TWI657324B - Optimization method for finding system transfer parameters of auto-alignment equipments - Google Patents

Optimization method for finding system transfer parameters of auto-alignment equipments Download PDF

Info

Publication number
TWI657324B
TWI657324B TW106126608A TW106126608A TWI657324B TW I657324 B TWI657324 B TW I657324B TW 106126608 A TW106126608 A TW 106126608A TW 106126608 A TW106126608 A TW 106126608A TW I657324 B TWI657324 B TW I657324B
Authority
TW
Taiwan
Prior art keywords
alignment
value
conversion parameter
system conversion
motion
Prior art date
Application number
TW106126608A
Other languages
Chinese (zh)
Other versions
TW201910945A (en
Inventor
林崇田
張成仲
周阜毅
Original Assignee
財團法人金屬工業研究發展中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人金屬工業研究發展中心 filed Critical 財團法人金屬工業研究發展中心
Priority to TW106126608A priority Critical patent/TWI657324B/en
Publication of TW201910945A publication Critical patent/TW201910945A/en
Application granted granted Critical
Publication of TWI657324B publication Critical patent/TWI657324B/en

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

為解決自動對位設備的視覺系統與運動系統間的單位轉換,兩系統單位轉換並非一比一,因此須找尋合適的系統轉換參數之優化方法。優化方法包含:定義系統轉換參數為實驗因子,設定對位疊代次數為輸出值;選擇合適的直交矩陣及設定逐步調整的比例值;安排系統轉換參數值至直交矩陣中;依序將系統轉換參數之矩陣對應值作為輸入參數,進行線上實驗;利用視覺系統與轉換參數,產生對位運動數值並進行對位,並藉此得到最佳疊代次數及相對應的系統轉換參數。In order to solve the unit conversion between the visual system and the motion system of the automatic alignment device, the two-system unit conversion is not one-to-one, so it is necessary to find an appropriate optimization method for the system conversion parameters. The optimization method includes: defining the system conversion parameter as an experimental factor, setting the number of alignment iterations as an output value; selecting an appropriate orthogonal matrix and setting a stepwise adjusted proportional value; arranging the system to convert the parameter values into the orthogonal matrix; and sequentially converting the system The corresponding value of the matrix of the parameter is used as the input parameter to perform the online experiment; the visual system and the conversion parameter are used to generate the alignment motion value and perform the alignment, thereby obtaining the optimal iteration number and the corresponding system conversion parameter.

Description

自動對位設備之系統轉換參數優化方法System conversion parameter optimization method for automatic alignment device

本發明是有關於一種自動對位設備之系統轉換參數優化方法。The invention relates to a system conversion parameter optimization method for an automatic alignment device.

多年來,許多產品已越來越輕、薄、短、小,這類產品的製程精度與速度,多數已超越人工所能處理的極限,大都要仰賴由視覺模組與運動控制模組組合而成的「自動對位系統」協助,才能達到又快、又準的製程嚴格要求。為提高製造精度,自動對位技術已越來越受到關注,但由於它是結合電腦視覺、對位平台、對位方法、運動控制、多座標系統,座標變換及系統整合,由此可知其技術門檻甚高,特別是應用在微影製程的設備開發。Over the years, many products have become lighter, thinner, shorter, and smaller. The precision and speed of these products have surpassed the limits that can be handled by humans. Most of them rely on the combination of visual modules and motion control modules. With the help of the "automatic alignment system", we can meet the strict requirements of fast and accurate processes. In order to improve the manufacturing precision, the automatic alignment technology has been paid more and more attention, but because it is combined with computer vision, alignment platform, alignment method, motion control, multi-coordinate system, coordinate transformation and system integration, we can know its technology. The threshold is very high, especially for device development in lithography processes.

一個自動曝光機自動對位模組的開發者起始的最重要工作是必須了解視覺系統與運動控制系統(包含螺桿、馬達、驅動、控制)的規格及特性,然後搭配所開發的對位方法求得一組屬於機台的視覺與運動控制系統的最佳系統轉換參數。在取得合適的系統轉換參數後,進入實際的生產操作流程才能發揮自動曝光機的高度效能。The most important work initiated by the developer of an automatic alignment machine is to understand the specifications and characteristics of the vision system and motion control system (including screw, motor, drive, control), and then match the developed alignment method. Find the optimal system conversion parameters for a set of vision and motion control systems belonging to the machine. After obtaining the appropriate system conversion parameters, the actual production process can be entered to achieve the high performance of the automatic exposure machine.

在無法取得合適的系統轉換參數的情況下,常造成如以圖1A~圖1C繪示的狀況。圖1A~圖1C分別繪示習知技術多種不同對位動作的目標位置-對位時間示意圖。其中,圖1A中,目標物體的位置雖可逐漸的與目標位置靠攏,但需要很長的時間方能完成。圖1B中,目標物體的位置以震盪的方式進行收斂,並可逐漸的與目標位置靠攏,同樣需要很長的時間方能完成對位。在圖1C中,目標物體的位置以震盪的方式進行調整,但卻呈現發散的現象,無法完成對位。因此,快速找到優質的轉換參數,成為本領域的重要課題。In the case where an appropriate system conversion parameter cannot be obtained, the situation as shown in FIGS. 1A to 1C is often caused. 1A-1C are schematic diagrams showing target position-alignment time of various different alignment actions in the prior art. In FIG. 1A, although the position of the target object can gradually close to the target position, it takes a long time to complete. In Fig. 1B, the position of the target object converges in an oscillating manner, and can gradually move closer to the target position, and it takes a long time to complete the alignment. In Fig. 1C, the position of the target object is adjusted in a oscillating manner, but it is divergent and the alignment cannot be completed. Therefore, quickly finding quality conversion parameters has become an important issue in the field.

本發明提供一種系統轉換參數優化方法,可有效並快速尋找出最佳的系統轉換參數。The invention provides a system conversion parameter optimization method, which can effectively and quickly find the optimal system conversion parameters.

本發明的系統轉換參數優化方法包括:定義一系統轉換參數為實驗因子,設定一對位疊代次數為輸出值;選擇一直交矩陣及設定逐步調整的一比例值;安排系統轉換參數至直交矩陣中,並獲得系統轉換參數之矩陣;依序將系統轉換參數矩陣中的多數個對應值分別作為多數個輸入參數,以進行一直交矩陣線上實驗;利用影像系統與各輸入參數來產生對位運動的所需數值並進行對位動作;經由影像系統檢查對位動作的對位結果,進行此階段的該直交矩陣對位實驗,並判斷對位疊代次數是否不大於需求值;以及,若對位疊代次數不大於需求值,獲得最佳疊代次數及相對應的系統轉換參數。The system conversion parameter optimization method of the invention comprises: defining a system conversion parameter as an experimental factor, setting a pair of bit iteration times as an output value; selecting a consistent matrix and setting a proportional value of the stepwise adjustment; and arranging the system conversion parameter to the orthogonal matrix And obtain the matrix of the system conversion parameters; sequentially use the corresponding values in the system conversion parameter matrix as the majority of the input parameters to perform the experiment on the straight line matrix; use the image system and each input parameter to generate the alignment motion The required value and the alignment action; check the alignment result of the alignment action through the image system, perform the orthogonal matrix alignment experiment at this stage, and determine whether the number of registration iterations is not greater than the demand value; and, if The number of bit iterations is not greater than the demand value, and the optimal number of iterations and the corresponding system conversion parameters are obtained.

在本發明的一實施例中,對位方法更包括:若對位疊代次數大於需求值,使用田口推論與比例值,決定下一階段的直交矩陣實驗的系統轉換參數值,並重新進行直交矩陣對位實驗。In an embodiment of the invention, the alignment method further comprises: if the number of alignment iterations is greater than the demand value, using the Taguchi inference and the scale value, determining the system conversion parameter value of the next phase orthogonal matrix experiment, and re-straightening Matrix alignment experiment.

在本發明的一實施例中,其中,利用影像系統與各輸入參數來產生對位運動的所需數值並進行對位動作的步驟包括:提供視覺系統對被對位物件取像,依據空間相對座標及各輸入參數進行運算,以產生第一對位運動位移距離數值使運動系統產生運動並進行對位動作。In an embodiment of the invention, the step of using the image system and each input parameter to generate a desired value of the aligning motion and performing the aligning action includes: providing a visual system to image the aligned object, according to spatial relative The coordinates and the input parameters are calculated to generate a first aligning displacement distance value to cause the motion system to generate motion and perform a aligning action.

在本發明的一實施例中,對位方法更包括:提供視覺系統以判斷對位動作的對位誤差是否小於設定值;當對位誤差不小於設定值時,再使視覺系統對被對位物件取像,依據空間相對座標及輸出系統轉換參數組進行運算,以產生下一次對位運動位移距離數值使運動系統產生運動並進行下一次的對位動作。In an embodiment of the invention, the alignment method further comprises: providing a vision system to determine whether the alignment error of the alignment action is less than a set value; and when the alignment error is not less than the set value, causing the vision system to be aligned The object image is taken according to the space relative coordinate and the output system conversion parameter group to generate the next alignment motion displacement distance value to cause the motion system to generate motion and perform the next alignment action.

在本發明的一實施例中,其中,若對位疊代次數大於需求值,使用田口推論與比例值,決定下一階段的直交矩陣實驗的系統轉換參數值,並重新進行該直交矩陣對位實驗的步驟包括:判斷多次的對位動作中產生的對位疊代次數的平均值是否小於需求值;以及,當平均值大於該需求值時,依據田口推論與比例值來決定下一階段的直交矩陣實驗的系統轉換參數值以進行直交矩陣對位實驗。In an embodiment of the present invention, if the number of alignment iterations is greater than the demand value, the Taguchi inference and the scale value are used to determine the system conversion parameter value of the next phase orthogonal matrix experiment, and the alignment of the orthogonal matrix is performed again. The experimental steps include: determining whether the average value of the number of registration iterations generated in the multiple alignment actions is less than the demand value; and, when the average value is greater than the demand value, determining the next stage according to the Taguchi inference and the proportional value The system of the orthogonal matrix experiment converts the parameter values for the orthogonal matrix alignment experiment.

在本發明的一實施例中,其中,系統轉換參數組包括第一軸轉換參數、第二軸轉換參數以及第三軸轉換參數。In an embodiment of the invention, the system conversion parameter set includes a first axis conversion parameter, a second axis conversion parameter, and a third axis conversion parameter.

基於上述,本發明透過直交矩陣以及所設定的調整比例來產生系統轉換參數之矩陣,並透過系統轉換參數之矩陣中的多個對應值以分別作為多數個輸入參數來執行一直交矩陣線上實驗。透過檢查對位動作中產生的對位疊代次數,可獲得最佳疊代次數及相對應的系統轉換參數,並優化自動對位設備的自動對位動作。Based on the above, the present invention generates a matrix of system conversion parameters through the orthogonal matrix and the set adjustment ratio, and performs a straight-line matrix experiment by using a plurality of corresponding values in the matrix of the system conversion parameters to respectively serve as a plurality of input parameters. By checking the number of alignment iterations generated in the alignment action, the optimal number of iterations and the corresponding system conversion parameters can be obtained, and the automatic alignment action of the automatic alignment device is optimized.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

請參照圖2,圖2繪示本發明一實施例的自動對位裝置的示意圖。自動對位裝置200包括視覺系統221、222、運動系統211、212以及213。自動對位裝置200透過運動系統211、212以及213來調整物件OBJ以進行對位動作。在本實施例中,視覺系統221、222可透過光罩MSK對物件OBJ上的對位標誌AK1、AK2進行取像,並依據取像的結果以驅使運動系統211、212以及213來進行物件OBJ的位置調整。其中,使運動系統211以及212可分別進行物件OBJ的垂直軸以及平行軸進行調整。運動系統213可使物件OBJ進行轉動。其中,自動對位裝置的視覺系統221、222以及運動系統211、212、213間具有的多數個系統轉換參數組。以三個軸的運動系統而言,系統轉換參數組具有三個系統轉換參數,並分別對應自動對位裝置200上的平行軸、垂直軸以及旋轉軸。Please refer to FIG. 2. FIG. 2 is a schematic diagram of an automatic alignment device according to an embodiment of the present invention. The automatic registration device 200 includes vision systems 221, 222, motion systems 211, 212, and 213. The automatic registration device 200 adjusts the object OBJ through the motion systems 211, 212, and 213 to perform an alignment operation. In this embodiment, the vision system 221, 222 can image the alignment marks AK1, AK2 on the object OBJ through the mask MSK, and drive the motion systems 211, 212, and 213 to perform the object OBJ according to the result of the image capturing. Position adjustment. Wherein, the motion systems 211 and 212 can respectively adjust the vertical axis and the parallel axis of the object OBJ. The motion system 213 can rotate the object OBJ. There are a plurality of system conversion parameter groups between the vision systems 221 and 222 of the automatic alignment device and the motion systems 211, 212 and 213. In the case of a three-axis motion system, the system conversion parameter set has three system conversion parameters and corresponds to the parallel axis, the vertical axis, and the rotation axis on the automatic alignment device 200, respectively.

附帶一提的,本發明實施例中的物件OBJ可以是印刷電路板或也可以是積體電路基板、晶圓、玻璃基板及相關平板物件。Incidentally, the object OBJ in the embodiment of the present invention may be a printed circuit board or an integrated circuit substrate, a wafer, a glass substrate, and related flat objects.

以下請參照圖3,圖3繪示本發明一實施例的系統轉換參數優化方法的流程圖。首先,步驟S310中定義系統轉換參數為實驗因子,系統轉換參數可以具有三個轉換參數fx、fy、fq,轉換參數fx、fy、fz可分別對應三個不同的軸,並設定對位疊代次數為輸出值。其中,步驟S310用以設定自動對位裝置的視覺系統以及運動系統間的多數個系統轉換參數,並依據系統轉換參數進行對位實驗。Referring to FIG. 3, FIG. 3 is a flowchart of a system conversion parameter optimization method according to an embodiment of the present invention. First, the system conversion parameter is defined as an experimental factor in step S310, and the system conversion parameter may have three conversion parameters fx, fy, and fq, and the conversion parameters fx, fy, and fz may respectively correspond to three different axes, and set the alignment iteration. The number of times is the output value. Step S310 is used to set a plurality of system conversion parameters between the visual system of the automatic alignment device and the motion system, and perform an alignment experiment according to the system conversion parameters.

值得一提的,在本發明實施例中,四個量測因子與系統轉換參數有直接關聯,分別為對位過程中,目標位置與第一次對位到達點之位置誤差(e1)與角度誤差(θ1)、第一次目標位置與最後一次到達點之位置誤差(e2)與角度誤差(θ2)。為反映非線性效應和收集足夠代表自動對位裝置定位性能的資料,可採用五水準之全因子實驗,並依據實驗結果來設定系統轉換參數。It is worth mentioning that, in the embodiment of the present invention, the four measurement factors are directly related to the system conversion parameters, which are position errors (e1) and angles of the target position and the first alignment arrival point in the alignment process, respectively. Error (θ1), position error (e2) and angle error (θ2) of the first target position and the last arrival point. In order to reflect the nonlinear effects and collect sufficient data to represent the positioning performance of the automatic alignment device, a five-level full factor experiment can be used, and the system conversion parameters are set according to the experimental results.

藉此,在滿足對位測試實驗過程中所產生的位置誤差與角度誤差的條件下,步驟S310可設定合適的系統轉換參數為實驗因子。Thereby, under the condition that the position error and the angle error generated during the alignment test experiment are satisfied, step S310 can set an appropriate system conversion parameter as an experimental factor.

接著,步驟S320選擇合適的直交(orthogonal)矩陣,並設定調整比例值,再安排系統轉換參數至直交矩陣中。其中,依據直交矩陣、調整比例值對選取系統轉換參數組進行運算,藉以產生系統轉換參數之矩陣。且系統轉換參數之矩陣具有多數個對應值。關於動作細節上,舉例來說明,直交矩陣可如下示的表1:Next, step S320 selects an appropriate orthogonal matrix, sets the adjustment scale value, and arranges the system conversion parameters into the orthogonal matrix. Wherein, the system conversion parameter group is selected according to the orthogonal matrix and the adjustment ratio value, thereby generating a matrix of system conversion parameters. And the matrix of system conversion parameters has a plurality of corresponding values. As for the details of the action, for example, the orthogonal matrix can be as shown in Table 1:

1 1 1 1 1 1 2 2 2 1 3 3 3 2 1 2 3 : : : : : : : : : : : : : : : : : : : : Table 1 1 1 1 1 2 2 2 1 3 3 3 2 1 2 3 : : : : : : : : : : : : : : : : : : : :

當然,直交矩陣並非限制如表1所示,本領域具通常知識的人員可選擇任意合適的直交矩陣,沒有固定的限制。Of course, the orthogonal matrix is not limited as shown in Table 1. Those skilled in the art can select any suitable orthogonal matrix without any fixed restrictions.

另外,調整比例值例如可設定為0.02,並且,例如,當系統轉換參數(fx,fy,fq)=(0.06、0.06, 0.14)時,對應表1的直交矩陣並安排系統轉換參數至直交矩陣中,可獲得具有多數個對應值的系統轉換參數之矩陣,如下表2所示:In addition, the adjustment ratio value can be set, for example, to 0.02, and, for example, when the system conversion parameter (fx, fy, fq) = (0.06, 0.06, 0.14), corresponds to the orthogonal matrix of Table 1 and arranges the system conversion parameters to the orthogonal matrix. In the middle, a matrix of system conversion parameters with a plurality of corresponding values can be obtained, as shown in Table 2 below:

2 fx fy fq 0.06 0.06 0.14 0.06 0.08 0.16 0.06 0.10 0.18 0.08 0.06 0.16 : : : : : : : : : : : : : : : Table 2 : fx fy fq 0.06 0.06 0.14 0.06 0.08 0.16 0.06 0.10 0.18 0.08 0.06 0.16 : : : : : : : : : : : : : : :

當然,表2所示的轉換參數矩陣也只是一個說明範例,不用以限縮本發明。Of course, the conversion parameter matrix shown in Table 2 is only an illustrative example, and is not intended to limit the invention.

其中,對應直交矩陣的三個行,表2中的各個列可依據直交矩陣對應的各行中的數值,以依據調整比例值對系統轉換參數(fx,fy,fq)進行調整而獲得。舉例說明,當對應的直交矩陣中的數值等於1時,表2中的對應值等於系統轉換參數中對應的數值;當對應的直交矩陣中的數值等於2時,表2中的對應值等於系統轉換參數中對應的數值加上調整比例值(0.02);當對應的直交矩陣中的數值等於3時,表2中的對應值等於系統轉換參數中對應的數值加上兩倍的調整比例值(0.04)。Wherein, corresponding to the three rows of the orthogonal matrix, each column in Table 2 can be obtained by adjusting the system conversion parameters (fx, fy, fq) according to the adjusted scale value according to the values in the rows corresponding to the orthogonal matrix. For example, when the value in the corresponding orthogonal matrix is equal to 1, the corresponding value in Table 2 is equal to the corresponding value in the system conversion parameter; when the value in the corresponding orthogonal matrix is equal to 2, the corresponding value in Table 2 is equal to the system. The corresponding value in the conversion parameter plus the adjustment ratio value (0.02); when the value in the corresponding orthogonal matrix is equal to 3, the corresponding value in Table 2 is equal to the corresponding value in the system conversion parameter plus twice the adjustment ratio value ( 0.04).

步驟S330則使轉換參數矩陣中的各個系統轉換參數組依序輸入至多層感知對位模型以執行線上實驗的測試動作,並產生對位誤差比值。以表2的系統轉換參數之矩陣為範例,步驟S330可先使系統轉換參數之矩陣中第一列的對應值((fx, fy, fq)=(0.06, 0.06, 0.14))作為輸入值以進行直交矩陣線上實驗,接著使第二列的對應值((fx, fy, fq)=(0.06, 0.08, 0.16))作為輸入值以進行直交矩陣線上實驗,依此類推,使表2中的多個對應值依序作為輸入參數以進行直交矩陣線上實驗。Step S330, the system conversion parameter groups in the conversion parameter matrix are sequentially input to the multi-layer perceptual registration model to perform the test action of the online experiment, and the alignment error ratio is generated. Taking the matrix of the system conversion parameters of Table 2 as an example, step S330 may first make the corresponding value of the first column in the matrix of the system conversion parameters ((fx, fy, fq)=(0.06, 0.06, 0.14)) as an input value. Perform a straight line matrix experiment, then make the corresponding value of the second column ((fx, fy, fq)=(0.06, 0.08, 0.16)) as the input value to perform the experiment on the orthogonal matrix, and so on, so that in Table 2 A plurality of corresponding values are sequentially used as input parameters for performing orthogonal matrix experiments.

請繼續新參照圖3,步驟S340中,使視覺系統對被對位物件取像,計算空間相對座標並與對應的系統轉換參數進行計算,產生對位運動位移距離並執行對位動作。其中,步驟S340依據步驟S330中執行的直交矩陣線上實驗所產生的對位誤差比值以選擇多個對應值(系統轉換參數)的其中之一最佳者,並依據這個選出的系統轉換參數使運動系統產生運動並進行對位動作。本發明實施例可依據對位誤差比值來產生輸出系統轉換參數組,透過視覺系統對被對位物件取像,依據空間相對座標及選取系統轉換參數組進行運算,以產生對位運動位移距離數值使運動系統產生運動並進行對位動作。Please continue to refer to FIG. 3, in step S340, the vision system is imaged on the object to be aligned, the spatial relative coordinates are calculated, and the corresponding system conversion parameters are calculated, and the displacement displacement distance is generated and the alignment action is performed. Step S340 selects one of the plurality of corresponding values (system conversion parameters) according to the alignment error ratio generated by the experiment on the orthogonal matrix line executed in step S330, and makes the motion according to the selected system conversion parameter. The system produces motion and performs the alignment action. According to the embodiment of the present invention, the output system conversion parameter group can be generated according to the alignment error ratio value, and the aligned object is imaged by the visual system, and the space relative coordinate and the system conversion parameter group are selected to calculate the displacement displacement distance value. Make the movement system move and perform the alignment action.

值得注意的,若步驟S350中的的對位動作對應輸出的對位疊代次數可以不大於一個預定的需求值時,可以判定這個選出的系統轉換參數可滿足要求。相對的,若步驟S350中的的對位動作對應輸出的對位疊代次數大於預定的需求值時,表示選出的系統轉換參數尚無法滿足要求。It should be noted that if the number of registration iterations corresponding to the output of the alignment action in step S350 can be no more than a predetermined demand value, it can be determined that the selected system conversion parameter can meet the requirement. In contrast, if the number of registration iterations corresponding to the output of the alignment action in step S350 is greater than the predetermined demand value, it indicates that the selected system conversion parameter cannot meet the requirement.

為更優化本發明實施例的對位動作,請參照圖4,圖4繪示本發明實施例的系統轉換參數優化方法進一步實施方式的流程圖。在步驟S410中,延續前述的步驟S350,透過視覺系統可判斷前述的對位動作後所產生的對位誤差是否小於一設定值。若判斷結果為是,可判定對位動作完成,並進行步驟S420;相對的,若判斷結果為否,需重新執行步驟S350,再使視覺系統對被對位物件取像,並依據空間相對座標及系統轉換參數進行運算,以產生新的對位運動位移距離數值使運動系統產生運動並進行對位動作。To further optimize the alignment operation of the embodiment of the present invention, please refer to FIG. 4. FIG. 4 is a flowchart of a further implementation manner of a system conversion parameter optimization method according to an embodiment of the present invention. In step S410, the step S350 is continued, and the visual system can determine whether the registration error generated after the alignment operation is less than a set value. If the determination result is yes, it can be determined that the registration action is completed, and step S420 is performed; if the determination result is negative, step S350 is performed again, and then the vision system takes the image of the object to be aligned, and according to the spatial relative coordinates And the system conversion parameters are calculated to generate a new value of the displacement motion displacement distance to cause the motion system to generate motion and perform the alignment action.

另外,步驟S420判斷直交矩陣實驗是否都已完成。若判斷結果為是,則可執行步驟S430;相對的,若判斷結果為否,則需重新執行步驟S340。In addition, step S420 determines whether the orthogonal matrix experiment has been completed. If the result of the determination is yes, step S430 may be performed; if the result of the determination is no, step S340 needs to be performed again.

步驟S430中並判斷依據選出的系統轉換參數所進行的對位動作,其所需要的疊代次數是否滿足需求。也就是說,可以透過多次的對位動作中的的多個疊代次數平均值是否小於預設的目標值,若是,表示選中的系統轉換參數為最佳的系統轉換參數,並應用來進行對位動作;相對的,若判斷的結果為否,則執行步驟S440。In step S430, it is determined whether the number of iterations required by the selected system conversion parameter satisfies the requirement. In other words, whether the average value of the plurality of iterations in the plurality of alignment actions is less than a preset target value, and if so, the selected system conversion parameter is the optimal system conversion parameter, and is applied. The alignment operation is performed; if the result of the determination is negative, step S440 is performed.

為加速最佳的系統轉換參數的產生,步驟S440依據田口理論與比例值來設定新的系統轉換參數以進行下一階段的直交矩陣實驗的系統轉換參數值,並重新執行步驟S330。上述的田口理論是田口玄一(Taguchi Genichi)博士於1950年代所開發倡導,利用簡單的直交表實驗設計與簡潔的變異數分析,以少量的實驗數據進行分析,可有效提昇產品品質,為本領域具通常知識者所熟知的技術,在此不多贅述。In order to accelerate the generation of the optimal system conversion parameter, step S440 sets a new system conversion parameter according to the Taguchi theory and the scale value to perform the system conversion parameter value of the next-stage orthogonal matrix experiment, and re-executes step S330. The above-mentioned Taguchi theory was developed by Dr. Taguchi Genichi in the 1950s. Using simple orthogonal test design and simple analysis of variance numbers, analysis with a small amount of experimental data can effectively improve product quality. The field is well known to those skilled in the art and will not be described here.

綜上所述,本發明整合全因子實驗設計以及田口理論來找到自動對位裝置(例如:晶圓曝光機)的最佳系統轉換參數,為一種有效、低成本、和節省時間的方法。全因子實驗子設計的用途是收集代表曝光機的定位模型的實驗資料,而田口理論則用以更有效率的得到更好的系統轉換參數。舉例 來說明,本發明實施例的尋找出的系統轉換參數 對,在定位精度±5μm的要求條件下,相對於既有的方法,對位效率可提升達55%。 In summary, the present invention integrates a full factor experimental design and Taguchi theory to find the optimal system conversion parameters of an automatic alignment device (eg, a wafer exposure machine), which is an effective, low cost, and time saving method. The purpose of the full-factor experiment design is to collect experimental data representing the positioning model of the exposure machine, while Taguchi theory is used to obtain better system conversion parameters more efficiently. Example  To illustrate the system conversion parameters found in the embodiments of the present invention.  For the requirement of positioning accuracy of ±5μm, the alignment efficiency can be improved by up to 55% compared with the existing method.  

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

200:自動對位裝置 221、222:視覺系統 211、212、213:運動系統 S310~S350、S410~S450:系統轉換參數優化方法的步驟 OBJ:物件 MSK:光罩 AK1、AK2:對位標誌 fx、fy、fq:系統轉換參數200: automatic alignment device 221, 222: vision system 211, 212, 213: motion system S310~S350, S410~S450: steps of system conversion parameter optimization method OBJ: object MSK: mask AK1, AK2: alignment flag fx , fy, fq: system conversion parameters

圖1A~圖1C分別繪示習知技術多種不同定位動作的目標位置-對位時間示意圖。 圖2繪示本發明一實施例的自動對位裝置的示意圖。 圖3繪示本發明一實施例的系統轉換參數優化方法的流程圖。 圖4繪示本發明實施例的系統轉換參數優化方法進一步實施方式的流程圖。1A-1C are schematic diagrams showing target position-alignment time of various different positioning actions in the prior art. 2 is a schematic diagram of an automatic alignment device according to an embodiment of the invention. FIG. 3 is a flow chart of a system conversion parameter optimization method according to an embodiment of the invention. 4 is a flow chart of a further implementation manner of a system conversion parameter optimization method according to an embodiment of the present invention.

Claims (6)

一種系統轉換參數優化方法,適用於一自動對位設備,包括:定義一系統轉換參數為實驗因子,設定一對位疊代次數為輸出值;選擇一直交矩陣及設定逐步調整的一比例值;安排該系統轉換參數至該直交矩陣中,並獲得一系統轉換參數之矩陣;依序將該系統轉換參數矩陣中的多數個對應值分別作為多數個輸入參數,以進行一直交矩陣線上實驗;利用一影像系統與各該輸入參數來產生對位運動的一所需數值並進行一對位動作;經由該影像系統檢查該對位動作的對位結果,進行此階段的該直交矩陣對位實驗,並判斷該對位疊代次數是否不大於一需求值;以及若該對位疊代次數不大於該需求值,獲得一最佳疊代次數及相對應的該系統轉換參數。 A system conversion parameter optimization method is applicable to an automatic alignment device, comprising: defining a system conversion parameter as an experimental factor, setting a pair of bit iteration times as an output value; selecting a constant matrix and setting a proportional value for stepwise adjustment; Arranging the system conversion parameters into the orthogonal matrix, and obtaining a matrix of system conversion parameters; sequentially, the corresponding values in the system conversion parameter matrix are respectively used as a plurality of input parameters to perform the experiment on the straight line matrix; An image system and each of the input parameters generate a desired value of the alignment motion and perform a one-bit action; check the alignment result of the alignment action via the image system, and perform the orthogonal matrix alignment experiment at this stage, And determining whether the number of times of the number of iterations is not greater than a demand value; and if the number of times of the number of iterations is not greater than the demand value, obtaining an optimal number of iterations and corresponding system conversion parameters. 如申請專利範圍第1項所述的系統轉換參數優化方法,更包括:若該對位疊代次數大於該需求值,使用田口推論與該比例值,決定下一階段的該直交矩陣實驗的該系統轉換參數值,並重新進行該直交矩陣對位實驗。 The system conversion parameter optimization method according to claim 1, further comprising: if the number of the iterations of the alignment is greater than the demand value, using the Taguchi inference and the ratio value, determining the next phase of the orthogonal matrix experiment. The system converts the parameter values and re-executes the orthogonal matrix alignment experiment. 如申請專利範圍第1項所述的系統轉換參數優化方法,其中利用該影像系統與各該輸入參數來產生對位運動的該所需數值並進行該對位動作的步驟包括:提供一視覺系統對一被對位物件取像,依據一空間相對座標及各該輸入參數進行運算,以產生一第一對位運動位移距離數值使一運動系統產生運動並進行該對位動作。 The system conversion parameter optimization method according to claim 1, wherein the step of using the image system and each of the input parameters to generate the required value of the alignment motion and performing the alignment operation comprises: providing a vision system Taking an image of the object to be aligned, calculating according to a spatial relative coordinate and each of the input parameters to generate a first alignment motion displacement distance value causes a motion system to generate motion and perform the alignment action. 如申請專利範圍第3項所述的系統轉換參數優化方法,更包括:提供該視覺系統以判斷該對位動作的一對位誤差是否小於一設定值;以及當該對位誤差不小於該設定值時,再使該視覺系統對該被對位物件取像,依據該空間相對座標及該輸出系統轉換參數組進行運算,以產生下一次對位運動位移距離數值使該運動系統產生運動並進行下一次的該對位動作。 The method for optimizing a system conversion parameter according to claim 3, further comprising: providing the vision system to determine whether a pair of bit errors of the alignment action is less than a set value; and when the alignment error is not less than the setting When the value is obtained, the visual system is further imaged by the vision system, and the space relative coordinate and the output system conversion parameter group are calculated to generate the next alignment motion displacement distance value to cause the motion system to generate motion and perform The next alignment action. 如申請專利範圍第2項所述的系統轉換參數優化方法,其中若該對位疊代次數大於該需求值,使用田口推論與該比例值,決定下一階段的該直交矩陣實驗的該系統轉換參數值,並重新進行該直交矩陣對位實驗的步驟包括:判斷多次的該對位動作中產生的對位疊代次數的平均值是否小於該需求值;以及 當該平均值大於該需求值時,依據田口推論與該比例值來決定下一階段的該直交矩陣實驗的該系統轉換參數值以進行該直交矩陣對位實驗。 The system conversion parameter optimization method according to claim 2, wherein if the number of the iterations is greater than the demand value, the Taguchi inference and the ratio are used to determine the system conversion of the orthogonal experiment of the next stage. The parameter value, and the step of re-executing the orthogonal matrix alignment experiment includes: determining whether an average value of the number of registration iterations generated in the plurality of alignment operations is less than the required value; When the average value is greater than the demand value, the system conversion parameter value of the orthogonal experiment of the next stage is determined according to the Taguchi inference and the ratio value to perform the orthogonal matrix alignment experiment. 如申請專利範圍第1項所述的系統轉換參數優化方法,其中該系統轉換參數組包括一第一軸轉換參數、一第二軸轉換參數以及一第三軸轉換參數。 The system conversion parameter optimization method according to claim 1, wherein the system conversion parameter set includes a first axis conversion parameter, a second axis conversion parameter, and a third axis conversion parameter.
TW106126608A 2017-08-07 2017-08-07 Optimization method for finding system transfer parameters of auto-alignment equipments TWI657324B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106126608A TWI657324B (en) 2017-08-07 2017-08-07 Optimization method for finding system transfer parameters of auto-alignment equipments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106126608A TWI657324B (en) 2017-08-07 2017-08-07 Optimization method for finding system transfer parameters of auto-alignment equipments

Publications (2)

Publication Number Publication Date
TW201910945A TW201910945A (en) 2019-03-16
TWI657324B true TWI657324B (en) 2019-04-21

Family

ID=66590470

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106126608A TWI657324B (en) 2017-08-07 2017-08-07 Optimization method for finding system transfer parameters of auto-alignment equipments

Country Status (1)

Country Link
TW (1) TWI657324B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002870A1 (en) * 2010-06-29 2012-01-05 Flir Systems Ab Device for equipment alignment
US20150323249A1 (en) * 2013-04-22 2015-11-12 Hefei Boe Optoelectronics Technology Co., Ltd. Pre-curing equipment for alignment layer
CN105346988A (en) * 2015-11-23 2016-02-24 东莞王氏港建机械有限公司 Automatic board clapping and pre-aligning machine
WO2017082496A1 (en) * 2015-11-13 2017-05-18 주식회사 이오테크닉스 Wafer alignment method and alignment equipment using same
US20170146831A1 (en) * 2015-04-27 2017-05-25 Shenzhen China Star Optoelectronics Technology Co., Ltd. Mask Device for Optical Alignment and Equipment Thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002870A1 (en) * 2010-06-29 2012-01-05 Flir Systems Ab Device for equipment alignment
US20130250096A1 (en) * 2010-06-29 2013-09-26 Flir Systems Ab Device for equipment alignment
US20150323249A1 (en) * 2013-04-22 2015-11-12 Hefei Boe Optoelectronics Technology Co., Ltd. Pre-curing equipment for alignment layer
US20170146831A1 (en) * 2015-04-27 2017-05-25 Shenzhen China Star Optoelectronics Technology Co., Ltd. Mask Device for Optical Alignment and Equipment Thereof
WO2017082496A1 (en) * 2015-11-13 2017-05-18 주식회사 이오테크닉스 Wafer alignment method and alignment equipment using same
CN105346988A (en) * 2015-11-23 2016-02-24 东莞王氏港建机械有限公司 Automatic board clapping and pre-aligning machine

Also Published As

Publication number Publication date
TW201910945A (en) 2019-03-16

Similar Documents

Publication Publication Date Title
JP6167622B2 (en) Control system and control method
TWI661175B (en) Method and system for determining in-plane distortions in a substrate
WO2020238346A1 (en) Method for optimizing orientation of drill bit in robot drilling
CN109163675B (en) Method for detecting angular pendulum shaft position accuracy based on laser tracker
WO2020054443A1 (en) Learning device, inference device, and learned model
CN105108215B (en) Method for predicting and compensating cutter back-off error in free-form surface micro milling
JP2013545972A5 (en)
TWI640743B (en) Methods and systems of calibrating a pupil center in scatterometry overlay measurements
CN105571523A (en) Tooth error vision measurement method for involute of straight toothed spur gear
US9342069B2 (en) Article processing apparatus, generation method and computer-readable storage medium
JP2007003528A5 (en)
TWI506243B (en) System and method for simulating a calibration path of a probe of a measuring machine
CN114611362B (en) Installation and debugging method for working face of large instrument, electronic device and medium
CN111844135B (en) Robot joint parameter measuring method and device, storage and robot
US20210237218A1 (en) Machine tool adjustment method and system thereof
JP2016200463A (en) Measurement method using total station, and control device of total station
TWI657324B (en) Optimization method for finding system transfer parameters of auto-alignment equipments
CN103424087A (en) Three-dimensional measurement splicing system and method for large-scale steel plate
JP2019120967A (en) Error compensation device and method
CN103438827A (en) Method for detecting threaded area peak line of screw
US20140244226A1 (en) Compact opc model generation using virtual data
JP6584512B2 (en) Simulation apparatus and simulation program
EP4241241A1 (en) Optimizing calibration with constraints between different coordinate frames
TW201516599A (en) System and method for optimizing processing program
JP2010058171A (en) Method and program of controlling parallel link stage, and parallel link stage