TWI655307B - Reactive sputtering system and its process - Google Patents

Reactive sputtering system and its process Download PDF

Info

Publication number
TWI655307B
TWI655307B TW106142308A TW106142308A TWI655307B TW I655307 B TWI655307 B TW I655307B TW 106142308 A TW106142308 A TW 106142308A TW 106142308 A TW106142308 A TW 106142308A TW I655307 B TWI655307 B TW I655307B
Authority
TW
Taiwan
Prior art keywords
parameter
plasma
gas flow
target
sputtering
Prior art date
Application number
TW106142308A
Other languages
Chinese (zh)
Other versions
TW201925509A (en
Inventor
唐謙仁
黃柏鈞
Original Assignee
逢甲大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 逢甲大學 filed Critical 逢甲大學
Priority to TW106142308A priority Critical patent/TWI655307B/en
Application granted granted Critical
Publication of TWI655307B publication Critical patent/TWI655307B/en
Publication of TW201925509A publication Critical patent/TW201925509A/en

Links

Abstract

本發明為一種反應性濺鍍系統及其製程,包含處理器、濺鍍槍、參數感測器、比例積分微分控制器、反應氣體流量控制器、靶材、被濺鍍物及真空腔體,處理器分析參數感測器建立遲滯曲線,找出過渡區並決定設定點,發送設定訊號至參數感測器,發送參數訊號至反應氣體流量控制器,參數感測器儲存設定訊號,反應氣體流量控制器分析參數訊號產生流量參數及控制參數,在濺鍍過程中,參數感測器感測靶材的電漿光譜強度及放電電壓電流,當強度到達設定點時遂切換流量參數至相對應設定點的流量參數,同時切換控制參數至相對應設定點的控制參數,達到動態切換流量參數以及控制參數。The invention relates to a reactive sputtering system and a process thereof, comprising a processor, a sputtering gun, a parameter sensor, a proportional integral derivative controller, a reactive gas flow controller, a target, a sputtered object and a vacuum chamber. The processor analyzes the parameter sensor to establish a hysteresis curve, finds the transition zone and determines the set point, sends the set signal to the parameter sensor, sends the parameter signal to the reactive gas flow controller, the parameter sensor stores the set signal, and the reaction gas flow The controller analyzes the parameter signal to generate the flow parameter and the control parameter. During the sputtering process, the parameter sensor senses the plasma spectral intensity and the discharge voltage current of the target, and when the intensity reaches the set point, the flow parameter is switched to the corresponding setting. The flow parameter of the point, and simultaneously switch the control parameter to the control parameter of the corresponding set point, to dynamically switch the flow parameter and the control parameter.

Description

反應性濺鍍系統及其製程Reactive sputtering system and its process

本發明涉及一種反應性濺鍍系統及其製程,尤其是利用參數感測器感測電漿光譜強度,藉以動態切換控制參數及流量參數,達到製程穩定。The invention relates to a reactive sputtering system and a manufacturing process thereof, in particular to sensing the spectral intensity of a plasma by using a parameter sensor, thereby dynamically switching control parameters and flow parameters to achieve process stability.

近年來,由於材料科學及薄膜製程技術的進步,使得由兩層或多層之複合材料薄膜的應用日趨廣泛。另一方面,雖然這些複合材料薄膜的製造方法可能不只一種,但隨著環保意識的抬頭,低污染的反應性濺鍍製程因而日漸受到重視及廣泛採用。In recent years, due to advances in materials science and thin film process technology, the application of composite films of two or more layers has become increasingly widespread. On the other hand, although these composite film films may be manufactured in more than one way, with the rise of environmental awareness, the low-pollution reactive sputtering process has received increasing attention and widespread adoption.

然而,由於許多反應性濺鍍的產物是絕緣的,會造成所謂的靶材毒化現象而使濺鍍速率大幅減緩,或使得系統產生弧光放電(Arcing)現象而造成鍍膜品質不佳,甚至是設備損傷。因此,一般在進行反應性濺鍍製程時,都會使用射頻(Radio Frequency, RF)電源或脈衝直流電源來作為濺鍍槍的工作電源;除此之外,為了使製程可以穩定進行,一般都會先找出個別材料靶材對所用反應氣體之遲滯曲線,並將控制條件設定在遲滯曲線之過渡區的中段,以避免系統狀態的些微改變便使得製程參數脫離過渡區而造成製程中斷。However, since many reactive sputtering products are insulated, so-called target poisoning may occur, the sputtering rate may be greatly slowed down, or the arcing phenomenon may occur in the system, resulting in poor coating quality, even equipment. damage. Therefore, generally, in the reactive sputtering process, a radio frequency (RF) power source or a pulsed DC power source is used as a working power source for the sputtering gun; in addition, in order to make the process stable, it is generally first Find the hysteresis curve of the individual material targets for the reaction gas used, and set the control conditions in the middle of the transition zone of the hysteresis curve to avoid slight changes in the system state, which will cause the process parameters to leave the transition zone and cause process interruption.

這些方法,雖然解決了靶材在進行反應性濺鍍製程時的製程穩定性問題。可是,當要在同一濺鍍設備系統中對靶材同時進行多層膜反應性濺鍍時,由於不同的化學計量對於同一反應氣體的反應速率及工作條件要求都不相同,使得製程控制更為不易。因此,要如何改善此一問題便成為相關業界積極投入以尋求解決之道的首要目標。These methods, while addressing the process stability issues of the target during the reactive sputtering process. However, when multi-layer reactive sputtering is applied to the target in the same sputtering equipment system, the process rate and working conditions are different for different stoichiometry, which makes the process control more difficult. . Therefore, how to improve this problem has become the primary goal of the relevant industry to actively invest in seeking solutions.

有鑒於此,本發明針對習知技術存在之缺失,其主要目的是提供一種藉由參數感測器,動態切換控制參數及流量參數的反應性濺鍍系統及製程,達到製程穩定的效能。In view of this, the present invention is directed to the absence of the prior art, and its main object is to provide a reactive sputtering system and process for dynamically switching control parameters and flow parameters by means of a parameter sensor to achieve stable process performance.

本發明主要提供一種反應性濺鍍系統,包含處理器、濺鍍槍、參數感測器、反應氣體流量控制器、比例積分微分控制器、靶材、被濺鍍物以及真空腔體,其中,濺鍍槍、靶材及被濺鍍物是包含在真空腔體之內。The invention mainly provides a reactive sputtering system, comprising a processor, a sputtering gun, a parameter sensor, a reactive gas flow controller, a proportional integral derivative controller, a target, a sputtered object and a vacuum chamber, wherein The sputter gun, target, and sputtered material are contained within the vacuum chamber.

處理器、反應氣體流量控制器及參數感測器是相互連接,反應氣體流量控制器與比例積分微分控制器連接,靶材是藉由濺鍍槍所產生的電漿放電,使電漿放電區產生離子並撞擊靶材,使靶材原子或分子濺鍍至被濺鍍物的表面上,形成濺鍍沉積層。The processor, the reactive gas flow controller and the parameter sensor are connected to each other, and the reactive gas flow controller is connected with the proportional integral differential controller, and the target is a plasma discharge generated by the sputtering gun to make the plasma discharge region Ions are generated and impinge on the target, causing the target atoms or molecules to be sputtered onto the surface of the sputtered material to form a sputtered deposition layer.

參數感測器包含電漿放射光譜分析儀及電漿放電偵測儀,電漿放電偵測儀同時對濺鍍槍提供電漿放電電源。The parameter sensor comprises a plasma emission spectrum analyzer and a plasma discharge detector, and the plasma discharge detector simultaneously supplies a plasma discharge power source to the sputtering gun.

處理器對參數感測器進行分析,並依據靶材的製程參數對氣體流量改變所產生的變化,建立一個遲滯曲線,以及找出遲滯曲線上的多個過渡區,並決定每個過渡區的設定點。The processor analyzes the parameter sensor and establishes a hysteresis curve according to the change of the gas flow rate of the target process parameter, and finds a plurality of transition zones on the hysteresis curve, and determines each transition zone. set point.

處理器儲存並發送包含設定點的設定訊號至參數感測器,同時針對每個設定點發送參數訊號至反應氣體流量控制器。The processor stores and sends a set signal containing the set point to the parameter sensor, and sends a parameter signal to the reactive gas flow controller for each set point.

反應氣體流量控制器接收參數訊號並進行分析運算,產生對應於每個設定點的反應氣體的流量參數,以及電漿放電控制參數。The reaction gas flow controller receives the parameter signal and performs an analytical operation to generate a flow parameter corresponding to the reaction gas of each set point, and a plasma discharge control parameter.

參數感測器接收包含設定點的設定訊號,並在濺鍍的過程中持續感測靶材的電漿光譜強度及放電電壓電流,且在電漿光譜強度、放電電壓電流達到設定點時發送切換訊號至反應氣體流量控制器。The parameter sensor receives the setting signal including the set point, and continuously senses the plasma spectral intensity and the discharge voltage current of the target during the sputtering process, and sends the switch when the plasma spectral intensity and the discharge voltage current reach the set point. Signal to the reactive gas flow controller.

反應氣體流量控制器在接收切換訊號後,切換流量參數至相對應設定點的流量參數,以及切換控制參數至相對應設定點的切換參數,改變反應氣體的流量。After receiving the switching signal, the reaction gas flow controller switches the flow parameter to the flow parameter corresponding to the set point, and switches the control parameter to the switching parameter of the corresponding set point to change the flow rate of the reaction gas.

本發明另外提供一種反應性濺鍍製程,是在具有處理器、濺鍍槍、參數感測器、反應氣體流量控制器、比例積分微分控制器、靶材、被濺鍍物以及真空腔體的濺鍍系統下進行,包含第一步驟、第二步驟、第三步驟、第四步驟以及第五步驟。The invention further provides a reactive sputtering process with a processor, a sputtering gun, a parameter sensor, a reactive gas flow controller, a proportional integral derivative controller, a target, a sputtered object, and a vacuum chamber. The sputtering process is performed under the first step, the second step, the third step, the fourth step and the fifth step.

在第一步驟中分析靶材建立遲滯曲線,在第二步驟中分析過渡區及決定設定點,在第三步驟中設定各設定點的電漿放電控制參數及反應氣體流量參數,在第四步驟中利用濺鍍系統開始濺鍍,在第五步驟中切換控制參數及流量參數。In the first step, the target build-up hysteresis curve is analyzed, in the second step, the transition zone is analyzed and the set point is determined, and in the third step, the plasma discharge control parameter and the reaction gas flow parameter of each set point are set, in the fourth step. In the sputtering process, the sputtering is started, and in the fifth step, the control parameters and the flow parameters are switched.

本發明主要特點在於,使用多組控制參數對一靶材進行穩定地反應性濺鍍,每個設定點皆有專屬之控制參數,因此在切換控制參數時能更加快速且穩定地使受監控之製程參數達到設定點。The main feature of the invention is that a plurality of sets of control parameters are used for stable reactive sputtering of a target, and each set point has exclusive control parameters, so that the monitored parameters can be monitored more quickly and stably when switching control parameters. The process parameters reach the set point.

以下配合圖示及元件符號對本發明之實施方式做更詳細的說明,俾使熟習該項技藝者在研讀本說明書後能據以實施。 The embodiments of the present invention will be described in more detail below with reference to the drawings and the reference numerals, which can be implemented by those skilled in the art after having studied this specification.

本發明為一種反應性濺鍍系統如第1圖所示,反應性濺鍍系統包含處理器10、濺鍍槍20、反應氣體流量控制器30、比例積分微分控制器40、參數感測器50、靶材60、被濺鍍物70以及真空腔體80,其中,濺鍍槍20、靶材60及被濺鍍物70是在真空腔體80之內。處理器10、反應氣體流量控制器30及參數感應器50是相互連接,反應氣體流量控制器30與比例積分微分控制器40連接,真空腔體80內具有一電漿放電區81,其中靶材40是藉由濺鍍槍20所產生的電漿放電,使電漿放電區81產生離子並撞擊靶材40,使靶材40原子或分子濺鍍至被濺鍍物70的表面上,形成濺鍍沉積層。 The present invention is a reactive sputtering system as shown in FIG. 1. The reactive sputtering system includes a processor 10, a sputtering gun 20, a reactive gas flow controller 30, a proportional integral derivative controller 40, and a parameter sensor 50. The target 60, the sputtered material 70, and the vacuum chamber 80, wherein the sputtering gun 20, the target 60, and the sputtered material 70 are within the vacuum chamber 80. The processor 10, the reactive gas flow controller 30 and the parameter sensor 50 are connected to each other, and the reactive gas flow controller 30 is connected to the proportional integral derivative controller 40. The vacuum chamber 80 has a plasma discharge region 81, wherein the target 40 is a plasma discharge generated by the sputtering gun 20, causing the plasma discharge region 81 to generate ions and collide with the target 40, causing the target 40 atoms or molecules to be sputtered onto the surface of the sputtered material 70 to form a splash. Plating deposits.

參數感測器50進一步包含電漿放射光譜分析儀及電漿放電偵測儀,且電漿放電偵測儀同時提供濺鍍槍電漿放電的電源。 The parameter sensor 50 further includes a plasma emission spectrum analyzer and a plasma discharge detector, and the plasma discharge detector simultaneously supplies a power source for the plasma discharge of the sputtering gun.

處理器10控制反應氣體流量控制器30改變反應氣體流量,對欲進行濺鍍的靶材60所在之電漿放電區81,透過電漿放射光譜分析儀及電漿放電偵測儀,對電漿光譜強度與放電電壓電流進行分析,並依據靶材60的製程參數對應於氣體流量改變所產生的變化,建立一個遲滯曲線,以及找出遲滯曲線上的多個過渡區,並決定每個過渡區的設定點,且儲存在處理器10內。處理器10發送包含設定點的設定訊號至參數感測器50,針對每個設定點發送參數訊號至反應氣體流量控制器30。The processor 10 controls the reaction gas flow controller 30 to change the flow rate of the reaction gas, and the plasma discharge region 81 where the target 60 to be sputtered is passed through a plasma emission spectrum analyzer and a plasma discharge detector to the plasma. The spectral intensity is analyzed with the discharge voltage and current, and a hysteresis curve is established according to the process parameter of the target 60 corresponding to the change of the gas flow rate, and a plurality of transition zones on the hysteresis curve are found, and each transition zone is determined. The set point is stored in processor 10. The processor 10 sends a setting signal including a set point to the parameter sensor 50, and sends a parameter signal to the reactive gas flow controller 30 for each set point.

反應氣體流量控制器30接收參數訊號,經由比例積分微分控制器40對參數訊號進行分析運算,產生對應於每個設定點之反應氣體的流量參數,並儲存在反應氣體流量控制器30,同時得到電漿放電控制參數。The reaction gas flow controller 30 receives the parameter signal, analyzes the parameter signal through the proportional integral derivative controller 40, generates a flow parameter corresponding to the reaction gas of each set point, and stores it in the reaction gas flow controller 30, and simultaneously obtains Plasma discharge control parameters.

參數感測器30接收包含設定點的設定訊號,並在濺鍍的過程中透過電漿放射光譜分析儀感測靶材的電漿光譜強度,也透過電漿放電偵測儀偵測放電電壓電流,且在電漿光譜強度或放電電壓電流達到設定點時發送切換訊號至反應氣體流量控制器30。The parameter sensor 30 receives the setting signal including the set point, and senses the plasma spectral intensity of the target through the plasma emission spectrum analyzer during the sputtering process, and also detects the discharge voltage and current through the plasma discharge detector. And transmitting a switching signal to the reactive gas flow controller 30 when the plasma spectral intensity or the discharge voltage current reaches the set point.

參數感測器30持續感測電漿光譜強度及放電電壓電流,每當參數感測器30感測到的電漿光譜強度及放電電壓電流到達設定點時,便發送切換訊號至反應氣體流量控制器30,反應氣體流量控制器30接收到切換訊號後,比例積分微分控制器40遂切換控制參數,切換至相對應設定點的電漿放電控制參數,反應氣體流量控制器30也切換反應氣體的流量參數,使得真空腔體80內電漿放射區81的反應氣體流量改變,因此在濺鍍過程中,可以依據電漿光譜強度及放電電壓電流,動態改變電漿放電控制參數以及流量參數。The parameter sensor 30 continuously senses the plasma spectral intensity and the discharge voltage current. When the plasma spectral intensity and the discharge voltage current sensed by the parameter sensor 30 reach the set point, the switching signal is sent to the reactive gas flow control. After the reaction gas flow controller 30 receives the switching signal, the proportional integral derivative controller 40 switches the control parameters, switches to the plasma discharge control parameter corresponding to the set point, and the reactive gas flow controller 30 also switches the reaction gas. The flow parameter changes the flow rate of the reaction gas in the plasma radiation zone 81 in the vacuum chamber 80. Therefore, during the sputtering process, the plasma discharge control parameters and the flow parameters can be dynamically changed according to the plasma spectral intensity and the discharge voltage current.

具體而言,本發明反應性濺鍍製程是通過如第2圖所示的方法進行,包含第一步驟S1、第二步驟S2、第三步驟S3、第四步驟S4及第五步驟S5,並在第一步驟S1中分析靶材遲滯曲線,在第二步驟S2中分析過渡區及決定設定點,在第三步驟S3中設定各設定點的控制參數及反應氣體流量參數,在第四步驟S4中開始濺鍍,在第五步驟S5中切換控制參數及流量參數。Specifically, the reactive sputtering process of the present invention is performed by the method as shown in FIG. 2, and includes a first step S1, a second step S2, a third step S3, a fourth step S4, and a fifth step S5, and In the first step S1, the target hysteresis curve is analyzed, in the second step S2, the transition zone is analyzed and the set point is determined, and in the third step S3, the control parameters and the reaction gas flow parameters of each set point are set, in a fourth step S4. Sputtering is started in the middle, and the control parameters and the flow parameters are switched in the fifth step S5.

舉例而言,本發明反應性濺鍍製程是在包含處理器、濺鍍槍、參數感應器、反應氣體流量控制器、比例積分微分控制器、靶材、被濺鍍物及真空腔體的系統中進行。其中濺鍍槍為鋁靶的濺鍍槍,參數感應器為電漿放射光譜分析儀及電漿放電偵測儀,靶材為鋁靶。For example, the reactive sputtering process of the present invention is a system including a processor, a sputtering gun, a parameter sensor, a reactive gas flow controller, a proportional integral derivative controller, a target, a sputtered body, and a vacuum chamber. In progress. The sputtering gun is an aluminum target sputtering gun, the parameter sensor is a plasma emission spectrum analyzer and a plasma discharge detector, and the target is an aluminum target.

首先在第一步驟S1中,處理器對鋁靶進行分析,產生鋁靶的遲滯曲線,在第二步驟S2中,處理器分析遲滯曲線的過渡區以及決定設定點。接著發送包含多個設定點的設定訊號至參數感測器,以及發送參數訊號到反應氣體流量控制器。First, in a first step S1, the processor analyzes the aluminum target to generate a hysteresis curve of the aluminum target. In a second step S2, the processor analyzes the transition region of the hysteresis curve and determines the set point. Then, a setting signal including a plurality of set points is sent to the parameter sensor, and a parameter signal is sent to the reaction gas flow controller.

在第三步驟S3中,參數感測器接收設定訊號,並儲存各個設定點在參數感測器,而反應氣體流量控制器則接收參數訊號,依照各設定點設定相對應之反應氣體的流量參數,同時比例積分微分控制器同樣依照各設定點設定相對應之電漿放電控制參數。In the third step S3, the parameter sensor receives the setting signal, and stores each set point in the parameter sensor, and the reaction gas flow controller receives the parameter signal, and sets the corresponding flow parameter of the reaction gas according to each set point. At the same time, the proportional integral derivative controller also sets the corresponding plasma discharge control parameters according to each set point.

在第四步驟S4中開始濺鍍製程,鋁靶藉由濺鍍槍所產生的電漿放電,而使靶材原子或分子濺鍍至被濺鍍物的表面上,在濺鍍的過程中,電漿放射光譜分析儀及電漿放電偵測儀感測鋁靶靶面之鋁原子電漿放射光譜強度之訊號,以及電漿放電電壓電流,每當訊號強度達到設定點時,發送切換訊號至反應氣體流量控制器,此時進入第五步驟S5。In the fourth step S4, the sputtering process is started, and the aluminum target is discharged by the plasma generated by the sputtering gun to cause the target atoms or molecules to be sputtered onto the surface of the sputtered material, during the sputtering process. The plasma emission spectrum analyzer and the plasma discharge detector sense the intensity of the emission spectrum of the aluminum atom plasma of the aluminum target surface, and the plasma discharge voltage and current. When the signal intensity reaches the set point, the switching signal is sent to The reaction gas flow controller is now in the fifth step S5.

在第五步驟S5中,反應氣體流量控制器收到切換訊號後,切換反應氣體的流量參數,以及同時使比例積分微分控制器切換電漿放電控制參數,進一步而言,反應氣體流量控制器切換反應氣體的流量參數,調控氧氣流量,比例積分微分控制器則切換電漿放電控制參數,使得放電電壓電流改變,藉以達到鍍製出不同化學計量比之多層膜的效果。In the fifth step S5, after receiving the switching signal, the reaction gas flow controller switches the flow parameter of the reaction gas, and simultaneously causes the proportional integral derivative controller to switch the plasma discharge control parameter, and further, the reaction gas flow controller switches The flow rate parameter of the reaction gas regulates the oxygen flow rate, and the proportional integral differential controller switches the plasma discharge control parameters to change the discharge voltage and current, thereby achieving the effect of plating a multi-layer film of different stoichiometric ratios.

本發明主要特點在於,可使濺鍍設備能使用多組控制參數對一靶材進行穩定地反應性濺鍍,因每個設定點皆有專屬之控制參數,因此在切換控制參數時能更加快速且穩定地使受監控之製程參數達到設定點,以獲得不同化學計量比化合物之品質高而穩定的薄膜產品。The main feature of the present invention is that the sputtering apparatus can stably and reactively sputter a target using a plurality of sets of control parameters. Since each set point has exclusive control parameters, it can be faster when switching control parameters. The monitored process parameters are steadily brought to a set point to obtain a high quality and stable film product of different stoichiometric compounds.

本發明另一特點在於,在同一反應性濺鍍製程中切換不同組控制參數以達到不同化學計量比化合物之多層膜產品。Another feature of the invention resides in the switching of different sets of control parameters to achieve a multi-layer film product of different stoichiometric compounds in the same reactive sputtering process.

以上所述者僅為用以解釋本發明之較佳實施例,並非企圖據以對本發明做任何形式上之限制,是以,凡有在相同之發明精神下所作有關本發明之任何修飾或變更,皆仍應包括在本發明意圖保護之範疇。The above is only a preferred embodiment for explaining the present invention, and is not intended to limit the present invention in any way, and any modifications or alterations to the present invention made in the spirit of the same invention. All should still be included in the scope of the intention of the present invention.

10‧‧‧處理器10‧‧‧ processor

20‧‧‧濺鍍槍20‧‧‧Spray gun

30‧‧‧反應氣體流量控制器30‧‧‧Reactive gas flow controller

40‧‧‧比例積分微分控制器40‧‧‧Proportional Integral Derivative Controller

50‧‧‧參數感測器50‧‧‧Parameter Sensor

60‧‧‧靶材60‧‧‧ targets

70‧‧‧被濺鍍物70‧‧‧Sprayed

80‧‧‧真空腔體80‧‧‧vacuum chamber

81‧‧‧電漿放電區81‧‧‧ Plasma discharge zone

S1‧‧‧第一步驟S1‧‧‧ first step

S2‧‧‧第二步驟S2‧‧‧ second step

S3‧‧‧第三步驟S3‧‧‧ third step

S4‧‧‧第四步驟S4‧‧‧ fourth step

S5‧‧‧第五步驟S5‧‧‧ fifth step

第1圖顯示本發明反應性濺鍍系統示意圖;以及第2圖顯示本發明反應性濺鍍製程流程圖。 1 is a schematic view of a reactive sputtering system of the present invention; and FIG. 2 is a flow chart showing a reactive sputtering process of the present invention.

Claims (4)

一種反應性濺鍍系統,包含:一處理器,依據一靶材的一製程參數對應於一氣體流量改變所產生的變化建立一遲滯曲線,以及找出該遲滯曲線的多個過渡區,並決定該等過渡區的各個設定點;一濺鍍槍,該濺鍍槍裝設有該靶材,該靶材藉由該濺鍍槍所產生的電漿放電,使得靶材的原子或分子濺鍍至一被濺鍍物的表面,形成一濺鍍沉積層;一參數感測器,感測該靶材在濺鍍過程中的一電漿光譜強度及一放電電壓電流;一反應氣體流量控制器;一比例積分微分控制器;以及一真空腔體,包含該濺鍍槍、該靶材及該被濺鍍物,且具有一電漿放電區;其中,該處理器、該參數感測器以及該反應氣體流量控制器相互連接,該處理器發送包含該等設定點的一設定訊號至該參數感測器,以及發送一參數訊號至該反應氣體流量控制器,該參數感測器接收該設定訊號並儲存該等設定點,該反應氣體流量控制器接收該參數訊號,經由該比例積分微分控制器對該參數訊號進行分析且產生對應於該等設定點之一反應氣體的一流量參數及電漿放電的一控制參數,當該參數感測器感測該電漿光譜強度或該放電電壓電流達到該等過渡區的設定點時遂發送一切換訊號至該反應氣體流量控制器,該反應氣體流量控制器依據該切換訊號切換該反應氣體的該流量參數,以及使該比例積分微 分控制器改變該控制參數,使得該真空腔體內的該電漿放電區的電漿光譜強度及該放電電壓電流動態改變。 A reactive sputtering system includes: a processor that establishes a hysteresis curve according to a process parameter of a target corresponding to a change in a gas flow rate, and finds a plurality of transition zones of the hysteresis curve and determines Each set point of the transition zone; a sputtering gun equipped with the target, the target being discharged by the plasma generated by the sputtering gun to cause atomic or molecular sputtering of the target Forming a sputter deposition layer on a surface of the sputter; a parametric sensor sensing a plasma spectral intensity and a discharge voltage current of the target during the sputtering process; a reactive gas flow controller a proportional integral derivative controller; and a vacuum chamber including the sputtering gun, the target and the sputtered object, and having a plasma discharge region; wherein the processor, the parameter sensor, and The reaction gas flow controllers are connected to each other, the processor sends a setting signal including the set points to the parameter sensor, and sends a parameter signal to the reactive gas flow controller, and the parameter sensor receives the setting. Signal Storing the set points, the reactive gas flow controller receives the parameter signal, analyzes the parameter signal via the proportional integral derivative controller, and generates a flow parameter corresponding to one of the set points and a plasma discharge a control parameter, when the parameter sensor senses the spectral intensity of the plasma or the discharge voltage current reaches a set point of the transition zone, sends a switching signal to the reactive gas flow controller, the reactive gas flow control Switching the flow parameter of the reactive gas according to the switching signal, and integrating the proportional micro The sub-controller changes the control parameter such that the plasma spectral intensity of the plasma discharge region in the vacuum chamber and the discharge voltage current dynamically change. 如申請專利範圍第1項所述之反應性濺鍍系統,其中,該參數感測器包含一電漿放射光譜分析儀及一電漿放電偵測儀,該電漿放射光譜分析儀感測該電漿光譜強度,該電漿放電偵測儀提供該濺鍍槍電漿放電的電源,同時感測該放電電壓電流。 The reactive sputtering system according to claim 1, wherein the parameter sensor comprises a plasma emission spectrum analyzer and a plasma discharge detector, wherein the plasma emission spectrum analyzer senses The plasma spectral intensity, the plasma discharge detector provides a power source for the plasma discharge of the sputtering gun, and simultaneously senses the discharge voltage current. 一種反應性濺鍍製程,是在具有一處理器、一濺鍍槍、一反應氣體流量控制器、一比例積分微分控制器、一參數感測器、一靶材、一被濺鍍物及一真空腔體的一濺鍍系統下進行,包含:一第一步驟,利用該處理器分析該靶材,依據該靶材的一製程參數對應於一氣體流量改變所產生的變化建立一遲滯曲線;一第二步驟,利用該處理器分析該遲滯曲線的多個過渡區及決定該等過渡區的設定點,並發送包含多個設定點的一設定訊號至該參數感測器,以及發送一參數訊號至該反應氣體流量控制器;一第三步驟,利用該參數感測器接收該設定訊號,並儲存該等設定點,利用該反應氣體流量控制器接收該參數訊號,對該參數訊號進行分析並產生對應於該等設定點之一反應氣體的一流量參數及電漿放電的一控制參數;一第四步驟,利用該濺鍍系統開始進行濺鍍,並且在該靶材藉由該濺鍍槍所產生的電漿放電而濺鍍至該被濺鍍的表面上時,利用該參數感測器感測該靶材的一電漿光譜強度及放電電壓電流;以及一第五步驟,當該參數感測器感測的該電漿光譜強度或放電電壓電流達到該等過渡區的該設定點時,利用該參數感測器發出一切換訊號至該反應氣 體流量控制器,而且該反應氣體流量控制器依據該切換訊號切換該反應氣體的該流量參數以及電漿放電的該控制參數,使得該真空腔體內的一電漿放電區,依據該電漿光譜強度及放電電壓電流動態改變該反應氣體的該流量參數及電漿放電的該控制參數。 A reactive sputtering process has a processor, a sputtering gun, a reactive gas flow controller, a proportional integral derivative controller, a parameter sensor, a target, a sputtered object, and a Performing under a sputtering system of the vacuum chamber, comprising: a first step of analyzing the target by using the processor, and establishing a hysteresis curve according to a process parameter of the target corresponding to a change in a gas flow rate change; a second step, the processor is configured to analyze a plurality of transition regions of the hysteresis curve and determine a set point of the transition regions, and send a setting signal including a plurality of set points to the parameter sensor, and send a parameter Signal to the reaction gas flow controller; a third step, using the parameter sensor to receive the set signal, and storing the set points, using the reactive gas flow controller to receive the parameter signal, and analyzing the parameter signal And generating a flow parameter corresponding to one of the set points and a control parameter of the plasma discharge; a fourth step of using the sputtering system to start sputtering, And sensing, when the target is sputtered onto the sputtered surface by the plasma discharge generated by the sputtering gun, using the parameter sensor to sense a plasma spectral intensity and discharge voltage of the target And a fifth step, when the plasma spectral intensity or the discharge voltage current sensed by the parameter sensor reaches the set point of the transition zone, the parameter sensor is used to send a switching signal to the reaction gas a body flow controller, and the reaction gas flow controller switches the flow parameter of the reaction gas and the control parameter of the plasma discharge according to the switching signal, so that a plasma discharge region in the vacuum chamber is based on the plasma spectrum The intensity and discharge voltage currents dynamically change the flow parameter of the reactive gas and the control parameter of the plasma discharge. 如申請專利範圍第3項所述之反應性濺鍍製程,其中,該參數感測器包含一電漿放射光譜分析儀及一電漿放電偵測儀,該電漿放射光譜分析儀感測該電漿光譜強度,該電漿放電偵測儀提供該濺鍍槍電漿放電的電源,同時感測該放電電壓電流。 The reactive sputtering process of claim 3, wherein the parameter sensor comprises a plasma emission spectrum analyzer and a plasma discharge detector, wherein the plasma emission spectrum analyzer senses The plasma spectral intensity, the plasma discharge detector provides a power source for the plasma discharge of the sputtering gun, and simultaneously senses the discharge voltage current.
TW106142308A 2017-12-01 2017-12-01 Reactive sputtering system and its process TWI655307B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106142308A TWI655307B (en) 2017-12-01 2017-12-01 Reactive sputtering system and its process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106142308A TWI655307B (en) 2017-12-01 2017-12-01 Reactive sputtering system and its process

Publications (2)

Publication Number Publication Date
TWI655307B true TWI655307B (en) 2019-04-01
TW201925509A TW201925509A (en) 2019-07-01

Family

ID=66996276

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106142308A TWI655307B (en) 2017-12-01 2017-12-01 Reactive sputtering system and its process

Country Status (1)

Country Link
TW (1) TWI655307B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6132563A (en) * 1995-02-24 2000-10-17 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Reactive sputtering process
CN101473406A (en) * 2006-06-20 2009-07-01 弗兰霍菲尔运输应用研究公司 Method for controlling a reactive high-power pulsed magnetron sputter process and corresponding device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6132563A (en) * 1995-02-24 2000-10-17 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Reactive sputtering process
CN101473406A (en) * 2006-06-20 2009-07-01 弗兰霍菲尔运输应用研究公司 Method for controlling a reactive high-power pulsed magnetron sputter process and corresponding device

Also Published As

Publication number Publication date
TW201925509A (en) 2019-07-01

Similar Documents

Publication Publication Date Title
JP6374647B2 (en) Plasma processing equipment
US10115567B2 (en) Plasma processing apparatus
Sproul et al. Control of reactive sputtering processes
KR102033120B1 (en) Plasma-treatment method
Audronis et al. Control of reactive high power impulse magnetron sputtering processes
US7445695B2 (en) Method and system for conditioning a vapor deposition target
TWI579912B (en) Plasma processing device
TWI479539B (en) Method and control system for depositing a layer
JP2016066593A (en) Plasma processing apparatus
KR20110003446A (en) Inductively coupled plasma processing apparatus
US10861675B2 (en) Plasma processing apparatus and plasma processing method
JP2019090113A (en) High-output impulse coating method
KR20180105070A (en) Reactive sputtering apparatus and reactive sputtering method
TWI655307B (en) Reactive sputtering system and its process
EP2859575A1 (en) Assembly for use in a vacuum treatment process
JP2002180247A (en) Method and apparatus for manufacturing transparent electrically conductive laminate
RU2138094C1 (en) Facility for applying thin-film coatings
KR101110974B1 (en) Inductively coupled plasma processing apparatus and method
TWI485277B (en) Multi-sputtering cathodes stabilized process control method for reactive-sputtering deposition
JP4982055B2 (en) Plasma processing equipment
JPH10242120A (en) Plasma etching method and apparatus therefor
KR100874893B1 (en) Substrate Damage Detection Apparatus and Method
JP4711543B2 (en) Method and apparatus for detecting discharge in processing apparatus using discharge
WO2022216419A1 (en) Systems and methods for controlling a plasma sheath characteristic
JP2021197378A (en) Etching method and substrate processing device