TWI662259B - 振動感測器 - Google Patents

振動感測器 Download PDF

Info

Publication number
TWI662259B
TWI662259B TW107117634A TW107117634A TWI662259B TW I662259 B TWI662259 B TW I662259B TW 107117634 A TW107117634 A TW 107117634A TW 107117634 A TW107117634 A TW 107117634A TW I662259 B TWI662259 B TW I662259B
Authority
TW
Taiwan
Prior art keywords
magnet
coil
vibration sensor
layer
circuit board
Prior art date
Application number
TW107117634A
Other languages
English (en)
Other versions
TW202004135A (zh
Inventor
賴宇紳
Yu-Sheng Lai
劉瑞敏
Jui-Min Liu
鄭旭君
Hsu-Chun Cheng
李美儀
Mei-I Li
陳俊淇
Chun-Chi Chen
吳政三
Cheng-San Wu
謝嘉民
Jia-Min Shieh
Original Assignee
財團法人國家實驗研究院
National Applied Research Laboratories
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人國家實驗研究院, National Applied Research Laboratories filed Critical 財團法人國家實驗研究院
Priority to TW107117634A priority Critical patent/TWI662259B/zh
Priority to US16/170,471 priority patent/US11415457B2/en
Priority to CN201910410486.9A priority patent/CN110530501A/zh
Application granted granted Critical
Publication of TWI662259B publication Critical patent/TWI662259B/zh
Publication of TW202004135A publication Critical patent/TW202004135A/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/02Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by magnetic means, e.g. reluctance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一種振動感測器,其包含了電路板,上面設置了容置空間,在容置空間上設置了感測組件,在感測組件上設置可供磁鐵滑動的槽體,將磁鐵設置在槽體內,再將線圈層設置在感測組件任一側或兩側,更進一步,在槽體上塗佈一潤滑層,或者將槽體設置為真空結構或斷面結構,以此來減小槽體與磁鐵的摩擦,或者將線圈層塗佈保護層或層層堆疊,於不額外增加感測器面積前提下來提高對磁通量變化的感測,使得本發明的振動感測器可以達到寬頻振動行為偵測。

Description

振動感測器
本發明是有關一種振動感測器,尤其為一種不設置剛性結構,通過磁鐵本身因外力而滑動進而改變線圈層的磁通量變化進行感測的振動感測器。
在高度發展的現代工業中,現代測試技術朝向數字化、信息化方向發展已成發展趨勢,而測試系統的最前端則是感測器,被世界各國列為尖端技術,特別是近幾年快速發展的IC技術和計算機技術,為感測器的發展提供了良好與可靠的科學技術基礎。使感測器的發展日新月益,且數字化,多功能與智能化是現代感測器發展的重要特徵之一。
在目前較為普遍的振動感測器中,使用最多的還是包含了電磁感應線圈、磁鐵或是藉由偵測電容改變的晶片式振動感測器。目前轉為通用之振動感測器為偵測電容改變的方式,此種類型感測器操作時必需額外偏壓(Bias)。其原理是將工程振動的參量轉換成電信號,經電子線路放大後顯示和記錄。其要點在於先將機械振動量轉換為電量(電動勢,電荷,及其它電量),然後再對電量進行測量,從而得到所要測量的機械量。這是目前應用得最廣泛的測量方法。
上述感測系統主要包含三個環節。其一,把被測的機械振動量轉換 為機械的,光學的或電的信號,完成這項轉換工作的器件叫感測器。其二,測量線路的種類甚多,它們都是針對各種感測器的能量轉換原理而設計的。其三,信號分析及顯示,也就是記錄環節。從測量線路輸出的電壓信號,可按測量的要求輸入給信號分析儀或輸送給顯示儀器。也可以在必要時記錄在磁帶上,然後再輸入到信號分析儀進行各種分析處理,從而得到最終結果。
通常,由於不同的振動傳感方式,例如壓電傳感、磁傳感、電阻傳感、電容傳感、振動的機械能可以直接或間接地轉換成電量,振動感測器並不是直接將原始要測的振動能量轉變為電量,而是將原始要測的振動能量做為振動感測器的輸入量,然後由振動能量接收部分加以接收,形成另一個適合於能量變換的機械能量,最後由振動傳感器的機電變換部分再將適合於能量轉換的機械能變換為電量。因此一個感測器的工作性能是由振動能量接收部分和機電變換部分來決定的以及由接收的振動強度和轉換性能決定。
由於機械運動是物質運動的最簡單的形式,因此人們最先想到的是用機械方法測量振動,從而製造出了機械式測振儀(如蓋格爾測振儀等)。感測器的機械接收原理就是建立在此基礎上的。相對式測振儀的工作接收原理是在測量時,把儀器固定在不動的支架上,使觸桿與被測物體的振動方向一致,並借彈簧的彈性力與被測物體表面相接觸,當物體振動時,觸桿就跟隨它一起運動,並推動記錄筆桿在移動的紙帶上描繪出振動物體的位移隨時間的變化曲線,根據這個記錄曲線可以計算出位移的大小及頻率等參數。
根據這個原理,目前習知技術中也有很多類似的方式進行振動感測,其在原有的基礎上增加了電磁感應的技術,利用固定電磁線圈或磁鐵其一的方式,使得另一方固定在一彈簧上,在外接發生振動的時候,當振動的幅度和 頻率超過了彈簧原本的楊氏係數,固定的電磁線圈或磁鐵則開始向固定方向移動,進而將振動機械能轉換為彈簧的彈性勢能。在此過程中,由於磁鐵的磁感線通過電磁線圈的數量發生變化,產生了感應電動勢,進而可用來偵測待測物的振動。
但其上述習知技術的不足之處在於彈簧原本具有剛性結構,固定在彈簧上的線圈層或者磁鐵需要克服該楊氏係數才能夠將該彈簧進行壓縮形變,這在檢測振動時就限制了低頻振動偵測能力以及寬頻振動的範圍,無法達到相對更低的感測。例如感測1Hz的振動頻率或者感測寬頻頻寬達MHz的振動。
另外,若感測器是處於沒有電源供應的地方或電源供應受到嚴格限制時,例如感測系統內部空間太小無法安裝電池、或具備無線通訊功能之感測器因為大量通訊需求而太耗電、或是無線感測器放置於戶外電力線無法到達之處或是電池更換不易之處、或是感測器安裝於人體內導致電池更換不易等眾多電源線無法接到感測器的狀況或是感測器的電池不易被更換的場合,習知技術中利用剛性結構搭配電容改變來偵測振動之振動感測器需要提前施加一個偏壓(BIAS)才能進行測量工作。但在某些應用中,某些微機電系統(microelectromechanical systems,MEMS)感測器需要消耗非常大量的能源來驅動其感測之功能。因此,不需增加偏壓即可進行振動感測,其適用範圍更加廣泛。
綜上所述,在振動感測領域中,有許多未盡完善的結構,因此本發明人經過長期的研究及發明,發明出一種振動感測器,具備了偵測大於1Hz(含1Hz)頻率的振動偵測能力,而且不需要額外的施加偏壓,適用於微小化、輕薄的微機電系統中。
本發明之主要目的,在於提供一種振動感測器,該振動感測器在不施加偏壓的情況下,進行寬頻振動的感測。
本發明之另一目的,在於提供一種振動感測器,該振動感測器對於振動頻率大於或等於1Hz之振動能均能進行感測。
為了達到上述之目的,本發明揭示了一種振動感測器,其包含有電路板、磁鐵和線圈層,電路板上設置有槽體,磁鐵滑動設置於槽體內,至少有一線圈層設置於該磁鐵之至少一側,該線圈層電性連接該電路板,當磁鐵於受外力振動而滑動於槽體內時,磁鐵之滑動導致線圈層因磁通量變化而產生一感應訊號並經電路板的輸出電極輸出。
本發明之一實施例中,其亦揭露該線圈層表面塗佈一保護層,該保護層含有磁性材料。
本發明之一實施例中,其亦揭露該線圈層包含一基板與至少一金屬線圈,該金屬線圈設置於該基板之表面。
本發明之一實施例中,其亦揭露該槽體表面塗佈一潤滑層,該潤滑層含有氟素、矽素、碳化物或奈米粒子。
本發明之一實施例中,其亦揭露更包含一導線,連接該金屬線圈與該輸出電極。
本發明揭示了一種振動感測器,其包含有電路板、感測組件、磁鐵和線圈層,電路板上設置有容置空間,感測組件設置於該容置空間內,感測組件包含感測基板,在感測基板上更設置了槽體,進一步,槽體內設置磁鐵,磁鐵滑動設置於槽體內,至少一線圈層設置在感測組件的一側,線圈層電性連接 了電路板。當磁鐵於感測組件無偏壓並受外力振動而滑動於槽體內時,磁鐵之滑動導致線圈層因磁通量變化而產生一感應電流並經該電路板的輸出電極輸出。
本發明之一實施例中,其亦揭露該電路板之該容置空間的內側面與該感測組件的外側邊緣接合固定,該線圈層接合固定於該感測組件之上。
本發明之一實施例中,其亦揭露該線圈層表面塗佈一保護層,該保護層含有磁性材料。
本發明之一實施例中,其亦揭露該線圈層包含一基板與至少一金屬線圈,該金屬線圈設置於該基板之表面。
本發明之一實施例中,其亦揭露該槽體表面塗佈一潤滑層,該潤滑層含有氟素、矽素、碳化物或奈米粒子。
本發明之一實施例中,其亦揭露更包含一導線,連接該金屬線圈與該輸出電極。
本發明揭示了一種振動感測器,其包含有電路板、感測組件、磁鐵和線圈層,電路板上設置有容置空間,感測組件設置於該容置空間內,感測組件包含複數個感測基板,在這些感測基板上更設置了槽體,進一步,這槽體夾持一個磁鐵,磁鐵滑動設置於槽體內,至少有一線圈層設置在該感測組件的一側,該線圈層電性連接了電路板。當該磁鐵於該感測組件受外力振動而滑動於該槽體內時,該磁鐵之滑動導致該線圈層因磁通量變化而產生一感應電流並經該電路板的輸出電極輸出。
本發明之一實施例中,其亦揭露該線圈層表面塗佈一保護層,該保護層含有磁性材料。
本發明之一實施例中,其亦揭露該線圈層包含一基板與至少一金屬線圈,該金屬線圈設置於該基板之表面。
本發明之一實施例中,其亦揭露該槽體表面塗佈一潤滑層,該潤滑層含有氟素、矽素、碳化物或奈米粒子。
本發明之一實施例中,其亦揭露更包含一導線,連接該金屬線圈與該輸出電極。
10‧‧‧電路板
101‧‧‧槽體
102‧‧‧容置空間
104‧‧‧輸出電極
20‧‧‧感測組件
202‧‧‧感測基板
204‧‧‧槽體
2042‧‧‧槽體
2044‧‧‧槽體
206‧‧‧潤滑層
2062‧‧‧奈米粒子
30‧‧‧磁鐵
40‧‧‧線圈層
402‧‧‧保護層
404‧‧‧基板
406‧‧‧金屬線圈
407‧‧‧導線
408‧‧‧第一導電連接層
42‧‧‧第二線圈層
422‧‧‧第二基板
424‧‧‧第二金屬線圈
426‧‧‧第二導電連接層
第一(A)圖:其係為本發明之一較佳實施例之結構***圖;第一(B)圖:其係為本發明之一較佳實施例之結構***圖;第二圖:其係為本發明之一較佳實施例之結構組合圖;第三(A)圖:其係為本發明之第一實施例之感測組件橫向截面圖;第三(B)圖:其係為本發明之第二實施例之感測組件橫向截面圖;第三(C)圖:其係為本發明之第三實施例之感測組件橫向截面圖;第四(A)圖:其係為本發明之第一實施例之感測組件縱向截面圖;第四(B)圖:其係為本發明之第二實施例之感測組件縱向截面圖;第四(C)圖:其係為本發明之第三實施例之感測組件縱向截面圖;第五圖:其係為本發明之第一實施例局部放大示意圖;第六圖:其係為本發明之第二實施例局部放大示意圖;第七圖:其係為本發明之第三實施例局部放大示意圖;以及第八(A)圖:其係為本發明之一較佳實施例之局部放大示意圖。
第八(B)圖:其係為本發明之一較佳實施例之局部放大示意圖。
為使 貴審查委員對本發明之特徵及所達成之功效有更進一步之瞭解與認識,謹佐以較佳之實施例及配合詳細之說明,說明如後:本發明針對習知技術之振動感測器進行研發,改善了習知技術中感測器需要施加偏壓才可進行感測的問題,並且由於本發明的結構沒有設置剛性結構,在實際感測的過程中更加靈敏,具備了可偵測低至1Hz以上(含1Hz)之振動頻率偵測達到寬頻振動的能力,這是習知技術中難以達到的,另外,本發明結構設計合理,更加輕薄微小化,為各種情況下的使用提供了便利,適用範圍更加廣泛。
首先,請參閱第一(A)圖,其係為本發明之一較佳實施例之結構***圖,如圖所示,本發明係一種振動感測器,其包含一電路板10、一磁鐵30以及至少一線圈層40。其中,該電路板10上設置一槽體101。該磁鐵30滑動設置於該槽體101內,該磁鐵30能夠沿一線性方向進行位移。該線圈層40設置於該槽體101上,並與該磁鐵30有一間隔距離,該線圈層40通過一導線407電性連接該電路板10之一輸出電極104,進而形成迴路。
請參閱第一(B)圖,其係為本發明之一較佳實施例之結構***圖,如圖所示,本發明係一種振動感測器,其包含一電路板10、一感測組件20、一磁鐵30以及至少一線圈層40。其中,該電路板10上設置一容置空間102。該感測組件20設置於該容置空間102內,該感測組件20包含一感測基板202,該感測基板202更設置一槽體204。該磁鐵30滑動設置於該槽體204內,該磁鐵30能 夠沿一線性方向進行位移。該線圈層40設置於該感測組件20之一側,該線圈層40通過該導線407電性連接該電路板10之該輸出電極104,進而形成迴路。
請繼續參閱第一(B)圖以及第二圖,其係為本發明之一較佳實施例之結構組合圖,其中該電路板10之該容置空間102內側面與該感測組件20外側邊緣接合固定,該線圈層40接合固定於該感測組件20之上,上述固定方式可為粘合固定、卡扣固定等任何固定方式,並不以此為限。進一步地,本發明之該線圈層40包含一基板404與至少一金屬線圈406,該金屬線圈406設置於該基板404表面上,舉例來說,可為印刷電路板,因此藉由印刷電路製程可讓該線圈層40之該金屬線圈406輕易設置於該基板404表面上,另外,可採用半導體後段金屬連接線技術來將該金屬線圈406放置於該基板404上。
請結合參閱第三(A)圖至第五圖,其分別為本發明之第一實施例之感測組件橫向截面圖、感測組件縱向截面圖以及局部放大示意圖。如圖所示,第一實施例包含該電路板10、該感測組件20、該磁鐵30以及該線圈層40。其中,該電路板10上設置了該容置空間102,該感測組件20之外邊緣與該電路板10之該容置空間102之內表面粘合固定。於該感測基板202之上側設置該槽體204,並將該磁鐵30滑動設置在該槽體204內,同時,為了達到該磁鐵30在該槽體204內沿一線性方向位移,而不發生垂直該線性方向位移的情況,該磁鐵30之寬度或長度略微小於該槽體204之寬度。
接續上述,該線圈層40設置在該感測組件20之上,由於該線圈層40需感測該磁鐵30的磁通量變化,因此該線圈層40覆蓋於該槽體204之上,更易進行磁通量的感測。線圈層40包含一基板404與一金屬線圈406,金屬線圈406設置於基板404上,基板404經由印刷製程將金屬線圈406設置於基板404 上。本實施例為金屬線圈406設置於基板404上,再者,另一實施例更可為基板404之上下兩側皆設置金屬線圈406,以加強線圈層40之感應靈敏度。
請繼續參閱第四(A)圖,如圖所示,當該磁鐵30與該線圈層40發生相對位移時,通過法拉第定律可以得知,該線圈層40內的磁通量發生變化,即會產生感應訊號,藉此做為感測組件20感測振動所產生之感測訊號。此外,為了使得本發明之振動感測器更為靈敏,本發明於該線圈層40之表面塗佈一保護層402,該保護層402可均覆蓋該線圈層40,從而減少了該線圈層40與空氣之間的接觸,進而使得空氣中的離子對該線圈層40的感測干擾降低,提高導磁係數、增強磁通量變化之感應量,並提高了該線圈層40對該磁鐵30之磁感線的感測靈敏度。另外,在第一實施例中,該磁鐵30與該線圈層40的距離相對接近,更加容易感測該磁鐵30的磁通量變化,來判斷該磁鐵30是否因振動而發生位移。
請繼續參閱第一圖並一併參閱第四(A)圖,在實際的振動感測過程中,該磁鐵30受到外力振動作用而發生位移,該電路板10在慣性作用下維持其原本的位置,其中該磁鐵30需要克服與該槽體204內側之摩擦力,也就是說,該磁鐵30與該槽體204之間的摩擦係數μ越小,該磁鐵30更加容易克服摩擦力而產生滑動。由於該線圈層40固定在該感測組件20之上,該磁鐵30在該槽體204內滑動即與該線圈層40產生了相對位移。通過法拉第定律可以得知,在閉合迴路上讓通過導體所包圍的曲面的磁通量變化時,電流會在任何閉合導體內流動,因磁鐵30受外力導致振動而滑動於槽體204,讓該線圈層40內的磁通量發生變化,即會產生感應電流,由於該電路板10上設有該輸出電極104,通過連接外部電子設備對該感應電流的測量即可得知其振動行為,如此感測組件20所產 生之感應電流或感應電動勢作為感測訊號,其中測量感應電流或感應電動勢的方法為習知技術,故在此不再贅述。
請繼續參閱第一圖,如圖所示,為了使振動感測器更加靈敏,增大感測頻率的範圍,需要減小該磁鐵30與該槽體204之間的摩擦係數μ,也就是說,摩擦係數μ越小,該磁鐵30需要克服的摩擦力就越小,進而該磁鐵30更易發生滑動,與該線圈層40產生相對位移,另外由於無習知的剛性結構,所以振動感測能力可擴展。
請參閱第八(A)圖及第八(B)圖,如圖所示,其係為本發明之一較佳實施例之局部放大示意圖。於該槽體204內塗佈一潤滑層206,其塗佈方式可以採用噴塗等方式進行,但並不以此為限。其主要目的是為了降低該磁鐵30與該槽體204之間的摩擦係數。其中,該潤滑層206含有氟素、矽素或碳化物等,添加了上述物質的該潤滑層206表面更加光滑,使得與該磁鐵30的摩擦係數降低。另外,該潤滑層206更可選用一奈米粒子2062進行塗佈,由該潤滑層206含有該奈米粒子2062,該潤滑層206表面即為微小顆粒狀結構,該顆粒狀結構減少了該磁鐵30與該槽體204的接觸面積,因此,降低了該磁鐵30與該槽體204之間的摩擦係數,使得該磁鐵30更加容易克服與該槽體204之間的摩擦力,進而在該槽體204內產生位移。該結構使得本發明的振動感測器可以感測低頻振動以及寬頻振動,例如振動頻率為1Hz的低頻振動或者類似手臂擺動的寬頻振動等。
請結合參閱第三(B)圖、第四(B)圖以及第六圖,其分別為本發明之第二實施例之感測組件橫向截面圖、感測組件縱向截面圖以及局部放大示意圖。如圖所示,第二實施例與第一實施例之結構基本相同,差別之處在於,該感測基板202並非在上表面設置該槽體2042,而是將該槽體2042設置於該感測基板 202之內部,其中該槽體2042更可設置為密閉空間,並將該密閉空間設置為真空,該真空結構大大減小了空氣阻力對該磁鐵30的阻礙,使得該磁鐵30在外部發生振動時更加容易克服自身摩擦力而產生位移,進而本發明之振動感測器更為靈敏。
另外,在原本該線圈層40之上更可堆疊至少一層該線圈層40。該些線圈層40採用串聯或並聯的連接方式,當該些線圈層40為串聯方式電性連接該電路板10時,由於線圈數與電動勢成正比,所以串聯之該些線圈層40使該些線圈層40所產生的感應電動勢提高,其相當於提高電路板10之輸出電壓。其中該些線圈層40經由一第一導電連接層408作電性連接,以電性相接不同基板上的該些線圈層40。
接續上述,當該些線圈層40為並聯方式電性連接該電路板1()時,依據並聯可提高電流量的電性使該些線圈層40所產生的感應電流提高。其具體的產生方式為電學原理,故在此不再贅述。在第二實施例中,由於該槽體2042設置為真空結構減小了空氣對該磁鐵30的阻力,以及通過堆疊該線圈層40增大感測磁通量的方式,使得本發明之振動感測器更加靈敏,更易感測低頻振動以及寬頻振動。
請結合參閱第三(C)圖、第四(C)圖以及第七圖,其分別為本發明之第三實施例之感測組件橫向截面圖、感測組件縱向截面圖以及局部放大示意圖。如圖所示,第三實施例與第一實施例之結構基本相同,差別之處在於至少一第二線圈層42設置於該感測組件20之另一側,該些第二線圈層42電性連接該電路板10,其中該些第二線圈層42分別設由一第二基板422與至少一第二金屬線圈424,第二金屬線圈424設置於第二基板422之表面上,舉例而言,第二基板 422亦可是印刷電路板,且該些第二線圈層42經由一第二導電連接層426作電性連接,以讓不同基板上的第二線圈層42作電性連接。
接續上述,該第二線圈層42堆疊層數可視具體情況而改變,於本實施例中堆疊兩層該第二線圈層42。該些第二線圈層42與該線圈層40採用串聯或並聯的連接方式,其獲得的效果與第一實施例中增大感應電流或增大感應電壓的效果相同,故在此不再贅述。
另外,相較於前述實施例,第三實施例中另一差別之處在於該感測組件20包含複數個該感測基板202,該些感測基板202上更設置了複數個槽體2044,該些槽體2044夾持該磁鐵30,並且該磁鐵30在該槽體2044內滑動。於本實施例中,該槽體2044由於夾持該磁鐵30,所以構成斷面結構,其中斷面結構減小了該磁鐵30與該槽體2044的接觸面積,進而減小了該磁鐵30與該槽體2044之間的摩擦力,使得發生外部振動時,該磁鐵30於該槽體2044內更易產生位移。
另外,由於該槽體2044採用了斷面結構,其鏤空部分同時也不會阻礙該磁鐵30產生的磁感力以及降低該磁感力的強度。相對於前述實施例中該磁鐵30的磁感力可以近乎完全的通過該些線圈層40以及該些第二線圈層42,進而降低了該感測組件20對該磁鐵30磁感線的阻礙及損失。在第三實施例中,由於該槽體2044採用了斷面結構以及於該感測組件20之兩側分別堆疊了複數個該線圈層40以及複數個該第二線圈層42,從而提升了該磁鐵30的磁力線通過該些線圈層40與該些第二線圈層42後所產生感應電流或感應電動勢,進而提高了本振動感測器的靈敏度,以及對低頻振動和寬頻振動的感測。
另外,雖然本發明之振動感測器在感測低頻振動以及寬頻振動時十 分靈敏,但並非僅限於偵測低頻振動以及寬頻振動,本發明同樣可以偵測特定振動頻率、窄頻振動行為(如1MHz)或更高頻振動行為等。
綜上所述,本發明之該振動感測器係針對感測振動而進行發明,藉由將該磁鐵30滑動設置於該槽體204內,該線圈層40或增加該第二線圈層42設置於該感測組件20之兩側,通過振動而引發該磁鐵30的位移,來感測該磁鐵30通過該些線圈層的磁通量變化而產生的感應電流或感應電動勢,以此來判斷該振動感測器的振動頻率。更進一步,通過對該槽體204塗佈該潤滑層206、堆疊多層該線圈層40與堆疊多層該第二線圈層42,使得本發明之振動感測器感測更為靈敏,可感測低頻振動或寬頻振動,具有良好的敏感度,同樣也可以感測高頻振動。另外,本發明之感測結構設計合理,實現了輕薄及微小化,更不需施加偏壓即可對振動進行感測,適用性更為廣泛。
惟以上所述者,僅為本發明之較佳實施例而已,並非用來限定本發明實施之範圍,舉凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本發明之申請專利範圍內。

Claims (16)

  1. 一種振動感測器,其包含:一電路板,設置一槽體;一磁鐵,設置於該槽體內,且該磁鐵在該槽體內滑動;以及至少一線圈層,設置於該磁鐵之至少一側,該線圈層電性連接該電路板;其中,當該磁鐵於受外力振動而滑動於該槽體內時,該磁鐵之滑動導致該線圈層因磁通量變化而產生一感應訊號並經該電路板之一輸出電極輸出。
  2. 如申請專利範圍第1項所述之振動感測器,其中該線圈層表面塗佈一保護層,該保護層含有磁性材料。
  3. 如申請專利範圍第1項所述之振動感測器,其中該線圈層包含一基板與至少一金屬線圈,該金屬線圈設置於該基板之表面。
  4. 如申請專利範圍第1項所述之振動感測器,其中該槽體表面塗佈一潤滑層,該潤滑層含有氟素、矽素、碳化物或奈米粒子。
  5. 如申請專利範圍第3項所述之振動感測器,其中,更包含一導線,連接該金屬線圈與該輸出電極。
  6. 一種振動感測器,其包含:一電路板,該電路板設置一容置空間;一感測組件,設置於該容置空間內,該感測組件包含一感測基板與一磁鐵,該感測基板設置一槽體,進一步,該槽體內設置該磁鐵,並且該磁鐵在該槽體內滑動;以及至少一線圈層,設置於該感測組件之至少一側,該線圈層電性連接該電路板;其中,當該磁鐵於該感測組件受外力振動而滑動於該槽體內時,該磁鐵之滑動導致該線圈層因磁通量變化而產生一感應訊號並經該電路板輸出。
  7. 如申請專利範圍第6項所述之振動感測器,其中該電路板之該容置空間的內側面與該感測組件的外側邊緣接合固定,該線圈層接合固定於該感測組件之上。
  8. 如申請專利範圍第6項所述之振動感測器,其中該線圈層表面塗佈一保護層,該保護層含有磁性材料。
  9. 如申請專利範圍第6項所述之振動感測器,其中該線圈層包含一基板與至少一金屬線圈,該金屬線圈設置於該基板之表面。
  10. 如申請專利範圍第6項所述之振動感測器,其中該槽體表面塗佈一潤滑層,該潤滑層含有氟素、矽素、碳化物或奈米粒子。
  11. 如申請專利範圍第9項所述之振動感測器,其中,更包含一導線,連接該金屬線圈與一輸出電極。
  12. 一種振動感測器,其包含:一電路板,該電路板設置一容置空間;一感測組件,設置於該容置空間內,該感測組件包含複數個感測基板與一磁鐵,該些感測基板設置一槽體,該槽體夾持該磁鐵,且該磁鐵在該槽體內滑動;以及至少一線圈層,設置於該感測組件之至少一側,該線圈層電性連接該電路板;其中,當該磁鐵於該感測組件受外力振動而滑動於該槽體內時,該磁鐵之滑動導致該線圈層因磁通量變化而產生一感應訊號並經該電路板輸出。
  13. 如申請專利範圍第12項所述之振動感測器,其中該線圈層表面塗佈一保護層,該保護層含有磁性材料。
  14. 如申請專利範圍第12項所述之振動感測器,其中該線圈層包含一基板與至少一金屬線圈,該金屬線圈設置於該基板之表面。
  15. 如申請專利範圍第12項所述之振動感測器,其中該槽體表面塗佈一潤滑層,該潤滑層含有氟素、矽素、碳化物或奈米粒子。
  16. 如申請專利範圍第14項所述之振動感測器,其中,更包含一導線,連接該金屬線圈與一輸出電極。
TW107117634A 2018-05-23 2018-05-23 振動感測器 TWI662259B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW107117634A TWI662259B (zh) 2018-05-23 2018-05-23 振動感測器
US16/170,471 US11415457B2 (en) 2018-05-23 2018-10-25 Vibration sensor with sliding magnet
CN201910410486.9A CN110530501A (zh) 2018-05-23 2019-05-16 振动传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107117634A TWI662259B (zh) 2018-05-23 2018-05-23 振動感測器

Publications (2)

Publication Number Publication Date
TWI662259B true TWI662259B (zh) 2019-06-11
TW202004135A TW202004135A (zh) 2020-01-16

Family

ID=67764133

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107117634A TWI662259B (zh) 2018-05-23 2018-05-23 振動感測器

Country Status (3)

Country Link
US (1) US11415457B2 (zh)
CN (1) CN110530501A (zh)
TW (1) TWI662259B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI732617B (zh) * 2020-03-25 2021-07-01 美律實業股份有限公司 振動感測器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114838894B (zh) * 2022-03-17 2023-07-28 浙江大学 一种基于可折展摩擦纳米技术的桥梁实时监测预警装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM285290U (en) * 2005-10-21 2006-01-11 Jin Yi Siang Entpr Co Ltd Frame structure for photography
CN101782424A (zh) * 2009-01-15 2010-07-21 Vega格里沙贝两合公司 振动传感器
CN104990622A (zh) * 2015-07-31 2015-10-21 河北工业大学 基于电磁感应的多级震动检测器
CN206258330U (zh) * 2016-10-25 2017-06-16 杨斌堂 扭转振动测试***及组合装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3129347A (en) * 1960-07-20 1964-04-14 Bendix Corp Magneto-electric motion detecting transducer
JPS56164929A (en) * 1980-05-22 1981-12-18 Sharp Corp Small-sized vibration sensor
JPH07239238A (ja) * 1994-01-10 1995-09-12 Omron Corp 歩数計のセンサ構造
JP3677944B2 (ja) * 1997-06-27 2005-08-03 松下電器産業株式会社 振動検知装置
JPH1132471A (ja) * 1997-07-10 1999-02-02 Matsushita Electric Ind Co Ltd 半導体装置と発電装置とこれを備えた電子機器
US7535148B2 (en) * 2003-08-28 2009-05-19 University Of Southampton Electromagnetic device for converting mechanical vibrational energy into electrical energy, and manufacture thereof
EP2162975A1 (en) * 2007-06-29 2010-03-17 Stichting IMEC Nederland Electromagnetic energy scavenger based on moving permanent magnets
DE102008063527A1 (de) * 2008-12-18 2010-07-01 Micro-Epsilon Messtechnik Gmbh & Co. Kg Schaltungsanordnung und Verfahren zum Auswerten eines Sensors
JP6074939B2 (ja) * 2012-07-27 2017-02-08 ソニー株式会社 発電機
CN203397870U (zh) * 2013-08-14 2014-01-15 深圳市汇众森科技有限公司 一种磁胶电感器
TWI629456B (zh) 2014-12-01 2018-07-11 財團法人國家實驗研究院 環境監測系統與震動感測裝置
CN206695896U (zh) * 2017-04-29 2017-12-01 韦统革 一种用于煤矿机电设备的振动监测装置
CN107879310A (zh) 2017-11-06 2018-04-06 余帝乾 一种多功能集成叠层传感器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM285290U (en) * 2005-10-21 2006-01-11 Jin Yi Siang Entpr Co Ltd Frame structure for photography
CN101782424A (zh) * 2009-01-15 2010-07-21 Vega格里沙贝两合公司 振动传感器
CN104990622A (zh) * 2015-07-31 2015-10-21 河北工业大学 基于电磁感应的多级震动检测器
CN206258330U (zh) * 2016-10-25 2017-06-16 杨斌堂 扭转振动测试***及组合装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI732617B (zh) * 2020-03-25 2021-07-01 美律實業股份有限公司 振動感測器

Also Published As

Publication number Publication date
CN110530501A (zh) 2019-12-03
US20190360859A1 (en) 2019-11-28
TW202004135A (zh) 2020-01-16
US11415457B2 (en) 2022-08-16

Similar Documents

Publication Publication Date Title
JP5862567B2 (ja) 振動センサ
CN109319727B (zh) Mems传感器以及提供和运行mems传感器的方法
US20110314924A1 (en) Structure and fabrication of a microscale flow-rate/skin friction sensor
TWI662259B (zh) 振動感測器
US20160131542A1 (en) Systems and methods for press force detectors
CN100454028C (zh) 阻抗检测电路及其方法
US10175306B1 (en) Large area magnetic flux sensor
CN109282879B (zh) 一种微质量传感器的非接触式emat检测方法及其***
CN101251409A (zh) 一种InSb-NiSb磁敏电阻型振动传感器
Ghosh et al. A piezoelectric-on-silicon width-extensional mode Lorentz force resonant MEMS magnetometer
US20150139467A1 (en) Acoustic device and microphone package including the same
CN112197854A (zh) 一种高性能的压电式振动传感器
Horng et al. Fabrication of a dual-planar-coil dynamic microphone by MEMS techniques
CN115856725A (zh) 磁传感器
KR100934217B1 (ko) 진동 측정을 위한 미소센서
CN110673065A (zh) 一种磁场检测传感器
Lee et al. A concave-patterned TiN/PECVD-Si3N4/TiN diaphragm MEMS acoustic sensor based on a polyimide sacrificial layer
Auerswald et al. MEMS acoustic emission sensor with mechanical noise rejection
CN209299316U (zh) 一种手机摄像头
JP2005530173A (ja) 永久状態偏差を感知する方法及び装置
US11353085B2 (en) Cantilever assemblies and methods of providing damping for cantilever assemblies
RU118071U1 (ru) Широкополосный низкочастотный датчик магнитного поля
Mian et al. Experimental analysis of out-of-plane Lorentz force actuated magnetic field sensor
Zhang et al. Characterization and model validation of a micromechanical resonant magnetic field sensor
Chandrasekharan et al. Structure and Fabrication of a Microscale Flow-Rate/Skin Friction Sensor