TWI654815B - Electric vehicle charging circuit and control method thereof - Google Patents

Electric vehicle charging circuit and control method thereof

Info

Publication number
TWI654815B
TWI654815B TW106116977A TW106116977A TWI654815B TW I654815 B TWI654815 B TW I654815B TW 106116977 A TW106116977 A TW 106116977A TW 106116977 A TW106116977 A TW 106116977A TW I654815 B TWI654815 B TW I654815B
Authority
TW
Taiwan
Prior art keywords
power
converter
electric vehicle
energy storage
storage device
Prior art date
Application number
TW106116977A
Other languages
Chinese (zh)
Other versions
TW201902070A (en
Inventor
張育銘
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to TW106116977A priority Critical patent/TWI654815B/en
Publication of TW201902070A publication Critical patent/TW201902070A/en
Application granted granted Critical
Publication of TWI654815B publication Critical patent/TWI654815B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一種電動車充電電路,包含用以提供輸出電流以對電動車充電的第一電源轉換電路、儲能裝置,以及電性耦接於儲能裝置與匯流排之間,用以於儲能裝置與匯流排之間雙向傳輸能量的第二電源轉換電路。第一電源轉換電路包含用以將交流電壓轉換為匯流排電壓至匯流排的交流直流轉換器,以及於匯流排電性耦接於交流直流轉換器,用以根據匯流排電壓輸出該輸出電流的直流直流轉換器。第二電源轉換電路包含隔離型雙向轉換器。An electric vehicle charging circuit includes a first power conversion circuit for supplying an output current to charge an electric vehicle, an energy storage device, and an electrical coupling between the energy storage device and the bus bar for the energy storage device and A second power conversion circuit that bidirectionally transfers energy between the bus bars. The first power conversion circuit includes an AC-DC converter for converting an AC voltage into a bus bar voltage to the bus bar, and the bus bar is electrically coupled to the AC-DC converter for outputting the output current according to the bus bar voltage. DC to DC converter. The second power conversion circuit includes an isolated bidirectional converter.

Description

電動車充電電路及其控制方法Electric vehicle charging circuit and control method thereof

本案係關於一種充電電路,且特別係關於一種電動車充電電路。This case relates to a charging circuit, and in particular to an electric vehicle charging circuit.

近來,隨著環保意識的普及,開發以電能作為動力來源的電動車取代以化石燃料作為動力的傳統車輛,逐漸成為汽車領域內的重要目標。Recently, with the popularization of environmental awareness, the development of electric vehicles using electric energy as a power source to replace traditional vehicles powered by fossil fuels has gradually become an important target in the automotive field.

為節省充電時間,電動車充電設備須以較高功率對電動車進行充電。隨著電動車電池容量提升,對電動車充電時所需的充電功率也隨之提高。若電動車充電站透過市電電力對電動車充電,可能會超出原先計畫的契約容量,並對電網穩定度造成不良影響。In order to save charging time, electric vehicle charging equipment must charge the electric vehicle at a higher power. As the battery capacity of electric vehicles increases, the charging power required to charge electric vehicles also increases. If the electric vehicle charging station charges the electric vehicle through the mains power, it may exceed the contract capacity of the original plan and adversely affect the stability of the power grid.

因此,如何改善電動車充電站對電動車的充電策略,以滿足電動車的充電需求,是本領域目前重要的研究課題。Therefore, how to improve the charging strategy of electric vehicle charging stations for electric vehicles to meet the charging requirements of electric vehicles is an important research topic in the field.

本案的一態樣為一種電動車充電電路。電動車充電電路包含:一第一電源轉換電路,用以提供一輸出電流以對一電動車充電,該第一電源轉換電路包含:一交流直流轉換器,用以將一交流電壓轉換為一匯流排電壓至一匯流排;以及一直流直流轉換器,於該匯流排電性耦接於該交流直流轉換器,用以根據該匯流排電壓輸出該輸出電流;一儲能裝置;以及一第二電源轉換電路,電性耦接於該儲能裝置與該匯流排之間,用以於該儲能裝置與該匯流排之間雙向傳輸能量,其中該第二電源轉換電路包含一隔離型雙向轉換器。One aspect of the case is an electric vehicle charging circuit. The electric vehicle charging circuit comprises: a first power conversion circuit for providing an output current for charging an electric vehicle, the first power conversion circuit comprising: an AC to DC converter for converting an alternating current voltage into a confluence And discharging a voltage to a bus; and a DC converter, the bus is electrically coupled to the AC-DC converter for outputting the output current according to the bus voltage; an energy storage device; and a second a power conversion circuit electrically coupled between the energy storage device and the bus bar for transmitting energy bidirectionally between the energy storage device and the bus bar, wherein the second power conversion circuit includes an isolated bidirectional conversion Device.

在部分實施例中,該第二電源轉換電路用以根據該匯流排電壓的大小控制該儲能裝置進行充電或放電,以維持該匯流排電壓的電壓準位。In some embodiments, the second power conversion circuit is configured to control charging or discharging of the energy storage device according to the magnitude of the bus voltage to maintain a voltage level of the bus voltage.

在部分實施例中,該第一電源轉換電路更包含複數個電源模組,該些電源模組每一者分別包含對應的該交流直流轉換器與該直流直流轉換器。In some embodiments, the first power conversion circuit further includes a plurality of power modules, each of the power modules respectively including a corresponding AC-DC converter and the DC-DC converter.

在部分實施例中,該第二電源轉換電路包含複數個第二直流直流轉換器,該些第二直流直流轉換器的輸入端分別電性耦接至該些電源模組的該匯流排,該些第二直流直流轉換器的輸出端彼此並聯於該儲能裝置,該些第二直流直流轉換器為隔離型雙向轉換器。In some embodiments, the second power conversion circuit includes a plurality of second DC-DC converters, and the input ends of the second DC-DC converters are electrically coupled to the bus bars of the power modules, respectively. The outputs of the second DC-DC converters are connected to each other in parallel with the energy storage device, and the second DC-DC converters are isolated bidirectional converters.

在部分實施例中,當該交流直流轉換器的一輸入功率到達一額定上限時,該儲能裝置透過該第二電源轉換電路對該匯流排輸出電力,以提供該輸出電流。In some embodiments, when an input power of the AC-DC converter reaches a rated upper limit, the energy storage device outputs power to the bus bar through the second power conversion circuit to provide the output current.

在部分實施例中,當該交流直流轉換器的一輸入功率未到達一額定上限時,該儲能裝置透過該第二電源轉換電路自該匯流排接收電力,以進行儲能。In some embodiments, when an input power of the AC-DC converter does not reach a rated upper limit, the energy storage device receives power from the bus bar through the second power conversion circuit to perform energy storage.

在部分實施例中,該交流直流轉換器為單向轉換器。In some embodiments, the AC to DC converter is a one-way converter.

在部分實施例中,該直流直流轉換器為單向隔離轉換器。In some embodiments, the DC to DC converter is a unidirectional isolation converter.

在部分實施例中,該交流直流轉換器為雙向轉換器。In some embodiments, the AC to DC converter is a bidirectional converter.

本案的另一態樣為一種電動車充電電路。電動車充電電路包含:一第一電源模組,包含:一第一交流直流轉換器,用以將一交流電壓轉換為一第一匯流排電壓至一第一匯流排;一第一直流直流轉換器,於該第一匯流排電性耦接於該第一交流直流轉換器;一第一外接引腳,電性耦接於該匯流排的一正極端並引至該第一電源模組的一殼體之外;以及一第二外接引腳,電性耦接於該匯流排的一負極端並引至該第一電源模組的該殼體之外;一儲能模組,電性耦接於該第一外接引腳與該第二外接引腳,包含:一儲能裝置;以及一電源轉換電路,電性耦接於該儲能裝置,並透過該第一外接引腳與該第二外接引腳電性耦接於該第一匯流排,用以於該儲能裝置與該第一匯流排之間雙向傳輸能量。Another aspect of the present invention is an electric vehicle charging circuit. The electric vehicle charging circuit comprises: a first power supply module comprising: a first alternating current to direct current converter for converting an alternating current voltage into a first busbar voltage to a first busbar; a first direct current direct current The converter is electrically coupled to the first AC-DC converter in the first bus bar; a first external pin is electrically coupled to a positive terminal of the bus bar and leads to the first power module And a second external pin electrically coupled to a negative terminal of the bus bar and led to the outside of the housing of the first power module; an energy storage module, electricity The first external pin and the second external pin are coupled to the first external pin and the second external pin, and include: an energy storage device; and a power conversion circuit electrically coupled to the energy storage device and through the first external pin The second external pin is electrically coupled to the first bus bar for transmitting energy bidirectionally between the energy storage device and the first bus bar.

在部分實施例中,電動車充電電路更包含:一第二電源模組,以並聯形式與該第一電源模組電性耦接,該第二電源模組包含:一第二交流直流轉換器,用以將該交流電壓轉換為一第二匯流排電壓至一第二匯流排;一第二直流直流轉換器,於該第二匯流排電性耦接於該第二交流直流轉換器;一第三外接引腳,電性耦接於該第二匯流排的一正極端並引至該第二電源模組的一殼體之外;以及一第四外接引腳,電性耦接於該第二匯流排的一負極端並引至該第二電源模組的該殼體之外;其中該電源轉換電路透過該第三外接引腳與該第四外接引腳電性耦接於該第二匯流排,用以於該儲能裝置與該第二匯流排之間雙向傳輸能量。In some embodiments, the electric vehicle charging circuit further includes: a second power module electrically coupled to the first power module in parallel, the second power module comprising: a second AC to DC converter The second AC-DC converter is electrically coupled to the second AC-DC converter; the second DC-DC converter is electrically coupled to the second AC-DC converter; The third external pin is electrically coupled to a positive terminal of the second bus bar and leads to a casing of the second power module; and a fourth external pin is electrically coupled to the a negative terminal of the second bus bar is led to the outside of the housing of the second power module; wherein the power conversion circuit is electrically coupled to the fourth external pin through the third external pin The second bus bar is configured to transmit energy bidirectionally between the energy storage device and the second bus bar.

在部分實施例中,該電源轉換電路包含:一第三直流直流轉換器,該第三直流直流轉換器的一第一端電性耦接於該第一匯流排,該第三直流直流轉換器的一第二端電性耦接於該儲能裝置;以及一第四直流直流轉換器,該第四直流直流轉換器的一第一端電性耦接於該第二匯流排,該第四直流直流轉換器的一第二端電性耦接於該儲能裝置。In some embodiments, the power conversion circuit includes: a third DC-DC converter, a first end of the third DC-DC converter is electrically coupled to the first bus, and the third DC-DC converter a second end is electrically coupled to the energy storage device; and a fourth DC to DC converter, a first end of the fourth DC to DC converter is electrically coupled to the second bus bar, the fourth A second end of the DC-DC converter is electrically coupled to the energy storage device.

在部分實施例中,該第三直流直流轉換器與該第四直流直流轉換器為隔離型雙向轉換器。In some embodiments, the third DC to DC converter and the fourth DC to DC converter are isolated bidirectional converters.

在部分實施例中,該電源轉換電路用以根據該第一匯流排電壓的大小控制該儲能裝置進行充電或放電,以維持該第一匯流排電壓的電壓準位。In some embodiments, the power conversion circuit is configured to control charging or discharging of the energy storage device according to the magnitude of the first bus voltage to maintain a voltage level of the first bus voltage.

在部分實施例中,當該第一交流直流轉換器的一輸入功率到達一額定上限時,該儲能裝置透過該第一外接引腳與該第二外接引腳對該第一匯流排輸出電力。In some embodiments, when an input power of the first AC-DC converter reaches a rated upper limit, the energy storage device outputs power to the first bus bar through the first external pin and the second external pin. .

在部分實施例中,當該交流直流轉換器的一輸入功率未到達一額定上限時,該儲能裝置透過該第一外接引腳與該第二外接引腳自該第一匯流排接收電力,以進行儲能。In some embodiments, when an input power of the AC-DC converter does not reach a rated upper limit, the energy storage device receives power from the first bus bar through the first external pin and the second external pin, For energy storage.

本案的又一態樣為一種電動車充電電路的控制方法。控制方法包含:透過一第一電源轉換電路中的一交流直流轉換器,自一電網將一交流電壓轉換為一匯流排電壓至一匯流排;透過該第一電源轉換電路中的一直流直流轉換器,根據該匯流排電壓輸出一輸出電流;以及當該交流直流轉換器的一輸入功率到達一額定上限時,由一儲能裝置透過一第二電源轉換電路對該匯流排輸出電力,以提供該輸出電流。Another aspect of the present invention is a control method for an electric vehicle charging circuit. The control method includes: converting an AC voltage from a power grid to a bus voltage to a bus through an AC-DC converter in a first power conversion circuit; and performing DC-DC conversion in the first power conversion circuit Outputting an output current according to the busbar voltage; and when an input power of the AC-DC converter reaches a rated upper limit, an energy storage device outputs power to the busbar through a second power conversion circuit to provide The output current.

在部分實施例中,控制方法,更包含:當該交流直流轉換器的該輸入功率未到達該額定上限時,透過該第二電源轉換電路自該第一匯流排接收電力,以對該儲能裝置進行儲能。In some embodiments, the controlling method further includes: receiving, when the input power of the AC-DC converter does not reach the rated upper limit, receiving power from the first bus bar through the second power conversion circuit to store the energy The device performs energy storage.

在部分實施例中,控制方法,更包含:透過該第二電源轉換電路,根據該匯流排電壓的大小控制該儲能裝置進行充電或放電,以維持該匯流排電壓的電壓準位。In some embodiments, the controlling method further includes: controlling, by the second power conversion circuit, the charging device to perform charging or discharging according to the magnitude of the bus bar voltage to maintain a voltage level of the bus bar voltage.

在部分實施例中,控制方法,更包含:當該電網停電時,由該儲能裝置透過該第二電源轉換電路對該匯流排輸出電力,以提供該輸出電流。In some embodiments, the control method further includes: when the power grid is powered off, the energy storage device outputs power to the bus bar through the second power conversion circuit to provide the output current.

下文係舉實施例配合所附圖式作詳細說明,以更好地理解本案的態樣,但所提供之實施例並非用以限制本揭露所涵蓋的範圍,而結構操作之描述非用以限制其執行之順序,任何由元件重新組合之結構,所產生具有均等功效的裝置,皆為本揭露所涵蓋的範圍。此外,根據業界的標準及慣常做法,圖式僅以輔助說明為目的,並未依照原尺寸作圖,實際上各種特徵的尺寸可任意地增加或減少以便於說明。下述說明中相同元件將以相同之符號標示來進行說明以便於理解。The embodiments are described in detail below to better understand the aspects of the present invention, but the embodiments are not intended to limit the scope of the disclosure, and the description of the structural operation is not limited. The order in which they are performed, any device that is recombined by components, produces equal devices, and is covered by this disclosure. In addition, according to industry standards and practices, the drawings are only for the purpose of assisting the description, and are not drawn according to the original size. In fact, the dimensions of the various features may be arbitrarily increased or decreased for convenience of explanation. In the following description, the same elements will be denoted by the same reference numerals for explanation.

在全篇說明書與申請專利範圍所使用之用詞(terms),除有特別註明外,通常具有每個用詞使用在此領域中、在此揭露之內容中與特殊內容中的平常意義。某些用以描述本揭露之用詞將於下或在此說明書的別處討論,以提供本領域技術人員在有關本揭露之描述上額外的引導。The terms used in the entire specification and the scope of the patent application, unless otherwise specified, generally have the ordinary meaning of each term used in the field, the content disclosed herein, and the particular content. Certain terms used to describe the disclosure are discussed below or elsewhere in this specification to provide additional guidance to those skilled in the art in the description of the disclosure.

此外,在本文中所使用的用詞『包含』、『包括』、『具有』、『含有』等等,均為開放性的用語,即意指『包含但不限於』。此外,本文中所使用之『及/或』,包含相關列舉項目中一或多個項目的任意一個以及其所有組合。In addition, the terms "including", "including", "having", "containing", and the like, as used herein, are all open terms, meaning "including but not limited to". Further, "and/or" as used herein includes any one or combination of one or more of the associated listed items.

於本文中,當一元件被稱為『連接』或『耦接』時,可指『電性連接』或『電性耦接』。『連接』或『耦接』亦可用以表示二或多個元件間相互搭配操作或互動。此外,雖然本文中使用『第一』、『第二』、…等用語描述不同元件,該用語僅是用以區別以相同技術用語描述的元件或操作。除非上下文清楚指明,否則該用語並非特別指稱或暗示次序或順位,亦非用以限定本發明。As used herein, when an element is referred to as "connected" or "coupled", it may mean "electrically connected" or "electrically coupled". "Connected" or "coupled" can also be used to indicate that two or more components operate or interact with each other. In addition, although the terms "first", "second", and the like are used herein to describe different elements, the terms are used only to distinguish the elements or operations described in the same technical terms. The use of the term is not intended to be a limitation or a

請參考第7圖。第7圖為習知的電動車充電電路700的示意圖。如第7圖所示,習知的電動車充電電路700包含電源轉換電路720,而在應用上常加入電源轉換電路740與儲能裝置760。結構上,電動車充電電路700的電網端電性耦接至電網200,以自電網200接收交流電壓VAC。在部分實施例中,交流電壓VAC可為電力系統中經過中壓隔離電路後輸出之中壓等級的三相交流電。Please refer to Figure 7. FIG. 7 is a schematic diagram of a conventional electric vehicle charging circuit 700. As shown in FIG. 7, the conventional electric vehicle charging circuit 700 includes a power conversion circuit 720, and a power conversion circuit 740 and an energy storage device 760 are often added to the application. Structurally, the grid end of the electric vehicle charging circuit 700 is electrically coupled to the grid 200 to receive the AC voltage VAC from the grid 200. In some embodiments, the alternating voltage VAC may be a three-phase alternating current that outputs an intermediate voltage level after passing through the medium voltage isolation circuit in the power system.

在部分實施例中,電源轉換電路720包含複數個彼此以並聯形式電性耦接的電源模組。各個電源模組分別自電網200接收電力,以分別提供電流輸出,使得電源轉換電路720提供輸出電流Io至電動車充電電路700的負載端,以對電動車300充電。舉例來說,電源模組每一者各自包含對應的交流直流轉換器722a、722b、722c以及直流直流轉換器724a、724b、724c,用以將交流電壓VAC轉換為適當的直流電壓準位,以提供適當的充電電壓與電流至電動車300,以滿足電動車300所需的充電功率。In some embodiments, the power conversion circuit 720 includes a plurality of power modules electrically coupled to each other in parallel. Each power module receives power from the grid 200 to provide a current output, respectively, such that the power conversion circuit 720 provides an output current Io to the load end of the electric vehicle charging circuit 700 to charge the electric vehicle 300. For example, each of the power modules each includes a corresponding AC-DC converter 722a, 722b, 722c and DC-DC converters 724a, 724b, 724c for converting the AC voltage VAC to an appropriate DC voltage level. An appropriate charging voltage and current are supplied to the electric vehicle 300 to meet the required charging power of the electric vehicle 300.

電動車300自電動車充電電路700的負載端擷取電力進行充電時,若電動車300所需的充電功率較大時,電動車充電電路700無法透過電網200提供所需的全部功率。舉例來說,為確保電力系統穩定、配合相關法規規範或是經濟效益等等目的,電動車充電電路700需要控制電網200提供的功率低於與電力公司所約定的契約容量。換言之,電網200所能提供的輸入功率有其額定上限。When the electric vehicle 300 draws electric power from the load end of the electric vehicle charging circuit 700 for charging, if the electric power required for the electric vehicle 300 is large, the electric vehicle charging circuit 700 cannot supply all the power required through the electric grid 200. For example, to ensure the stability of the power system, to comply with relevant regulations or economic benefits, etc., the electric vehicle charging circuit 700 needs to control the power provided by the power grid 200 to be lower than the contract capacity agreed with the power company. In other words, the input power that the grid 200 can provide has its rated upper limit.

為此,電動車充電電路700於電網端設置了同樣電性耦接至電網200的電源轉換電路740。電源轉換電路740為雙向控制的交流直流轉換器,用以在電網200供電尚有餘裕時將多餘電力轉換為適當的直流電力,以將電力儲存於儲能元件760中,並在電網200供電不足時,將儲能元件760中儲存的電力轉換為交流電力提供至電源轉換電路720,以確保電網200提供的功率低於其額定上限。To this end, the electric vehicle charging circuit 700 is provided with a power conversion circuit 740 that is also electrically coupled to the power grid 200 at the grid end. The power conversion circuit 740 is a bidirectionally controlled AC-DC converter for converting excess power into appropriate DC power when the power supply of the power grid 200 is sufficient to store power in the energy storage component 760 and insufficient power supply in the power grid 200. At that time, the power stored in the energy storage element 760 is converted to AC power to the power conversion circuit 720 to ensure that the power provided by the power grid 200 is below its rated upper limit.

然而,電源轉換電路720中的電路元件所能承受的電流亦有其安全電流上限值,若電源轉換電路720的輸入電流過大,亦可能會導致交流直流轉換器722a、722b、722c或其他電路元件毀損。因此,在相同的元件耐流限制下,習知的電動車充電電路700無法進一步提升供電功率以滿足電動車充電功率越來越高的需求。此外,由於電源轉換電路740需提供交流電力至電源轉換電路720,其連接電網200必須要申請併網和符合相關規範。However, the current that the circuit components in the power conversion circuit 720 can withstand also has its safe current upper limit. If the input current of the power conversion circuit 720 is too large, the AC/DC converter 722a, 722b, 722c or other circuits may also be caused. The component is damaged. Therefore, under the same component current withstand limit, the conventional electric vehicle charging circuit 700 cannot further increase the power supply to meet the increasing demand for electric vehicle charging power. In addition, since the power conversion circuit 740 is required to provide AC power to the power conversion circuit 720, its connection to the power grid 200 must be applied for grid connection and compliance with relevant specifications.

請參考第1圖。第1圖為根據本案部分實施例所繪示的電動車充電電路100的示意圖。如第1圖所示,在部分實施例中,電動車充電電路100包含電源轉換電路120、電源轉換電路140、以及儲能裝置160。Please refer to Figure 1. FIG. 1 is a schematic diagram of an electric vehicle charging circuit 100 according to some embodiments of the present disclosure. As shown in FIG. 1, in some embodiments, the electric vehicle charging circuit 100 includes a power conversion circuit 120, a power conversion circuit 140, and an energy storage device 160.

在結構上,電動車充電電路100的電網端用以電性耦接至電網200,以自電網200接收交流電壓VAC。舉例來說,在部分實施例中,交流電壓VAC可為電力系統中經過中壓隔離電路後輸出之中壓等級的三相交流電。Structurally, the grid end of the electric vehicle charging circuit 100 is electrically coupled to the grid 200 to receive the AC voltage VAC from the grid 200. For example, in some embodiments, the alternating voltage VAC may be a three-phase alternating current that outputs an intermediate voltage level after passing through the medium voltage isolation circuit in the power system.

在部分實施例中,電源轉換電路120包含複數個電源模組Ma、Mb、Mc。電源模組Ma、Mb、Mc彼此以並聯形式電性耦接,分別自電網200接收電力,以分別提供電流Ia、Ib、Ic輸出,使得電源轉換電路120提供輸出電流Io至電動車充電電路100的負載端,以對電動車300充電。In some embodiments, the power conversion circuit 120 includes a plurality of power modules Ma, Mb, and Mc. The power modules Ma, Mb, and Mc are electrically coupled to each other in parallel, and respectively receive power from the power grid 200 to respectively supply currents Ia, Ib, and Ic, so that the power conversion circuit 120 provides the output current Io to the electric vehicle charging circuit 100. The load end is used to charge the electric vehicle 300.

具體來說,電源模組Ma、Mb、Mc每一者各自包含對應的交流直流轉換器122a、122b、122c以及直流直流轉換器124a、124b、124c。在結構上,交流直流轉換器122a、122b、122c的交流端彼此電性耦接,直流直流轉換器124a、124b、124c的輸出端彼此電性耦接。在部分實施例中,直流直流轉換器124a、124b、124c為隔離型轉換器。以電源模組Ma為例,交流直流轉換器122a用以自輸入端接收交流電壓VAC,並將交流電壓VAC轉換為匯流排電壓Vbusa至交流直流轉換器122a與直流直流轉換器124a之間的匯流排126a。直流直流轉換器124a於匯流排電性耦接於交流直流轉換器122a,並用以根據匯流排電壓Vbusa輸出電流Ia。Specifically, each of the power modules Ma, Mb, and Mc includes a corresponding AC/DC converter 122a, 122b, and 122c and DC/DC converters 124a, 124b, and 124c. Structurally, the AC terminals of the AC-DC converters 122a, 122b, and 122c are electrically coupled to each other, and the outputs of the DC-DC converters 124a, 124b, and 124c are electrically coupled to each other. In some embodiments, the DC to DC converters 124a, 124b, 124c are isolated converters. Taking the power module Ma as an example, the AC-DC converter 122a is configured to receive the AC voltage VAC from the input terminal, and convert the AC voltage VAC into a bus bar voltage Vbusa to a confluence between the AC-DC converter 122a and the DC-DC converter 124a. Row 126a. The DC-DC converter 124a is electrically coupled to the AC-DC converter 122a at the bus bar and configured to output the current Ia according to the bus bar voltage Vbusa.

相似地,電源模組Mb、Mc亦可分別透過交流直流轉換器122b、122c提供匯流排電壓Vbusb、匯流排電壓Vbusc,並透過直流直流轉換器124b、124c輸出電流Ib、Ic。Similarly, the power modules Mb and Mc can also provide the bus bar voltage Vbusb and the bus bar voltage Vbusc through the AC/DC converters 122b and 122c, and output the currents Ib and Ic through the DC/DC converters 124b and 124c.

如此一來,便可透過各個電源模組Ma、Mb、Mc輸出的電流Ia、Ib、Ic之和,輸出足夠的輸出電流Io至電動車300,以滿足電動車300所需的充電功率。In this way, the sum of the currents Ia, Ib, and Ic outputted by the respective power modules Ma, Mb, and Mc can be outputted to the electric vehicle 300 to meet the required charging power of the electric vehicle 300.

在部分實施例中,電源模組Ma更包含外接引腳Pin1a、Pin2a。外接引腳Pin1a電性耦接於匯流排126a的正極端並引至電源模組Ma的殼體之外。外接引腳Pin2a電性耦接於匯流排126a的負極端並引至電源模組Ma的殼體之外。藉此,匯流排電壓Vbusa便可透過外接引腳Pin1a、Pin2a拉至電源模組Ma之外。相似地,電源模組Mb、Mc亦分別包含相應的外接引腳Pin1b、Pin2b以及外接引腳Pin1c、Pin2c,用以分別將匯流排電壓Vbusb、Vbusc拉至電源模組Mb、Mc之外。換言之,外接引腳Pin1a、Pin1b、Pin1c分別電性耦接於匯流排126a、126b、126c的正極端並引至相應的電源模組Ma、Mb、Mc的殼體之外。外接引腳Pin2a、Pin2b、Pin2c電性耦接於匯流排126a、126b、126c的負極端並引至相應的電源模組Ma、Mb、Mc的殼體之外。In some embodiments, the power module Ma further includes external pins Pin1a and Pin2a. The external pin Pin1a is electrically coupled to the positive terminal of the bus bar 126a and leads to the outside of the housing of the power module Ma. The external pin Pin2a is electrically coupled to the negative terminal of the bus bar 126a and leads to the outside of the housing of the power module Ma. Thereby, the bus voltage Vbusa can be pulled out of the power module Ma through the external pins Pin1a and Pin2a. Similarly, the power modules Mb and Mc respectively include corresponding external pins Pin1b and Pin2b and external pins Pin1c and Pin2c for pulling the bus bars voltages Vbusb and Vbusc to the power modules Mb and Mc, respectively. In other words, the external pins Pin1a, Pin1b, and Pin1c are electrically coupled to the positive ends of the bus bars 126a, 126b, and 126c, respectively, and are led out of the housings of the corresponding power modules Ma, Mb, and Mc. The external pins Pin2a, Pin2b, and Pin2c are electrically coupled to the negative terminals of the bus bars 126a, 126b, and 126c and are led out of the housings of the corresponding power modules Ma, Mb, and Mc.

電源轉換電路140電性耦接於儲能裝置160與電源轉換電路120之間。在結構上,電源轉換電路140分別透過外接引腳Pin1a、Pin2a電性耦接於電源模組Ma的匯流排126a,透過外接引腳Pin1b、Pin2b電性耦接於電源模組Mb的匯流排126b,透過外接引腳Pin1c、Pin2c電性耦接於電源模組Mc的匯流排126c。藉此,電源轉換電路140便可用以於儲能裝置160與匯流排126a、126b、126c之間雙向傳輸能量。The power conversion circuit 140 is electrically coupled between the energy storage device 160 and the power conversion circuit 120. Structurally, the power conversion circuit 140 is electrically coupled to the bus bar 126a of the power module Ma through the external pins Pin1a and Pin2a, and is electrically coupled to the bus bar 126b of the power module Mb through the external pins Pin1b and Pin2b. The external pins Pin1c and Pin2c are electrically coupled to the bus bar 126c of the power module Mc. Thereby, the power conversion circuit 140 can be used to transfer energy between the energy storage device 160 and the bus bars 126a, 126b, 126c.

具體來說,電源轉換電路140包含直流直流轉換器142a、142b、142c。在部分實施例中,直流直流轉換器142a、142b、142c為隔離型雙向轉換器,其一端分別用以透過相應線路耦接至電源模組Ma、Mb、Mc的匯流排126a、126b、126c,其另一端彼此並聯於儲能裝置160。Specifically, the power conversion circuit 140 includes DC-DC converters 142a, 142b, and 142c. In some embodiments, the DC-DC converters 142a, 142b, and 142c are isolated bidirectional converters, one end of which is respectively coupled to the bus bars 126a, 126b, and 126c of the power modules Ma, Mb, and Mc through the corresponding lines. The other ends thereof are connected to each other in parallel with the energy storage device 160.

在部分實施例中,儲能裝置160可透過電池或超級電容等方式實現,用以透過電源轉換電路140進行儲能。在部分實施例中,電源轉換電路140與儲能裝置160亦可整合為單一的儲能模組Md,例如儲能電源櫃,以搭配電源模組Ma、Mb、Mc調節電力。In some embodiments, the energy storage device 160 can be implemented by a battery or a super capacitor to store energy through the power conversion circuit 140. In some embodiments, the power conversion circuit 140 and the energy storage device 160 may also be integrated into a single energy storage module Md, such as an energy storage power cabinet, to adjust power with the power modules Ma, Mb, and Mc.

如此一來,當欲對儲能裝置160進行充電時,直流直流轉換器142a、142b、142c便可自匯流排126a、126b、126c將電力傳輸至儲能裝置160。另一方面,當欲自儲能裝置160提供電力輸出時,直流直流轉換器142a、142b、142c便可進行電力轉換,分別對匯流排126a、126b、126c供電。As such, when the energy storage device 160 is to be charged, the DC-DC converters 142a, 142b, 142c can transfer power from the bus bars 126a, 126b, 126c to the energy storage device 160. On the other hand, when it is desired to provide power output from the energy storage device 160, the DC-DC converters 142a, 142b, 142c can perform power conversion to supply power to the bus bars 126a, 126b, 126c, respectively.

在部分實施例中,電源轉換電路140用以根據匯流排電壓Vbusa、Vbusb、Vbusc的大小控制儲能裝置160進行充電或放電,以維持匯流排電壓Vbusa、Vbusb、Vbusc的電壓準位。具體的電路操作將於以下段落中搭配圖式進行詳細說明。In some embodiments, the power conversion circuit 140 is configured to control the energy storage device 160 to charge or discharge according to the size of the bus bar voltages Vbusa, Vbusb, and Vbusc to maintain the voltage levels of the bus bars voltages Vbusa, Vbusb, and Vbusc. The specific circuit operation will be described in detail in the following paragraphs with the drawings.

請參考第2圖。第2圖為根據本案部分實施例所繪示的電動車充電電路100的操作示意圖。如先前段落中所述,與第7圖所示的電動車充電電路700的操作相似,當電動車300自電動車充電電路100的負載端擷取電力進行充電時,若電動車300所需的充電功率較大時,電動車充電電路100無法透過電網200提供所需的全部功率。Please refer to Figure 2. FIG. 2 is a schematic diagram of the operation of the electric vehicle charging circuit 100 according to some embodiments of the present invention. As described in the previous paragraph, similar to the operation of the electric vehicle charging circuit 700 shown in FIG. 7, when the electric vehicle 300 draws power from the load end of the electric vehicle charging circuit 100 for charging, if the electric vehicle 300 requires When the charging power is large, the electric vehicle charging circuit 100 cannot provide all of the required power through the power grid 200.

因此,如圖中所示,為避免電網200提供的功率超出上限,當交流直流轉換器122a、122b、122c的輸入功率到達額定上限時,儲能裝置160透過電源轉換電路140對匯流排126a、126b、126c輸出電力,以提供輸出電流Io滿足電動車300所需的充電功率。Therefore, as shown in the figure, in order to prevent the power provided by the power grid 200 from exceeding the upper limit, when the input power of the AC-DC converters 122a, 122b, 122c reaches the rated upper limit, the energy storage device 160 transmits the bus bar 126a through the power conversion circuit 140, 126b, 126c output power to provide an output current Io that satisfies the required charging power of the electric vehicle 300.

此時,交流直流轉換器122a、122b、122c的輸入功率維持在額定上限。隨著電動車300擷取的充電功率提高,直流直流轉換器124a、124b、124c所提供的輸出功率大於交流直流轉換器122a、122b、122c提供的功率,導致匯流排126a、126b、126c上的匯流排電壓Vbusa、Vbusb、Vbusc下降。At this time, the input power of the AC/DC converters 122a, 122b, and 122c is maintained at the rated upper limit. As the charging power drawn by the electric vehicle 300 increases, the DC-DC converters 124a, 124b, 124c provide an output power greater than that provided by the AC-DC converters 122a, 122b, 122c, resulting in the busbars 126a, 126b, 126c. The bus voltages Vbusa, Vbusb, and Vbusc drop.

當偵測到匯流排電壓Vbusa、Vbusb、Vbusc下降時,電源轉換電路140便可相應控制儲能裝置160進行放電,輸出補償電流Ica、Icb、Icc至匯流排126a、126b、126c,以平衡輸入功率與輸出功率,藉此維持匯流排電壓Vbusa、Vbusb、Vbusc的電壓準位。When the bus bar voltages Vbusa, Vbusb, and Vbusc are detected to fall, the power conversion circuit 140 can correspondingly control the energy storage device 160 to discharge, and output the compensation currents Ica, Icb, and Icc to the bus bars 126a, 126b, and 126c to balance the input. Power and output power, thereby maintaining the voltage levels of the busbar voltages Vbusa, Vbusb, Vbusc.

換言之,此時對電動車300充電的電力,乃是透過電網200與儲能裝置160兩者同時提供。充電功率P3為電網200的輸入功率P1與儲能裝置160的補償功率P2之和。藉此,電動車充電電路100便可在不超出輸入額定容量與輸入安全電流上限的情況下,滿足電動車300所需的高功率輸出。此外,由於補償電流Ica、Icb、Icc不需流經交流直流轉換器122a、122b、122c,因此交流直流轉換器122a、122b、122c可選用耐流較低的元件實現,進而降低成本。In other words, the electric power charged to the electric vehicle 300 at this time is simultaneously supplied through both the power grid 200 and the energy storage device 160. The charging power P3 is the sum of the input power P1 of the power grid 200 and the compensation power P2 of the energy storage device 160. Thereby, the electric vehicle charging circuit 100 can satisfy the high power output required for the electric vehicle 300 without exceeding the input rated capacity and the input safety current upper limit. In addition, since the compensation currents Ica, Icb, and Icc do not need to flow through the AC-DC converters 122a, 122b, and 122c, the AC-DC converters 122a, 122b, and 122c can be implemented by components having low current resistance, thereby reducing costs.

請參考第3圖與第4圖。第3圖與第4圖分別為根據本案部分實施例所繪示的電動車充電電路100的操作示意圖。如第3圖所示,在部分實施例中,電動車300自電動車充電電路100的負載端擷取電力進行充電時,若電動車300所需的充電功率較小時,電動車充電電路100除了對電動車300充電之外,尚可將多餘的電力透過電源轉換電路140對儲能裝置160進行儲能。此時電網200的輸入功率P1為充電功率P3與對儲能裝置160充電之充電功率P2之和。Please refer to Figures 3 and 4. 3 and 4 are schematic diagrams showing the operation of the electric vehicle charging circuit 100 according to some embodiments of the present invention. As shown in FIG. 3, in some embodiments, when the electric vehicle 300 draws power from the load end of the electric vehicle charging circuit 100 for charging, if the required charging power of the electric vehicle 300 is small, the electric vehicle charging circuit 100 In addition to charging the electric vehicle 300, excess power can be stored in the energy storage device 160 through the power conversion circuit 140. At this time, the input power P1 of the power grid 200 is the sum of the charging power P3 and the charging power P2 that charges the energy storage device 160.

另外,如第4圖所示,在部分實施例中,當充電完成,或是沒有電動車300自電動車充電電路100的負載端擷取電力時,電動車充電電路100亦可僅透過交流直流轉換器122a、122b、122c以及電源轉換電路140的協同操作,對儲能裝置160進行儲能。此時電網200的輸入功率P1約等於儲能裝置160充電之充電功率P2。In addition, as shown in FIG. 4, in some embodiments, when the charging is completed, or when the electric vehicle 300 does not draw power from the load end of the electric vehicle charging circuit 100, the electric vehicle charging circuit 100 may also only transmit AC and DC. The converters 122a, 122b, 122c and the power conversion circuit 140 operate in concert to store energy storage device 160. At this time, the input power P1 of the power grid 200 is approximately equal to the charging power P2 charged by the energy storage device 160.

換言之,當交流直流轉換器122a、122b、122c的輸入功率未到達額定上限時,儲能裝置160可透過電源轉換電路140自匯流排126a、126b、126c接收電力。如此一來,當電動車300充電接近完成而以低功率充電時,或者在沒有電動車300進行充電時,電動車充電電路100仍可透過交流直流轉換器122a、122b、122c與電源轉換電路140中的直流直流轉換器142a、142b、142c自電網200接收電力,並提供儲能電流Ica、Icb、Icc以對儲能裝置160進行儲能。In other words, when the input power of the AC-DC converters 122a, 122b, 122c does not reach the rated upper limit, the energy storage device 160 can receive power from the bus bars 126a, 126b, 126c through the power conversion circuit 140. In this way, when the electric vehicle 300 is nearly fully charged and charged at low power, or when the electric vehicle 300 is not being charged, the electric vehicle charging circuit 100 can still pass through the AC/DC converters 122a, 122b, and 122c and the power conversion circuit 140. The DC-DC converters 142a, 142b, 142c receive power from the grid 200 and provide stored currents Ica, Icb, Icc to store energy storage device 160.

此外,不論電動車300當下所需的充電功率大小,或者是否有電動車300正在進行充電,電動車充電電路100可透過電源轉換電路140與儲能裝置160的調度操作,使得自電網200所擷取功率保持平穩,避免用電量隨後級負載劇烈變化,影響電力系統的穩定。In addition, regardless of the current required charging power level of the electric vehicle 300, or whether the electric vehicle 300 is being charged, the electric vehicle charging circuit 100 can pass through the dispatching operation of the power conversion circuit 140 and the energy storage device 160, so that the self-grid 200 is paralyzed. The power is kept stable, and the subsequent load of the power level is drastically changed, which affects the stability of the power system.

值得注意的是,在部分實施例中,電動車充電電路100可透過於於輸入端與輸出端設置相應的電壓偵測元件與電流偵測元件以計算電動車充電電路100自電網200擷取的輸入功率,以及電動車充電電路100對電動車300充電的充電功率。此外,在其他部分實施例中,電動車充電電路100亦可設置多組電壓偵測元件與電流偵測元件於各個電源模組Ma、Mb、Mc中,以分別計算電源模組Ma、Mb、Mc之功率並進行加總。換言之,電動車充電電路100可透過不同方式計算輸入功率與充電功率,以判斷輸入功率是否超過目標值,或者電動車300是否正在進行充電等等,以便進行相應的控制操作。It should be noted that, in some embodiments, the electric vehicle charging circuit 100 can be configured to calculate the electric vehicle charging circuit 100 from the power grid 200 by using corresponding voltage detecting elements and current detecting elements at the input end and the output end. The input power and the charging power that the electric vehicle charging circuit 100 charges the electric vehicle 300. In addition, in other embodiments, the electric vehicle charging circuit 100 may also provide a plurality of sets of voltage detecting components and current detecting components in the respective power modules Ma, Mb, and Mc to calculate the power modules Ma, Mb, and The power of Mc is summed up. In other words, the electric vehicle charging circuit 100 can calculate the input power and the charging power in different ways to determine whether the input power exceeds the target value, or whether the electric vehicle 300 is charging or the like, in order to perform a corresponding control operation.

請參考第5圖。第5圖為根據本案部分實施例所繪示的電動車充電電路100的操作示意圖。如第5圖所示,在部分實施例中,當電動車300自電動車充電電路100的負載端擷取電力進行充電時,電動車充電電路100亦可僅透過儲能裝置160對電動車300充電,而不自電網200擷取能量。此時充電功率P3約等於儲能裝置160的補償功率P2。Please refer to Figure 5. FIG. 5 is a schematic diagram of the operation of the electric vehicle charging circuit 100 according to some embodiments of the present invention. As shown in FIG. 5 , in some embodiments, when the electric vehicle 300 draws power from the load end of the electric vehicle charging circuit 100 for charging, the electric vehicle charging circuit 100 can also pass only the energy storage device 160 to the electric vehicle 300 . Charging without drawing energy from the grid 200. At this time, the charging power P3 is approximately equal to the compensation power P2 of the energy storage device 160.

在部分實施例中,電動車充電電路100可進行經濟調度,以降低對電動車300充電的成本。舉例來說,電動車充電電路100可在電價較低的時段自電網200購電對儲能裝置160進行儲能。在電價較高的時段,電動車充電電路100便可選擇由儲能裝置160提供電動車充電所需的能量。如此一來,電動車充電電路100便可以較低的成本完成充電。In some embodiments, the electric vehicle charging circuit 100 can be economically scheduled to reduce the cost of charging the electric vehicle 300. For example, the electric vehicle charging circuit 100 can store energy from the energy storage device 160 from the power grid 200 during a period when the electricity price is low. During periods of high electricity prices, the electric vehicle charging circuit 100 can select the energy required to charge the electric vehicle by the energy storage device 160. As a result, the electric vehicle charging circuit 100 can complete the charging at a lower cost.

此外,在部分實施例中,當電網200發生供電異常而停電、掉電時,電動車充電電路100亦可透過儲能裝置160所儲存的能量供電動車300充電,而不受到電網200異常的影響。In addition, in some embodiments, when the power grid 200 is powered abnormally and is powered off or powered down, the electric vehicle charging circuit 100 can also be charged by the energy stored in the energy storage device 160 to be charged by the energy storage device 300 without being abnormal by the power grid 200. influences.

綜上所述,電動車充電電路100可根據電網狀態以及負載裝態,透過多種不同的控制策略進行電網200、儲能裝置160以及電動車300之間的電力傳輸。In summary, the electric vehicle charging circuit 100 can perform power transmission between the power grid 200, the energy storage device 160, and the electric vehicle 300 through a plurality of different control strategies according to the grid state and the load state.

在部分實施例中,交流直流轉換器122a、122b、122c與直流直流轉換器124a、124b、124c可為單向轉換器,相應整合於電源模組Ma、Mb、Mc當中,再透過外接引腳Pin1a、Pin2a、Pin1b、Pin2b、Pin1c、Pin2c連接至電源轉換電路140中的直流直流轉換器142a、142b、142c。In some embodiments, the AC-DC converters 122a, 122b, and 122c and the DC-DC converters 124a, 124b, and 124c may be unidirectional converters, and are integrated in the power modules Ma, Mb, and Mc, and then through external pins. Pins 1a, Pin2a, Pin1b, Pin2b, Pin1c, Pin2c are connected to DC-DC converters 142a, 142b, 142c in the power conversion circuit 140.

如此一來,各個電源模組Ma、Mb、Mc可以維持高轉換效率,降低電動車充電電路100中的能源損耗。此外,由於各個電源模組Ma、Mb、Mc可透過同一個儲能模組Md對相應的匯流排126a、126b、126c進行電力補償,因此在高輸出功率的應用當中,電動車充電電路100保留較大的擴充彈性。舉例來說,電動車充電電路100亦可根據實際需求增減電源模組的數量,以滿足未來更高負載功率的潛在需求。藉此,擴充的電源模組亦可透過外接引腳電性耦接至儲能電源櫃中的電源轉換電路140,並與原本的電源模組Ma、Mb、Mc共用儲能裝置160進行雙向的充放電。In this way, each of the power modules Ma, Mb, and Mc can maintain high conversion efficiency and reduce energy loss in the electric vehicle charging circuit 100. In addition, since the power modules Ma, Mb, and Mc can electrically compensate the corresponding bus bars 126a, 126b, and 126c through the same energy storage module Md, the electric vehicle charging circuit 100 retains in the high output power application. Large expansion flexibility. For example, the electric vehicle charging circuit 100 can also increase or decrease the number of power modules according to actual needs to meet the potential demand for higher load power in the future. Therefore, the expanded power module can be electrically coupled to the power conversion circuit 140 in the energy storage power cabinet through an external pin, and shared with the original power module Ma, Mb, and Mc to store the energy storage device 160 in two directions. Discharge.

此外,在其他部分實施例中,交流直流轉換器122a、122b、122c亦可為雙向轉換器。如此一來,電動車充電電路100亦可於電網200有電力需求時反向將儲能裝置160中儲存的電力提供至電網200,以減輕電網200於尖峰負載時段的供電壓力。換言之,在各個實施例中,電動車充電電路100中的各個轉換器可依據實際需求選擇適合的電路元件實現。再者,電源轉換電路140並未直接連接電網200,故要擴充或更換電源轉換電路140皆不用額外申請併網,提升電源轉換電路140的使用彈性。In addition, in other embodiments, the AC/DC converters 122a, 122b, and 122c may also be bidirectional converters. In this way, the electric vehicle charging circuit 100 can also reversely supply the power stored in the energy storage device 160 to the power grid 200 when the power grid 200 has power demand, so as to alleviate the power supply pressure of the power grid 200 during the peak load period. In other words, in various embodiments, each of the converters in the electric vehicle charging circuit 100 can be implemented in accordance with actual needs. Moreover, the power conversion circuit 140 is not directly connected to the power grid 200. Therefore, the power conversion circuit 140 needs to be expanded or replaced without additional application for grid connection, thereby improving the flexibility of the power conversion circuit 140.

請參考第6圖。第6圖為根據本揭示內容部分實施例所繪示的電動車充電電路100的控制方法600的流程圖。為方便及清楚說明起見,下述控制方法600是配合第1圖~第5圖所示實施例進行說明,但不以此為限,任何熟習此技藝者,在不脫離本案之精神和範圍內,當可對作各種更動與潤飾。如第6圖所示,控制方法600包含步驟S610、S620、S630、S640以及S650。Please refer to Figure 6. FIG. 6 is a flow chart of a method 600 of controlling the electric vehicle charging circuit 100 in accordance with some embodiments of the present disclosure. For convenience and clarity of description, the following control method 600 is described with reference to the embodiments shown in FIGS. 1 to 5, but it is not limited thereto, and any person skilled in the art can avoid the spirit and scope of the present invention. Inside, when you can make a variety of changes and retouching. As shown in FIG. 6, the control method 600 includes steps S610, S620, S630, S640, and S650.

首先,在步驟S610中,電動車充電電路100透過電源轉換電路120中的交流直流轉換器122a、122b、122c,自電網200將交流電壓VAC轉換為匯流排電壓Vbusa、Vbusb、Vbusc至匯流排126a、126b、126c。First, in step S610, the electric vehicle charging circuit 100 transmits the alternating current voltage VAC from the power grid 200 to the bus voltages Vbusa, Vbusb, Vbusc to the bus bar 126a through the AC/DC converters 122a, 122b, 122c in the power conversion circuit 120. , 126b, 126c.

接著,在步驟S620中,電動車充電電路100透過電源轉換電路120中的直流直流轉換器124a、124b、124c,根據匯流排電壓Vbusa、Vbusb、Vbusc輸出輸出電流Io。Next, in step S620, the electric vehicle charging circuit 100 transmits the output current Io according to the bus voltages Vbusa, Vbusb, and Vbusc through the DC/DC converters 124a, 124b, and 124c in the power conversion circuit 120.

在步驟S630中,當交流直流轉換器122a、122b、122c的輸入功率到達額定上限時,電動車充電電路100由儲能裝置160透過電源轉換電路140對匯流排126a、126b、126c輸出電力,以提供輸出電流Io。In step S630, when the input power of the AC-DC converters 122a, 122b, 122c reaches the rated upper limit, the electric vehicle charging circuit 100 outputs power to the bus bars 126a, 126b, 126c through the power conversion device 140 through the power storage device 160. The output current Io is supplied.

在步驟S640中,當交流直流轉換器122a、122b、122c的輸入功率未到達額定上限時,透過電源轉換電路140自匯流排126a、126b、126c接收電力,以對儲能裝置160進行儲能。In step S640, when the input power of the AC-DC converters 122a, 122b, 122c does not reach the rated upper limit, power is received from the bus bars 126a, 126b, 126c through the power conversion circuit 140 to store the energy storage device 160.

具體來說,在部分實施例中,步驟S630、S640包含透過電源轉換電路140,根據匯流排電壓Vbusa、Vbusb、Vbusc的大小控制儲能裝置160進行充電或放電,以維持匯流排電壓Vbusa、Vbusb、Vbusc的電壓準位。Specifically, in some embodiments, steps S630 and S640 include transmitting power conversion device 140 to control energy storage device 160 for charging or discharging according to the size of bus bar voltages Vbusa, Vbusb, and Vbusc to maintain bus bar voltages Vbusa and Vbusb. , Vbusc voltage level.

在步驟S650中,當電網200停電時,由儲能裝置160透過電源轉換電路140對匯流排126a、126b、126c輸出電力,以提供輸出電流Io。In step S650, when the power grid 200 is powered off, the energy storage device 160 outputs power to the bus bars 126a, 126b, 126c through the power conversion circuit 140 to provide an output current Io.

如此一來,電動車充電電路100便可根據電力系統及負載條件操作在適當控制模式下進行電力調度,確保在對電動車300進行充電時,可以降低充電成本並減少對電網200的衝擊。In this way, the electric vehicle charging circuit 100 can perform power dispatching in an appropriate control mode according to the power system and the load condition, thereby ensuring that the charging cost can be reduced and the impact on the power grid 200 can be reduced when the electric vehicle 300 is charged.

所屬技術領域具有通常知識者可直接瞭解此控制方法600如何基於上述多個不同實施例中的電動車充電電路100以執行該等操作及功能,故不再此贅述。Those skilled in the art can directly understand how this control method 600 is based on the electric vehicle charging circuit 100 in the various different embodiments described above to perform such operations and functions, and thus will not be described again.

雖然本文將所公開的方法示出和描述為一系列的步驟或事件,但是應當理解,所示出的這些步驟或事件的順序不應解釋為限制意義。例如,部分步驟可以以不同順序發生和/或與除了本文所示和/或所描述之步驟或事件以外的其他步驟或事件同時發生。另外,實施本文所描述的一個或多個態樣或實施例時,並非所有於此示出的步驟皆為必需。此外,本文中的一個或多個步驟亦可能在一個或多個分離的步驟和/或階段中執行。While the methods disclosed are shown and described herein as a series of steps or events, it is understood that the order of the steps or events shown should not be construed as limiting. For example, some of the steps may occur in a different order and/or concurrently with other steps or events other than those illustrated or/or described herein. In addition, not all of the steps shown herein are required in the practice of one or more aspects or embodiments described herein. Moreover, one or more steps herein may also be performed in one or more separate steps and/or stages.

雖然本揭示內容已以實施方式揭露如上,然其並非用以限定本揭示內容,任何熟習此技藝者,在不脫離本揭示內容之精神和範圍內,當可作各種更動與潤飾,因此本揭示內容之保護範圍當視後附之申請專利範圍所界定者為準。The present disclosure has been disclosed in the above embodiments, and is not intended to limit the disclosure, and the present disclosure may be variously modified and retouched without departing from the spirit and scope of the present disclosure. The scope of protection of the content is subject to the definition of the scope of the patent application.

100 電動車充電電路 120 電源轉換電路 122a、122b、122c 交流直流轉換器 124a、124b、124c 直流直流轉換器 140 電源轉換電路 142a、142b、142c 直流直流轉換器 160 儲能裝置 200 電網 300 電動車 600 控制方法 700 電動車充電電路 720、740 電源轉換電路 722a、722b、722c 交流直流轉換器 724a、724b、724c 直流直流轉換器 760 儲能裝置 S610、S620、S630、S640、S650 步驟 Ma、Mb、Mc 電源模組 Md 儲能模組 Ia、Ib、Ic、Io、Ica、Icb、Icc 電流 VAC、Vbusa、Vbusb、Vbusc 電壓 Pin1a、Pin2a、Pin1b、Pin2b、Pin1c、Pin2c 外接引腳 P1、P2、P3 功率100 electric vehicle charging circuit 120 power conversion circuit 122a, 122b, 122c AC-DC converter 124a, 124b, 124c DC-DC converter 140 Power conversion circuit 142a, 142b, 142c DC-DC converter 160 Energy storage device 200 Grid 300 Electric vehicle 600 Control Method 700 Electric Vehicle Charging Circuit 720, 740 Power Conversion Circuit 722a, 722b, 722c AC DC Converter 724a, 724b, 724c DC DC Converter 760 Energy Storage Device S610, S620, S630, S640, S650 Steps Ma, Mb, Mc Power Module Md Energy Storage Modules Ia, Ib, Ic, Io, Ica, Icb, Icc Current VAC, Vbusa, Vbusb, Vbusc Voltages Pin1a, Pin2a, Pin1b, Pin2b, Pin1c, Pin2c External Pins P1, P2, P3 Power

第1圖為根據本案部分實施例所繪示的電動車充電電路的示意圖。 第2圖為根據本案部分實施例所繪示的電動車充電電路的操作示意圖。 第3圖為根據本案部分實施例所繪示的電動車充電電路的操作示意圖。 第4圖為根據本案部分實施例所繪示的電動車充電電路的操作示意圖。 第5圖為根據本案部分實施例所繪示的電動車充電電路的操作示意圖。 第6圖為根據本揭示內容部分實施例所繪示的電動車充電電路的控制方法的流程圖。 第7圖為習知的電動車充電電路的示意圖。FIG. 1 is a schematic diagram of an electric vehicle charging circuit according to some embodiments of the present disclosure. FIG. 2 is a schematic diagram of the operation of the electric vehicle charging circuit according to some embodiments of the present invention. FIG. 3 is a schematic diagram of the operation of the electric vehicle charging circuit according to some embodiments of the present invention. FIG. 4 is a schematic diagram of the operation of the electric vehicle charging circuit according to some embodiments of the present invention. FIG. 5 is a schematic diagram of the operation of the electric vehicle charging circuit according to some embodiments of the present invention. FIG. 6 is a flow chart of a method of controlling an electric vehicle charging circuit according to some embodiments of the present disclosure. Figure 7 is a schematic diagram of a conventional electric vehicle charging circuit.

Claims (18)

一種電動車充電電路,包含:一第一電源轉換電路,用以提供一輸出電流以對一電動車充電,該第一電源轉換電路包含:一交流直流轉換器,用以將一交流電壓轉換為一匯流排電壓至一匯流排;以及一直流直流轉換器,於該匯流排電性耦接於該交流直流轉換器,用以根據該匯流排電壓輸出該輸出電流;一儲能裝置;以及一第二電源轉換電路,電性耦接於該儲能裝置與該匯流排之間,用以於該儲能裝置與該匯流排之間雙向傳輸能量,其中該第二電源轉換電路包含一隔離型雙向轉換器;其中該第一電源轉換電路更包含複數個電源模組,該些電源模組每一者分別包含對應的該交流直流轉換器與該直流直流轉換器。 An electric vehicle charging circuit includes: a first power conversion circuit for providing an output current for charging an electric vehicle, the first power conversion circuit comprising: an AC to DC converter for converting an alternating current voltage into a bus bar voltage to a bus bar; and a DC DC converter, the bus bar is electrically coupled to the AC DC converter for outputting the output current according to the bus bar voltage; an energy storage device; The second power conversion circuit is electrically coupled between the energy storage device and the bus bar for transmitting energy bidirectionally between the energy storage device and the bus bar, wherein the second power conversion circuit includes an isolated type The two-way converter further includes a plurality of power modules, each of the power modules respectively including a corresponding AC-DC converter and the DC-DC converter. 如請求項1所述之電動車充電電路,其中該第二電源轉換電路用以根據該匯流排電壓的大小控制該儲能裝置進行充電或放電,以維持該匯流排電壓的電壓準位。 The electric vehicle charging circuit of claim 1, wherein the second power conversion circuit is configured to control the energy storage device to charge or discharge according to the magnitude of the bus voltage to maintain a voltage level of the bus voltage. 如請求項1所述之電動車充電電路,其中該第二電源轉換電路包含複數個第二直流直流轉換器,該些第二直流直流轉換器的輸入端分別電性耦接至該些電源模組的該匯流排,該些第二直流直流轉換器的輸出端彼此並聯於該儲能裝置,該些第二直流直流轉換器為隔離型雙向轉換器。 The electric vehicle charging circuit of claim 1, wherein the second power conversion circuit comprises a plurality of second DC-DC converters, wherein the input terminals of the second DC-DC converters are electrically coupled to the power modules, respectively. The busbars of the group, the outputs of the second DC-DC converters are connected to each other in parallel with the energy storage device, and the second DC-DC converters are isolated bidirectional converters. 如請求項1所述之電動車充電電路,其中該些電源模組每一者分別包含一第一外接引腳與一第二外接引腳,該第一外接引腳電性耦接於該匯流排的一正極端並引至相應的該電源模組的一殼體之外,該第二外接引腳電性耦接於該匯流排的一負極端並引至相應的該電源模組的該殼體之外。 The electric vehicle charging circuit of claim 1, wherein each of the power modules includes a first external pin and a second external pin, and the first external pin is electrically coupled to the current. a positive terminal of the row is led out to a corresponding one of the power modules, the second external pin is electrically coupled to a negative terminal of the bus bar and leads to the corresponding power module Outside the casing. 如請求項1所述之電動車充電電路,其中該些電源模組彼此以並聯形式電性耦接,該些電源模組中的該些交流直流轉換器的交流端彼此電性耦接,該些電源模組中的該些直流直流轉換器的輸出端彼此電性耦接。 The electric vehicle charging circuit of claim 1, wherein the power modules are electrically coupled to each other in parallel, and the alternating current ends of the alternating current and direct current converters of the power modules are electrically coupled to each other. The outputs of the DC-DC converters in the power modules are electrically coupled to each other. 如請求項1所述之電動車充電電路,其中當該交流直流轉換器的一輸入功率到達一額定上限時,該儲能裝置透過該第二電源轉換電路對該匯流排輸出電力,以提供該輸出電流。 The electric vehicle charging circuit of claim 1, wherein when an input power of the AC-DC converter reaches a rated upper limit, the energy storage device outputs power to the bus bar through the second power conversion circuit to provide the Output current. 如請求項1所述之電動車充電電路,其中當該交流直流轉換器的一輸入功率未到達一額定上限時,該儲能裝置透過該第二電源轉換電路自該匯流排接收電力,以進行儲能。 The electric vehicle charging circuit of claim 1, wherein when the input power of the AC-DC converter does not reach a rated upper limit, the energy storage device receives power from the bus bar through the second power conversion circuit to perform Energy storage. 一種電動車充電電路,包含:一第一電源轉換電路,用以提供一輸出電流以對一電動 車充電,該第一電源轉換電路包含:一交流直流轉換器,用以將一交流電壓轉換為一匯流排電壓至一匯流排;以及一直流直流轉換器,於該匯流排電性耦接於該交流直流轉換器,用以根據該匯流排電壓輸出該輸出電流;該直流直流轉換器為單向隔離轉換器;一儲能裝置;以及一第二電源轉換電路,電性耦接於該儲能裝置與該匯流排之間,用以於該儲能裝置與該匯流排之間雙向傳輸能量,其中該第二電源轉換電路包含一隔離型雙向轉換器。 An electric vehicle charging circuit includes: a first power conversion circuit for providing an output current to an electric Charging the vehicle, the first power conversion circuit includes: an AC-DC converter for converting an AC voltage into a bus voltage to a bus; and a DC-DC converter, wherein the bus is electrically coupled to the bus The AC-DC converter is configured to output the output current according to the busbar voltage; the DC-DC converter is a unidirectional isolation converter; an energy storage device; and a second power conversion circuit electrically coupled to the storage The energy device and the bus bar are configured to transmit energy bidirectionally between the energy storage device and the bus bar, wherein the second power conversion circuit comprises an isolated bidirectional converter. 一種電動車充電電路,包含:一第一電源模組,包含:一第一交流直流轉換器,用以將一交流電壓轉換為一第一匯流排電壓至一第一匯流排;一第一直流直流轉換器,於該第一匯流排電性耦接於該第一交流直流轉換器;一第一外接引腳,電性耦接於該匯流排的一正極端並引至該第一電源模組的一殼體之外;以及一第二外接引腳,電性耦接於該匯流排的一負極端並引至該第一電源模組的該殼體之外;一第二電源模組,以並聯形式與該第一電源模組電性耦接,該第二電源模組包含:一第二交流直流轉換器,用以將該交流電壓轉換為一第二匯流排電壓至一第二匯流排; 一第二直流直流轉換器,於該第二匯流排電性耦接於該第二交流直流轉換器;一第三外接引腳,電性耦接於該第二匯流排的一正極端並引至該第二電源模組的一殼體之外;以及一第四外接引腳,電性耦接於該第二匯流排的一負極端並引至該第二電源模組的該殼體之外;以及一儲能模組,電性耦接於該第一外接引腳與該第二外接引腳,包含:一儲能裝置;以及一電源轉換電路,電性耦接於該儲能裝置,並透過該第一外接引腳與該第二外接引腳電性耦接於該第一匯流排,用以於該儲能裝置與該第一匯流排之間雙向傳輸能量;該電源轉換電路透過該第三外接引腳與該第四外接引腳電性耦接於該第二匯流排,用以於該儲能裝置與該第二匯流排之間雙向傳輸能量。 An electric vehicle charging circuit includes: a first power module, comprising: a first AC-DC converter for converting an AC voltage into a first bus bar voltage to a first bus bar; The DC-DC converter is electrically coupled to the first AC-DC converter in the first bus bar; a first external pin is electrically coupled to a positive terminal of the bus bar and leads to the first power source And a second external lead is electrically coupled to a negative end of the bus bar and leads to the outside of the housing of the first power module; a second power mode The second power module includes: a second AC-DC converter for converting the AC voltage into a second bus voltage to a first Second bus a second DC-DC converter electrically coupled to the second AC-DC converter; the third external pin is electrically coupled to a positive terminal of the second bus And a fourth external pin is electrically coupled to a negative terminal of the second bus bar and leads to the housing of the second power module And an energy storage module electrically coupled to the first external pin and the second external pin, comprising: an energy storage device; and a power conversion circuit electrically coupled to the energy storage device And electrically coupling the first external pin and the second external pin to the first bus bar for transmitting energy bidirectionally between the energy storage device and the first bus bar; the power conversion circuit The second external pin and the fourth external pin are electrically coupled to the second bus bar for transmitting energy bidirectionally between the energy storage device and the second bus bar. 如請求項9所述之電動車充電電路,其中該電源轉換電路包含:一第三直流直流轉換器,該第三直流直流轉換器的一第一端電性耦接於該第一匯流排,該第三直流直流轉換器的一第二端電性耦接於該儲能裝置;以及一第四直流直流轉換器,該第四直流直流轉換器的一第一端電性耦接於該第二匯流排,該第四直流直流轉換器的一第二端電性耦接於該儲能裝置。 The electric vehicle charging circuit of claim 9, wherein the power conversion circuit comprises: a third DC to DC converter, a first end of the third DC to DC converter is electrically coupled to the first bus bar, A second end of the third DC-DC converter is electrically coupled to the energy storage device; and a fourth DC-DC converter, the first end of the fourth DC-DC converter is electrically coupled to the first The second bus is electrically coupled to the energy storage device. 如請求項9所述之電動車充電電路,其中該第三直流直流轉換器與該第四直流直流轉換器為隔離型雙向轉換器。 The electric vehicle charging circuit of claim 9, wherein the third DC to DC converter and the fourth DC to DC converter are isolated bidirectional converters. 如請求項9所述之電動車充電電路,其中該電源轉換電路用以根據該第一匯流排電壓的大小控制該儲能裝置進行充電或放電,以維持該第一匯流排電壓的電壓準位。 The electric vehicle charging circuit of claim 9, wherein the power conversion circuit is configured to control the energy storage device to charge or discharge according to the magnitude of the first bus voltage to maintain a voltage level of the first bus voltage. . 如請求項9所述之電動車充電電路,其中當該第一交流直流轉換器的一輸入功率到達一額定上限時,該儲能裝置透過該第一外接引腳與該第二外接引腳對該第一匯流排輸出電力。 The electric vehicle charging circuit of claim 9, wherein when the input power of the first alternating current to direct current converter reaches a rated upper limit, the energy storage device transmits the first external pin and the second external pin pair The first busbar outputs power. 如請求項9所述之電動車充電電路,其中當該交流直流轉換器的一輸入功率未到達一額定上限時,該儲能裝置透過該第一外接引腳與該第二外接引腳自該第一匯流排接收電力,以進行儲能。 The electric vehicle charging circuit of claim 9, wherein when the input power of the AC-DC converter does not reach a rated upper limit, the energy storage device transmits the first external pin and the second external pin. The first busbar receives power for energy storage. 一種電動車充電電路之控制方法,包含:透過一第一電源轉換電路中的複數個交流直流轉換器,自一電網將一交流電壓轉換為複數個匯流排電壓至複數個匯流排;其中該第一電源轉換電路更包含複數個電源模組,該些電源模組包含該些交流直流轉換器以及對應的複數個直流直流轉換器;透過該第一電源轉換電路中的該些直流直流轉換器,根 據該些匯流排電壓輸出複數個輸出電流;以及當該些交流直流轉換器的一輸入功率到達一額定上限時,由一儲能裝置透過一第二電源轉換電路對該些匯流排輸出電力,以提供該些輸出電流。 A method for controlling an electric vehicle charging circuit, comprising: converting an alternating current voltage into a plurality of busbar voltages from a power grid to a plurality of busbars through a plurality of alternating current to direct current converters in a first power conversion circuit; wherein the A power conversion circuit further includes a plurality of power supply modules, the power supply modules including the AC-DC converters and corresponding plurality of DC-DC converters; and the DC-DC converters in the first power conversion circuit, root And outputting a plurality of output currents according to the busbar voltages; and when an input power of the AC/DC converters reaches a rated upper limit, an energy storage device outputs power to the busbars through a second power conversion circuit, To provide these output currents. 如請求項15所述之電動車充電電路之控制方法,更包含:當該些交流直流轉換器的該輸入功率未到達該額定上限時,透過該第二電源轉換電路自該第一匯流排接收電力,以對該儲能裝置進行儲能。 The control method of the electric vehicle charging circuit of claim 15, further comprising: receiving, by the second power conversion circuit, the first busbar when the input power of the AC/DC converters does not reach the rated upper limit Electricity to store energy to the energy storage device. 如請求項15所述之電動車充電電路之控制方法,更包含:透過該第二電源轉換電路,根據該些匯流排電壓的大小控制該儲能裝置進行充電或放電,以維持該些匯流排電壓的電壓準位。 The control method of the electric vehicle charging circuit of claim 15, further comprising: controlling, by the second power conversion circuit, the charging device to charge or discharge according to the magnitude of the busbar voltage to maintain the busbars The voltage level of the voltage. 如請求項15所述之電動車充電電路之控制方法,更包含:當該電網停電時,由該儲能裝置透過該第二電源轉換電路對該些匯流排輸出電力,以提供該些輸出電流。 The control method of the electric vehicle charging circuit of claim 15, further comprising: when the power grid is powered off, the energy storage device outputs power to the busbars through the second power conversion circuit to provide the output currents. .
TW106116977A 2017-05-23 2017-05-23 Electric vehicle charging circuit and control method thereof TWI654815B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106116977A TWI654815B (en) 2017-05-23 2017-05-23 Electric vehicle charging circuit and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106116977A TWI654815B (en) 2017-05-23 2017-05-23 Electric vehicle charging circuit and control method thereof

Publications (2)

Publication Number Publication Date
TW201902070A TW201902070A (en) 2019-01-01
TWI654815B true TWI654815B (en) 2019-03-21

Family

ID=65803171

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106116977A TWI654815B (en) 2017-05-23 2017-05-23 Electric vehicle charging circuit and control method thereof

Country Status (1)

Country Link
TW (1) TWI654815B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI685170B (en) * 2019-03-13 2020-02-11 台達電子工業股份有限公司 Intelligent current control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011078388A1 (en) 2009-12-21 2011-06-30 Panasonic Electric Works Co., Ltd. Electricity feeding device and electricity feeding system using the same
TW201227239A (en) 2010-12-20 2012-07-01 Hon Hai Prec Ind Co Ltd Power system for container data center
CN103448573A (en) 2013-07-29 2013-12-18 华北电力大学(保定) High-voltage direct-current tractive power supply system of bidirectional interactive electrified railway
CN105914799A (en) 2016-05-03 2016-08-31 北京北变微电网技术有限公司 V2G (Vehicle-to-grid) AC-DC mixed micro grid power supply system and structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011078388A1 (en) 2009-12-21 2011-06-30 Panasonic Electric Works Co., Ltd. Electricity feeding device and electricity feeding system using the same
TW201227239A (en) 2010-12-20 2012-07-01 Hon Hai Prec Ind Co Ltd Power system for container data center
CN103448573A (en) 2013-07-29 2013-12-18 华北电力大学(保定) High-voltage direct-current tractive power supply system of bidirectional interactive electrified railway
CN105914799A (en) 2016-05-03 2016-08-31 北京北变微电网技术有限公司 V2G (Vehicle-to-grid) AC-DC mixed micro grid power supply system and structure

Also Published As

Publication number Publication date
TW201902070A (en) 2019-01-01

Similar Documents

Publication Publication Date Title
CN108933456B (en) Electric vehicle charging circuit and control method thereof
US9923379B2 (en) Hybrid inverter power control system for PV string, battery, grid and back-up loads
KR101116483B1 (en) Energy Storage System
AU2001284979A1 (en) High efficiency fuel cell power conditioner
CN112600455B (en) Power supply system and solar photovoltaic inverter
JP2014135855A (en) Natural energy power generation system, and distribution method
TWI654815B (en) Electric vehicle charging circuit and control method thereof
WO2013031934A1 (en) Interconnected power system
CN105449823B (en) Photovoltaic charging system and its operation method and device
JP6722295B2 (en) Power conversion system, power supply system, and power conversion device
CA3088859A1 (en) System for powering auxiliary loads of an energy storage system
CN207994717U (en) A kind of power supply device and system
WO2011140841A1 (en) Conjugate multi-directional inversion power supply
CN112838608A (en) Energy storage system
CN102938580B (en) Portable multifunctional power supply for emergency repair
JP5497216B1 (en) Distribution system control method and information processing apparatus
CN201569974U (en) Integrated computer power supply
CN215452779U (en) Auxiliary power supply system
CN217335082U (en) Power supply system
CN204615502U (en) The system power supply electric supply installation of bidirectional energy-storage photovoltaic DC-to-AC converter
CN208923899U (en) One kind changing electric cabinet energy storage backup power supply system
TW201334351A (en) Control method for grid connected power supply system
CN203102150U (en) Power supply device enabling computer to go on operating after power failure
CN217969300U (en) Charging system and storage integrated equipment
CN216056358U (en) Battery equalization system