TWI661605B - Flow battery stack - Google Patents

Flow battery stack Download PDF

Info

Publication number
TWI661605B
TWI661605B TW107136882A TW107136882A TWI661605B TW I661605 B TWI661605 B TW I661605B TW 107136882 A TW107136882 A TW 107136882A TW 107136882 A TW107136882 A TW 107136882A TW I661605 B TWI661605 B TW I661605B
Authority
TW
Taiwan
Prior art keywords
electrochemical reaction
flow battery
battery stack
unit
electrode unit
Prior art date
Application number
TW107136882A
Other languages
Chinese (zh)
Other versions
TW202017240A (en
Inventor
Chi-Chang Chen
陳祈彰
Original Assignee
Industrial Technology Research Institute
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute, 財團法人工業技術研究院 filed Critical Industrial Technology Research Institute
Priority to TW107136882A priority Critical patent/TWI661605B/en
Priority to CN201811478741.5A priority patent/CN111082118B/en
Application granted granted Critical
Publication of TWI661605B publication Critical patent/TWI661605B/en
Publication of TW202017240A publication Critical patent/TW202017240A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2418Grouping by arranging unit cells in a plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2455Grouping of fuel cells, e.g. stacking of fuel cells with liquid, solid or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

一種液流電池堆包括第一電極單元、第二電極單元、含有至少一雙極單元的電池單元、數個第一集電板與第二集電板。第一電極單元具有N個不相通的第一電化學反應區域,第二電極單元具有N個不相通的第二電化學反應區域,N為大於1的整數。第N個第二電化學反應區域與第N個第一電化學反應區域相通。電池單元介於第一與第二電極單元之間,其雙極單元具有N個不相通的第三電化學反應區域,且第N個第三電化學反應區域與第N個第一電化學反應區域相通。第一集電板則設置於第一電極單元外側,且第N個第一集電板對應第N個第一電化學反應區域。第二集電板設置於第二電極單元外側。A flow battery stack includes a first electrode unit, a second electrode unit, a battery unit containing at least one bipolar unit, and a plurality of first and second current collecting plates. The first electrode unit has N non-connected first electrochemical reaction regions, the second electrode unit has N non-connected second electrochemical reaction regions, and N is an integer greater than 1. The Nth second electrochemical reaction region is in communication with the Nth first electrochemical reaction region. The battery unit is interposed between the first and second electrode units, and the bipolar unit thereof has N non-interconnected third electrochemical reaction regions, and the Nth third electrochemical reaction region and the Nth first electrochemical reaction region Regional connectivity. The first current collector plate is disposed outside the first electrode unit, and the Nth first current collector plate corresponds to the Nth first electrochemical reaction region. The second current collecting plate is disposed outside the second electrode unit.

Description

液流電池堆Flow battery stack

本發明是有關於一種電化學儲能裝置,且特別是有關於一種液流電池堆。The invention relates to an electrochemical energy storage device, and in particular to a flow battery stack.

液流電池(flow battery),亦稱為氧化還原液流電池(redox flow battery)是一種電化學儲能裝置,是透過電解液(正極電解液與負極電解液)中氧化還原反應機制的離子價數變化,進行充電與放電的化學反應平台。Flow battery, also known as redox flow battery, is an electrochemical energy storage device. It is an ion valence that penetrates the redox reaction mechanism in the electrolyte (positive electrolyte and negative electrolyte). The number of changes, the chemical reaction platform for charging and discharging.

氧化還原液流電池具有安全性高、可以完全充放電、能量效率高、電池壽命長、電解液劣化少、不會排放有害環境的氣體以及電解液儲存槽增加即可增加系統儲電容量等特徵,可用於解決傳統再生能源具有的間歇特性,進而改善再生能源對於電力電網供電的不確定性。The redox flow battery has the characteristics of high safety, full charge and discharge, high energy efficiency, long battery life, less electrolyte degradation, no discharge of environmentally harmful gases, and an increase in the storage capacity of the electrolyte, which can increase the power storage capacity of the system. , Can be used to solve the intermittent characteristics of traditional renewable energy, and then improve the uncertainty of renewable energy for power grid power supply.

然而,目前既有的串聯式液流電池堆尚存在以下問題,包括:電解液流通分布不均,發生死區(dead volume)造成電解液停滯及濃度極化,而影響電池內部質子與電子傳輸效能,使得電池整體效率不佳,並有電解液流通阻力過高造成電池洩漏與寄生電力損耗過高等問題。However, the existing tandem flow battery stacks still have the following problems, including the uneven distribution of electrolyte flow, the dead volume of the electrolyte causing the electrolyte to stagnate and concentration polarization, which affects the proton and electron transport inside the battery. The efficiency makes the overall efficiency of the battery is not good, and the electrolyte circulation resistance is too high, which causes problems such as battery leakage and parasitic power loss.

本發明提供一種液流電池堆,能有效提升可靠度並改善電解液流通分布不均的情形。The invention provides a flow battery stack, which can effectively improve the reliability and improve the uneven distribution of the electrolyte.

本發明的液流電池堆包括第一電極單元、第二電極單元、含有至少一雙極單元的電池單元、數個第一集電板與第二集電板。第一電極單元具有不相通的N個第一電化學反應區域,第二電極單元具有不相通的N個第二電化學反應區域,N為大於1的整數。第N個第二電化學反應區域與第N個第一電化學反應區域相通。電池單元介於第一與第二電極單元之間,其雙極單元具有不相通的N個第三電化學反應區域,且第N個第三電化學反應區域與第N個第一電化學反應區域相通。第一集電板則設置於第一電極單元外側,且每個第一集電板對應每個第一電化學反應區域。第二集電板設置於第二電極單元外側。The flow battery stack of the present invention includes a first electrode unit, a second electrode unit, a battery unit including at least one bipolar unit, a plurality of first current collector plates and a second current collector plate. The first electrode unit has N first electrochemical reaction regions that are not connected, the second electrode unit has N second electrochemical reaction regions that are not connected, and N is an integer greater than 1. The Nth second electrochemical reaction region is in communication with the Nth first electrochemical reaction region. The battery cell is interposed between the first and second electrode units, and its bipolar unit has N third electrochemical reaction regions that are not connected, and the Nth third electrochemical reaction region and the Nth first electrochemical reaction Regional connectivity. The first current collecting plate is disposed outside the first electrode unit, and each first current collecting plate corresponds to each first electrochemical reaction region. The second current collecting plate is disposed outside the second electrode unit.

基於上述,既可有效提升液流電池堆可靠度,又可以將電解液在電池中進行有效且均勻的流場分配,改善電解液流通分布不均,避免死區(dead volume)的發生,提升電池內部質子與電子傳輸效能及電池整體效率;降低電池流通阻力,減少輸送泵浦寄生電力的損耗,有利提升氧化還原電池的電流密度及能量效率的結構設計,以有效提升儲能系統的可靠度及穩健性。Based on the above, it can not only effectively improve the reliability of the flow battery stack, but also effectively and uniformly distribute the electrolyte in the battery, improve the uneven distribution of the electrolyte circulation, and avoid the occurrence of dead volume. The internal proton and electron transmission efficiency of the battery and the overall battery efficiency; reduce the battery flow resistance, reduce the parasitic power loss of the pump, and help improve the current density and energy efficiency of the redox battery structure design to effectively improve the reliability of the energy storage system And robustness.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above features and advantages of the present invention more comprehensible, embodiments are hereinafter described in detail with reference to the accompanying drawings.

請參考以下實施例及隨附圖式,以便更充分地了解本發明,但是本發明仍可以藉由多種不同形式來實踐,且不應將其解釋為限於本文所述之實施例。為了方便理解,下述說明中相同的元件將以相同之符號標示來說明。而在圖式中,為求明確起見對於各構件以及其相對尺寸可能未按實際比例繪製。Please refer to the following embodiments and accompanying drawings to better understand the present invention, but the present invention can still be implemented in many different forms, and should not be construed as being limited to the embodiments described herein. In order to facilitate understanding, the same elements in the following description will be described with the same symbols. In the drawings, for the sake of clarity, the components and their relative sizes may not be drawn to actual scale.

圖1是依照本發明的一實施例的一種液流電池堆的***示意圖。FIG. 1 is an exploded schematic view of a flow battery stack according to an embodiment of the present invention.

請參照圖1,本實施例的液流電池堆10基本上包括第一電極單元100、第二電極單元110、含有至少一雙極單元120的電池單元121、第一集電板130與第二集電板140。雙極單元120可為一個或多個,以達到電池的電性規格。第一電極單元100具有不相通的N個第一電化學反應區域102,第二電極單元110具有數個不相通的N個第二電化學反應區域112,且文中的N是大於1的整數。第N個第二電化學反應區域112與第N個第一電化學反應區域102相通。以圖1為例,N是2,所以第1個第二電化學反應區域112與第1個第一電化學反應區域102相通,第2個第二電化學反應區域112與第2個第一電化學反應區域102相通。電池單元121介於第一與第二電極單元100與110之間,其中的每個雙極單元120如圖2所示具有不相通的N個第三電化學反應區域122,且第N個第三電化學反應區域122會與第N個第一電化學反應區域102相通。舉例來說,第1個第三電化學反應區域122、第1個第二電化學反應區域112與第1個第一電化學反應區域102是彼此相通且位置與大小均相近或相同;第2個第三電化學反應區域122、第2個第二電化學反應區域112與第2個第一電化學反應區域102也是彼此相通且位置與大小均相近或相同。Referring to FIG. 1, the flow battery stack 10 of this embodiment basically includes a first electrode unit 100, a second electrode unit 110, a battery unit 121 including at least one bipolar unit 120, a first current collecting plate 130, and a second Collector plate 140. There may be one or more bipolar units 120 to meet the electrical specifications of the battery. The first electrode unit 100 has N first electrochemical reaction regions 102 that are not connected, the second electrode unit 110 has N second electrochemical reaction regions 112 that are not connected, and N in the text is an integer greater than 1. The N-th second electrochemical reaction region 112 is in communication with the N-th first electrochemical reaction region 102. Taking FIG. 1 as an example, N is 2, so the first second electrochemical reaction region 112 communicates with the first first electrochemical reaction region 102, and the second second electrochemical reaction region 112 and the second first The electrochemical reaction regions 102 communicate with each other. The battery unit 121 is interposed between the first and second electrode units 100 and 110, and each of the bipolar units 120 has N third electrochemical reaction regions 122 which are not connected as shown in FIG. The three electrochemical reaction regions 122 will communicate with the N-th first electrochemical reaction region 102. For example, the first third electrochemical reaction region 122, the first second electrochemical reaction region 112, and the first first electrochemical reaction region 102 are in communication with each other, and the positions and sizes are similar or the same; the second The third electrochemical reaction region 122, the second second electrochemical reaction region 112, and the second first electrochemical reaction region 102 are also in communication with each other, and their positions and sizes are similar or the same.

由於第N個第一、第二與第三電化學反應區域102、112與122是彼此相通,但是第一電化學反應區域102彼此不相通、第二電化學反應區域112彼此不相通、第三電化學反應區域122彼此也不相通,所以相通的多個電化學反應區域(102、112與122)成為一個子電池系統模組300,並與彼此不相通的其他電化學反應區域(102、112與122)的子電池系統模組300等構成一個如圖3所示的並聯系統。圖3顯示的是本發明的實施例的液流電池堆的方塊圖,其中每一個子電池系統模組300包含具有相通的電化學反應區域的電極單元與雙極單元,且由於不同子電池系統模組300的電化學反應區域不相通,所以本實施例能達成高可靠度的結果。舉例來說,若將可靠度均為R SS的電池所構成的N個子電池系統模組300構成一個並聯系統,其可靠度的方程式以下式(1)表示: R SP= 1 – (1-R SS) N(1) Since the Nth first, second, and third electrochemical reaction regions 102, 112, and 122 are in communication with each other, the first electrochemical reaction region 102 is not in communication with each other, the second electrochemical reaction region 112 is not in communication with each other, and the third The electrochemical reaction regions 122 are also not connected with each other, so the communicated multiple electrochemical reaction regions (102, 112, and 122) become a sub-battery system module 300, and other electrochemical reaction regions (102, 112) that are not connected with each other. And 122) sub-battery system modules 300 and the like constitute a parallel system as shown in FIG. 3. FIG. 3 shows a block diagram of a flow battery stack according to an embodiment of the present invention, in which each sub-battery system module 300 includes an electrode unit and a bipolar unit having interconnected electrochemical reaction regions, and due to different sub-battery systems The electrochemical reaction regions of the module 300 are not connected, so this embodiment can achieve a highly reliable result. For example, if N sub-battery system modules 300 composed of batteries with a reliability of R SS form a parallel system, the reliability equation is represented by the following formula (1): R SP = 1 – (1-R SS ) N (1)

經由上式(1)計算,以兩個子系統進行並聯設計,在相同單電池組件的條件下,可靠度將可以提升至88.2%;以四個子系統進行並聯設計,在相同單電池組件的條件下,可靠度將可以提升至98.6%;若以八個子系統進行並聯設計,在相同單電池組件的條件下,可靠度將可以提升至99.9%。因此,以改善可靠度的觀點來看,本實施例中的電化學反應區域(102、112與122)的數量(N值)最佳可在2至8之間。According to the above formula (1), the parallel design with two subsystems can improve the reliability to 88.2% under the same single battery module condition; the parallel design with four subsystems under the same single battery module condition Reliability will be improved to 98.6%; if eight subsystems are designed in parallel, the reliability will be improved to 99.9% under the same single battery module. Therefore, from the viewpoint of improving the reliability, the number (N value) of the electrochemical reaction regions (102, 112, and 122) in this embodiment may be preferably between 2 and 8.

請繼續參照圖1,第一集電板130設置於第一電極單元100外側,且第一集電板130的數量為N個,以使第N個第一集電板130對應第N個第一電化學反應區域102,所以圖1有兩個第一電化學反應區域102,就會有兩個第一集電板130,依此類推。第二集電板140是設置於第二電極單元110外側,且第二集電板140的數量可如圖1所示只有單一個;在另一實施例中,第二集電板140也為多個獨立的集電板,且每個集電板對應每個第二電化學反應區域112。第一集電板130與第二集電板140可以將液流電池堆10充電所需電力的導入或放電所產生的電力導出。此外,液流電池堆10還包括第一端板150與第二端板160,分別設置於第一集電板130外側以及第二集電板140外側。第一端板150上有多個進口孔152,第二端板160上有多個出口孔162,以使電解液進入與流出。而且,為了調節第一集電板130與其他單元構件之間的結構應變與應力,可選擇在第一端板150與第一集電板130之間加設第一彈性體單元170a,並在第二端板160與第二集電板140之間加設第二彈性體單元170b。尤其是第一集電板130的數量為多個,第一彈性體單元170a能進一步調節這些第一集電板130的接觸阻抗。第一與第二彈性體單元170a與170b能調節如螺帽172及螺桿174的緊固元件在進行鎖合過程所發生的結構應變與應力不均情形,同時可以達到隔絕第一與第二電極單元100與110熱傳導與電絕緣之功效。第一與第二彈性體單元170a與170b的材料例如含有碳、氫、氧與(或)矽的化合物矽橡膠,還可包括不飽和橡膠或飽和橡膠等。Please continue to refer to FIG. 1, the first current collector plate 130 is disposed outside the first electrode unit 100, and the number of the first current collector plates 130 is N, so that the Nth first current collector plate 130 corresponds to the Nth There is an electrochemical reaction region 102. Therefore, if there are two first electrochemical reaction regions 102 in FIG. 1, there will be two first current collector plates 130, and so on. The second current collector plate 140 is disposed outside the second electrode unit 110, and the number of the second current collector plates 140 may be only one as shown in FIG. 1; in another embodiment, the second current collector plate 140 is also A plurality of independent current collector plates, and each current collector plate corresponds to each second electrochemical reaction region 112. The first current collecting plate 130 and the second current collecting plate 140 can export the power generated by the introduction or discharge of the power required for charging the flow battery stack 10. In addition, the flow battery stack 10 further includes a first end plate 150 and a second end plate 160, which are disposed outside the first current collector plate 130 and outside the second current collector plate 140, respectively. The first end plate 150 has a plurality of inlet holes 152 and the second end plate 160 has a plurality of outlet holes 162 to allow the electrolyte to enter and flow out. Moreover, in order to adjust the structural strain and stress between the first current collector plate 130 and other unit components, a first elastic body unit 170a may be added between the first end plate 150 and the first current collector plate 130, and A second elastic body unit 170b is provided between the second end plate 160 and the second current collector plate 140. In particular, the number of the first current collecting plates 130 is plural, and the first elastic body unit 170 a can further adjust the contact resistance of the first current collecting plates 130. The first and second elastomer units 170a and 170b can adjust the structural strain and stress unevenness of the fastening elements such as the nut 172 and the screw 174 during the locking process, and can at the same time achieve the isolation of the first and second electrodes Units 100 and 110 have thermal conduction and electrical insulation effects. The material of the first and second elastomer units 170a and 170b is, for example, a silicon rubber containing a compound of carbon, hydrogen, oxygen, and / or silicon, and may further include an unsaturated rubber or a saturated rubber.

請參照圖1與圖2,本實施例中的雙極單元120可包括不參與電化學反應的不導電框架200和參與電化學反應的N個導電板210,且電池單元121更可包括離子交換膜126與石墨電極128。石墨電極128介於離子交換膜126與雙極單元120或離子交換膜126與第二電極單元110之間,且每個石墨電極128對應備配置於每個第三電化學反應區域122內,並搭配具有N個不相通的獨立區域182的密封單元180,第N個獨立區域182對應第N個電化學反應區域(102、112或122)。以圖2為例,密封單元180的第1個獨立區域182是對應第1個第三電化學反應區域122、第2個獨立區域182是對應第2個第三電化學反應區域122。當第三電化學反應區域122的數量是兩個,單一個密封單元180就有兩個獨立區域182;在其他實施例中,若是第三電化學反應區域122的數量是四個,單一個密封單元180就會有四個獨立區域182。因此,當本實施例的液流電池堆10組裝完成,可經由外部控制閥等裝置,各別控制正極電解液與負極電解液進入不同的獨立區域182;也就是說,如圖1的虛線所表示的電解液流向所示,正、負極電解液在同一個液流電池堆10中是流向兩個不相通的電化學反應區域,所以能改善電解液的均勻性並降低流阻,藉此避免死區的發生並有效降低寄生電力損耗。另外,雖然圖1中僅顯示一個離子交換膜126和兩個密封單元180,但應知本發明的雙極單元120的數量可有多個並與多個離子交換膜126搭配相應數量的石墨電極128和密封單元180,來組成液流電池堆10。1 and FIG. 2, the bipolar unit 120 in this embodiment may include a non-conductive frame 200 that does not participate in an electrochemical reaction and N conductive plates 210 that participate in an electrochemical reaction, and the battery unit 121 may further include an ion exchange. The film 126 and the graphite electrode 128. A graphite electrode 128 is interposed between the ion exchange membrane 126 and the bipolar unit 120 or the ion exchange membrane 126 and the second electrode unit 110, and each graphite electrode 128 is correspondingly arranged in each third electrochemical reaction region 122, and With the sealed unit 180 having N non-communicable independent regions 182, the N-th independent region 182 corresponds to the N-th electrochemical reaction region (102, 112, or 122). Taking FIG. 2 as an example, the first independent region 182 of the sealing unit 180 corresponds to the first third electrochemical reaction region 122, and the second independent region 182 corresponds to the second third electrochemical reaction region 122. When the number of the third electrochemical reaction regions 122 is two, a single sealed unit 180 has two independent regions 182; in other embodiments, if the number of the third electrochemical reaction regions 122 is four, a single seal The unit 180 will have four separate areas 182. Therefore, when the flow battery stack 10 of this embodiment is assembled, the positive electrolyte and the negative electrolyte can be controlled to enter different independent regions 182 through devices such as external control valves; that is, as shown by the dashed lines in FIG. 1. The indicated electrolyte flow direction shows that the positive and negative electrolytes flow in the same flow battery stack 10 to two disjoint electrochemical reaction regions, so the uniformity of the electrolyte can be improved and the flow resistance can be reduced, thereby avoiding The occurrence of dead time effectively reduces parasitic power loss. In addition, although only one ion exchange membrane 126 and two sealing units 180 are shown in FIG. 1, it should be understood that the number of the bipolar units 120 of the present invention may be multiple, and a corresponding number of graphite electrodes may be matched with the plurality of ion exchange membranes 126. 128 and the sealing unit 180 to form the flow battery stack 10.

請繼續參照圖2,本實施例的雙極單元120中的不導電框架200包括基板本體202與數個固定框204。基板本體202具有對應第三電化學反應區域122的N個容置空間202a,導電板210經由固定框204固設於容置空間202a內。而且,基板本體202對應每一個容置空間202a包括一個以上的獨立入口202b及一個以上的獨立出口202c。在一實施例中,基板本體202的高度H1>容置空間202a的高度H2,而且H2≥固定框204的高度H3≥導電板210的高度H4;基板本體202的寬度W1>兩倍的容置空間202a的寬度W2;W2≥固定框204的寬度W3≥導電板210的寬度W4。導電板210例如高度可耐酸耐鹼的碳板、導電高分子複合材料或不銹鋼金屬材料;基板本體202例如耐酸鹼高分子材料。以下將描述雙極單元的細部結構。Please continue to refer to FIG. 2. The non-conductive frame 200 in the bipolar unit 120 in this embodiment includes a substrate body 202 and a plurality of fixed frames 204. The substrate body 202 has N accommodating spaces 202 a corresponding to the third electrochemical reaction region 122, and the conductive plate 210 is fixed in the accommodating space 202 a via the fixing frame 204. Moreover, the substrate body 202 includes one or more independent inlets 202b and one or more independent outlets 202c corresponding to each accommodation space 202a. In one embodiment, the height H1 of the substrate body 202> the height H2 of the accommodation space 202a, and H2 ≥ the height H3 of the fixed frame 204 ≥ the height H4 of the conductive plate 210; The width W2 of the space 202a; W2 ≥ the width W3 of the fixed frame 204 ≥ the width W4 of the conductive plate 210. The conductive plate 210 is, for example, a high-acid and alkali-resistant carbon plate, a conductive polymer composite material, or a stainless steel metal material; and the substrate body 202 is, for example, an acid-base polymer material. The detailed structure of the bipolar unit will be described below.

圖4是圖2的基板本體202的流體分配部206透視圖。在圖4中,基板本體202的獨立入口202b到容置空間202a的部分設有流體分配隧道400,將電解液由獨立入口202b進入後均勻分布至容置空間202a。同樣地,基板本體202的容置空間202a到圖2之獨立出口202c之間也可設有上述流體分配隧道400,以使電解液由容置空間202a均勻流出獨立出口202c,且流體分配隧道400是位於基板本體202內而不參與電化學反應機制。FIG. 4 is a perspective view of the fluid distribution portion 206 of the substrate body 202 of FIG. 2. In FIG. 4, a fluid distribution tunnel 400 is provided at a portion from the independent inlet 202b to the accommodation space 202a of the substrate body 202, and the electrolyte is uniformly distributed to the accommodation space 202a after entering through the independent inlet 202b. Similarly, the above-mentioned fluid distribution tunnel 400 may be provided between the accommodation space 202a of the substrate body 202 and the independent outlet 202c in FIG. 2 so that the electrolyte evenly flows from the accommodation space 202a to the independent outlet 202c and the fluid distribution tunnel 400 It is located in the substrate body 202 and does not participate in the electrochemical reaction mechanism.

圖5則是圖2的基板本體202的定位卡接部208之剖面示意圖,其中顯示一個定位結構500,用以使各個雙極單元120之間彼此卡接定位。定位結構500可設置於基板本體202的邊緣或角落,且可為圓錐銷。在一實施例中,定位結構500(例如為圓錐銷)的上端直徑為D1、底端直徑為D2,D2>D1,定位結構500具有圓錐孔槽502,其內孔直徑為D3、外孔直徑為D4,D4>D3,且D3≥D1,D4≥D2。除了基板本體202以外,第一電極單元、第二電極單元等具有不導電框架的構件,均可在相同位置設置定位結構500,以使雙極單元與第一電極單元之間彼此卡接定位,並使雙極單元與第二電極單元之間彼此卡接定位。當圖1的雙極單元120與第一、第二電極單元100和110裝配後可形成對位配合。FIG. 5 is a schematic cross-sectional view of the positioning and latching portion 208 of the substrate body 202 of FIG. 2, in which a positioning structure 500 is shown, so that the bipolar units 120 can be latched and positioned with each other. The positioning structure 500 may be disposed at an edge or a corner of the substrate body 202, and may be a conical pin. In one embodiment, the upper diameter of the positioning structure 500 (for example, a conical pin) is D1, the bottom diameter is D2, and D2> D1. The positioning structure 500 has a conical hole groove 502, and the inner hole diameter is D3 and the outer hole diameter. It is D4, D4> D3, and D3≥D1, D4≥D2. In addition to the substrate body 202, the first electrode unit, the second electrode unit, and other members having a non-conductive frame can be provided with a positioning structure 500 at the same position, so that the bipolar unit and the first electrode unit are snapped and positioned to each other. The bipolar unit and the second electrode unit are clamped and positioned with each other. When the bipolar unit 120 of FIG. 1 is assembled with the first and second electrode units 100 and 110, an alignment fit can be formed.

圖6是圖2的I-I’線段的剖面示意圖,其中顯示基板本體202具有沿每個容置空間202a的邊緣內凹的凹槽600,用以容置導電板210及固定框204,且導電板210可以嵌入的方式置入凹槽600,再以固定框204將導電板210夾持膠合,但本發明並不限於此。由於基板本體202與固定框204的結合並無對外的接縫,所以即使有電解液從基板本體202與固定框204之間洩漏的情況,電解液也頂多從接縫602處流出。而且,基板本體202還可包括對應圖2之密封單元180結構的構槽604,所以即使電解液從接縫602處流出,仍會被密封單元180密封於液流電池堆內,而避免汙染。另外,基板本體202及固定框204與導電板210接觸面還可具有倒角606,以容置導電板210接合時之匹配誤差。FIG. 6 is a schematic cross-sectional view taken along the line II ′ of FIG. 2, wherein the display substrate body 202 has a recess 600 recessed along an edge of each accommodation space 202 a for receiving the conductive plate 210 and the fixing frame 204, and The conductive plate 210 can be inserted into the groove 600 in an embedded manner, and then the conductive plate 210 is clamped and glued by the fixing frame 204, but the present invention is not limited thereto. Since the combination of the substrate body 202 and the fixed frame 204 has no external joints, even if the electrolyte leaks between the substrate body 202 and the fixed frame 204, the electrolyte flows out of the joint 602 at most. In addition, the substrate body 202 may further include a structural groove 604 corresponding to the structure of the sealing unit 180 in FIG. 2, so even if the electrolyte flows out from the joint 602, the sealing unit 180 is still sealed in the flow battery stack to avoid pollution. In addition, the contact surfaces of the substrate body 202 and the fixed frame 204 with the conductive plate 210 may further have a chamfer 606 to accommodate a matching error when the conductive plate 210 is joined.

圖7顯示本實施例中的第一或第二電極單元的立體示意圖。請同時參照圖1與圖7,第一電極單元100類似圖2的雙極單元也包含不導電框架700與位在第一電化學反應區域102的導電板702。而且,第一電極單元100的不導電框架700還可包括數個電解液入口孔704以及數個封閉凸出結構706,其中電解液入口孔704以及封閉凸出結構706是設置於不導電框架700的對邊。電解液入口孔704與封閉凸出結構706沿II-II’線段的剖面如圖8所示,其中顯示不導電框架700內具有如圖4的流體分配隧道400,當電解液從電解液入口孔704流入會從流體分配隧道400均勻進入第一電化學反應區域102,再從流體分配隧道400均勻流出,並到達作為緩衝區的封閉凸出結構706內,因此能提升電解液在歧管通道的流場均勻,使電解液均勻進入與排出每一個電極單元。另外,在第一電極單元100的不導電框架700上還可具有圖5所示的圓錐銷作為定位結構500,以使雙極單元120與第一電極單元100之間彼此卡接定位。而且,不導電框架700上還可設有對應於緊固元件(如螺桿174)穿孔的集電板定位結構708,用以定位第一、第二集電板130與140,並可以達到電隔絕效果。FIG. 7 is a schematic perspective view of the first or second electrode unit in this embodiment. Please refer to FIG. 1 and FIG. 7 at the same time. The first electrode unit 100 similar to the bipolar unit in FIG. 2 also includes a non-conductive frame 700 and a conductive plate 702 located in the first electrochemical reaction region 102. In addition, the non-conductive frame 700 of the first electrode unit 100 may further include a plurality of electrolyte inlet holes 704 and a plurality of closed protruding structures 706. The electrolyte inlet holes 704 and the closed protruding structures 706 are disposed on the non-conductive frame 700. Opposite side. The cross section of the electrolyte inlet hole 704 and the closed protruding structure 706 along the line II-II ′ is shown in FIG. 8, which shows that the non-conductive frame 700 has a fluid distribution tunnel 400 as shown in FIG. 4. The 704 inflow will uniformly enter the first electrochemical reaction area 102 from the fluid distribution tunnel 400, and then uniformly flow out from the fluid distribution tunnel 400, and reach the closed protruding structure 706 as a buffer zone, so the electrolyte in the manifold channel can be improved. The flow field is uniform, which makes the electrolyte enter and discharge each electrode unit uniformly. In addition, the non-conductive frame 700 of the first electrode unit 100 may further have a conical pin as shown in FIG. 5 as a positioning structure 500, so that the bipolar unit 120 and the first electrode unit 100 are snapped and positioned to each other. In addition, the non-conductive frame 700 can also be provided with a current collector plate positioning structure 708 corresponding to the perforation of the fastening element (such as the screw 174) to locate the first and second current collector plates 130 and 140, and can achieve electrical isolation. effect.

同樣地,第二電極單元110也可與上述第一電極單元100一樣設有位置相對於封閉凸出結構706的電解液出口孔(未繪示)以及位置相對於電解液入口孔704的封閉凸出結構(未繪示),且第一電極單元100的封閉凸出結構706是往第一集電板130凸出,第二電極單元110的封閉凸出結構則會往第二集電板140凸出。此外,第二電極單元110同樣可具有圖5所示的圓錐銷作為定位結構500以及對應於緊固元件(如螺桿174)穿孔的集電板定位結構,以使雙極單元120與第二電極單元110之間彼此卡接定位,且可定位第一、第二集電板130與140,並可以達到電隔絕效果。Similarly, the second electrode unit 110 may also be provided with an electrolyte outlet hole (not shown) positioned relative to the closed protruding structure 706 and a closed protrusion positioned relative to the electrolyte inlet hole 704 as in the first electrode unit 100 described above. Structure (not shown), and the closed protruding structure 706 of the first electrode unit 100 is protruding toward the first current collector plate 130, and the closed protruding structure of the second electrode unit 110 is toward the second current collector plate 140 Protruding. In addition, the second electrode unit 110 may also have a conical pin as shown in FIG. 5 as a positioning structure 500 and a current collector plate positioning structure corresponding to a perforation of a fastening element (such as a screw 174), so that the bipolar unit 120 and the second electrode The units 110 are latched and positioned with each other, and the first and second current collector plates 130 and 140 can be positioned, and an electrical isolation effect can be achieved.

綜上所述,本發明藉由在電池堆中設計電解液互不相通的數個電化學反應區域,構成一個並聯系統,除了可提高可靠度,還具可量產性及降低製造成本的效果,另外,本發明獨立的電化學反應區域因為電解液互不相通,所以藉由分區控制達成高均勻與低流阻的分布電解液,可以有效降低寄生電力損耗的液流電池堆結構。In summary, the present invention constructs a parallel system by designing several electrochemical reaction areas where the electrolytes are not in communication with each other in the battery stack. In addition to improving reliability, it also has the effects of mass productivity and reducing manufacturing costs. In addition, because the electrolytes in the independent electrochemical reaction areas of the present invention are not in communication with each other, a distributed electrolyte with high uniformity and low flow resistance can be achieved by zone control, which can effectively reduce the parasitic power loss of the flow battery stack structure.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above with the examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some modifications and retouching without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be determined by the scope of the attached patent application.

10‧‧‧液流電池堆10‧‧‧ flow battery stack

100‧‧‧第一電極單元 100‧‧‧First electrode unit

102‧‧‧第一電化學反應區 102‧‧‧first electrochemical reaction zone

110‧‧‧第二電極單元 110‧‧‧Second electrode unit

112‧‧‧第二電化學反應區域 112‧‧‧Second electrochemical reaction zone

120‧‧‧雙極單元 120‧‧‧bipolar unit

121‧‧‧電池單元 121‧‧‧ Battery Unit

122‧‧‧第三電化學反應區域 122‧‧‧ third electrochemical reaction zone

126‧‧‧離子交換膜 126‧‧‧ion exchange membrane

128‧‧‧石墨電極 128‧‧‧graphite electrode

130‧‧‧第一集電板 130‧‧‧The first collector board

140‧‧‧第二集電板 140‧‧‧Second collector plate

150‧‧‧第一端板 150‧‧‧first end plate

152‧‧‧進口孔 152‧‧‧Inlet hole

160‧‧‧第二端板 160‧‧‧Second end plate

162‧‧‧出口孔 162‧‧‧Exit hole

170a‧‧‧第一彈性體單元 170a‧‧‧first elastomer unit

170b‧‧‧第二彈性體單元 170b‧‧‧Second elastomer unit

172‧‧‧螺帽 172‧‧‧nut

174‧‧‧螺桿 174‧‧‧Screw

180‧‧‧密封單元 180‧‧‧sealed unit

182‧‧‧獨立區域 182‧‧‧ Independent area

200、700‧‧‧不導電框架 200, 700‧‧‧ non-conductive frame

202‧‧‧基板本體 202‧‧‧Substrate body

202a‧‧‧容置空間 202a‧‧‧accommodation space

202b‧‧‧獨立入口 202b‧‧‧ independent entrance

202c‧‧‧獨立出口 202c‧‧‧ Independent export

204‧‧‧固定框 204‧‧‧Fixed frame

206‧‧‧流體分配部 206‧‧‧ Fluid Distribution Department

208‧‧‧定位卡接部 208‧‧‧ Positioning card connector

210、702‧‧‧導電板 210, 702‧‧‧ conductive plate

300‧‧‧子電池系統模組 300‧‧‧ Sub-Battery System Module

400‧‧‧流體分配隧道 400‧‧‧fluid distribution tunnel

500‧‧‧定位結構 500‧‧‧ positioning structure

600‧‧‧凹槽 600‧‧‧ groove

602‧‧‧接縫 602‧‧‧Seam

604‧‧‧構槽 604‧‧‧Groove

606‧‧‧倒角 606‧‧‧ Chamfer

704‧‧‧電解液入口孔 704‧‧‧ electrolyte inlet hole

706‧‧‧封閉凸出結構 706‧‧‧ closed protruding structure

708‧‧‧集電板定位結構 708‧‧‧Positioning structure of current collector plate

D1、D2、D3、D4‧‧‧直徑 D1, D2, D3, D4‧‧‧ diameter

H1、H2、H3、H4‧‧‧高度 H1, H2, H3, H4‧‧‧ height

W1、W2、W3、W4‧‧‧寬度 W1, W2, W3, W4‧‧‧Width

圖1是依照本發明的一實施例的一種液流電池堆的***示意圖。 圖2是本發明的實施例中的雙極單元的分解示意圖。 圖3是本發明的實施例的液流電池堆的方塊圖。 圖4是圖2的基板本體的流體分配部的透視圖。 圖5是圖2的基板本體的定位卡接部之剖面示意圖。 圖6是圖2的I-I’線段的剖面示意圖。 圖7是本發明的實施例中的第一或第二電極單元的立體示意圖。 圖8是圖7的II-II’線段的剖面示意圖。FIG. 1 is an exploded schematic view of a flow battery stack according to an embodiment of the present invention. FIG. 2 is an exploded schematic view of a bipolar unit in an embodiment of the present invention. FIG. 3 is a block diagram of a flow battery stack according to an embodiment of the present invention. FIG. 4 is a perspective view of a fluid distribution portion of the substrate body of FIG. 2. FIG. 5 is a schematic cross-sectional view of a positioning and engaging portion of the substrate body of FIG. 2. Fig. 6 is a schematic cross-sectional view taken along the line I-I 'in Fig. 2. FIG. 7 is a schematic perspective view of the first or second electrode unit in the embodiment of the present invention. Fig. 8 is a schematic cross-sectional view taken along a line II-II 'in Fig. 7.

Claims (17)

一種液流電池堆,包括: 第一電極單元,其具有不相通的N個第一電化學反應區域,N為大於1的整數; 第二電極單元,其具有不相通的N個第二電化學反應區域,第N個所述第二電化學反應區域與第N個所述第一電化學反應區域相通; 電池單元,其具有至少一雙極單元,介於所述第一電極單元與所述第二電極單元之間,其中所述雙極單元具有不相通的N個第三電化學反應區域,且第N個所述第三電化學反應區域與第N個所述第一電化學反應區域相通; N個第一集電板,設置於所述第一電極單元外側,且第N個所述第一集電板對應第N個所述第一電化學反應區域;以及 至少一第二集電板,設置於所述第二電極單元外側。A flow battery stack includes: a first electrode unit having N first electrochemical reaction regions that are not connected, where N is an integer greater than 1; a second electrode unit having N second electrochemical cells that are not connected A reaction region, the Nth second electrochemical reaction region is in communication with the Nth first electrochemical reaction region; a battery unit having at least one bipolar unit interposed between the first electrode unit and the Between the second electrode units, wherein the bipolar unit has N third electrochemical reaction regions that are not connected, and the Nth third electrochemical reaction region and the Nth first electrochemical reaction region Communicate with each other; N first current collector plates are disposed outside the first electrode unit, and the Nth first current collector plate corresponds to the Nth first electrochemical reaction region; and at least one second collector The electric plate is disposed outside the second electrode unit. 如申請專利範圍第1項所述的液流電池堆,其中所述第一集電板的數量為多個,且所述第二集電板的數量為一個。The flow battery stack according to item 1 of the scope of patent application, wherein the number of the first current collector plates is plural, and the number of the second current collector plates is one. 如申請專利範圍第1項所述的液流電池堆,其中所述N為2至8。The flow battery stack according to item 1 of the patent application scope, wherein the N is 2 to 8. 如申請專利範圍第1項所述的液流電池堆,更包括多數個密封單元,其中每個所述密封單元具有N個不相通的獨立區域,第N個所述獨立區域對應第N個所述第三電化學反應區域。The flow battery stack according to item 1 of the scope of patent application, further includes a plurality of sealed units, wherein each of the sealed units has N non-connected independent areas, and the N-th independent area corresponds to the N-th independent area. The third electrochemical reaction region is described. 如申請專利範圍第1項所述的液流電池堆,其中所述雙極單元包括: 不導電框架,具有基板本體與多數個固定框,其中所述基板本體具有對應所述第三電化學反應區域的N個容置空間;以及 N個導電板,經由所述多數個固定框固設於N個所述容置空間內,其中 所述基板本體包括對應每個所述容置空間的至少一獨立入口及至少一獨立出口。The flow battery stack according to item 1 of the patent application scope, wherein the bipolar unit includes: a non-conductive frame having a substrate body and a plurality of fixed frames, wherein the substrate body has a corresponding third electrochemical reaction N accommodating spaces in the area; and N conductive plates fixed in the N accommodating spaces via the plurality of fixing frames, wherein the substrate body includes at least one corresponding to each of the accommodating spaces. Independent entrance and at least one independent exit. 如申請專利範圍第1項所述的液流電池堆,其中所述電池單元更包括: 離子交換膜;以及 石墨電極,介於所述雙極單元與所述離子交換膜之間,其中每個所述石墨電極對應備配置於每個所述第三電化學反應區域內。The flow battery stack according to item 1 of the patent application scope, wherein the battery cell further includes: an ion exchange membrane; and a graphite electrode between the bipolar unit and the ion exchange membrane, each of which The graphite electrodes are correspondingly arranged in each of the third electrochemical reaction regions. 如申請專利範圍第5項所述的液流電池堆,其中所述基板本體更包括流體分配隧道,將電解液由所述獨立入口進入後均勻分布至所述容置空間,並將所述電解液由所述容置空間均勻流出所述獨立出口,且所述流體分配隧道是位於所述基板本體內而不參與電化學反應機制。The flow battery stack according to item 5 of the scope of patent application, wherein the substrate body further includes a fluid distribution tunnel, and the electrolyte is evenly distributed to the accommodating space after entering through the independent inlet, and the electrolysis is performed. Liquid flows out of the independent outlet uniformly from the containing space, and the fluid distribution tunnel is located in the substrate body and does not participate in the electrochemical reaction mechanism. 如申請專利範圍第5項所述的液流電池堆,其中所述基板本體更包括多數個第一定位結構,以使所述雙極單元之間彼此卡接定位。The flow battery stack according to item 5 of the scope of patent application, wherein the substrate body further includes a plurality of first positioning structures, so that the bipolar units are snapped on and positioned with each other. 如申請專利範圍第8項所述的液流電池堆,其中所述第一電極單元更包括多數個第二定位結構,以使所述雙極單元與所述第一電極單元之間彼此卡接定位。The flow battery stack according to item 8 of the scope of patent application, wherein the first electrode unit further includes a plurality of second positioning structures, so that the bipolar unit and the first electrode unit are latched to each other. Positioning. 如申請專利範圍第8項所述的液流電池堆,其中所述第二電極單元更包括多數個第三定位結構,以使所述雙極單元與所述第二電極單元之間彼此卡接定位。The flow battery stack according to item 8 of the scope of patent application, wherein the second electrode unit further includes a plurality of third positioning structures, so that the bipolar unit and the second electrode unit are latched to each other Positioning. 如申請專利範圍第8~10項中任一項所述的液流電池堆,其中所述第一定位結構、所述第二定位結構與所述第三定位結構為圓錐銷。The flow battery stack according to any one of claims 8 to 10, wherein the first positioning structure, the second positioning structure, and the third positioning structure are conical pins. 如申請專利範圍第5項所述的液流電池堆,其中所述基板本體具有沿每個所述容置空間的邊緣內凹的凹槽,用以容置每個所述導電板及每個所述固定框。The flow battery stack according to item 5 of the patent application scope, wherein the substrate body has a recess recessed along an edge of each of the accommodating spaces for accommodating each of the conductive plates and each The fixed frame. 如申請專利範圍第1項所述的液流電池堆,其中所述第一電極單元包括多數個電解液入口孔以及多數個封閉凸出結構,其中所述多數個電解液入口孔以及所述多數個封閉凸出結構是設置於所述第一電極單元的對邊。The flow battery stack according to item 1 of the patent application scope, wherein the first electrode unit includes a plurality of electrolyte inlet holes and a plurality of closed protruding structures, wherein the plurality of electrolyte inlet holes and the majority A closed protruding structure is disposed on the opposite side of the first electrode unit. 如申請專利範圍第1項所述的液流電池堆,其中所述第二電極單元包括多數個電解液出口孔以及多數個封閉凸出結構,其中所述多數個電解液出口孔以及所述多數個封閉凸出結構是設置於所述第二電極單元的對邊。The flow battery stack according to item 1 of the patent application scope, wherein the second electrode unit includes a plurality of electrolyte outlet holes and a plurality of closed protruding structures, wherein the plurality of electrolyte outlet holes and the majority A closed protruding structure is disposed on the opposite side of the second electrode unit. 如申請專利範圍第1項所述的液流電池堆,更包括: 第一端板,設置於所述多數個第一集電板外側;以及 第二端板,設置於所述第二集電板外側。The flow battery stack according to item 1 of the scope of patent application, further comprising: a first end plate provided outside the plurality of first current collector plates; and a second end plate provided at the second current collector Outside of the plate. 如申請專利範圍第15項所述的液流電池堆,更包括第一彈性體單元,設置於所述第一端板與所述多數個第一集電板之間,用以調節所述多數個第一集電板的接觸阻抗。The flow battery stack according to item 15 of the scope of patent application, further comprising a first elastomer unit, which is disposed between the first end plate and the plurality of first current collector plates to adjust the majority Contact resistance of the first collector plate. 如申請專利範圍第15項所述的液流電池堆,更包括第二彈性體單元,設置於所述第二端板與所述第二集電板之間。The flow battery stack according to item 15 of the scope of patent application, further comprising a second elastic body unit disposed between the second end plate and the second current collector plate.
TW107136882A 2018-10-19 2018-10-19 Flow battery stack TWI661605B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW107136882A TWI661605B (en) 2018-10-19 2018-10-19 Flow battery stack
CN201811478741.5A CN111082118B (en) 2018-10-19 2018-12-05 Flow cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107136882A TWI661605B (en) 2018-10-19 2018-10-19 Flow battery stack

Publications (2)

Publication Number Publication Date
TWI661605B true TWI661605B (en) 2019-06-01
TW202017240A TW202017240A (en) 2020-05-01

Family

ID=67764367

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107136882A TWI661605B (en) 2018-10-19 2018-10-19 Flow battery stack

Country Status (2)

Country Link
CN (1) CN111082118B (en)
TW (1) TWI661605B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116525868B (en) * 2023-06-30 2023-09-29 杭州德海艾科能源科技有限公司 Self-zoning flow battery pile

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751525A (en) * 2012-06-29 2012-10-24 中国东方电气集团有限公司 Flow battery, and flow battery stack and flow battery system containing same
CN102903946A (en) * 2012-10-31 2013-01-30 中国东方电气集团有限公司 Circular redox flow battery and circular redox flow cell pile comprising same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569833A (en) * 2010-12-17 2012-07-11 上海空间电源研究所 Bipolar plate of redox flow battery
US9577242B2 (en) * 2011-08-22 2017-02-21 Ensync, Inc. Internal header flow divider for uniform electrolyte distribution
US20140227629A1 (en) * 2011-08-22 2014-08-14 Zbb Energy Corporation Half-cell Spacer Material for Enhanced Flow Distribution
CN206497944U (en) * 2017-01-16 2017-09-15 中国东方电气集团有限公司 Bipolar plates, flow battery and flow cell pile

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751525A (en) * 2012-06-29 2012-10-24 中国东方电气集团有限公司 Flow battery, and flow battery stack and flow battery system containing same
CN102903946A (en) * 2012-10-31 2013-01-30 中国东方电气集团有限公司 Circular redox flow battery and circular redox flow cell pile comprising same

Also Published As

Publication number Publication date
TW202017240A (en) 2020-05-01
CN111082118B (en) 2021-10-26
CN111082118A (en) 2020-04-28

Similar Documents

Publication Publication Date Title
US9017869B2 (en) Cell stack for redox flow battery
US11108057B2 (en) Bipolar plate, cell stack, and redox flow battery
WO2002101862A1 (en) Cell frame for redox-flow cell and redox-flow cell
JP6607357B2 (en) Battery cell and redox flow battery
KR20170017013A (en) Vanadium flow cell
CN109473681B (en) Fuel cell bipolar plate with intermittent structure
WO2015102407A1 (en) Redox flow battery or fuel battery comprising storing and collecting means for preventing leakage of reactant
US11764384B2 (en) Segmented frames for redox flow batteries
US8221930B2 (en) Bipolar separators with improved fluid distribution
TWI661605B (en) Flow battery stack
US20180277859A1 (en) Redox flow battery
US8343681B2 (en) Bipolar plate and fuel cell stack including the same
US20150364767A1 (en) Porous electrode assembly, liquid-flow half-cell, and liquid-flow cell stack
JP2015072887A (en) Fuel cell stack
CN107112556A (en) Intermediate module for electrochemical cell stack
KR100751881B1 (en) Fuel cell stack
TWI536651B (en) Cell module
KR101406518B1 (en) Separator and fuel cell having the same
WO2008024401A1 (en) Bipolar separators with improved fluid distribution
KR102159489B1 (en) Mold for manufacturing fuel cell gasket
KR20130033824A (en) Fuel cell stack
KR20180121740A (en) Bipolar plate containing a flow module and redox flow battery comprising thereof
KR20200055311A (en) Manifold with back side flow path and Redox flow battery
KR101698826B1 (en) Separator for fuel cell and fuel cell having the same
KR100915081B1 (en) Uniformity performance typed fuel cell stack cooling apparatus