聚物是表2所示的結構22~30中的一個,其中,I=2、3、4、5、6、7、8、9、10、11、或12,Z=O、=S、或=NR5,R5是非取代或取代的C1-C18烷基、非取代或取代的C2-C18烯基、非取代或取代的C2-C18炔基、非取代或取代的C4-C18芳基中的任意一個。 In another embodiment of the composite organic compound, the aromatic polycyclic conjugated molecule includes a conductive oligomer, such as benzene, thiophene, or polyacene quinine radical oligomer, or two Or a combination of two or more. In another embodiment of the composite organic compound, the conductive oligomer is one of the structures 22 to 30 shown in Table 2, where I = 2, 3, 4, 5, 6, 7, 8, 9, 10 , 11, or 12, Z = O, = S, or = NR 5 , R 5 is unsubstituted or substituted C 1 -C 18 alkyl, unsubstituted or substituted C 2 -C 18 alkenyl, unsubstituted or substituted Any of C 2 -C 18 alkynyl, unsubstituted or substituted C 4 -C 18 aryl.

在一些實施例中,用於複合有機化合物的溶解(R1)的取代基為CXQ2X+1,其中X1,Q是氫(H)、氟(F)、或氯(Cl)。在複合有機化合物的另一個實施例中,用於複合有機化合物的溶解(R1)的取代基獨立地為 烷基、芳基、取代烷基、取代芳基、氟化烷基、氯化烷基、支鏈和複合烷基、支鏈和複合氟化烷基、支鏈和複合氯化烷基中的任意一個、它們的任意組合,其中,烷基為甲基、乙基,丙基、丁基、異丁基、和叔丁基中的任意一個,芳基為苯基、苄基、萘基中的任意一個、或矽氧烯、和/或線性或支鏈的聚乙二醇。 In some embodiments, the substituent for dissolving (R1) of the composite organic compound is C X Q 2X + 1 , where X 1, Q is hydrogen (H), fluorine (F), or chlorine (Cl). In another embodiment of the composite organic compound, the substituents for dissolving (R1) of the composite organic compound are independently alkyl, aryl, substituted alkyl, substituted aryl, fluorinated alkyl, chlorinated alkyl Any of branched, branched and complex alkyl, branched and complex fluorinated alkyl, branched and complex chlorinated alkyl, and any combination thereof, wherein the alkyl group is methyl, ethyl, propyl, butane Any of aryl, isobutyl, and tert-butyl, and aryl is any of phenyl, benzyl, naphthyl, or siloxane, and / or linear or branched polyethylene glycol.

在複合有機化合物的一個實施例中,溶劑為苯、甲苯、二甲苯、丙酮、乙酸、甲乙酮、烴、氯仿、四氯化碳、二氯甲烷、二氯乙烷、苯、醇、硝基甲烷、乙腈、二甲基甲醯胺、1,4-二氧六環、四氫呋喃(THF)、甲基環己烷(MCH)中的任意一個、以及它們的任意組合。 In one embodiment of the composite organic compound, the solvent is benzene, toluene, xylene, acetone, acetic acid, methyl ethyl ketone, hydrocarbon, chloroform, carbon tetrachloride, dichloromethane, dichloroethane, benzene, alcohol, nitromethane , Acetonitrile, dimethylformamide, 1,4-dioxane, tetrahydrofuran (THF), methylcyclohexane (MCH), and any combination thereof.

在一些實施例中,複合有機化合物的至少一個電阻性取代基(R2)為CXQ2X+1,其中X1,Q是氫(H)、氟(F)、或氯(Cl)。在複合有機化合物的另一個實施例中,至少一個電阻性取代基(R2)為-(CH2)n-CH3、-CH((CH--2)-nCH3)2)(其中n1)、烷基、芳基、取代烷基、取代芳基、支鏈烷基,支鏈芳基中的任意一個、它們的任意組合,其中烷基為甲基、乙基、丙基、丁基、異丁基、叔丁基中的任意一個,芳基為苯基、苄基、萘基中的任意一個。 In some embodiments, the at least one resistive substituent (R2) of the composite organic compound is C X Q 2X + 1 , where X 1, Q is hydrogen (H), fluorine (F), or chlorine (Cl). In another embodiment of the composite organic compound, at least one resistive substituent (R2) is-(CH 2 ) n -CH 3 , -CH ((CH-- 2 ) -n CH 3 ) 2 ) (wherein n 1), alkyl, aryl, substituted alkyl, substituted aryl, branched alkyl, any of branched aryl, any combination thereof, where alkyl is methyl, ethyl, propyl, butane Any of aryl, isobutyl, and tert-butyl, and aryl is any of phenyl, benzyl, and naphthyl.

在一些實施例中,至少一個電阻性取代基(R2)為烷基、芳基、取代烷基、取代芳基、氟化烷基、氯化烷基、支鏈和複合烷基、支鏈和複合氟化烷基、支鏈和複合氯化烷基中的任意一個、它們的任意組合,其中烷基為甲基、 乙基、丙基、丁基、異丁基和叔丁基中的任意一個,芳基為苯基、苄基、萘基中的任意一個、或矽氧烯、和/或線性或支鏈的聚乙二醇。 In some embodiments, at least one resistive substituent (R2) is alkyl, aryl, substituted alkyl, substituted aryl, fluorinated alkyl, chlorinated alkyl, branched and complex alkyl, branched and Any one of a complex fluorinated alkyl group, a branched chain, and a complex chlorinated alkyl group, and any combination thereof, wherein the alkyl group is a methyl group, Any of ethyl, propyl, butyl, isobutyl, and tert-butyl, aryl is any of phenyl, benzyl, naphthyl, or siloxene, and / or linear or branched Polyethylene glycol.

在一些實施例中,取代基R1和/或R2通過至少一個連接官能團連接到芳香族多環共軛分子(核心)。至少一個連接官能團可以為表3所示的結構31~41給出的以下結構,其中W為氫(H)或烷基。 In some embodiments, the substituents R1 and / or R2 are connected to the aromatic polycyclic conjugate molecule (core) through at least one linking functional group. At least one linking functional group may be the following structure given by the structures 31 to 41 shown in Table 3, where W is hydrogen (H) or an alkyl group.

在本發明的另一個實施方式中,取代基R3和/或R4可以通過至少一個連接官能團連接到芳香族多環共軛分子(核心)。至少一個連接官能團可以為CH2、CF2、SiR2O、CH2CH2O中的任意一個,其中R為H、烷基、氟中的任意一個。在複合有機化合物的另一個實施例中,一個或多個離子官能團包括陽離子的[NR4]+、[PR4]+、作為陰離子的[-CO2]-、[-SO3]-、[-SR5]-、[-PO3R]-、[-PR5]-中的任意一個,其中R為H、烷基、氟中的任意一個。 In another embodiment of the present invention, the substituents R3 and / or R4 may be connected to the aromatic polycyclic conjugate molecule (core) through at least one linking functional group. The at least one linking functional group may be any one of CH 2 , CF 2 , SiR 2 O, and CH 2 CH 2 O, where R is any one of H, alkyl, and fluorine. In another embodiment of the composite organic compound, the one or more ionic functional groups include [NR 4 ] + , [PR 4 ] + , [-CO 2 ] - , [-SO 3 ] - , [ -SR 5 ] - , [-PO 3 R] - , [-PR 5 ] - , wherein R is any one of H, alkyl, and fluorine.

sharp聚合物具有超電子(hyperelectronic)或離子類型的極化性。超電子極化可以被認為是由於外部電場而激子的電荷對的適應性相互作用臨時局限於長的高度極化的分子而產生的。離子類型的極化能夠通過栓定/部分固定的離子液體或雙性離子(Q)的離子部分的有限的移動性 來實現。進而,在本發明的各個方面中,可以獨立使用、或與超電子和離子極化結合地使用其他極化機制,如偶極極化、具有金屬導電性單體和聚合物。 Sharp polymers have a hyperelectronic or ionic type of polarization. Superelectron polarization can be thought of as the result of the adaptive interaction of exciton charge pairs due to an external electric field temporarily confined to long, highly polarized molecules. Ionic-type polarization can be achieved through the limited mobility of tethered / partially fixed ionic liquids or the ionic part of zwitterions (Q) to realise. Further, in various aspects of the present invention, other polarization mechanisms such as dipole polarization, metal conductive monomers, and polymers may be used independently or in combination with superelectronic and ionic polarization.

為了能夠更好地理解本發明有關sharp聚合物,以下列舉例子來說明,但並不限定本發明的範圍。 In order to better understand the sharp polymer of the present invention, examples are given below to illustrate, but the scope of the present invention is not limited.

例子1: Example 1:

本例子基於以下的結構方案說明sharp聚合物的一個類型的合成: This example illustrates one type of sharp polymer synthesis based on the following structural scheme:

在這個例子中合成的過程可以理解為以下五個步驟。 The process of synthesis in this example can be understood as the following five steps.

(a)第一步驟: (a) First step:

在500mL的具有碰撞保護器的原地燒瓶中混合酸酐(Anhydride)1(60g,0.15mol,1.0當量)、胺2(114.4g,0.34mol,2.2當量)、以及咪唑(686g,10.2mol,2的30當量)。對混合物進行排氣三次,在160℃下攪拌3小時,在180℃下攪拌3小時,然後冷卻到室溫。粉碎反應混合物並放入水(1000毫升)中攪拌。收集沉澱物過濾,用水(2×500毫升)、甲醇(2×300毫升)洗滌,高真空乾燥。對希望成品3的77.2g(48.7%)進行快速層析柱純化(CH2Cl2/乙炔=1/1)而成為橙色固體。1H NMR(300MHz,CDCl3)δ 8.65-8.59(m,8H),5.20-5.16(m,2H),2.29-2.22(m,4H),1.88-1.82(m,4H),1.40-1.13(m,64H),0.88-0.81(t,12H).Rf=0.68(CH2Cl2/hexane=1/1)。 In a 500 mL in-situ flask with a collision protector, Anhydride 1 (60 g, 0.15 mol, 1.0 equivalent), amine 2 (114.4 g, 0.34 mol, 2.2 equivalent), and imidazole (686 g, 10.2 mol, 2) were mixed. 30 equivalents). The mixture was degassed three times, stirred at 160 ° C for 3 hours, 180 ° C for 3 hours, and then cooled to room temperature. The reaction mixture was pulverized and stirred in water (1000 ml). The precipitate was collected and filtered, washed with water (2 x 500 ml), methanol (2 x 300 ml), and dried under high vacuum. 77.2 g (48.7%) of the desired product 3 was purified by flash chromatography (CH 2 Cl 2 / acetylene = 1/1) to become an orange solid. 1 H NMR (300MHz, CDCl 3 ) δ 8.65-8.59 (m, 8H), 5.20-5.16 (m, 2H), 2.29-2.22 (m, 4H), 1.88-1.82 (m, 4H), 1.40-1.13 ( m, 64H), 0.88-0.81 (t, 12H). Rf = 0.68 (CH 2 Cl 2 / hexane = 1/1).

(b)第二步驟: (b) Second step:

向溶於二氯乙烷(1500mL)的二醯亞胺(30.0g,29.0mmol,1.0當量)的溶液添加溴(312.0g,1.95mmol,67.3當量)。針對結果混合物,在80℃下攪拌36小時,冷卻,用10%的NaOH(水溶液,2×1000mL)、水(100mL)洗滌,通過Na2SO4乾燥,過濾和濃縮。對粗成品通過快速層析柱(CH2Cl2/乙炔=1/1)純化而得到34.0g(98.2%)的希望成品4而成為紅色固體。1H NMR(300MHz,CDCl3)δ 9.52(d,2H),8.91(bs,2H),8.68(bs,2H),5.21-5.13(m,2H),2.31-2.18(m,4H),1.90-1.80(m,4H),1.40-1.14(m,64H),0.88-0.81(t,12H).Rf=0.52(CH2Cl2/hexanes=1/1)。 To a solution of diamidine (30.0 g, 29.0 mmol, 1.0 equivalent) in dichloroethane (1500 mL) was added bromine (312.0 g, 1.95 mmol, 67.3 equivalent). The resulting mixture was stirred at 80 ° C. for 36 hours, cooled, washed with 10% NaOH (aqueous solution, 2 × 1000 mL), water (100 mL), dried over Na 2 SO 4 , filtered, and concentrated. The crude product was purified by a flash chromatography column (CH 2 Cl 2 / acetylene = 1/1) to obtain 34.0 g (98.2%) of the desired product 4 as a red solid. 1 H NMR (300MHz, CDCl 3 ) δ 9.52 (d, 2H), 8.91 (bs, 2H), 8.68 (bs, 2H), 5.21-5.13 (m, 2H), 2.31-2.18 (m, 4H), 1.90 -1.80 (m, 4H), 1.40-1.14 (m, 64H), 0.88-0.81 (t, 12H). Rf = 0.52 (CH 2 Cl 2 / hexanes = 1/1).

(c)第三步驟: (c) The third step:

向溶於三乙胺(84.0mL)的二溴化物4(2.0g, 1.68mmol,1.0當量)的溶液添加CuI(9.0mg,0.048mmol,2.8mol%)、(trimethylsilyl)acetylene(84.49g,5.0mmol,3.0當量)。對混合物排氣三次,在90℃下攪拌24小時,冷卻,通過矽藻土片,進行濃縮。對粗成品通過快速層析柱(CH2Cl2/乙炔=1/1)純化而得到1.8g(87.2%)的希望成品5而成為暗紅色固體。1H NMR(300MHz,CDCl3)δ 10.24-10.19(m,2H),8.81(bs,2H),8.65(bs,2H),5.20-5.16(m,2H),2.31-2.23(m,4H),1.90-1.78(m,4H),1.40-1.15(m,72H),0.84-0.81(t,12H),0.40(s,18H).Rf=0.72(CH2Cl2/hexane=1/1)。 To a solution of dibromide 4 (2.0 g, 1.68 mmol, 1.0 equivalent) in triethylamine (84.0 mL) was added CuI (9.0 mg, 0.048 mmol, 2.8 mol%), (trimethylsilyl) acetylene (84.49 g, 5.0 mmol, 3.0 equivalents). The mixture was vented three times, stirred at 90 ° C. for 24 hours, cooled, and concentrated through a celite pad. The crude product was purified by a flash column (CH 2 Cl 2 / acetylene = 1/1) to obtain 1.8 g (87.2%) of the desired product 5 as a dark red solid. 1 H NMR (300MHz, CDCl 3 ) δ 10.24-10.19 (m, 2H), 8.81 (bs, 2H), 8.65 (bs, 2H), 5.20-5.16 (m, 2H), 2.31-2.23 (m, 4H) , 1.90-1.78 (m, 4H), 1.40-1.15 (m, 72H), 0.84-0.81 (t, 12H), 0.40 (s, 18H) .Rf = 0.72 (CH 2 Cl 2 / hexane = 1/1) .

(d)第四步驟: (d) The fourth step:

向溶於MeOH/DCM(40.0mL/40.0mL)混合物的二醯亞胺5(1.8g,1.5mmol,1.0當量)的溶液添加K2CO3(0.81g,6.0mmol,4.0當量)。對混合物在室溫下攪拌1.5小時,用DCM(40.0mL)稀釋,用水洗滌,通過Na2SO4乾燥,過濾和濃縮。對粗成品通過快速層析柱(CH2Cl2)純化而得到1.4g(86.1%)的希望成品6而成為 暗紅色固體。1H NMR(300MHz,CDCl3)δ 10.04-10.00(m,2H),8.88-8.78(m,2H),8.72-8.60(m,2H),5.19-5.14(m,2H),3.82-3.80(m,2H),2.31-2.23(m,4H),1.90-1.78(m,4H),1.40-1.05(m,72H),0.85-0.41(t,12H).Rf=0.62(CH2Cl2)。 Diethyl (PEI) 5 (1.8g, 1.5mmol, 1.0 eq) was dissolved in a solution of MeOH / DCM (40.0mL / 40.0mL) K 2 CO 3 (0.81g, 6.0mmol, 4.0 equiv). The mixture was stirred at room temperature for 1.5 h, diluted with DCM (40.0mL), washed with water, dried over Na 2 SO 4, filtered and concentrated. The crude product was purified by a flash chromatography column (CH 2 Cl 2 ) to obtain 1.4 g (86.1%) of the desired product 6 as a dark red solid. 1 H NMR (300MHz, CDCl 3 ) δ 10.04-10.00 (m, 2H), 8.88-8.78 (m, 2H), 8.72-8.60 (m, 2H), 5.19-5.14 (m, 2H), 3.82-3.80 ( m, 2H), 2.31-2.23 (m, 4H), 1.90-1.78 (m, 4H), 1.40-1.05 (m, 72H), 0.85-0.41 (t, 12H). Rf = 0.62 (CH 2 Cl 2 ) .

(e)第五步驟: (e) Fifth step:

向溶於CCl4/CH3CN/H2O(6mL/6mL/12mL)混合物的炔烴6(1.4g,1.3mmol,1.0當量)的懸濁液添加高碘酸(2.94g,12.9mmol,10.0當量)、RuCl3(28.0mg,0.13mmol,10mol%)。對混合物在室溫下攪拌4小時,用DCM(50mL)稀釋,用水、鹽水洗滌,通過Na2SO4乾燥,過濾和濃縮。對粗成品通過快速層析柱(10%MeOH/CH2Cl2)純化而得到1.0g(68.5%)的希望成品7而成為暗紅色固體。1H NMR(300MHz,CDCl3)δ 8.90-8.40(m,6H),5.17-5.00(m,2H),2.22-2.10(m,4H),1.84-1.60(m,4H),1.41-0.90(m,72H),0.86-0.65(t,12H).Rf=0.51(10%MeOH/CH2Cl2)。 To a suspension of alkyne 6 (1.4 g, 1.3 mmol, 1.0 equivalent) dissolved in a CCl 4 / CH 3 CN / H 2 O (6 mL / 6 mL / 12 mL) mixture was added periodic acid (2.94 g, 12.9 mmol, 10.0 equivalents), RuCl 3 (28.0 mg, 0.13 mmol, 10 mol%). The mixture was stirred at room temperature for 4 h, diluted with DCM (50mL), washed with water, brine, dried over Na 2 SO 4, filtered and concentrated. The crude product was purified by a flash chromatography column (10% MeOH / CH 2 Cl 2 ) to give 1.0 g (68.5%) of the desired product 7 as a dark red solid. 1 H NMR (300MHz, CDCl 3 ) δ 8.90-8.40 (m, 6H), 5.17-5.00 (m, 2H), 2.22-2.10 (m, 4H), 1.84-1.60 (m, 4H), 1.41-0.90 ( m, 72H), 0.86-0.65 (t , 12H) .Rf = 0.51 (10% MeOH / CH 2 Cl 2).

例子2: Example 2:

本例子基於以下的結構方案說明sharp聚合物的合成: This example illustrates the synthesis of sharp polymers based on the following structural scheme:

在這個例子中合成的過程可以理解為以下五個步驟。 The process of synthesis in this example can be understood as the following five steps.

(a)第一步驟: (a) First step:

向溶於甲醇(400mL)的甲酮(37.0g,0.11mmol,1.0當量)的溶液部分地添加醋酸銨(85.3g,1.11mol,10.0當量)、NaCNBH3(28.5g,0.44mol,4.0當量)。將 混合物回流攪拌6小時,冷卻到室溫並濃縮。向殘渣添加NaHCO3(500mL),在室溫下攪拌混合物1小時。採集沉澱物並過濾,用水(4×100mL)洗滌,高真空地乾燥而得到33.6(87%)的胺2而為白色固體。 To a solution of methyl ketone (37.0 g, 0.11 mmol, 1.0 equivalent) in methanol (400 mL) was partially added ammonium acetate (85.3 g, 1.11 mol, 10.0 equivalent), NaCNBH 3 (28.5 g, 0.44 mol, 4.0 equivalent) . The mixture was stirred at reflux for 6 hours, cooled to room temperature and concentrated. To the residue was added NaHCO 3 (500 mL), and the mixture was stirred at room temperature for 1 hour. The precipitate was collected and filtered, washed with water (4 x 100 mL), and dried under high vacuum to give 33.6 (87%) of the amine 2 as a white solid.

(b)第二步驟: (b) Second step:

在具有旋轉碰撞保護器的250mL圓底燒瓶中充分混合胺2(20.0g,58.7mmol,2.2當量)、3,4,9,10-二萘嵌苯四甲酸二酐(10.5g,26.7mmol,1.0當量)、以及咪唑(54.6g,0.80mmol,二元胺的30當量)。對混合物進行排氣(充滿N2的真空)三次,在160℃下攪拌6小時。在冷卻到室溫後,粉碎反應混合物並放入水(700mL)中攪拌1小時,用過濾紙過濾,用水(3×300mL)和甲醇(3×300mL)洗滌並收集沉澱物,高真空乾燥,而得到23.1g(83.5%)的聯脒3為桔色固體。通過快速層析柱(DCM/乙炔=1/1)得到純聯脒3(20.6g)。 In a 250 mL round bottom flask with a rotary collision protector, amine 2 (20.0 g, 58.7 mmol, 2.2 equivalents), 3,4,9,10-perylenetetracarboxylic dianhydride (10.5 g, 26.7 mmol, 1.0 equivalent), and imidazole (54.6 g, 0.80 mmol, 30 equivalents of a diamine). The mixture was degassed (vacuum filled with N 2 ) three times and stirred at 160 ° C. for 6 hours. After cooling to room temperature, the reaction mixture was crushed and placed in water (700 mL) and stirred for 1 hour, filtered through filter paper, washed with water (3 × 300 mL) and methanol (3 × 300 mL), and the precipitate was collected, dried under high vacuum, And 23.1 g (83.5%) of hydrazone 3 was obtained as an orange solid. Purification by flash chromatography (DCM / acetylene = 1/1) gave pure difluorene 3 (20.6 g).

(c)第三步驟: (c) The third step:

小心地向DCE(2.0L)添加化合物3(52.0g,50.2mmol,1.0當量)、醋酸(500mL)、以及發煙硝酸(351.0g,5.0mol,100.當量)。向混合物添加硝酸鈰銨(137.0g,0.25mol,5.0當量)。在60℃下對反應物攪拌48小時。在冷卻到室溫後,粉碎反應混合物並放入水(1.0L)中。用水(2×1.0L)、飽和NaHCO3溶液(1×1.0L)、以及鹽水(1×1.0L)洗滌有機相,通過硫酸鈉乾燥,過濾並濃縮。對殘渣通過快速層析柱純化而得到46.7g(82%)的合成物4而成為暗紅色固體。1H NMR(300MHz,CDCl3)δ 0.84(t,12H),1.26(m,72H),1.83(m,4H),2.21(m,4H),5.19(m,2H),8.30(m,2H),8.60-8.89(m,4H)。 Carefully add Compound 3 (52.0 g, 50.2 mmol, 1.0 equivalent), acetic acid (500 mL), and fuming nitric acid (351.0 g, 5.0 mol, 100. equivalent) to DCE (2.0 L). To the mixture was added ceric ammonium nitrate (137.0 g, 0.25 mol, 5.0 equivalents). The reaction was stirred at 60 ° C for 48 hours. After cooling to room temperature, the reaction mixture was pulverized and put into water (1.0 L). The organic phase was washed with water (2 × 1.0 L), saturated NaHCO 3 solution (1 × 1.0 L), and brine (1 × 1.0 L), dried over sodium sulfate, filtered and concentrated. The residue was purified by a flash chromatography column to obtain 46.7 g (82%) of Compound 4 as a dark red solid. 1 H NMR (300MHz, CDCl 3 ) δ 0.84 (t, 12H), 1.26 (m, 72H), 1.83 (m, 4H), 2.21 (m, 4H), 5.19 (m, 2H), 8.30 (m, 2H ), 8.60-8.89 (m, 4H).

(d)第四步驟: (d) The fourth step:

在室溫下對EtOAc(125.0mL)中的合成物4(24g,22.2mmol,1.0當量)和Pd/C(2.5g,0.1當量)的混合物攪拌1小時。對固體進行過濾(矽藻土)並用EtOAc(5mL×2)進行洗滌。對濾液進行濃縮而得到化合物5(23.3g,99%)而為深藍色固體。1H NMR(300MHz,CDCl3)δ 0.84(t,12H),1.24(m,72H),1.85(m,4H),2.30(m,4H),5.00(s,2H),5.10(s,2H),5.20(m,2H),7.91-8.19(dd,2H),8.40-8.69(dd,2H),8.77-8.91(dd,2H)。 A mixture of composition 4 (24 g, 22.2 mmol, 1.0 equivalent) and Pd / C (2.5 g, 0.1 equivalent) in EtOAc (125.0 mL) was stirred at room temperature for 1 hour. The solid was filtered (diatomaceous earth) and washed with EtOAc (5 mL x 2). The filtrate was concentrated to obtain compound 5 (23.3 g, 99%) as a dark blue solid. 1 H NMR (300MHz, CDCl 3 ) δ 0.84 (t, 12H), 1.24 (m, 72H), 1.85 (m, 4H), 2.30 (m, 4H), 5.00 (s, 2H), 5.10 (s, 2H ), 5.20 (m, 2H), 7.91-8.19 (dd, 2H), 8.40-8.69 (dd, 2H), 8.77-8.91 (dd, 2H).

Furuta聚合物 Furuta polymer

Furuta-共聚物和para-Furuta聚合物(除非特別指出,則將其統稱為Furuta-聚合物)是具有隔離的尾部(tails)的聚合物化合物,並具有連接/栓定/部分固定(linked/tethered/partially immobilized)的極化離子官能團。隔離的尾部為共價鍵合到聚合物中的骨架上的線性或支鏈的烴(飽和或不飽和)、氟碳化合物、矽氧烷、和/或聚乙二醇。該尾部用於將可極化的連接/栓定/部分固定的離子分子組分或離子對從位於同一或平行的共聚物上的 其他離子官能團和離子官能團對隔離,而有利於反離子液體對或反Q官能團的離散極化(即連接/栓定/部分固定到平行的Furuta聚合物的陽離子液體和陰離子液體的極化),而只產生有限的或沒有部分地固定到同一或平行的共聚物鏈上的其他反離子官能團對的離子場的相互作用、或極化時刻。進而,在隔離的尾部將超分子結構的Furuta-聚合物相互電隔離。平行的Furuta聚合物可能排列或被排列得反離子官能團(即陽離子和陰離子型的栓定/部分固定(tethered/partially immobilized)的離子官能團(Qs)(有時稱為陽離子Furuta聚合物和陰離子Furuta聚合物))相互相對地對齊。 Furuta-copolymers and para-Furuta polymers (collectively referred to as Furuta-polymers unless otherwise specified) are polymer compounds with isolated tails, and have linked / tethered / partially fixed (linked / tethered / partially immobilized). The isolated tails are linear or branched hydrocarbons (saturated or unsaturated), fluorocarbons, siloxanes, and / or polyethylene glycols covalently bonded to the backbone in the polymer. This tail is used to fix the polarizable connected / tethered / partially fixed ionic molecular components or ion pairs from the same or parallel copolymer. The separation of other ionic functional groups and ionic functional groups facilitates the discrete polarization of the counter-ionic liquid pair or the counter-Q functional group (that is, the polarization of the cationic and anionic liquids connected / tethered / partially fixed to the parallel Furuta polymer), Instead, the interaction of the ion field, or the moment of polarization, of other counter-ion functional group pairs that are limited or not partially fixed to the same or parallel copolymer chain is generated. Furthermore, Furuta-polymers with supramolecular structure are electrically isolated from each other at the isolated tail. Parallel Furuta polymers may be aligned or arranged as counter-ionic functional groups (i.e. cationic and anionic tethered / partially immobilized ionic functional groups (Qs) (sometimes referred to as cationic Furuta polymers and anionic Furuta Polymer)) aligned opposite each other.

Furuta共聚物 Furuta copolymer

Furuta共聚物具有以下的一般結構式: Furuta copolymer has the following general structural formula:

共聚物的骨架結構包括第一類型P1的結構單元、第二類型P2的結構單元,它們都隨機地重複,並且獨立地為丙烯酸、甲基丙烯酸酯、聚丙烯(-[CH2-CH(CH3)]-)的重複單元、聚乙烯(-[CH2]-)的重複單元、矽氧烷、聚對苯二甲酸乙二醇酯(有時寫作poly(ethylene terephthalate))的重複單元中的任意一個,重複單元可以表示為-CH2-CH2-O-CO-C6H4-CO-O-。n是在骨架結構中的P1結構單元的個數,其範圍為3~100000,m是骨架結構中的P2結構單元的個數,其範圍為3~100000。 The backbone structure of the copolymer includes the structural units of the first type P1 and the structural units of the second type P2, which are all randomly repeated, and are independently acrylic acid, methacrylate, polypropylene (-[CH 2 -CH (CH (CH 3 )]-), repeating units of polyethylene (-[CH 2 ]-), repeating units of siloxane, polyethylene terephthalate (sometimes written as poly (ethylene terephthalate)) Any one of the repeating units can be represented as -CH 2 -CH 2 -O-CO-C 6 H 4 -CO-O-. n is the number of P1 structural units in the skeleton structure, which ranges from 3 to 100,000, and m is the number of P2 structural units in the skeleton structure, which ranges from 3 to 100,000.

進而,第一類型的結構單元(P1)具有電阻性取代基尾部,其是具有不小於2eV的HOMO-LUMO能隙的聚合物材料的低聚物。第二類型的結構單元(P2)具有通過連接官能團L與P2連接的離子官能團Q。參數j是連接到連接官能團L的Q官能團的個數,其範圍可以為0~5。離子官能團Q包含一個或多個離子液體離子(離子液體所使用的離子化合物的類型)、兩性離子,或聚合酸。進而,離子Q官能團的能量相互作用可以小於kT,其中k是玻爾茲曼常數,T是環境溫度。進而,參數B是作為分子的反離子、或分子、或低聚物,其可以提供相反電荷以平衡共聚物的電荷。其中,s是反離子的個數。 Furthermore, the structural unit (P1) of the first type has a resistive substituent tail, which is an oligomer of a polymer material having a HOMO-LUMO energy gap of not less than 2eV. The second type of structural unit (P2) has an ionic functional group Q connected to P2 through a linking functional group L. The parameter j is the number of Q functional groups connected to the linking functional group L, and the range can be from 0 to 5. The ionic functional group Q contains one or more ionic liquid ions (the type of ionic compound used in the ionic liquid), zwitterions, or a polymeric acid. Furthermore, the energy interaction of the ionic Q functional group may be less than kT, where k is the Boltzmann constant and T is the ambient temperature. Further, the parameter B is a counter ion as a molecule, or a molecule, or an oligomer, which can provide an opposite charge to balance the charge of the copolymer. Where s is the number of counter ions.

本發明提供了一種具有該結構的有機共聚合化合物。在有機共聚合化合物的一個實施例中,其電阻性取代基尾部獨立地為聚丙烯(PP)的低聚物、聚對苯二甲酸乙二醇酯(PET)的低聚物、聚苯硫醚(PPS)的低聚物、聚萘 二甲酸乙二醇酯(PEN)的低聚物、聚碳酸酯(PP)的低聚物、聚苯乙烯(PS)、聚四氟乙烯(PTFE)的低聚物中的任意一個。在有機共聚合化合物的另一個實施例中,電阻性取代基尾部是烷基、芳基、取代烷基、取代芳基、氟化烷基、氯化烷基、分支和複合烷基、分支和複合氟化烷基、分支和複合氯化烷基中的任意一個、以及它們的任意組合,其中,烷基為甲基、乙基、丙基、丁基、異丁基和叔丁基中的任意一個,芳基為苯基、萘基、苄基中的任意一個。可以在聚合後加入電阻取代基尾部。 The present invention provides an organic copolymeric compound having the structure. In one embodiment of the organic copolymer compound, the resistive substituent tail is independently an oligomer of polypropylene (PP), an oligomer of polyethylene terephthalate (PET), polyphenylene sulfide Ether (PPS) oligomer, polynaphthalene Any one of an oligomer of ethylene glycol diformate (PEN), an oligomer of polycarbonate (PP), an oligomer of polystyrene (PS), and polytetrafluoroethylene (PTFE). In another embodiment of the organic copolymer compound, the resistive substituent tail is alkyl, aryl, substituted alkyl, substituted aryl, fluorinated alkyl, chlorinated alkyl, branched and complex alkyl, branched and Any one of a compound fluorinated alkyl group, a branched and a compound chlorinated alkyl group, and any combination thereof, wherein the alkyl group is a Either one, and the aryl group is any one of phenyl, naphthyl, and benzyl. The tail of the resistive substituent can be added after polymerization.

在本發明的另一個方面,理想的是HOMO-LUMO能隙不小於4eV。在本發明的另一個方面,更理想的是HOMO-LUMO能隙不小於5eV。離子官能團Q包含一個或多個離子液體中所使用的離子化合物類的離子液體離子、兩性離子,或聚合酸。離散P2結構單元中的Q官能團離子之間的相互作用的能量可以小於kT,其中k為玻爾茲曼常數,T為環境溫度。環境溫度可以為-60℃和150℃之間的範圍,溫度範圍理想的是-40℃和100℃之間。離子的能量相互作用依存於離子的有效半徑。因此,通過增加離子之間的空間位阻,能夠減少離子相互作用的能量。在本發明的一個實施例中,至少一種離子液體離子為作為陽離子的[NR4]+、[PR4]+、作為陰離子的[-CO2]-、[-SO3]-、[-SR5]-、[-PO3R]-、[-PR5]-中的任意一個,其中R為H、烷基、氟中的任意一個。官能團Q可以在聚合前或後被充電。在本發明的另一個實施例中,連接官能團L 為表4中給出的結構1~6的低聚物。 In another aspect of the present invention, it is desirable that the HOMO-LUMO energy gap is not less than 4 eV. In another aspect of the present invention, it is more desirable that the HOMO-LUMO energy gap is not less than 5 eV. The ionic functional group Q contains ionic liquid ions, zwitterions, or polymeric acids of the ionic compounds used in the ionic liquid. The energy of the interaction between the Q functional group ions in the discrete P2 structural unit may be less than kT, where k is the Boltzmann constant and T is the ambient temperature. The ambient temperature can be in the range between -60 ° C and 150 ° C, and the temperature range is desirably between -40 ° C and 100 ° C. The energy interaction of ions depends on the effective radius of the ions. Therefore, by increasing the steric hindrance between ions, the energy of ionic interaction can be reduced. In one embodiment of the present invention, the at least one ionic liquid ion is [NR 4 ] + , [PR 4 ] + as a cation, [-CO 2 ] - , [-SO 3 ] - , [-SR as an anion. 5] -, [- PO 3 R] -, [- 5] PR - any one of a, wherein R is H, alkyl, optionally fluoro one. The functional group Q can be charged before or after polymerization. In another embodiment of the present invention, the linking functional group L is an oligomer of structures 1 to 6 given in Table 4.

在本發明的另一個實施例中,連接官能團L為表5中給出的結構7~16。 In another embodiment of the present invention, the linking functional group L is a structure 7 to 16 given in Table 5.

在本發明的另一個實施方式中,連接官能團L可以為CH2、CF2、SiR2O、和CH2CH2O中的任意一個,其中R為H、烷基、氟中的任意一個。可以在聚合後加入離子官能團Q和連接官能團L。 In another embodiment of the present invention, the linking functional group L may be any one of CH 2 , CF 2 , SiR 2 O, and CH 2 CH 2 O, wherein R is any one of H, alkyl, and fluorine. An ionic functional group Q and a linking functional group L may be added after the polymerization.

另一方面,本發明提供一種介電材料(有時稱為meta-介電材料),其包含一個或多個Furuta聚合物類型,其包含兩性離子、陽離子、陰離子的被保護或位阻大的離子,或以上所述的聚合酸類。meta-介電材料可以是兩性離子型Furuta聚合物、或帶正電荷(陽離子)Furuta聚合物與帶負電荷(陰離子)Furuta聚合物、聚合酸Furuta聚合物的混合物、或其任何組合。通過疏水和離子相互作用,Furuta聚合物的混合物能夠形成或被誘導形成超分子結構。作為一個例子而非限定性的,帶正電荷的Furuta聚合物上的陽離子取代與該帶正電荷的Furuta聚合物平行的帶負電荷的Furuta聚合物的陰離子的反離子B,反之亦然;相鄰的Furuta聚合物的電阻性尾部進而通過范德華力促進堆疊,從而增加離子官能團隔離。同時包含陽離子Furuta聚合物和陰離子Furuta聚合物的meta-介電材料具有1:1比例的陽離子Furuta聚合物和陰離子Furuta 聚合物。 In another aspect, the present invention provides a dielectric material (sometimes referred to as a meta-dielectric material) that includes one or more Furuta polymer types that contain zwitterions, cations, anions that are protected or sterically hindered. Ions, or polymeric acids as described above. The meta-dielectric material may be a zwitterionic Furuta polymer, or a mixture of a positively charged (cationic) Furuta polymer and a negatively charged (anionic) Furuta polymer, a polymeric acid Furuta polymer, or any combination thereof. Through hydrophobic and ionic interactions, mixtures of Furuta polymers can form or be induced to form supramolecular structures. As an example and not by way of limitation, the cation on the positively charged Furuta polymer replaces the counter ion B of the anion of the negatively charged Furuta polymer parallel to the positively charged Furuta polymer, and vice versa; phase The resistive tail of the adjacent Furuta polymer in turn promotes stacking by van der Waals forces, thereby increasing ionic functional group isolation. A meta-dielectric material comprising both a cationic Furuta polymer and an anionic Furuta polymer has a 1: 1 ratio of a cationic Furuta polymer and an anionic Furuta polymer.

線性或支化的(飽和或不飽和)烴、氟碳化合物、矽氧烷、和/或聚乙二醇作用使得連接/栓定/局部固定(linked/tethered/partially immobilized)的極化離子液體、兩性離子、或聚合酸(離子Q官能團)隔離。尾部通過離子Q官能團的相互作用能量的空間位阻將離子Q官能團從同一或平行的Furuta聚合物上的其他離子Q官能團隔離,這有利於離子Q官能團的離散極化(即栓定/部分固定於平行的Furuta聚合物的陽離子液體和陰離子液體的極化)。此外,尾部使超分子結構的離子官能團相互隔離。平行的Furuta聚合物可能排列或被排列得反離子液體(即陽離子和陰離子型的栓定/部分固定(tethered/partially immobilized)的離子液體(Qs))相互相對地對齊(有時稱為陽離子Furuta聚合物和陰離子Furuta聚合物)。 Linear or branched (saturated or unsaturated) hydrocarbons, fluorocarbons, siloxanes, and / or polyethylene glycols that allow linked / tethered / partially immobilized polarized ionic liquids , Zwitterions, or polymeric acids (ionic Q functional groups). The steric hindrance of the ionic Q functional groups at the tail isolates the ionic Q functional groups from other ionic Q functional groups on the same or parallel Furuta polymer, which facilitates the discrete polarization of the ionic Q functional groups (i.e. tethered / partially fixed Polarization of cationic and anionic liquids in parallel Furuta polymers). In addition, the tails isolate the ionic functional groups of the supramolecular structure from each other. Parallel Furuta polymers may be aligned or aligned as counter-ionic liquids (i.e. cationic and anionic tethered / partially immobilized ionic liquids (Qs)) aligned opposite each other (sometimes called cationic Furuta Polymers and anionic Furuta polymers).

Furuta聚合物具有Furuta超電子(hyperelectronic)或離子型極化。“超電子極化可以認為是由於激子的電荷對的適應性相互作用,由於外部電場而暫時集中在長、高度極化的分子上”。可通過栓定/部分固定的離子液體的離子部分或兩性離子(Q)的有限流動性來實現離子型極化。此外,在本發明的一個方面,可以單獨地、或與超電子和離子極化一起地,使用其他的極化機制,如偶極極化、具有金屬導電性的單體、聚合物。 Furuta polymers have either Furuta hyperelectronic or ionic polarization. "Superelectron polarization can be considered to be due to the adaptive interaction of the charge pairs of excitons and temporarily concentrated on long, highly polarized molecules due to the external electric field." Ionic polarization can be achieved by the limited mobility of the ionic portion of the ionic liquid tethered / partially fixed or the zwitterion (Q). In addition, in one aspect of the invention, other polarization mechanisms, such as dipole polarization, monomers, and polymers with metal conductivity, can be used alone or together with superelectronic and ionic polarization.

此外,meta-介電層可以包含一個或多個類型的兩性 離子Furuta聚合物、和/或陽離子Q+官能團類或陰離子Q-官能團類、和/或聚合酸,具有Fruta聚合物的一般配置: In addition, the meta-dielectric layer may contain one or more types of zwitterionic Furuta polymers, and / or cationic Q + functional groups or anionic Q - functional groups, and / or polymeric acids, with the general configuration of a Fruta polymer:

為了更容易理解本發明有關Furuta-共聚物而參考以下示例,但其目的是為了說明本發明,並不是要限定範圍。 In order to more easily understand the Furuta-copolymer of the present invention, reference is made to the following examples, but the purpose is to illustrate the present invention and not to limit the scope.

例3: Example 3:

羧酸共聚物P002。向溶於2.0g異丙醇的1.02g(11.81mmol)的甲基丙烯酸和4.00g(11.81mmol)的甲基丙烯酸十八烷基酯的溶液添加溶於5.0g甲苯的0.030g的2,2’-azobis(2-methylpropionitrile)(AIBN)的溶液。在密封的小瓶中將所得的溶液加熱到80℃,20小時,直到它變得明顯黏性。核磁共振(NMR)顯示剩餘<2%的單體。不進一步進行提純地將該溶液用於膜形成和其他混合物中。 Carboxylic acid copolymer P002. To a solution of 1.02 g (11.81 mmol) of methacrylic acid and 4.00 g (11.81 mmol) of octadecyl methacrylate dissolved in 2.0 g of isopropanol was added 0.030 g of 2,2 dissolved in 5.0 g of toluene '-azobis (2-methylpropionitrile) (AIBN). The resulting solution was heated to 80 ° C in a sealed vial for 20 hours until it became apparently viscous. Nuclear magnetic resonance (NMR) showed <2% monomer remaining. This solution was used in film formation and other mixtures without further purification.

例4: Example 4:

胺共聚物P011。向溶於2.0g甲苯的2.52g(11.79mmol)的2-(二異丙基氨基)乙基甲基丙烯酸酯和3.00g(11.79mmol)的甲基丙烯酸月桂酯的溶液添加溶於4.0g甲苯的0.030g的2,2’-azobis(2-methylpropionitrile)(AIBN)的溶液。在密封的小瓶中將所得的溶液加熱到80℃,20小時,直到它變得明顯黏性。核磁共振(NMR)顯示剩餘<2%的單體。不進一步進行提純地將該溶液用於膜形成和其他混合物中。 Amine copolymer P011. To a solution of 2.52 g (11.79 mmol) of 2- (diisopropylamino) ethyl methacrylate and 3.00 g (11.79 mmol) of lauryl methacrylate in 2.0 g of toluene was added 4.0 g of toluene 0.030 g of a solution of 2,2'-azobis (2-methylpropionitrile) (AIBN). The resulting solution was heated to 80 ° C in a sealed vial for 20 hours until it became apparently viscous. Nuclear magnetic resonance (NMR) showed <2% monomer remaining. This solution was used in film formation and other mixtures without further purification.

例5: Example 5:

羧酸共聚物和胺共聚物的混合物。向1.24g的56wt%的P011溶液添加1.50g的42wt%的P002固溶體以及1g的異丙醇,並在40℃下混合30分鐘。不進一步進行提純地使用該溶液。 A mixture of a carboxylic acid copolymer and an amine copolymer. To 1.24 g of a 56 wt% P011 solution, 1.50 g of a 42 wt% P002 solid solution and 1 g of isopropyl alcohol were added, and mixed at 40 ° C. for 30 minutes. This solution was used without further purification.

para-Furuta聚合物 para-Furuta polymer

para-Furuta聚合物具有以下的一般結構式的重複單元: Para-Furuta polymers have repeating units of the following general structural formula:

結構單元P具有聚合物的骨架結構,獨立地為丙烯酸、甲基丙烯酸酯、聚丙烯(PP)(-[CH2-CH(CH3)]-)的重複單元、聚乙烯(PE)(-[CH2]-)的重複單元、矽氧烷、聚對苯二甲酸乙二醇酯(有時寫作poly(ethylene terephthalate))的重複單元中的任意一個,該重複單元可以表示為-CH2-CH2-O-CO-C6H4-CO-O-。其中,第一類型的重複單元(尾部)是共聚物材料的低聚物形式的電阻性取代基。理想的是電阻性取代基具有不小於2eV的HOMO-LUMO能隙。參數n是骨架P結構單元上的尾部重複單元的個數,其範圍為3~100000,第二類型的重複單元(-L-Q)包括通過連接官能團L與結構骨架單元(P)連接的離子官能團Q,m是骨架P結構中的L-Q-重複單元的個數,其範圍為3~100000。另外,離子官能團Q包含一個或多個離子液體離子(離子液體所使用的離子化合物的類型)、兩性離子,或聚合酸。離子Q官能團的 能量相互作用可以小於kT,其中k是玻爾茲曼常數,T是環境溫度。進而,參數t是para-Furuta聚合物重複單元的平均個數,範圍為6~200000。其中,B是作為分子的反離子、或低聚物,其可以提供相反電荷以平衡共聚物的電荷,s是反離子的個數。 The structural unit P has a polymer backbone structure, and is independently a repeating unit of acrylic acid, methacrylate, polypropylene (PP) (-[CH 2 -CH (CH 3 )]-), polyethylene (PE) (- Any of the repeating units of [CH 2 ]-), repeating units of siloxane, polyethylene terephthalate (sometimes written as poly (ethylene terephthalate)), the repeating unit can be expressed as -CH 2 -CH 2 -O-CO-C 6 H 4 -CO-O-. Among them, the first type of repeating unit (tail) is a resistive substituent in the form of an oligomer of a copolymer material. It is desirable that the resistive substituent has a HOMO-LUMO energy gap of not less than 2eV. The parameter n is the number of tail repeating units on the structural unit of the framework P, which ranges from 3 to 100,000. The second type of repeating unit (-LQ) includes an ionic functional group Q connected to the structural framework unit (P) through a linking functional group L. , M is the number of LQ-repeating units in the framework P structure, and the range is 3 ~ 100,000. In addition, the ionic functional group Q includes one or more ionic liquid ions (the type of ionic compound used in the ionic liquid), zwitterions, or a polymeric acid. The energy interaction of the ionic Q functional group can be less than kT, where k is the Boltzmann constant and T is the ambient temperature. Further, the parameter t is an average number of para-Furuta polymer repeating units, and the range is 6 to 200,000. Among them, B is a counter ion or oligomer as a molecule, which can provide opposite charges to balance the charge of the copolymer, and s is the number of counter ions.

在該有機共聚合化合物的一個實施例中,其電阻性取代基尾部獨立地為聚丙烯(PP)、聚對苯二甲酸乙二醇酯(PET)、聚苯硫醚(PPS)、聚萘二甲酸乙二醇酯(PEN)、聚碳酸酯(PP)、聚苯乙烯(PS)、聚四氟乙烯(PTFE)中的任意一個。在有機共聚合化合物的另一個實施例中,電阻性取代基尾部是烷基、芳基、取代烷基、取代芳基、氟化烷基、氯化烷基、分支和複合烷基、分支和複合氟化烷基、分支和複合氯化烷基中的任意一個、以及它們的任意組合,其中,烷基為甲基、乙基、丙基、丁基、異丁基和叔丁基中的任意一個,芳基為苯基、萘基、苄基中的任意一個。可以在聚合後加入電阻取代基尾部。 In one embodiment of the organic copolymer compound, the resistive substituent tail is independently polypropylene (PP), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polynaphthalene Either ethylene glycol diformate (PEN), polycarbonate (PP), polystyrene (PS), or polytetrafluoroethylene (PTFE). In another embodiment of the organic copolymer compound, the resistive substituent tail is alkyl, aryl, substituted alkyl, substituted aryl, fluorinated alkyl, chlorinated alkyl, branched and complex alkyl, branched and Any one of a compound fluorinated alkyl group, a branched and a compound chlorinated alkyl group, and any combination thereof, wherein the alkyl group is a methyl group, an ethyl group, a propyl group, a butyl group, an isobutyl group, or a tert-butyl group. Either one, and the aryl group is any one of phenyl, naphthyl, and benzyl. The tail of the resistive substituent can be added after polymerization.

在本發明的另一個方面,理想的是HOMO-LUMO能隙不小於4eV。在本發明的另一個方面,更理想的是HOMO-LUMO能隙不小於5eV。離子官能團Q包含一個或多個離子液體中所使用的離子化合物類的離子液體離子、兩性離子,或聚合酸。離散P結構單元中的Q官能團離子之間的相互作用的能量可以小於kT,其中k為玻爾茲曼常數,T為環境溫度。環境溫度可以為-60℃和150 ℃之間的範圍,溫度範圍理想的是-40℃和100℃之間。離子的能量相互作用依存於離子的有效半徑。因此,藉由增加離子之間的空間位阻,能夠減少離子相互作用的能量。在本發明的一個實施例中,至少一種離子液體離子為作為陽離子的[NR4]+、[PR4]+、作為陰離子的[-CO2]-、[-SO3]-、[-SR5]-、[-PO3R]-、[-PR5]-中的任意一個,其中R為H、烷基、氟中的任意一個。官能團Q可以在聚合前或後被充電。在本發明的另一個實施例中,連接官能團L為表6中給出的結構1~6的低聚物。 In another aspect of the present invention, it is desirable that the HOMO-LUMO energy gap is not less than 4 eV. In another aspect of the present invention, it is more desirable that the HOMO-LUMO energy gap is not less than 5 eV. The ionic functional group Q contains ionic liquid ions, zwitterions, or polymeric acids of the ionic compounds used in the ionic liquid. The energy of the interaction between the Q functional group ions in the discrete P building units may be less than kT, where k is the Boltzmann constant and T is the ambient temperature. The ambient temperature can be in the range between -60 ° C and 150 ° C, and the temperature range is desirably between -40 ° C and 100 ° C. The energy interaction of ions depends on the effective radius of the ions. Therefore, by increasing the steric hindrance between ions, the energy of ionic interaction can be reduced. In one embodiment of the present invention, the at least one ionic liquid ion is [NR 4 ] + , [PR 4 ] + as a cation, [-CO 2 ] - , [-SO 3 ] - , [-SR as an anion. 5] -, [- PO 3 R] -, [- 5] PR - any one of a, wherein R is H, alkyl, optionally fluoro one. The functional group Q can be charged before or after polymerization. In another embodiment of the present invention, the linking functional group L is an oligomer of structures 1 to 6 given in Table 6.

在本發明的另一個實施例中,連接官能團L為表7中給出的結構7~16。 In another embodiment of the present invention, the linking functional group L is a structure 7 to 16 given in Table 7.

在本發明的另一個實施方式中,連接官能團L可以為CH2、CF2、SiR2O、和CH2CH2O中的任意一個,其中R為H、烷基、氟中的任意一個。可以在聚合後加入離子官能團Q和連接官能團L。 In another embodiment of the present invention, the linking functional group L may be any one of CH 2 , CF 2 , SiR 2 O, and CH 2 CH 2 O, wherein R is any one of H, alkyl, and fluorine. An ionic functional group Q and a linking functional group L may be added after the polymerization.

另一方面,本發明提供一種介電材料(有時稱為meta-介電材料),其包含一個或多個para-Furuta聚合物類型,其包含兩性離子、陽離子液體離子、陰離子液體離子的被保護或位阻大的離子,或以上所述的聚合酸類。該meta-介電材料可以是兩性離子型para-Furuta聚合物、或帶正電荷(陽離子)para-Furuta聚合物與帶負電荷(陰離子)para-Furuta聚合物、聚合酸para-Furuta聚合物的混合物、或其任何組合。藉由疏水和離子相互作用,para-Furuta聚合物的混合物能夠形成或被誘導形成超分子結構。作為一個例子而非限定性的,帶正電荷的para-Furuta聚合物上的陽離子取代與該帶正電荷的para-Furuta聚合物平行的帶負電荷的para-Furuta聚合物的陰離子的反離子B,反之亦然;相鄰的para-Furuta聚合物的電阻性尾 部進而藉由范德華力促進堆疊,從而增加離子官能團隔離。同時包含陽離子para-Furuta聚合物和陰離子para-Furuta聚合物的meta-介電材料具有1:1比例的陽離子para-Furuta聚合物和陰離子para-Furuta聚合物。 In another aspect, the present invention provides a dielectric material (sometimes referred to as a meta-dielectric material) that includes one or more para-Furuta polymer types that include a zwitterion, cationic liquid ion, and anionic liquid ion. Protected or sterically hindered ions, or the polymeric acids described above. The meta-dielectric material can be a zwitterionic para-Furuta polymer, or a positively-charged (cationic) para-Furuta polymer, a negatively-charged (anionic) para-Furuta polymer, or a polymeric acid para-Furuta polymer. A mixture, or any combination thereof. Through hydrophobic and ionic interactions, para-Furuta polymer mixtures can form or be induced to form supramolecular structures. As an example and not by way of limitation, the cation on the positively charged para-Furuta polymer replaces the counter ion B of the anion of the negatively charged para-Furuta polymer parallel to the positively charged para-Furuta polymer. , And vice versa; resistive tails of adjacent para-Furuta polymers The part further promotes stacking by Van der Waals force, thereby increasing ionic functional group isolation. A meta-dielectric material containing both a cationic para-Furuta polymer and an anionic para-Furuta polymer has a cationic para-Furuta polymer and an anionic para-Furuta polymer in a ratio of 1: 1.

線性或支化的(飽和或不飽和)烴、氟碳化合物、矽氧烷、和/或聚乙二醇作用使得連接/栓定/局部固定(linked/tethered/partially immobilized)的極化離子液體、兩性離子、或聚合酸(離子Q官能團)隔離。尾部藉由離子Q官能團的相互作用能量的空間位阻將離子Q官能團從同一或平行的para-Furuta聚合物上的其他離子Q官能團隔離,這有利於離子Q官能團的離散極化(即栓定/部分固定於平行的para-Furuta聚合物的陽離子液體和陰離子液體的極化)。此外,尾部使超分子結構的離子官能團相互隔離。平行的para-Furuta聚合物可能排列或被排列得反離子液體(即陽離子和陰離子型的栓定/部分固定(tethered/partially immobilized)的離子液體(Qs))相互相對地對齊(有時稱為陽離子para-Furuta聚合物和陰離子para-Furuta聚合物)。 Linear or branched (saturated or unsaturated) hydrocarbons, fluorocarbons, siloxanes, and / or polyethylene glycols that allow linked / tethered / partially immobilized polarized ionic liquids , Zwitterions, or polymeric acids (ionic Q functional groups). The tail uses the steric hindrance of the interaction energy of the ionic Q functional groups to isolate the ionic Q functional groups from other ionic Q functional groups on the same or parallel para-Furuta polymer, which facilitates the discrete polarization of the ionic Q functional groups (i.e. / Partially fixed to the polarization of the cationic and anionic liquids of parallel para-Furuta polymers). In addition, the tails isolate the ionic functional groups of the supramolecular structure from each other. Parallel para-Furuta polymers may be aligned or arranged as counter-ionic liquids (i.e. cationic and anionic tethered / partially immobilized ionic liquids (Qs)) aligned opposite each other (sometimes referred to as Cationic para-Furuta polymer and anionic para-Furuta polymer).

para-Furuta聚合物具有Furuta超電子(hyperelectronic)或離子型極化。“超電子極化可以認為是由於激子的電荷對的適應性相互作用,由於外部電場而暫時集中在長、高度極化的分子上”。可藉由栓定/部分固定的離子液體的離子部分或兩性離子(Q)的有限流動性來實現離子型極化。此外,在本發明的一個方面,可以 單獨地、或與超電子和離子極化一起地,使用其他的極化機制,如偶極極化、具有金屬導電性的單體、聚合物。 Para-Furuta polymers have either Furuta hyperelectronic or ionic polarization. "Superelectron polarization can be considered to be due to the adaptive interaction of the charge pairs of excitons and temporarily concentrated on long, highly polarized molecules due to the external electric field." Ionic polarization can be achieved by the limited mobility of the ionic portion of the ionic liquid tethered / partially fixed or the zwitterion (Q). Moreover, in one aspect of the invention, Separately, or together with superelectronic and ionic polarization, other polarization mechanisms are used, such as dipole polarization, metal-conductive monomers, and polymers.

此外,meta-介電層可以包含一個或多個類型的兩性離子para-Furuta聚合物、和/或陽離子Q官能團類或陰離子Q官能團類、和/或聚合酸,具有para-Fruta聚合物的一般配置: In addition, the meta-dielectric layer may contain one or more types of zwitterionic para-Furuta polymers, and / or cationic Q functional groups or anionic Q functional groups, and / or polymeric acids. Configuration:

meta-電介質在這裡被定義為一種介電材料,其由相對介電常數大於或等於1000、並且電阻率大於或等於1013歐姆/釐米的一種或多種結構的聚合物材料(SPMs)構成。特別地,meta-電介質中的SPM能夠藉由π-π相互作用或親水性和疏水性相互作用形成柱狀超分子結構。所述SPM的超分子能夠形成meta-介電材料的晶體結構。藉由在介質材料中使用SPM,極化單元能夠提供高介電性的分子材料。存在幾種極化機制,如偶極極化、離子極化、分子的超電子極化、具有金屬導電性的單體和聚合物。在 本發明的各方面中,可以利用具有所列出的極化類型的所有極化單元。此外,SPM是複合材料,包含絕緣取代基電的外殼,而將電介層中的超分子相互隔離,並提供儲能分子材料的高擊穿電壓。所述絕緣取代基為線性或支鏈而與可極化核心或共聚物骨架共價鍵合形成電阻性外殼的碳氫化合物(飽和或不飽和)、碳氟化合物、矽氧烯、和/或聚乙二醇。 A meta-dielectric is defined herein as a dielectric material composed of one or more structural polymer materials (SPMs) having a relative dielectric constant of 1,000 or more and a resistivity of 10 13 ohms / cm or more. In particular, SPM in meta-dielectrics can form columnar supramolecular structures through π-π interactions or hydrophilic and hydrophobic interactions. The SPM supramolecules are capable of forming a crystal structure of a meta-dielectric material. By using SPM in dielectric materials, polarizing units can provide molecular materials with high dielectric properties. There are several polarization mechanisms, such as dipole polarization, ionic polarization, superelectron polarization of molecules, monomers and polymers with metal conductivity. In aspects of the invention, all polarization units with the listed polarization types can be utilized. In addition, SPM is a composite material that contains an insulating substituent to electrically isolate the supramolecules in the dielectric layer from each other and provide a high breakdown voltage for the energy storage molecular material. The insulating substituent is a hydrocarbon (saturated or unsaturated), fluorocarbon, silicone, and / or covalently bonded to a polarizable core or copolymer backbone to form a resistive shell, linear or branched Polyethylene glycol.

如圖10所示,在儲能單元1的一個實施例中,所述一個或多個meta-電容器20的每一個包括第一電極21、第二電極22、設置在所述第一電極和第二電極之間的介電材料層23。所述電極21、22可以由金屬如銅、鋅、或鋁、或其它導電材料製成,並且大體上呈平面狀。在一個實施例中,電極和介電材料層23為長條形的材料夾在一起,與絕緣材料一起繞成線圈狀,絕緣材料例如為如聚丙烯或聚酯那樣的塑膠薄膜,防止電極21、22之間的電氣短路。於2015年6月26日申請的美國專利申請案第14/752600號中詳細描述了這種線圈狀的電容儲能設備的例子,其整體內容在此合併作為參考。雖然在圖10中為了方便而顯示了一個單一的meta-電容器20,但本發明的各個方面並不限於這樣的實施例。如圖7A、7B、7C、7D所示,本領域習知技術人員將了解電容式儲能裝置2可以包括如圖7B所示的多個並聯meta-電容器20,以提供所需的儲能容量,其容量規模大致與並聯的meta-電容器的個數對應。另外,電容式儲能裝置2包括如圖7C之兩個 或兩個以上串聯的meta-電容器來供應所需的電壓等級。此外,電容式儲能裝置2可以如圖7D所示,在包含各種串聯和並聯的組合的電容網路中包括三個或更多的meta-電容器的組合。例如,可以有三個電容器組合彼此並聯,而每個組合具有兩個串聯的電容器。 As shown in FIG. 10, in one embodiment of the energy storage unit 1, each of the one or more meta-capacitors 20 includes a first electrode 21, a second electrode 22, and the first electrode and the second electrode A dielectric material layer 23 between the two electrodes. The electrodes 21, 22 may be made of a metal such as copper, zinc, or aluminum, or other conductive materials, and are substantially planar. In one embodiment, the electrode and the dielectric material layer 23 are strip-shaped materials sandwiched together and wound into a coil shape together with the insulating material, such as a plastic film such as polypropylene or polyester, preventing the electrode 21 Electrical short between 22 and 22. An example of such a coil-shaped capacitor energy storage device is described in detail in US Patent Application No. 14/752600, filed on June 26, 2015, the entire contents of which are incorporated herein by reference. Although a single meta-capacitor 20 is shown in FIG. 10 for convenience, aspects of the present invention are not limited to such embodiments. As shown in FIGS. 7A, 7B, 7C, and 7D, those skilled in the art will understand that the capacitive energy storage device 2 may include multiple parallel meta-capacitors 20 as shown in FIG. 7B to provide the required energy storage capacity. , Its capacity scale roughly corresponds to the number of meta-capacitors connected in parallel. In addition, the capacitive energy storage device 2 includes two as shown in FIG. 7C. Or two or more meta-capacitors in series to supply the required voltage level. In addition, as shown in FIG. 7D, the capacitive energy storage device 2 may include a combination of three or more meta-capacitors in a capacitor network including various series and parallel combinations. For example, there can be three capacitor combinations in parallel with each other, and each combination has two capacitors in series.

meta-介電材料23的特徵可以為介電常數κ大於100,擊穿電場Ebd大於或等於0.01伏(V)/納米(nm)。介電常數κ可以大於或等於大約100、200、300、400、500、1000、2000、3000、4000、5000、6000、7000、8000、9000、10000、或100000。擊穿電場可以大於約0.01V/nm、0.05V/nm、0.1V/nm、0.2V/nm、0.3V/nm、0.4V/nm、0.5V/nm、1V/nm、或10V/nm。在此舉例而不是限定的方式,meta-介電材料23的特徵可以為介電常數κ在約100和約1000000之間,擊穿電場Ebd在約0.01V/nm和約2.0V/nm之間。 The meta-dielectric material 23 may be characterized by a dielectric constant κ greater than 100 and a breakdown electric field Ebd greater than or equal to 0.01 volt (V) / nanometer (nm). The dielectric constant κ may be greater than or equal to about 100, 200, 300, 400, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10,000, or 100,000. The breakdown electric field may be greater than about 0.01 V / nm, 0.05 V / nm, 0.1 V / nm, 0.2 V / nm, 0.3 V / nm, 0.4 V / nm, 0.5 V / nm, 1 V / nm, or 10 V / nm. By way of example and not limitation, the meta-dielectric material 23 may be characterized by a dielectric constant κ between about 100 and about 1,000,000, and a breakdown electric field Ebd between about 0.01 V / nm and about 2.0 V / nm. .

在另一實施例中,電容式儲能裝置可以包括多個串聯或並聯的meta-電容器。在另一實施例中,電容式儲能裝置還可以包括冷卻機構30。在一些實施例中,冷卻可以是被動式的,例如在電容式儲能裝置2和直流電壓轉換裝置上使用輻射散熱片。另外,諸如空氣、水、或乙二醇那樣的流體可以用作有源冷卻系統中的冷卻劑。在此舉例而不是限定的方式,冷卻系統30可以包括與電容式儲能裝置2和直流電壓轉換裝置3熱接觸的導管。導管充滿熱交換介質,其可以是固體、液體、或氣體。在一些實施例 中,冷卻機構可以包括配置成從熱交換介質中提取熱量的熱交換器。在其他實施例中,冷卻機構30可以包括電容式儲能裝置2和直流電壓轉換裝置3上的冷卻葉片形式的導管,熱交換介質例如藉由風扇將空氣吹到冷卻葉片上。在本發明的另一個實施例中,換熱器32可以包括配置為進行冷卻的相變熱管。相變熱管所進行的冷卻可以藉由相變材料的固液相變(例如,使用冰或其他固體的熔化)、或液氣相變(例如,藉由水或酒精蒸發)。在另一實施例中,所述管道或換熱器32可以包括包含固體-液體相變材料如石蠟的容器。 In another embodiment, the capacitive energy storage device may include multiple meta-capacitors connected in series or in parallel. In another embodiment, the capacitive energy storage device may further include a cooling mechanism 30. In some embodiments, the cooling may be passive, such as using a radiating heat sink on the capacitive energy storage device 2 and the DC voltage conversion device. In addition, a fluid such as air, water, or glycol can be used as a coolant in an active cooling system. By way of example and not limitation, the cooling system 30 may include a conduit in thermal contact with the capacitive energy storage device 2 and the DC voltage conversion device 3. The conduit is filled with a heat exchange medium, which can be a solid, liquid, or gas. In some embodiments The cooling mechanism may include a heat exchanger configured to extract heat from the heat exchange medium. In other embodiments, the cooling mechanism 30 may include a duct in the form of cooling blades on the capacitive energy storage device 2 and the DC voltage conversion device 3, and the heat exchange medium blows air onto the cooling blades, such as by a fan. In another embodiment of the present invention, the heat exchanger 32 may include a phase change heat pipe configured to cool. The cooling of the phase change heat pipe can be by solid-liquid phase change of the phase change material (for example, melting using ice or other solids), or liquid-vapor phase change (for example, by evaporation of water or alcohol). In another embodiment, the pipe or heat exchanger 32 may include a container containing a solid-liquid phase change material such as paraffin.

再次參照圖10、11和12,直流電壓轉換裝置3包括Vout<Vin的降壓轉換器、Vout>Vin的升壓轉換器、或在特定情況下為Vout<Vin而在其他情況下為Vout>Vin的雙向升壓/降壓轉換器。 Referring again to FIGS. 10, 11 and 12, the DC voltage conversion device 3 includes a step-down converter of V out <V in, a step-up converter of V out > V in , or, in a specific case, V out <V in Otherwise it is a bi-directional boost / buck converter with V out > V in .

在儲能單元的另一個實施方案中(參見圖11),DC電壓轉換裝置3可以連接到具備適合的邏輯電路的控制板4、可實現閉迴路控制處理90、(可選的)通信介面5、以及與感測器上的直流電壓轉換裝置3連接的類比數位轉換器,該適合的邏輯電路例如為微處理器、微控制器、專用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)、複雜可程式設計邏輯裝置(CPLD),該類比數位轉換器例如為輸入電壓Vin並且輸出電壓Vout的電壓感測器V、來自/輸送到電容式儲能裝置2的電流Isd並且來自/輸送到直流電壓轉換裝置3的電流Ivc的電流感測器 A、電容式儲能裝置和/或直流電壓轉換裝置上的溫度感測器T。在一些實施例中,控制板4可以積體到直流電壓轉換裝置3中。該轉換裝置3可以具備降壓穩壓器、升壓穩壓器、具有獨立的輸入/輸出的降壓和升壓穩壓器、雙向升壓/降壓穩壓器、或分段PI(split-pi)轉換器,控制板4可以配置為在維持穩定的輸入電壓的情況下,在以或多或少的固定電流對電容器進行放電或充電的過程中,從直流電壓轉換裝置保持固定的輸出電壓VoutIn another embodiment of the energy storage unit (see FIG. 11), the DC voltage conversion device 3 may be connected to a control board 4 having a suitable logic circuit, a closed-loop control process 90, (optional) a communication interface 5 And an analog digital converter connected to the DC voltage conversion device 3 on the sensor, the suitable logic circuit is, for example, a microprocessor, a microcontroller, an application specific integrated circuit (ASIC), a field programmable gate array ( (FPGA), complex programmable logic device (CPLD), the analog digital converter is, for example, a voltage sensor V having an input voltage V in and an output voltage V out , and a current I sd from / to the capacitive energy storage device 2 And the current sensor A, the capacitive energy storage device, and / or the temperature sensor T on the DC voltage conversion device of the current I vc from / sent to the DC voltage conversion device 3. In some embodiments, the control board 4 may be integrated into the DC voltage conversion device 3. The conversion device 3 may be provided with a buck regulator, a boost regulator, a buck and boost regulator with independent input / output, a bidirectional boost / buck regulator, or a segmented PI (split -pi) converter, the control board 4 can be configured to maintain a fixed output from the DC voltage conversion device during the process of discharging or charging the capacitor with a more or less fixed current while maintaining a stable input voltage The voltage V out .

在此舉例而不是限定的方式,控制板4可以基於用於雙向降壓/升壓轉換器的控制器。在這樣的配置中,所述控制板4根據控制回路90的下列演算法對直流電壓轉換裝置的輸出電壓進行穩壓:(a)確定儲能系統的目標輸出電壓電平,(b)測定電容式儲能裝置的電壓,(c)如果電容式儲能裝置的電壓高於所需的輸出電壓、並且所需的結果是對設備進行放電,則將雙向降壓/升壓轉換器配置得降壓輸出方向上的電壓和直流,(d)如果電容式儲能裝置的電壓低於所需的輸出電壓、並且所需的結果是對設備進行放電,則將雙向降壓/升壓轉換器配置得升壓輸出方向上的電壓和直流,(e)如果電容式儲能裝置的電壓低於所需的輸入電壓、並且所需的結果是對設備進行充電,則將雙向降壓/升壓轉換器配置得降壓輸入方向上的電壓和直流,(f)如果電容式儲能裝置的電壓高於所需的輸出電 壓、並且所需的結果是對設備進行充電,則將雙向降壓/升壓轉換器配置得升壓輸入方向上的電壓和直流,(g)如果電容式儲能裝置的電壓低於預定電平,則將雙向降壓/升壓轉換器配置得停止輸出電力,(h)如果電容式儲能裝置的電壓超過預定電平,則將雙向降壓/升壓轉換器配置得停止輸入電力,(i)根據需要重複步驟(a)~(f)。 By way of example and not limitation, the control board 4 may be based on a controller for a bidirectional buck / boost converter. In such a configuration, the control board 4 regulates the output voltage of the DC voltage conversion device according to the following algorithm of the control loop 90: (a) determining the target output voltage level of the energy storage system, (b) measuring the capacitance (C) If the voltage of the capacitive energy storage device is higher than the required output voltage and the required result is to discharge the device, configure the bidirectional buck / boost converter to reduce Voltage and DC in the output direction, (d) if the voltage of the capacitive energy storage device is lower than the required output voltage and the desired result is to discharge the device, configure a bidirectional buck / boost converter Obtain the voltage and DC in the step-up output direction. (E) If the voltage of the capacitive energy storage device is lower than the required input voltage and the required result is to charge the device, then bidirectional buck / boost conversion is performed. The device is configured to step down the voltage in the input direction and DC, (f) if the voltage of the capacitive energy storage device is higher than the required output voltage Voltage, and the required result is to charge the device, the bidirectional buck / boost converter is configured to boost the voltage and DC in the input direction, (g) if the voltage of the capacitive energy storage device is lower than a predetermined voltage Level, the bidirectional buck / boost converter is configured to stop outputting power, (h) if the voltage of the capacitive energy storage device exceeds a predetermined level, the bidirectional buck / boost converter is configured to stop inputting power, (i) Repeat steps (a) to (f) as needed.

控制板4的操作細節一般取決於直流電壓轉換裝置設備所使用的降壓/升壓轉換器的類型。例如,降壓/升壓轉換器可以為圖15A所示的單開關轉換器的類型。這種轉換器包括高側開關SW,其具有與輸入電壓Vin連接的輸入端、以及與電感L的一端連接輸出端,電感L的另一端連接到地面或公共電壓(-)。電容C與輸出電壓Vout連接。脈衝開關信號S使開關接通和斷開。輸出電壓取決於開關信號S的工作週期。作為一個例子,開關可以為閘控開關裝置,如MOSFET裝置、堆疊的MOSFET裝置、IGCT裝置、高漏源電壓SiC MOSFET裝置,以及類似的依據對儲能單元的直流電壓轉換器的電壓或電流的要求的裝置。在閘控開關裝置的情況下,控制板4能夠藉由將這種類型的升壓/降壓轉換器配置成調整提供信號的開關設備的閘極端子。控制板4可以藉由調整開關信號S的工作週期而配置降壓/升壓轉換器的類型。 The operational details of the control board 4 generally depend on the type of buck / boost converter used in the DC voltage conversion device equipment. For example, the buck / boost converter may be of the type of a single-switch converter shown in FIG. 15A. This converter includes a high-side switch SW having an input terminal connected to an input voltage V in and an output terminal connected to one end of an inductor L, and the other end of the inductor L is connected to a ground or a common voltage (-). The capacitor C is connected to the output voltage V out . The pulsed switching signal S turns the switch on and off. The output voltage depends on the duty cycle of the switching signal S. As an example, the switch may be a gated switching device, such as a MOSFET device, a stacked MOSFET device, an IGCT device, a high drain-source voltage SiC MOSFET device, and similarly based on the voltage or current of the DC voltage converter of the energy storage unit. Required device. In the case of a gate-controlled switching device, the control board 4 can adjust a gate terminal of a switching device that provides a signal by configuring a step-up / step-down converter of this type. The control board 4 can configure the type of the buck / boost converter by adjusting the duty cycle of the switching signal S.

圖15B表示出另一種四開關降壓/升壓轉換器。在這種類型的轉換器中,第一開關SW1連接在輸入電壓Vin的 高壓側(+)和電感L的輸入端之間,第二開關SW2連接在電感L的輸出端和公共電壓(-)之間,第三開關SW3連接在電感L的輸入端和公共電壓之間,第四開關SW4連接在電感的輸出側和輸出電壓Vout的高壓側(+)之間。輸入電容Cin可以連接到輸入電壓Vin,輸出電容Cout可以連接到輸出電壓VoutFigure 15B shows another four-switch buck / boost converter. In this type of converter, the first switch SW1 is connected between the high-voltage side (+) of the input voltage V in and the input terminal of the inductor L, and the second switch SW2 is connected between the output terminal of the inductor L and the common voltage (- ), The third switch SW3 is connected between the input terminal of the inductor L and the common voltage, and the fourth switch SW4 is connected between the output side of the inductor and the high-voltage side (+) of the output voltage V out . The input capacitor C in can be connected to the input voltage V in , and the output capacitor C out can be connected to the output voltage V out .

開關SW1、SW2、SW3、SW4根據來自控制板4的開關信號,切換斷開(open:不導電)和接通(closed:導電)的狀態。例如,如該圖3和圖4所示那樣,為了進行降壓模式的操作,第二開關SW2斷開,第四開關SW4接通,脈衝降壓模式開關信號施加到第一開關SW1和第三開關SW3。控制板4在降壓模式下,可以藉由調整開關信號S1和S3的工作週期,來調整輸出電壓Vout。例如,如該圖5和圖6所示那樣,為了進行升壓模式的操作,第一開關SW1斷開,第三開關SW3接通,脈衝升壓模式切換信號加到第二開關SW2和第四開關SW4。在升壓模式下,所述控制板4能夠藉由調整開關信號S2和S4的工作週期,來調整輸出電壓VoutThe switches SW1, SW2, SW3, and SW4 switch between the open (non-conductive) and the closed (conductive) states according to a switching signal from the control board 4. For example, as shown in FIGS. 3 and 4, in order to perform the buck mode operation, the second switch SW2 is turned off, the fourth switch SW4 is turned on, and a pulsed buck mode switch signal is applied to the first switch SW1 and the third Switch SW3. In the step-down mode, the control board 4 can adjust the output voltage V out by adjusting the duty cycles of the switching signals S1 and S3. For example, as shown in FIGS. 5 and 6, in order to perform the boost mode operation, the first switch SW1 is turned off, the third switch SW3 is turned on, and a pulse boost mode switching signal is applied to the second switch SW2 and the fourth switch. Switch SW4. In the boost mode, the control board 4 can adjust the output voltage V out by adjusting the duty cycles of the switching signals S2 and S4.

在此作為舉例而不是限定的方式,直流電壓轉換裝置3可以如圖9A、9B、9C、9D,9E、9F、9G、9H、9I那樣,具備一個或多個開關電壓轉換器100,其如圖13A、13B、14A、14B所示那樣,與圖11、12的電容式儲能單元3的電壓標誌v_c(t)、v_i(t)、以及v_o(t)對應地,根據需要對輸入/輸出進行降壓/升壓,實現充電和放電過程。 如圖9F、9G、9H、9I所示,輸入/輸出埠可以分為單獨的輸入和輸出。這些單獨的輸入和輸出可以具有不同的匯流排電壓。例如,可以具有來自與用於傳輸電力的輸出直流匯流排或向交流轉換器輸送直流不同的電壓的太陽能轉換器的輸入直流匯流排。開關型電壓轉換器100可以為降壓轉換器(如圖8B所示)、升壓轉換器(如圖8A所示)、降壓/升壓轉換器、雙向降壓/升壓(分段PI)轉換器(如圖8D所示)、uk轉換器、單端初級電感轉換器(SEPIC)、反向降壓/升壓轉換器(如圖8C所示)、四開關降壓/升壓轉換器中的任意一個。 Here as an example and not a limitation, the DC voltage conversion device 3 may be provided with one or more switching voltage converters 100 as shown in FIGS. 9A, 9B, 9C, 9D, 9E, 9F, 9G, 9H, 9I, such as As shown in FIGS. 13A, 13B, 14A, and 14B, corresponding to the voltage flags v_c (t), v_i (t), and v_o (t) of the capacitive energy storage unit 3 of FIGS. 11 and 12, the input / The output is stepped down / boosted to realize the charging and discharging process. As shown in Figures 9F, 9G, 9H, and 9I, the input / output ports can be divided into separate inputs and outputs. These separate inputs and outputs can have different bus voltages. For example, there may be an input DC bus from a solar converter that is different from an output DC bus for transmitting power or a DC voltage that is supplied to an AC converter. The switching voltage converter 100 may be a buck converter (as shown in FIG. 8B), a boost converter (as shown in FIG. 8A), a buck / boost converter, a bidirectional buck / boost (segmented PI) ) Converter (as shown in Figure 8D), Any one of a uk converter, a single-ended primary inductor converter (SEPIC), an inverting buck / boost converter (as shown in FIG. 8C), and a four-switch buck / boost converter.

在圖9A、9B、9C、9D,9E、9F、9G、9H、9I中,開關型電壓轉換器100藉由互連系統102與電源埠101連接。電源埠101包括一個正端子和負端子,它們一起工作而向任一方向輸送電力。電源埠可以是輸入、輸出或雙向。控制介面104藉由控制網路103連接到開關型電壓轉換器100上的所有控制介面。控制網路可以傳送目標電壓、目標電流、檢測電壓、檢測電流、溫度、以及控制系統所需的其它參數。控制網路103、控制介面104、控制板4、以及控制回路90可以合併到單個的離散物理封裝中,也可以不合併。例如,一個實施例可以包含分佈在一個系統中的所有該元素,而另一個實施例可以包含存在於一個單一的微處理器單元中的所有元素。 In FIGS. 9A, 9B, 9C, 9D, 9E, 9F, 9G, 9H, and 9I, the switching voltage converter 100 is connected to the power port 101 through the interconnection system 102. The power port 101 includes a positive terminal and a negative terminal, which work together to transmit power in either direction. The power port can be input, output or bidirectional. The control interface 104 is connected to all control interfaces on the switching voltage converter 100 through a control network 103. The control network can transmit the target voltage, target current, detection voltage, detection current, temperature, and other parameters required by the control system. The control network 103, the control interface 104, the control board 4, and the control circuit 90 may be combined into a single discrete physical package, or may not be combined. For example, one embodiment may contain all of the elements distributed in a system, while another embodiment may contain all of the elements present in a single microprocessor unit.

在一個實施例中,所述控制板4能夠以以下方式控制直流電壓轉換器3,即在meta-電容器從初始充電狀態 ((v_c(t))向最低的充電狀態(v_c(t)=Vmin,op)的放電過程(見圖13B和14B)中,維持儲能單元的輸出電壓,例如該直流電壓轉換器的輸出電壓Vout而使其處於固定的電平,其中,最小的充電狀態(Vmin,op)被定義為與等於初始預留能量的0%~20%的剩餘能量對應的meta-電容器的電壓,可以藉由來計算meta-電容器的預存能量,其中E是能量,C是電容,V是電壓。在控制板4為可程式設計裝置的實施例中,儲能單元的固定輸出電壓可以是可程式設計值。 In one embodiment, the control board 4 can control the DC voltage converter 3 in a manner that the meta-capacitor changes from the initial charging state ((v_c (t)) to the lowest charging state (v_c (t) = Vmin) , op) during the discharge process (see Figures 13B and 14B), the output voltage of the energy storage unit is maintained, such as the output voltage Vout of the DC voltage converter to keep it at a fixed level, where the minimum state of charge (Vmin , op) is defined as the voltage of the meta-capacitor corresponding to the remaining energy equal to 0% -20% of the initial reserved energy, which can be determined by Let's calculate the pre-stored energy of the meta-capacitor, where E is the energy, C is the capacitance, and V is the voltage. In the embodiment where the control board 4 is a programmable device, the fixed output voltage of the energy storage unit may be a programmable value.

在儲能單元的另一個實施例中,所述輸出電壓由以下這樣的直流電壓轉換裝置保持固定不變,即降壓穩壓器、升壓穩壓器、具有獨立的輸入/輸出的降壓和升壓穩壓器、雙向升壓/降壓穩壓器、分段PI轉換器中的任意一個。 In another embodiment of the energy storage unit, the output voltage is kept constant by a DC voltage conversion device such as a buck regulator, a boost regulator, a buck with independent input / output And step-up regulator, bidirectional step-up / step-down regulator, segmented PI converter.

在一些實施例中,單元1包括配置成能夠進行以下的參數的測量的電路:meta-電容器的電壓、流入或流出meta-電容的電流、流入或流出直流電壓轉換裝置的電流、直流電壓轉換裝置的輸出電壓、meta-電容器中的一個或多個點的溫度、直流電壓轉換裝置中的一個或多個點的溫度。在另一實施例中,儲能單元還包括交流反向器以產生交流輸出電壓,其中直流電壓轉換裝置的直流輸出電壓是交流反向器的輸入電壓。在另一個實施例中,儲能單元還包括電力電子開關,其基於矽絕緣柵雙極電晶體(IGBT)、SiC MOSFET、GaN MOSFETs、石墨烯、或含 有有機分子的開關。在儲能單元的一個實施例中,電力電子開關包括多個串聯連接的開關元件,以使能夠對高於單個開關元件的擊穿電壓的電壓進行開關。 In some embodiments, the unit 1 includes a circuit configured to enable measurement of the following parameters: voltage of the meta-capacitor, current flowing in or out of the meta-capacitor, current flowing in or out of the DC voltage conversion device, DC voltage conversion device Output voltage, temperature of one or more points in the meta-capacitor, temperature of one or more points in the DC voltage conversion device. In another embodiment, the energy storage unit further includes an AC inverter to generate an AC output voltage, wherein the DC output voltage of the DC voltage conversion device is an input voltage of the AC inverter. In another embodiment, the energy storage unit further includes a power electronic switch, which is based on a silicon insulated gate bipolar transistor (IGBT), SiC MOSFET, GaN MOSFETs, graphene, or There are switches for organic molecules. In one embodiment of the energy storage unit, the power electronic switch includes a plurality of switching elements connected in series to enable switching a voltage higher than a breakdown voltage of a single switching element.

在本發明的另一方面中,電容式儲能模組40如圖16所示。在所示的示例中,儲能模組40包括該那樣的兩種或兩種以上的儲能單元1。每個儲能單元包括具有一個或多個meta-電容器20和直流電壓轉換器3的電容式儲能裝置2,直流電壓轉換器3可以是降壓轉換器、升壓轉換器、或降壓/升壓轉換器。此外,每個模組可以包括圖10、11、12所示的該那樣的控制板4、以及(可選的)冷卻機構(未圖示)。該模組40還可以包括互連系統,該互連系統連接各個儲能單元的陽極和陰極,而產生電容式儲能模組的共陽極和共陰極。 In another aspect of the present invention, the capacitive energy storage module 40 is shown in FIG. 16. In the example shown, the energy storage module 40 includes two or more such energy storage units 1. Each energy storage unit includes a capacitive energy storage device 2 having one or more meta-capacitors 20 and a DC voltage converter 3. The DC voltage converter 3 may be a buck converter, a boost converter, or a buck / Boost converter. In addition, each module may include such a control board 4 as shown in FIGS. 10, 11, and 12 and (optionally) a cooling mechanism (not shown). The module 40 may further include an interconnection system that connects the anode and the cathode of each energy storage unit to generate a common anode and a common cathode of the capacitive energy storage module.

另一方面,在一些實施例中,所述互連系統包括參數匯流排42和電源開關PSW。儲能模組40中的每個儲能單元1可以藉由電源開關PSW連接到參數匯流排42。這些開關允許兩個或多個模組藉由能夠作為共陽極和共陰極的兩個或多個路徑選擇性地並聯或串聯。電源開關還允許一個或多個儲能單元與所述模組斷開連接,例如允許單元的冗餘和/或維護而不中斷模組的操作。電源開關PSW可以基於固態功率開關技術或藉由機電開關(如繼電器)來實現,或兩者的某種組合。 On the other hand, in some embodiments, the interconnection system includes a parameter bus 42 and a power switch PSW. Each of the energy storage units 1 in the energy storage module 40 may be connected to the parameter bus bar 42 through a power switch PSW. These switches allow two or more modules to be selectively connected in parallel or in series by two or more paths capable of acting as a common anode and a common cathode. The power switch also allows one or more energy storage units to be disconnected from the module, such as allowing redundancy and / or maintenance of the unit without interrupting the operation of the module. The power switch PSW can be based on solid-state power switch technology or by an electromechanical switch (such as a relay), or some combination of the two.

在一些實施例中,儲能模組還包括功率計44,其用於監視電力輸入到所述模組或輸出模組。在一些實施例 中,儲能模組還包括網路化控制節點46,其被配置為控制來自所述模組的電力輸出和電力輸入。網路化控制節點46允許每個模組藉由高速網路與系統控制電腦對話。網路化控制節點46包括電壓控制邏輯電路50,其被配置為藉由各自的控制板4選擇性地控制每個儲能單元2中的每個直流電壓轉換器3的操作。所述網路化控制節點46還可以包括開關控制邏輯電路52,其用於控制電源開關PSW的操作。控制板4和功率開關PSW可以藉由資料匯流排48連接到網路化控制節點46。網路化控制節點46中的電壓控制和開關邏輯電路可以藉由一個或多個微處理器、微控制器、專用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)、或複雜可程式設計邏輯裝置(CPLD)來實現。網路化控制節點46可以包括網路介面54,使得例如藉由資料匯流排48,在各個儲能單元2的電壓控制邏輯電路50和控制板4之間傳輸信號,也在開關邏輯電路52和電源開關PSW之間傳輸信號。 In some embodiments, the energy storage module further includes a power meter 44 for monitoring power input to the module or output module. In some embodiments The energy storage module further includes a networked control node 46 configured to control power output and power input from the module. The networked control node 46 allows each module to talk to the system control computer via a high-speed network. The networked control node 46 includes a voltage control logic circuit 50 that is configured to selectively control the operation of each DC voltage converter 3 in each energy storage unit 2 by a respective control board 4. The networked control node 46 may further include a switch control logic circuit 52 for controlling the operation of the power switch PSW. The control board 4 and the power switch PSW can be connected to the networked control node 46 through a data bus 48. The voltage control and switching logic circuits in the networked control node 46 can be implemented by one or more microprocessors, microcontrollers, application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or complex programmable Programming logic device (CPLD). The networked control node 46 may include a network interface 54 so that, for example, through a data bus 48, a signal is transmitted between the voltage control logic circuit 50 and the control board 4 of each energy storage unit 2, and the switch logic circuit 52 and Signals are transmitted between the power switches PSW.

根據本發明的另一個方面,電容式儲能系統可以包括兩個或多個網路化的電容式儲能模組,例如圖16所示的類型。這種電容式儲能系統60的一個實施例如圖17所示。該系統60包括兩個或多個圖16所示的類型的儲能模組40。每個電容式儲能模組40包括兩個或多個電容式儲能單元1,例如圖10、圖11、圖12所示的類型,藉由互連系統42連接並由網路化控制節點46控制。每個電容式儲能模組還可包括模組功率計44。雖然並非如圖16所 示,各網路化控制節點46如上所述,可以包括控制各個電容式儲能電池1的電壓控制器的電壓控制邏輯電路50、控制模組內部的電源開關的開關邏輯電路52。此外,每個網路化控制節點46包括內部資料匯流排48和網路介面54,它們可以如上所述地連接。輸入輸出到電容式儲能模組40的電力藉由系統電源開關PSW連接到系統電源匯流排62,其可以基於固態功率開關技術或藉由機電開關(如繼電器)來實現,或兩者的某種組合。在一些實施例中,可以具有連接在每個電容式儲能模組40和系統電源匯流排62之間的反向器(未圖示),而將直流電力從所述模組轉換為交流電源,反之亦然。 According to another aspect of the present invention, the capacitive energy storage system may include two or more networked capacitive energy storage modules, such as the type shown in FIG. 16. An example of such a capacitive energy storage system 60 is shown in FIG. 17. The system 60 includes two or more energy storage modules 40 of the type shown in FIG. 16. Each capacitive energy storage module 40 includes two or more capacitive energy storage units 1, such as the type shown in FIG. 10, FIG. 11, and FIG. 12, which are connected by an interconnection system 42 and controlled by a network. 46 controls. Each capacitive energy storage module may further include a module power meter 44. Although not as shown in Figure 16 As shown above, each networked control node 46 may include the voltage control logic circuit 50 that controls the voltage controller of each capacitive energy storage battery 1 and the switch logic circuit 52 that controls the power switch inside the module. In addition, each networked control node 46 includes an internal data bus 48 and a network interface 54 that can be connected as described above. The power input and output to the capacitive energy storage module 40 is connected to the system power bus 62 through a system power switch PSW, which can be based on solid-state power switching technology or through an electromechanical switch (such as a relay), or some of the two. Kind of combination. In some embodiments, there may be an inverter (not shown) connected between each capacitive energy storage module 40 and the system power bus 62 to convert DC power from the module to AC power ,vice versa.

系統60包括連接到系統資料匯流排68的系統控制器66。該系統控制器可以包括開關控制邏輯70、電壓控制邏輯72和系統網路介面74。電壓控制邏輯72可以配置為控制各個模組40的各個單元1中的各個直流電壓控制器的操作。開關控制邏輯70可以配置為控制系統電力開關SPSW的操作、以及各個電容式儲能模組40中的電源開關PSW。可以藉由網路介面74、系統資料匯流排68、用於特定模組的網路化控制節點46的網路介面54、模組資料匯流排48、各個單元1的控制板4,在特定的電容式儲能模組的特定電容式儲能單元1中,從電壓控制邏輯72向特定的直流電壓控制裝置3發送電壓控制信號。 The system 60 includes a system controller 66 connected to a system data bus 68. The system controller may include switch control logic 70, voltage control logic 72, and a system network interface 74. The voltage control logic 72 may be configured to control the operation of each DC voltage controller in each unit 1 of each module 40. The switch control logic 70 may be configured to control the operation of the system power switch SPSW and the power switch PSW in each capacitive energy storage module 40. The network interface 74, the system data bus 68, the network interface 54 of the networked control node 46 for a specific module, the module data bus 48, and the control board 4 of each unit 1 can be used in a specific In the specific capacitive energy storage unit 1 of the capacitive energy storage module, a voltage control signal is sent from the voltage control logic 72 to a specific DC voltage control device 3.

在此舉例而不是限定的方式,系統控制器66可以是確定性控制器、非同步控制器、或具有分散式時脈的控制 器。在電容式儲能系統60的一個具體的實施例中,系統控制器66可以包括分散式的時脈,其配置為讓在一個或一個以上電容儲能模組40的一個或一個以上電容式儲能單元中的若干個獨立的電壓轉換裝置同步。 By way of example and not limitation, the system controller 66 may be a deterministic controller, an asynchronous controller, or a control with a decentralized clock. Device. In a specific embodiment of the capacitive energy storage system 60, the system controller 66 may include a decentralized clock, which is configured to allow one or more capacitive storages in one or more capacitive energy storage modules 40 Several independent voltage conversion devices in the energy unit are synchronized.

本發明的一個層面可以是比傳統的電能儲存系統更大規模的電能儲存裝置。藉由將一個或多個meta-電容器與DC電壓轉換裝置選擇性地組合成一個單元,再將兩個或多個單元組合成模組,或將兩個或多個模組組合成系統,能夠滿足廣泛的儲能需求。 One aspect of the present invention may be a larger-scale electrical energy storage device than a conventional electrical energy storage system. By selectively combining one or more meta-capacitors and a DC voltage conversion device into one unit, then combining two or more units into a module, or combining two or more modules into a system, it is possible to Meet a wide range of energy storage needs.

以上詳細說明了本發明的較佳實施例,但是也可以使用不同的替代方案、修改和等效物。因此,以上說明並不限定本發明的範圍,而是由所附請求項及其等效範圍來決定。在此描述無論是否為較佳的任何特徵,都可以與所描述的無論是否為較佳的任何其他特徵相結合。在請求項中,除非另有明確說明,不定冠詞「一個」是指在所述物件後面的一個或多個項目的數量。正如此處所使用的,在替代方案中所列出的元件中,“或”字用於邏輯包含的含義,例如,除非明確說明,“X”或“Y”包括單獨的X、單獨的Y、或其兩者X和Y。列為替代方案的兩個或多個元素可以組合在一起。所附請求項並不限於包括手段功能用語的限定,除非此種限定在給定請求項中明確地使用了“用於...的手段”的用語。 The preferred embodiments of the present invention have been described in detail above, but different alternatives, modifications, and equivalents can also be used. Therefore, the above description does not limit the scope of the present invention, but is determined by the appended claims and their equivalent scope. Any feature described whether or not it is preferred may be combined with any other feature described whether or not it is preferred. In the claims, unless specifically stated otherwise, the indefinite article "a" refers to the number of one or more items following the item. As used herein, in the elements listed in the alternative, the word "or" is used to mean a logical meaning, for example, unless explicitly stated, "X" or "Y" includes a single X, a single Y, Or both X and Y. Two or more elements listed as alternatives can be combined together. The appended claims are not limited to limitations that include the term function, unless such limitation explicitly uses the term "means for" in a given claim.

Claims (26)

一種儲能單元,包括:至少一個電容式儲能裝置;及直流電壓轉換裝置,其中,該電容式儲能裝置包括一或多個meta-電容器,其中,在該電容式儲能裝置放電的期間,該電容式儲能裝置的輸出電壓為直流電壓轉換裝置的輸入電壓,其中,在該電容式儲能裝置充電的期間,該電容式儲能裝置的輸入電壓為該直流電壓轉換裝置的輸出電壓,其中,該一或多個meta-電容器的每一者包括第一電極、第二電極、配置在該第一電極和該第二電極之間的meta-介電材料層,其中,該meta-介電材料層由具有極化性和電阻性的一或多個複合有機化合物構成,且其中,該meta-介電材料層的相對介電常數等於或大於100。An energy storage unit includes: at least one capacitive energy storage device; and a DC voltage conversion device, wherein the capacitive energy storage device includes one or more meta-capacitors, wherein, during the discharge of the capacitive energy storage device The output voltage of the capacitive energy storage device is an input voltage of a DC voltage conversion device. During the charging of the capacitive energy storage device, the input voltage of the capacitive energy storage device is an output voltage of the DC voltage conversion device. Wherein each of the one or more meta-capacitors includes a first electrode, a second electrode, and a meta-dielectric material layer disposed between the first electrode and the second electrode, wherein the meta- The dielectric material layer is composed of one or more composite organic compounds having polarization and resistivity, and the relative dielectric constant of the meta-dielectric material layer is equal to or greater than 100. 根據請求項1所述的儲能單元,其中該meta-介電材料層的電阻等於或大於1013歐姆/釐米。The energy storage unit according to claim 1, wherein the resistance of the meta-dielectric material layer is equal to or greater than 10 13 ohms / cm. 根據請求項1所述的儲能單元,其中該meta-介電材料層包括一或多個類型的Sharp聚合物、和/或一或多個類型的Furuta聚合物。The energy storage unit according to claim 1, wherein the meta-dielectric material layer includes one or more types of Sharp polymers and / or one or more types of Furuta polymers. 根據請求項3所述的儲能單元,其中該meta-介電材料層包括兩個或更多Furuta聚合物,並包括具有陽離子類型的固定(immobilized)離子液體官能團的Furuta聚合物。The energy storage unit according to claim 3, wherein the meta-dielectric material layer includes two or more Furuta polymers and Furuta polymers having cationic type immobilized ionic liquid functional groups. 根據請求項3所述的儲能單元,其中該meta-介電材料層包括兩個或更多個Furuta聚合物,並包括具有陰離子類型的固定(immobilized)離子液體官能團的Furuta聚合物。The energy storage unit according to claim 3, wherein the meta-dielectric material layer includes two or more Furuta polymers and includes Furuta polymers having anionic type immobilized ionic liquid functional groups. 根據請求項1~5中任一項所述的儲能單元,其中該一或多個meta-電容器具有大於或等於約0.01V/nm的擊穿電場。The energy storage unit according to any one of claims 1 to 5, wherein the one or more meta-capacitors have a breakdown electric field greater than or equal to about 0.01 V / nm. 根據請求項1所述的儲能單元,其中還包括冷卻機構,其與該電容式儲能裝置和/或該直流電壓轉換器熱接觸。The energy storage unit according to claim 1, further comprising a cooling mechanism, which is in thermal contact with the capacitive energy storage device and / or the DC voltage converter. 根據請求項7所述的儲能單元,其中該冷卻機構是被動式冷卻機構,或是能夠使用空氣、水、或乙二醇作為冷卻劑。The energy storage unit according to claim 7, wherein the cooling mechanism is a passive cooling mechanism, or air, water, or ethylene glycol can be used as a coolant. 根據請求項7所述的儲能單元,其中該冷卻機構配置為具有相變材料以消除來自該電容式儲能裝置和/或該直流電壓轉換器的熱。The energy storage unit according to claim 7, wherein the cooling mechanism is configured with a phase change material to remove heat from the capacitive energy storage device and / or the DC voltage converter. 根據請求項7所述的儲能單元,其中該冷卻機構包括容器,該容器包含固體-液體相變材料。The energy storage unit according to claim 7, wherein the cooling mechanism includes a container containing a solid-liquid phase change material. 根據請求項10所述的儲能單元,其中該固體-液體相變材料是石蠟。The energy storage unit according to claim 10, wherein the solid-liquid phase change material is paraffin. 根據請求項1所述的儲能單元,其中該直流電壓轉換裝置包括基於降壓轉換器、升壓轉換器、降壓/升壓轉換器、雙向降壓/升壓(分段pi:(split-pi))轉換器、uk轉換器、單端初級電感轉換器(SEPIC)、反向降壓/升壓轉換器、或四開關降壓/升壓轉換器的控制板。The energy storage unit according to claim 1, wherein the DC voltage conversion device includes a buck-based converter, a boost converter, a buck / boost converter, a bidirectional buck / boost (segment pi: (split -pi)) converter, Control boards for uk converters, single-ended primary inductive converters (SEPIC), inverting buck / boost converters, or four-switch buck / boost converters. 根據請求項12所述的儲能單元,其中該控制板配置為在該一或多個meta-電容器從初始充電狀態到最小充電狀態的放電過程中維持該儲能單元的固定輸出電壓,其中,最小充電狀態被定義為與等於儲存在meta-電容器中的初始預留能量的0%~20%的剩餘能量對應的meta-電容器的電壓。The energy storage unit according to claim 12, wherein the control board is configured to maintain a fixed output voltage of the energy storage unit during discharge of the one or more meta-capacitors from an initial charging state to a minimum charging state, wherein, The minimum state of charge is defined as the voltage of the meta-capacitor corresponding to the remaining energy equal to 0% to 20% of the initial reserved energy stored in the meta-capacitor. 根據請求項13所述的儲能單元,其中藉由控制板對該儲能單元的固定輸出電壓進行程式設計。The energy storage unit according to claim 13, wherein the fixed output voltage of the energy storage unit is programmed by a control board. 根據請求項13所述的儲能單元,其中該直流電壓轉換裝置包括一或多個開關型電壓轉換器,其中該開關型電壓轉換器配置為降壓轉換器、升壓轉換器、降壓/升壓轉換器、雙向降壓/升壓(分段pi:(split-pi))轉換器、uk轉換器、單端初級電感轉換器(SEPIC)、反向降壓/升壓轉換器、或四開關降壓/升壓轉換器。The energy storage unit according to claim 13, wherein the DC voltage conversion device comprises one or more switch-type voltage converters, wherein the switch-type voltage converter is configured as a buck converter, a boost converter, a buck / Boost converter, bidirectional buck / boost (split-pi) converter, uk converter, single-ended primary inductor converter (SEPIC), inverting buck / boost converter, or four-switch buck / boost converter. 根據請求項13所述的儲能單元,還包括電路,該電路配置以能夠觀測以下參數:在該一或多個meta-電容器上的電壓、輸入或輸出該一或多個meta-電容器的電流、流入或流出該直流電壓轉換裝置的電流、該直流電壓轉換裝置的輸出電壓、在該一或多個meta-電容器中的一或多個點處的溫度、該直流電壓轉換裝置中的一或多個點處的溫度。The energy storage unit according to claim 13, further comprising a circuit configured to be able to observe the following parameters: the voltage on the one or more meta-capacitors, and the input or output of the one or more meta-capacitors , The current flowing into or out of the DC voltage conversion device, the output voltage of the DC voltage conversion device, the temperature at one or more points in the one or more meta-capacitors, one or Temperature at multiple points. 根據請求項13所述的儲能單元,還包括電力反向器,其配置以從該直流電壓轉換器接受直流(DC)輸出電壓,並配置以將來自該直流電壓轉換器的直流輸出電壓變換為交流(AC)輸出電壓。The energy storage unit according to claim 13, further comprising a power inverter configured to receive a direct current (DC) output voltage from the direct voltage converter and configured to convert a direct current output voltage from the direct voltage converter It is an alternating current (AC) output voltage. 根據請求項1所述的儲能單元,其中該直流電壓轉換器還包括電力電子開關,其基於矽絕緣閘雙極電晶體(IGBT)、碳化矽(SiC)金屬氧化物半導體場效應電晶體(MOSFET)、氮化鎵(GaN)MOSFET、石墨烯或有機分子開關。The energy storage unit according to claim 1, wherein the DC voltage converter further comprises a power electronic switch, which is based on a silicon insulated gate bipolar transistor (IGBT), a silicon carbide (SiC) metal oxide semiconductor field effect transistor ( MOSFET), gallium nitride (GaN) MOSFET, graphene, or organic molecular switches. 根據請求項18所述的儲能單元,其中該電力電子開關包括多個串聯的開關元件。The energy storage unit according to claim 18, wherein the power electronic switch includes a plurality of switching elements connected in series. 一種電容式儲能模組,包括具有陽極和陰極的兩個或更多個的個別儲能單元和互連系統,其中,該互連系統連接該個別儲能單元的陰極和陽極以建立該電容式儲能模組的共同陰極和共同陽極,其中該個別儲能單元每一者包括與直流電壓轉換裝置連接的一或多個meta-電容器,其中該個別儲能單元每一者包括至少一個電容式儲能裝置和直流電壓轉換裝置,其中該電容式儲能裝置包括一或多個meta-電容器,其中在該電容式儲能裝置放電的期間,該電容式儲能裝置的輸出電壓為該直流電壓轉換裝置的輸入電壓,其中在該電容式儲能裝置充電的期間,該電容式儲能裝置的輸入電壓為該直流電壓轉換裝置的輸出電壓,其中,該一或多個meta-電容器的每一者包括第一電極、第二電極、配置在該第一電極和該第二電極之間的meta-介電材料層,其中,該meta-介電材料層由具有極化性和電阻性的一或多個複合有機化合物構成,且其中,該meta-介電材料層的相對介電常數等於或大於100。A capacitive energy storage module includes two or more individual energy storage units having an anode and a cathode and an interconnection system, wherein the interconnection system connects the cathode and anode of the individual energy storage unit to establish the capacitor Common cathode and common anode of the energy storage module, wherein each of the individual energy storage units includes one or more meta-capacitors connected to the DC voltage conversion device, wherein each of the individual energy storage units includes at least one capacitor Energy storage device and DC voltage conversion device, wherein the capacitive energy storage device includes one or more meta-capacitors, and during the discharge of the capacitive energy storage device, the output voltage of the capacitive energy storage device is the DC The input voltage of the voltage conversion device, wherein during the charging of the capacitive energy storage device, the input voltage of the capacitive energy storage device is the output voltage of the DC voltage conversion device, wherein each of the one or more meta-capacitors One includes a first electrode, a second electrode, and a meta-dielectric material layer disposed between the first electrode and the second electrode, wherein the meta-dielectric material layer is composed of One or more composite organic compounds having polarizability and resistivity, and wherein the relative dielectric constant of the meta-dielectric material layer is equal to or greater than 100. 根據請求項20所述的儲能模組,其中該互連系統包括藉由電源開關與該兩或更多個個別儲能單元連接的參數匯流排。The energy storage module according to claim 20, wherein the interconnection system includes a parameter bus connected to the two or more individual energy storage units through a power switch. 根據請求項20所述的儲能模組,其中還包括與該兩或更多個個別儲能單元連接的功率計。The energy storage module according to claim 20, further comprising a power meter connected to the two or more individual energy storage units. 根據請求項20所述的儲能模組,其中還包括連接至該兩或多個個別儲能單元的網路化控制節點。The energy storage module according to claim 20, further comprising a networked control node connected to the two or more individual energy storage units. 一種電容式儲能系統,包括:一或多個電容式儲能模組,其中,該一或多個儲能模組的每一者包括具有陽極和陰極的兩或更多個個別儲能單元、互連系統,其中該兩或更多個個別儲能單元的每一者包括至少一個電容式儲能裝置、直流電壓轉換裝置,其中該電容式儲能裝置包括一或多個meta-電容器,其中在該電容式儲能裝置放電的期間,該電容式儲能裝置的輸出電壓為該直流電壓轉換裝置的輸入電壓,在該電容式儲能裝置充電的期間,其中該電容式儲能裝置的輸入電壓為該直流電壓轉換裝置的輸出電壓;與該兩或更多個電容式儲能模組連接的互連系統,其中該互連系統連接該個別儲能單元的該陰極和該陽極以建立該電容式儲能模組的共同陰極和共同陽極,個別儲能單元之每一者包括與該直流電壓轉換裝置連接的一或多個meta-電容器,電源互連系統和系統控制器,其與該兩個或多個電容式儲能模組連接,其中,該一或多個meta-電容器的每一者包括第一電極、第二電極、配置在該第一電極和該第二電極之間的meta-介電材料層,其中,該meta-介電材料層由具有極化性和電阻性的一或多個複合有機化合物構成,且其中,該meta-介電材料層的相對介電常數等於或大於100。A capacitive energy storage system includes: one or more capacitive energy storage modules, wherein each of the one or more energy storage modules includes two or more individual energy storage units having an anode and a cathode An interconnection system, wherein each of the two or more individual energy storage units includes at least one capacitive energy storage device, a DC voltage conversion device, wherein the capacitive energy storage device includes one or more meta-capacitors, During the discharge of the capacitive energy storage device, the output voltage of the capacitive energy storage device is the input voltage of the DC voltage conversion device. During the charging period of the capacitive energy storage device, the The input voltage is the output voltage of the DC voltage conversion device; an interconnection system connected to the two or more capacitive energy storage modules, wherein the interconnection system connects the cathode and the anode of the individual energy storage unit to establish A common cathode and a common anode of the capacitive energy storage module, each of the individual energy storage units includes one or more meta-capacitors connected to the DC voltage conversion device, a power interconnection system and a system. A system controller connected to the two or more capacitive energy storage modules, wherein each of the one or more meta-capacitors includes a first electrode, a second electrode, the first electrode and The meta-dielectric material layer between the second electrodes, wherein the meta-dielectric material layer is composed of one or more composite organic compounds having polarization and resistivity, and wherein the meta-dielectric material The relative dielectric constant of the layer is equal to or greater than 100. 根據請求項24所述的電容式儲能系統,其中該系統控制器包括確定性控制器、非同步控制器、或具有分散式時脈的控制器。The capacitive energy storage system according to claim 24, wherein the system controller includes a deterministic controller, an asynchronous controller, or a controller with a decentralized clock. 根據請求項25所述的電容式儲能系統,其中該分散式時脈用於使一或多個個別儲能模組中的數個獨立直流電壓轉換裝置同步。The capacitive energy storage system according to claim 25, wherein the distributed clock is used to synchronize several independent DC voltage conversion devices in one or more individual energy storage modules.
TW106104498A 2016-02-12 2017-02-10 Capacitive energy storage cell, capacitive energy storage module, and capacitive energy storage system TWI666846B (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US15/043,186 2016-02-12
US15/043,315 2016-02-12
US15/043,315 US10305295B2 (en) 2016-02-12 2016-02-12 Energy storage cell, capacitive energy storage module, and capacitive energy storage system
US15/043,247 US20170233528A1 (en) 2016-02-12 2016-02-12 Sharp polymer and capacitor
US15/043,186 US20170236641A1 (en) 2016-02-12 2016-02-12 Furuta co-polymer and capacitor
US15/043,247 2016-02-12
US15/043,209 2016-02-12
US15/043,209 US20170236642A1 (en) 2016-02-12 2016-02-12 para-FURUTA POLYMER AND CAPACITOR

Publications (2)

Publication Number Publication Date
TW201801438A TW201801438A (en) 2018-01-01
TWI666846B true TWI666846B (en) 2019-07-21

Family

ID=59563453

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106104498A TWI666846B (en) 2016-02-12 2017-02-10 Capacitive energy storage cell, capacitive energy storage module, and capacitive energy storage system

Country Status (6)

Country Link
EP (1) EP3414815A4 (en)
JP (1) JP6906535B2 (en)
CN (1) CN109496381A (en)
CA (1) CA3052242A1 (en)
TW (1) TWI666846B (en)
WO (1) WO2017139284A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10163575B1 (en) * 2017-11-07 2018-12-25 Capacitor Sciences Incorporated Non-linear capacitor and energy storage device comprising thereof
CN110071521B (en) * 2018-01-23 2021-09-03 台达电子企业管理(上海)有限公司 Power distribution equipment and power distribution method
DE102018114405A1 (en) * 2018-06-15 2019-12-19 Liebherr-Components Biberach Gmbh Energy storage device for electrical drive systems
KR102549233B1 (en) * 2018-10-23 2023-06-28 주식회사 엘지에너지솔루션 Booster kit for battery reuse
TWI684314B (en) * 2019-04-30 2020-02-01 國立中山大學 Pwm/pfm dual mode charging system
EP4029139A4 (en) * 2019-09-13 2023-09-27 Milwaukee Electric Tool Corporation Power converters with wide bandgap semiconductors
JP7324685B2 (en) * 2019-11-01 2023-08-10 株式会社ミツトヨ Encoders and encoder detection heads
US11923715B2 (en) 2019-12-20 2024-03-05 Qualcomm Incorporated Adaptive multi-mode charging

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060120020A1 (en) * 2004-12-03 2006-06-08 Dowgiallo Edward J Jr High performance capacitor with high dielectric constant material
US20080150484A1 (en) * 2006-12-22 2008-06-26 Kimball Jonathan W Modular System for Unattended Energy Generation and Storage
US20100315043A1 (en) * 2009-06-15 2010-12-16 Hak Hon Chau Fault tolerant modular battery management system
US20120274145A1 (en) * 2011-04-27 2012-11-01 The Prosser Group LLC Circuit for Rendering Energy Storage Devices Parallelable
US20130187475A1 (en) * 2012-01-10 2013-07-25 Samsung Electronics Co., Ltd. Reasonant apparatus for wireless power transfer
US20140158340A1 (en) * 2012-12-11 2014-06-12 Caterpillar Inc. Active and passive cooling for an energy storage module

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001292567A (en) * 2000-04-06 2001-10-19 Nagano Japan Radio Co Dc-to-dc converter
JP2002175934A (en) * 2000-12-05 2002-06-21 Takato Yasutane Capacitor
RU2199450C1 (en) * 2002-01-08 2003-02-27 Московский государственный авиационный институт (технический университет) Power supply source of mobile object
JP2003327821A (en) * 2002-05-15 2003-11-19 Hitachi Ltd Resin composition
JP2008280508A (en) * 2007-04-10 2008-11-20 Toray Ind Inc Biaxially oriented polyarylene sulfide film, metallized film and capacitor
DE102010012949A1 (en) * 2010-03-26 2011-09-29 Siemens Aktiengesellschaft Capacitor module, has control unit for controlling temperature of cells, where control unit includes phase change material, which is in contact with cells to absorb heat delivered by cells and located on surface of cooling body
JP5650246B2 (en) * 2010-12-15 2015-01-07 住友重機械工業株式会社 Excavator
BR112013030106B1 (en) * 2011-05-24 2022-02-22 Fastcap Systems Corporation Power system adapted to supply power in a high temperature environment
WO2013009772A1 (en) * 2011-07-11 2013-01-17 Quantumscape Corporation Solid state energy storage devices
JP2013112687A (en) * 2011-11-25 2013-06-10 Toyota Motor Corp Latent heat storage material-dispersed coolant composition for automobile engine
NL2010191C2 (en) * 2012-07-23 2014-01-27 Univ Delft Tech Electrical power converter.
RU2512880C2 (en) * 2012-08-16 2014-04-10 Общество с ограниченной ответственностью "Системы Постоянного Тока" Electric energy accumulation system based on accumulator batteries and supercapacitor with network enhancement function
JP6150821B2 (en) * 2013-02-08 2017-06-21 住友建機株式会社 Excavator and control method of excavator
CN203377785U (en) * 2013-07-15 2014-01-01 深圳桑达国际电源科技有限公司 Charging and discharging type DC-DC conversion circuit and new energy power generation system
JP2015171220A (en) * 2014-03-06 2015-09-28 株式会社東芝 Switch control circuit and radio communication apparatus
US9941051B2 (en) 2015-06-26 2018-04-10 Capactor Sciences Incorporated Coiled capacitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060120020A1 (en) * 2004-12-03 2006-06-08 Dowgiallo Edward J Jr High performance capacitor with high dielectric constant material
US20080150484A1 (en) * 2006-12-22 2008-06-26 Kimball Jonathan W Modular System for Unattended Energy Generation and Storage
US20100315043A1 (en) * 2009-06-15 2010-12-16 Hak Hon Chau Fault tolerant modular battery management system
US20120274145A1 (en) * 2011-04-27 2012-11-01 The Prosser Group LLC Circuit for Rendering Energy Storage Devices Parallelable
US20130187475A1 (en) * 2012-01-10 2013-07-25 Samsung Electronics Co., Ltd. Reasonant apparatus for wireless power transfer
US20140158340A1 (en) * 2012-12-11 2014-06-12 Caterpillar Inc. Active and passive cooling for an energy storage module

Also Published As

Publication number Publication date
JP2019506125A (en) 2019-02-28
EP3414815A2 (en) 2018-12-19
EP3414815A4 (en) 2019-11-20
TW201801438A (en) 2018-01-01
CA3052242A1 (en) 2017-08-17
WO2017139284A2 (en) 2017-08-17
JP6906535B2 (en) 2021-07-21
CN109496381A (en) 2019-03-19
WO2017139284A9 (en) 2017-11-23
WO2017139284A3 (en) 2017-09-28

Similar Documents

Publication Publication Date Title
TWI666846B (en) Capacitive energy storage cell, capacitive energy storage module, and capacitive energy storage system
US10305295B2 (en) Energy storage cell, capacitive energy storage module, and capacitive energy storage system
US20170236648A1 (en) Grid capacitive power storage system
US20170237274A1 (en) Grid capacitive power storage system
KR102073078B1 (en) Energy storage molecular materials, crystalline dielectric layers and capacitors
US20180137984A1 (en) Solid state energy storage device
JP5935229B2 (en) Polymer and organic solar cell including the same
Raman et al. Review of charge equalization schemes for Li-ion battery and super-capacitor energy storage systems
CN111837250B (en) Organic material and photoelectric conversion element
JP2016514907A (en) Energy storage device
CN111433871A (en) Nonlinear capacitor and energy storage device including the same
WO2017139692A2 (en) Capacitive energy storage system
US10886472B2 (en) Alternative acceptor materials based on hexabenzocoronene
Sidhu et al. Bank switching technique in supercapacitor energy storage systems for line voltage regulation in pulsed power applications
CN103532382A (en) Switching power supply circuit
Shadman et al. Hybrid energy storage system containing Bidirectional DC Convertor, Battery, Super capacitor, Solar Panel for increasing the performance of Electric Vehicles
KR101876018B1 (en) Novel compound and solar cell including the same
WO2017139682A1 (en) Improved energy storage system using capacitors
KR20170077902A (en) Novel compound and solar cell including the same
EP3724185A1 (en) Oligomeric dielectric materials and capacitor thereof
TW201004085A (en) Magnetic capacitor device for storing energy
TW201015818A (en) Power supply system
CN104052141A (en) Power source device and manufacturing method thereof
Wang et al. Modular Series Capacitor Buck Topology for Point of Load Applications with Duty Cycle Freer
TW201019561A (en) Power system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees