TWI649144B - Laser pulse cutting-out device and cutting-out method - Google Patents

Laser pulse cutting-out device and cutting-out method Download PDF

Info

Publication number
TWI649144B
TWI649144B TW106143394A TW106143394A TWI649144B TW I649144 B TWI649144 B TW I649144B TW 106143394 A TW106143394 A TW 106143394A TW 106143394 A TW106143394 A TW 106143394A TW I649144 B TWI649144 B TW I649144B
Authority
TW
Taiwan
Prior art keywords
laser pulse
pulse
waveform
laser
time
Prior art date
Application number
TW106143394A
Other languages
Chinese (zh)
Other versions
TW201821199A (en
Inventor
河村譲一
奥平恭之
Original Assignee
日商住友重機械工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商住友重機械工業股份有限公司 filed Critical 日商住友重機械工業股份有限公司
Publication of TW201821199A publication Critical patent/TW201821199A/en
Application granted granted Critical
Publication of TWI649144B publication Critical patent/TWI649144B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Lasers (AREA)

Abstract

本發明提供一種雷射脈衝切出裝置,其即使向複數個加工路徑切出之雷射脈衝的脈衝寬度改變,亦不易產生每個加工路徑的雷射脈衝的脈衝能量的差異。控制裝置藉由向光束偏轉器賦予指令,從入射至光束偏轉器之1個原始雷射脈衝切出朝向第1加工路徑之第1雷射脈衝及朝向第2加工路徑之第2雷射脈衝。控制裝置在改變第1雷射脈衝及第2雷射脈衝的脈衝寬度時,將原始雷射脈衝的上升時刻作為基準,使第1雷射脈衝的上升時刻及下降時刻雙方相互向相反方向位移,並且使第2雷射脈衝的上升時刻及下降時刻雙方相互向相反方向位移。The present invention provides a laser pulse cutting device that does not easily produce a difference in pulse energy of laser pulses for each processing path even if the pulse widths of the laser pulses cut out to a plurality of processing paths are changed. The control device gives a command to the beam deflector to cut out a first laser pulse directed to the first processing path and a second laser pulse directed to the second processing path from one original laser pulse incident on the beam deflector. When the control device changes the pulse width of the first laser pulse and the second laser pulse, using the rising time of the original laser pulse as a reference, the rising time and the falling time of the first laser pulse are shifted in opposite directions from each other. Both the rising time and the falling time of the second laser pulse are shifted in opposite directions from each other.

Description

雷射脈衝切出裝置及切出方法Laser pulse cutting-out device and cutting-out method

[0001] 本發明係關於從1個原始雷射脈衝切出複數個雷射脈衝之雷射脈衝切出裝置及切出方法。[0001] The present invention relates to a laser pulse cutting device and a cutting method for cutting a plurality of laser pulses from one original laser pulse.

[0002] 已知有一種從輸出自1台雷射振盪器之1個原始雷射脈衝切出朝向2個加工路徑之2個雷射脈衝來在2軸上進行鑽孔加工之雷射鑽孔(專利文獻1)。在雷射脈衝的切出中能夠使用例如聲光偏轉元件(AOD)。對印刷基板等進行鑽孔加工之情況下,對1個孔入射從1個原始雷射脈衝切出之雷射脈衝和從後續的原始雷射脈衝切出之脈衝寬度不同之雷射脈衝。 (先前技術文獻) (專利文獻)   [0003]   專利文獻1:日本特開2012-106266號公報[0002] There is known a laser drilling method in which two laser pulses directed to two processing paths are cut out from one original laser pulse output from one laser oscillator to perform two-axis drilling. (Patent Document 1). For cutting out the laser pulse, for example, an acousto-optic deflection element (AOD) can be used. When drilling a printed circuit board or the like, a laser pulse cut from one original laser pulse and a laser pulse with a different pulse width cut from a subsequent original laser pulse are incident on one hole. (Prior Art Document) (Patent Document) [0003] Patent Document 1: Japanese Patent Application Publication No. 2012-106266

(本發明所欲解決之課題)   [0004] 從雷射振盪器輸出之原始雷射脈衝的波形為非矩形,並且光強度與時間一同變化。若從1個原始雷射脈衝向複數個加工路徑切出脈衝寬度相同的雷射脈衝,則每個加工路徑的雷射脈衝的脈衝能量不相同。為了使每個加工路徑的雷射脈衝的脈衝能量相同,使向第1加工路徑的衍射效率與向第2加工路徑的衍射效率不同。加工期間中,向第1加工路徑的衍射效率與向第2加工路徑的衍射效率之比維持恆定。   [0005] 切出之雷射脈衝的脈衝寬度為某一值時,以使朝向第1加工路徑和第2加工路徑之雷射脈衝的脈衝能量相同的方式設定衍射效率之比。得知使衍射效率之比維持恆定之條件下,若切出之雷射脈衝的脈衝寬度改變,則朝向第1加工路徑與第2加工路徑之雷射脈衝的脈衝能量產生差異。   [0006] 本發明的目的為提供一種即使向複數個加工路徑切出之雷射脈衝的脈衝寬度改變,不易產生每個加工路徑的雷射脈衝的脈衝能量之差之雷射脈衝切出裝置及切出方法。 (用以解決課題之手段)   [0007] 依本發明的一觀點,提供一種雷射脈衝切出裝置,其具有控制裝置,前述控制裝置藉由來自外部的指令,將指令賦予給將入射之雷射光束轉向朝向加工對象物之第1加工路徑及第2加工路徑中任一個之光束偏轉器,藉此從入射至前述光束偏轉器之1個原始雷射脈衝切出朝向前述第1加工路徑之第1雷射脈衝及朝向前述第2加工路徑之第2雷射脈衝,   前述控制裝置在改變前述第1雷射脈衝及前述第2雷射脈衝的脈衝寬度時,將前述原始雷射脈衝的上升時刻作為基準,使前述第1雷射脈衝的上升時刻及下降時刻雙方相互向相反方向位移,並且使前述第2雷射脈衝的上升時刻及下降時刻雙方相互向相反方向位移。   [0008] 依本發明的另一觀點,提供一種雷射脈衝切出方法,其具備:從第1原始雷射脈衝朝向第1加工路徑切出第1雷射脈衝,並且朝向第2加工路徑切出第2雷射脈衝之製程;以及   從具有與前述第1原始雷射脈衝相同的脈衝寬度之第2原始雷射脈衝朝向前述第1加工路徑切出第3雷射脈衝,並且朝向前述第2加工路徑切出第4雷射脈衝之製程,   使前述第2原始雷射脈衝的波形與前述第1原始雷射脈衝的波形重疊時,前述第3雷射脈衝的波形的上升及下降分別位於使前述第1雷射脈衝的波形的上升及下降相互向相反方向位移之位置,並且前述第4雷射脈衝的波形的上升及下降分別位於使前述第2雷射脈衝的波形的上升及下降相互向相反方向位移之位置。 (發明之效果)   [0009] 使從原始雷射脈衝向第1加工路徑及第2加工路徑切出雷射脈衝時的切出效率維持恆定的狀態下,即使改變第1雷射脈衝及第2雷射脈衝的脈衝寬度,亦能夠使第1雷射脈衝與第2雷射脈衝的脈衝能量幾乎相等。(Problems to be Solved by the Present Invention) [0004] The waveform of the original laser pulse output from the laser oscillator is non-rectangular, and the light intensity changes with time. If laser pulses with the same pulse width are cut out from one original laser pulse to a plurality of processing paths, the pulse energy of the laser pulses for each processing path is different. In order to make the pulse energy of the laser pulses the same for each processing path, the diffraction efficiency toward the first processing path is made different from the diffraction efficiency toward the second processing path. During the processing period, the ratio of the diffraction efficiency to the first processing path to the diffraction efficiency to the second processing path was kept constant. [0005] When the pulse width of the cut laser pulse is a certain value, the diffraction efficiency ratio is set so that the pulse energy of the laser pulses toward the first processing path and the second processing path is the same. It is found that under the condition that the ratio of the diffraction efficiency is maintained constant, if the pulse width of the cut laser pulse is changed, a difference occurs in the pulse energy of the laser pulse toward the first processing path and the second processing path. [0006] An object of the present invention is to provide a laser pulse cutting device and a laser pulse cutting device that are difficult to generate a difference in pulse energy of laser pulses for each processing path even if the pulse widths of the laser pulses cut out to a plurality of processing paths are changed. Cut out method. (Means to Solve the Problem) [0007] According to an aspect of the present invention, a laser pulse cutting device is provided, which has a control device. The aforementioned control device gives a command to an incident laser by an instruction from the outside. The beam is deflected toward either of the first processing path and the second processing path of the processing object, thereby cutting out one original laser pulse incident on the beam deflector toward the first processing path. The first laser pulse and the second laser pulse toward the second processing path, when the control device changes the pulse widths of the first laser pulse and the second laser pulse, the control unit raises the original laser pulse. The time is used as a reference, both the rising time and the falling time of the first laser pulse are shifted in mutually opposite directions, and both the rising time and the falling time of the second laser pulse are shifted in opposite directions. [0008] According to another aspect of the present invention, a laser pulse cutting method is provided, which includes cutting a first laser pulse from a first original laser pulse toward a first processing path, and cutting the first laser pulse toward a second processing path. A process of producing a second laser pulse; and cutting a third laser pulse from the second original laser pulse having the same pulse width as the first original laser pulse toward the first processing path and toward the second The process of cutting out the fourth laser pulse in the machining path, so that when the waveform of the second original laser pulse overlaps with the waveform of the first original laser pulse, the rise and fall of the waveform of the third laser pulse are located respectively so that The rise and fall of the waveform of the first laser pulse are shifted in opposite directions to each other, and the rise and fall of the waveform of the fourth laser pulse are located to make the rise and fall of the waveform of the second laser pulse to each other. Displacement in the opposite direction. (Effects of the Invention) [0009] The cutting efficiency when the laser pulse is cut from the original laser pulse to the first processing path and the second processing path is maintained constant, even if the first laser pulse and the second laser pulse are changed. The pulse width of the laser pulse can also make the pulse energy of the first laser pulse and the second laser pulse almost equal.

[0011] 參閱圖1~圖3B,對基於實施例之雷射脈衝切出裝置進行說明。   [0012] 圖1係使用基於實施例之雷射脈衝切出裝置之雷射加工裝置(雷射鑽孔)的概略圖。雷射光源10從控制裝置55接收振盪指令信號S0而進行雷射振盪,從而輸出脈衝雷射光束PLB。雷射光源10中使用例如二氧化碳雷射。例如,藉由振盪指令信號S0的上升,發出振盪開始指令,藉由振盪指令信號S0的下降,發出振盪停止指令。   [0013] 從雷射光源10輸出,經過光學系統11之脈衝雷射光束PLB的路徑上配置有光束偏轉器20。光束偏轉器20中能夠使用例如聲光偏轉元件(AOD)。光學系統11包括例如光束擴展器、光圈等。光束偏轉器20將入射之雷射光束轉向至朝向射束阻尼器13之阻尼器路徑PD、第1加工路徑MP1及第2加工路徑MP2中的任一個。光束偏轉器20包括聲光晶體21、換能器22及驅動器23。換能器22藉由驅動器23被驅動,藉此在聲光晶體21內產生彈性波。   [0014] 驅動器23中設置有路徑切換端子24、切出端子25、第1衍射效率調整旋鈕26及第2衍射效率調整旋鈕27。控制裝置55向路徑切換端子24輸入路徑選擇信號S1。藉由路徑選擇信號S1選擇第1加工路徑MP1及第2加工路徑MP2中的一個路徑。控制裝置55向切出端子25輸入切出信號S2。未輸入切出信號S2之期間,光束偏轉器20將入射之雷射光束轉向至阻尼器路徑PD。輸入切出信號S2之期間,光束偏轉器20將雷射光束轉向至藉由路徑選擇信號S1從第1加工路徑MP1及第2加工路徑MP2中選擇之一個路徑。控制裝置55向光束偏轉器20發送切出信號S2,藉此能夠輸出自雷射光源10之原始雷射脈衝向第1加工路徑MP1及第2加工路徑MP2中的一個切出雷射脈衝。   [0015] 藉由第1衍射效率調整旋鈕26,能夠調整將輸入之雷射光束轉向至第1加工路徑MP1時的衍射效率。藉由第2衍射效率調整旋鈕27能夠調整將輸入之雷射光束轉向至第2加工路徑MP2時的衍射效率。這樣,光束偏轉器20具有獨立調整向第1加工路徑MP1的衍射效率和向第2加工路徑MP2的衍射效率之功能。藉由調整衍射效率,能夠調整轉向至第1加工路徑MP1及第2加工路徑MP2之雷射光束的光強度(功率)。換言之,藉由獨立調整衍射效率,能夠調整向第1加工路徑MP1切出之雷射脈衝的衰減率與向第2加工路徑MP2切出之雷射脈衝的衰減率之比。   [0016] 控制裝置55及光束偏轉器20作為從脈衝雷射光束PLB的各雷射脈衝切出朝向第1加工路徑MP1之雷射脈衝及朝向第2加工路徑MP2之雷射脈衝之雷射脈衝切出裝置發揮作用。   [0017] 輸出至第1加工路徑MP1之雷射光束藉由反射鏡30被反射而入射至射束掃描儀31。射束掃描儀31將雷射光束的進行方向改變為二維方向。射束掃描儀31能夠使用例如一對電流掃描儀。藉由射束掃描儀31偏向之雷射光束藉由fθ透鏡32收斂之後入射至加工對象物33。同樣地,輸出至第2加工路徑MP2之雷射光束經由反射鏡40、射束掃描儀41、fθ透鏡42入射至加工對象物43。加工對象物33、43保持於載物台50。   [0018] 射束掃描儀31、41分別從控制裝置55接收控制信號G1、G2,以使雷射光束入射至被指令之目標位置之方式工作。若雷射光束的入射位置穩定在被指令之目標位置,則向控制裝置55通知穩定結束。   [0019] 顯示裝置56藉由來自控制裝置55的控制顯示圖像。操作者藉由對輸入裝置57進行操作來輸入用於進行雷射加工之各種控制參數。控制裝置55獲取從輸入裝置57輸入之控制參數,存儲於存儲裝置。顯示裝置56使用例如液晶顯示器等。輸入裝置57使用例如鍵盤、指向裝置等。顯示裝置56及輸入裝置57中可以使用觸控面板。   [0020] 圖2A~圖2D係作為加工對象物之印刷基板60的加工前、加工中途階段及加工結束時之剖視圖。圖2A~圖2D示出藉由朝向第1加工路徑MP1(圖1)之雷射脈衝進行加工之例子。第2加工路徑MP2(圖1)中,亦藉由與圖2A~圖2D所示之製程相同的製程進行鑽孔加工。   [0021] 如圖2A所示,印刷基板60具有層疊有表面銅層62、樹脂層61及底面銅層63之3層結構。如圖2B所示,藉由向表面銅層62入射雷射脈衝LP11,形成凹部65。凹部65貫穿表面銅層62,到達樹脂層61的深度方向的中途。雷射脈衝LP11從原始雷射脈衝切出,前述原始雷射脈衝從雷射光源10輸出。從切出雷射脈衝LP11之原始雷射脈衝進一步切出朝向第2加工路徑MP2之雷射脈衝,並且在第2加工路徑MP2中亦進行相同的加工。   [0022] 如圖2C所示,藉由向凹部65的底面入射雷射脈衝LP12,加深凹部65。在該時刻凹部65未到達底面銅層63。雷射脈衝LP12從接繼在切出雷射脈衝LP11(圖2B)之原始雷射脈衝之後的其他原始雷射脈衝被切出。從該原始雷射脈衝進一步切出朝向第2加工路徑MP2之雷射脈衝,並且在第2加工路徑MP2中亦進行相同的加工。   [0023] 如圖2D所示,藉由向凹部65的底面入射雷射脈衝LP13,進一步加深凹部65。該時刻凹部65到達底面銅層63,形成盲通孔。雷射脈衝LP13從接繼在切出雷射脈衝LP12(圖2C)之原始雷射脈衝之後的其他原始雷射脈衝被切出。從該原始雷射脈衝進一步切出朝向第2加工路徑MP2之雷射脈衝,並且在第2加工路徑MP2中亦進行相同的加工。   [0024] 雷射脈衝LP11(圖2B)具有能夠貫穿表面銅層62之脈衝能量。雷射脈衝LP12(圖2C)的脈衝能量小於雷射脈衝LP11的脈衝能量。雷射脈衝LP12的脈衝能量設定為凹部65未達到底面銅層63,且能夠挖進樹脂層61之程度的大小。雷射脈衝LP13(圖2D)的脈衝能量與雷射脈衝LP12(圖2C)的脈衝能量相同。   [0025] 圖2A~圖2D所示之例子中,藉由3個雷射脈衝LP11、LP12及LP13形成了1個盲通孔,但亦有利用4個以上的雷射脈衝加工1個盲通孔之情況。用於加工之雷射脈衝的個數及雷射脈衝LP12、LP13的脈衝能量根據樹脂層61的厚度被調整,從而在減輕對底面銅層63造成之損傷之觀點上進行最優化。例如,雷射脈衝LP13的脈衝能量只要充分使底面銅層63露出即可,亦可以小於雷射脈衝LP12的脈衝能量。藉由減小雷射脈衝LP13的脈衝能量,能夠減輕對底面銅層63造成之損傷。   [0026] 圖3A係表示從雷射光源10(圖1)輸出之原始雷射脈衝LO的波形及從原始雷射脈衝LO分別向第1加工路徑MP1及第2加工路徑MP2(圖1)切出之第1雷射脈衝LP1及第2雷射脈衝LP2的波形之圖。   [0027] 如圖3A的上段所示,原始雷射脈衝LO在上升時刻t0上升、從下降時刻t5急劇下降。從上升時刻t0至下降時刻t5為止的光強度的傾斜度非恆定,隨著時間的經過傾斜度變緩。控制裝置55從原始雷射脈衝LO的前半部分切出朝向第1加工路徑MP1之第1雷射脈衝LP1,並且從原始雷射脈衝LO的後半部分切出朝向第2加工路徑MP2之第2雷射脈衝LP2。第1雷射脈衝LP1的脈衝寬度與第2雷射脈衝LP2的脈衝寬度相同。   [0028] 基於光束偏轉器20之向第1加工路徑MP1的衍射效率被設定為100%。因此,第1雷射脈衝LP1的光強度(波形的高度)與原始雷射脈衝LO的光強度(波形的高度)一致。基於光束偏轉器20之向第2加工路徑MP2的衍射效率被設定為小於100%。因此,第2雷射脈衝LP2的光強度(波形的高度)低於原始雷射脈衝LO的光強度(波形的高度)。向第1加工路徑MP1的衍射效率與向第2加工路徑MP2的衍射效率之比以使第1雷射脈衝LP1的脈衝能量和第2雷射脈衝LP2的脈衝能量變成相等之方式被設定。雷射脈衝的脈衝能量相當於脈衝波形的面積(將脈衝波形以時間積分之值)。   [0029] 圖3A的下段示出將第1雷射脈衝LP1及第2雷射脈衝LP2的脈衝寬度縮短成比上段所示者更短之例子。控制裝置55與示於圖3A的上段之脈衝波形相比,將原始雷射脈衝LO的上升時刻t0作為基準,使第1雷射脈衝LP1的上升時刻t1向後方位移,並且使下降時刻t2向前方位移,藉此縮短第1雷射脈衝LP1的脈衝寬度。同樣地,將原始雷射脈衝LO的上升時刻t0作為基準,使第2雷射脈衝LP2的上升時刻t3向後方位移,並且使下降時刻t4向前方位移,藉此縮短第2雷射脈衝LP2的脈衝寬度。   [0030] 加長第1雷射脈衝LP1的脈衝寬度之情況下,使第1雷射脈衝LP1的上升時刻t1向前方位移,並且使下降時刻t2向後方位移即可。同樣地,加長第2雷射脈衝LP2的脈衝寬度情況下,並且使第2雷射脈衝LP2的上升時刻t3向前方位移,使下降時刻t4向後方位移即可。   [0031] 如上所述,控制裝置55藉由使雷射脈衝的上升時刻與下降時刻相互向相反方向位移,來改變第1雷射脈衝LP1及第2雷射脈衝LP2的脈衝寬度。此時,使圖3A的下段的原始雷射脈衝LO的波形與上段的原始雷射脈衝LO的波形重疊時,下段的第1雷射脈衝LP1的波形的上升及下降分別位於使上段的第1雷射脈衝LP1的波形的上升及下降相互向相反方向位移之位置,並且下段的第2雷射脈衝LP2的波形的上升及下降分別位於使上段的第2雷射脈衝Lp2的波形的上升及下降相互向相反方向位移之位置。   [0032] 接著,對於圖3A所示之實施例的優異效果,與圖3B所示之比較例進行對比來說明。   [0033] 圖3B係示出原始雷射脈衝LO的波形及從原始雷射脈衝LO向第1加工路徑MP1及第2加工路徑MP2藉由基於比較例之方法切出之第1雷射脈衝LP1及第2雷射脈衝LP2的波形之圖。   [0034] 圖3B的上段所示之波形與圖3A的上段所示之波形相同。圖3B的上段所示之脈衝寬度時,以第1雷射脈衝LP1的脈衝能量與第2雷射脈衝LP2的脈衝能量相等之方式調節光束偏轉器20(圖1)的衍射效率。   [0035] 圖3B的下段示出將第1雷射脈衝LP1及第2雷射脈衝LP2的脈衝寬度縮短成比上段所示者更短之例子。將原始雷射脈衝LO的上升時刻t0作為基準,第1雷射脈衝LP1的上升時刻t1被固定,並且只有下降時刻t2向前方位移。同樣地,第2雷射脈衝LP2的上升時刻t3被固定,只有下降時刻t4向前方位移。   [0036] 第1雷射脈衝LP1被切出之位置的原始雷射脈衝LO的波形的傾斜度比第2雷射脈衝LP2被切出之位置的原始雷射脈衝LO的波形的傾斜度陡峭。因此,若藉由基於比較例之方法縮短脈衝寬度,則第1雷射脈衝LP1的脈衝能量比與第2雷射脈衝LP2的脈衝能量相比,大大減少。若光束偏轉器20(圖1)的衍射效率不變,則導致第1雷射脈衝LP1的脈衝能量變得比第2雷射脈衝LP2的脈衝能量更小。若第1雷射脈衝LP1的脈衝能量與第2雷射脈衝LP2的脈衝能量不同,則導致不能在第1加工路徑MP1與第2加工路徑MP2進行相同品質的加工。   [0037] 每次改變第1雷射脈衝LP1及第2雷射脈衝LP2的脈衝寬度時,藉由修改向第1加工路徑MP1及第2加工路徑MP2的衍射效率,能夠使第1雷射脈衝LP1的脈衝能量與第2雷射脈衝LP2的脈衝能量變成相同。然而,當改變第1雷射脈衝LP1及第2雷射脈衝LP2的脈衝寬度時,難以每次都重新調整衍射效率。   [0038] 改變脈衝寬度之情況下,不重新調整衍射效率,維持第1雷射脈衝LP1的脈衝能量與第2雷射脈衝LP2的脈衝能量幾乎相等之狀態為佳。   [0039] 圖3A所示之實施例中,改變第1雷射脈衝LP1及第2雷射脈衝LP2的脈衝寬度時,使雷射脈衝的上升時刻與下降時刻雙方相互向相反方向位移。因此,改變脈衝寬度時的第1雷射脈衝LP1的脈衝能量的變化率與第2雷射脈衝LP2的脈衝能量的變化率之差與比較例的情況相比,變小。其結果,能夠減小第1加工路徑MP1與第2加工路徑MP2之間的加工品質的不均。   [0040] 接著,參閱圖4,對基於上述實施例的變形例之雷射脈衝切出裝置之切出方法進行說明。   [0041] 圖4係表示使用基於變形例之雷射脈衝切出裝置切出之第1雷射脈衝LP1及第2雷射脈衝LP2的波形及原始雷射脈衝LO的波形之圖。本變形例中,固定於原始雷射脈衝LO的脈衝寬度內之第1基準時刻tr1及第2基準時刻tr2被設定。例如,從原始雷射脈衝LO的上升時刻t0至第1基準時刻tr1及第2基準時刻tr2的經過時間在整個原始雷射脈衝LO中恆定。   [0042] 第1基準時刻tr1及第2基準時刻tr2以第1基準時刻tr1中之原始雷射脈衝LO的波形的高度乘以向第1加工路徑MP1的衍射效率之值H1與第2基準時刻tr2中之原始雷射脈衝LO的波形的高度乘以向第2加工路徑MP2的衍射效率之值H2變成相等之方式被設定。   [0043] 改變第1雷射脈衝LP1及第2雷射脈衝LP2的脈衝寬度時,控制裝置55以第1基準時刻tr1包含於第1雷射脈衝LP1的脈衝寬度內,並且第2基準時刻tr2包含於第2雷射脈衝LP2的脈衝寬度內之方式使各雷射脈衝的上升時刻及下降時刻位移。   [0044] 如圖4的上段所示,控制裝置55以使從第1基準時刻tr1向前延伸之第1雷射脈衝LP1的波形的時間間隔TF與向後延伸之第1雷射脈衝LP1的波形的時間間隔TB改變相等之方式切出第1雷射脈衝LP1。同樣地,以使從第2基準時刻tr2向前延伸之第2雷射脈衝LP2的波形的時間間隔TF與向後延伸之第2雷射脈衝LP2的波形的時間間隔TB變成相等之方式切出第2雷射脈衝LP2。第1雷射脈衝LP1的時間間隔TF與第2雷射脈衝LP2的時間間隔TF相等,並且第1雷射脈衝LP1的時間間隔TB與第2雷射脈衝LP2的時間間隔TB相等。   [0045] 縮短脈衝寬度時,如圖4的下段所示,縮短從第1基準時刻tr1向前延伸之第1雷射脈衝LP1的波形的時間間隔TF與向後延伸之第1雷射脈衝LP1的波形的時間間隔TB。同樣地,縮短從第2基準時刻tr2向前延伸之第2雷射脈衝LP2的波形的時間間隔TF與向後延伸之第2雷射脈衝LP2的波形的時間間隔TB。此時,控制裝置55維持時間間隔TF與時間間隔TB相等之條件之狀態下,縮短脈衝寬度。   [0046] 接著,對第1基準時刻tr1及第2基準時刻tr2的確定方法進行說明。首先,確定鑽孔加工所需之雷射脈衝的脈衝寬度的最大值。例如,從形成貫穿表面銅層62(圖2A)之凹部65(圖2B)所需之脈衝能量能夠確定第1雷射脈衝LP1及第2雷射脈衝LP2的脈衝寬度的最大值。   [0047] 基於第1雷射脈衝LP1及第2雷射脈衝LP2的脈衝寬度的最大值,確定原始雷射脈衝LO(圖4)的脈衝寬度。原始雷射脈衝LO的脈衝寬度例如能夠藉由在從原始雷射脈衝LO的上升時刻到第1雷射脈衝LP1的上升時刻所需之待機時間間隔、從第1雷射脈衝LP1的下降時刻到第2雷射脈衝LP2的上升時刻所需之待機時間間隔及從第2雷射脈衝LP2的下降時刻到原始雷射脈衝LO的下降時刻所需之待機時間間隔加上第1雷射脈衝LP1及第2雷射脈衝LP2的脈衝寬度的最大值來確定。   [0048] 將從原始雷射脈衝LO切出具有最大的脈衝寬度之第1雷射脈衝LP1及第2雷射脈衝LP2時的第1雷射脈衝LP1的波形的時間軸上的中心點作為第1基準時刻tr1,並且將第2雷射脈衝LP2的波形的時間軸上的中心點作為第2基準時刻tr2即可。基於第1基準時刻tr1中之原始雷射脈衝LO的波形的高度與第2基準時刻tr2中之原始雷射脈衝LO的波形的高度之比,設定光束偏轉器20的衍射效率即可。   [0049] 上述3個待機時間間隔預先設定於控制裝置55。若操作者對輸入裝置57進行操作來輸入加工所需之雷射脈衝的脈衝寬度的最大值,則控制裝置55基於所輸入之脈衝寬度的最大值及預先設定之待機時間間隔,計算出原始雷射脈衝LO的脈衝寬度、第1基準時刻tr1及第2基準時刻tr2。   [0050] 圖4所示之變形例中,即使在改變第1雷射脈衝LP1及第2雷射脈衝LP2的脈衝寬度之情況下,第1雷射脈衝LP1的波形的時間軸上的中心被固定於第1基準時刻tr1,並且第2雷射脈衝LP2的波形的時間軸上的中心被固定於第2基準時刻tr2。因此,即使改變脈衝寬度,第1雷射脈衝LP1及第2雷射脈衝LP2的波形的時間軸上的中心位置上之光強度(雷射脈衝的波形的高度)不變。因此,圖4所示之變形例中,即使改變第1雷射脈衝LP1及第2雷射脈衝LP2的脈衝寬度,亦能夠使兩者的脈衝能量維持幾乎相等。   [0051] 接著,參閱圖5,對基於上述實施例的其他變形例之雷射脈衝切出裝置之切出方法進行說明。   [0052] 圖5係表示使用基於本變形例之雷射脈衝切出裝置切出之第1雷射脈衝LP1及第2雷射脈衝LP2的波形及原始雷射脈衝LO的波形之圖。   [0053] 本變形例中,亦與圖4所示之變形例同樣地,設定固定於原始雷射脈衝LO的脈衝寬度內之第1基準時刻tr1及第2基準時刻tr2。   [0054] 如圖5的上段所示,控制裝置55(圖1)以使第1基準時刻tr1之第1雷射脈衝LP1的波形的高度H1乘以第1雷射脈衝的脈衝寬度PW之值H1×PW與第1雷射脈衝LP1的波形的面積A1變成相等之方式切出第1雷射脈衝LP1。原始雷射脈衝LO的波形的傾斜度呈直線狀之情況下,成為第1基準時刻tr1位於從第1雷射脈衝LP1的上升至下降為止的期間的中心。實際上,原始雷射脈衝LO的波形係曲線,因此嚴格地說,第1基準時刻tr1偏離從第1雷射脈衝LP1的上升至下降為止的期間的中心。第2雷射脈衝LP2與第2基準時刻tr2之關係亦相同。亦即,第2基準時刻tr2之第2雷射脈衝LP2的波形的高度H2乘以第2雷射脈衝的脈衝寬度PW之值H2×PW與第2雷射脈衝LP2的波形的面積A2相等。   [0055] 如圖5的下段所示,即使係縮短第1雷射脈衝LP1及第2雷射脈衝LP2的脈衝寬度之情況下,第1雷射脈衝LP1與第1基準時刻tr1之關係及第2雷射脈衝LP2與第2基準時刻tr2之關係亦滿足上述條件。亦即,H1×PW等於第1雷射脈衝LP1的波形的面積A1,H2×PW等於第2雷射脈衝LP2的波形的面積A2。   [0056] 切出源的原始雷射脈衝LO的波形幾乎恆定之條件下,第1基準時刻tr1及第2基準時刻tr2之波形的高度幾乎恆定。因此,若藉由基於本變形例之方法改變第1雷射脈衝LP1及第2雷射脈衝LP2的脈衝寬度,則脈衝寬度改變後的兩者的脈衝能量變得幾乎相同。   [0057] 上述實施例及變形例中,從1個原始雷射脈衝LO向2個加工路徑分別切出雷射脈衝,但亦可以向3個以上的加工路徑切出雷射脈衝。該情況下,若改變切出之雷射脈衝的脈衝寬度,則亦將切出之雷射脈衝的上升及下降時刻藉由與上述實施例或者變形例相同的方法位移即可。   [0058] 上述各實施例係例示,當然能夠實施在不同之實施例示出之結構的部分替換或者組合。關於複數個實施例之基於相同結構之相同的作用效果不按每個實施例逐一說明。而且,本發明不限於上述實施例。對於本領域技術人員而言,能夠實施例如各種變更、改良、組合等係顯而易見的。[0011] Referring to FIGS. 1 to 3B, a laser pulse cutting-out device according to an embodiment will be described. [0012] FIG. 1 is a schematic diagram of a laser processing device (laser drilling) using a laser pulse cutting device based on an embodiment. The laser light source 10 receives the oscillation command signal S0 from the control device 55 to perform laser oscillation, and outputs a pulsed laser beam PLB. As the laser light source 10, for example, a carbon dioxide laser is used. For example, an oscillation start command is issued by the rise of the oscillation command signal S0, and an oscillation stop command is issued by the fall of the oscillation command signal S0. [0013] A beam deflector 20 is arranged on the path of the pulsed laser beam PLB output from the laser light source 10 through the optical system 11. As the beam deflector 20, for example, an acousto-optic deflection element (AOD) can be used. The optical system 11 includes, for example, a beam expander, a diaphragm, and the like. The beam deflector 20 redirects the incident laser beam to any one of the damper path PD, the first processing path MP1, and the second processing path MP2 toward the beam damper 13. The beam deflector 20 includes an acousto-optic crystal 21, a transducer 22, and a driver 23. The transducer 22 is driven by a driver 23, thereby generating an elastic wave in the acousto-optic crystal 21. [0014] The driver 23 is provided with a path switching terminal 24, a cut-out terminal 25, a first diffraction efficiency adjustment knob 26, and a second diffraction efficiency adjustment knob 27. The control device 55 inputs a path selection signal S1 to the path switching terminal 24. One of the first processing path MP1 and the second processing path MP2 is selected by the path selection signal S1. The control device 55 inputs a cut-out signal S2 to the cut-out terminal 25. While the cut-out signal S2 is not input, the beam deflector 20 turns the incident laser beam to the damper path PD. While the cut-out signal S2 is input, the beam deflector 20 turns the laser beam to a path selected from the first processing path MP1 and the second processing path MP2 by the path selection signal S1. The control device 55 sends a cut-out signal S2 to the beam deflector 20, whereby the original laser pulse from the laser light source 10 can be output to cut-out the laser pulse to one of the first processing path MP1 and the second processing path MP2. [0015] The first diffraction efficiency adjustment knob 26 can adjust the diffraction efficiency when the input laser beam is turned to the first processing path MP1. The second diffraction efficiency adjustment knob 27 can adjust the diffraction efficiency when the input laser beam is turned to the second processing path MP2. As described above, the beam deflector 20 has a function of independently adjusting the diffraction efficiency toward the first processing path MP1 and the diffraction efficiency toward the second processing path MP2. By adjusting the diffraction efficiency, it is possible to adjust the light intensity (power) of the laser beam turned to the first processing path MP1 and the second processing path MP2. In other words, by independently adjusting the diffraction efficiency, the ratio of the attenuation rate of the laser pulse cut out to the first processing path MP1 to the attenuation rate of the laser pulse cut out to the second processing path MP2 can be adjusted. [0016] The control device 55 and the beam deflector 20 cut laser pulses toward the first processing path MP1 and laser pulses toward the second processing path MP2 from each laser pulse of the pulsed laser beam PLB. The cut-out device works. [0017] The laser beam output to the first processing path MP1 is reflected by the mirror 30 and enters the beam scanner 31. The beam scanner 31 changes the progress direction of the laser beam into a two-dimensional direction. The beam scanner 31 can use, for example, a pair of galvano scanners. The laser beam deflected by the beam scanner 31 is converged by the fθ lens 32 and is incident on the processing object 33. Similarly, the laser beam output to the second processing path MP2 is incident on the processing object 43 through the mirror 40, the beam scanner 41, and the fθ lens 42. The objects to be processed 33 and 43 are held on the stage 50. [0018] The beam scanners 31 and 41 receive control signals G1 and G2 from the control device 55, respectively, and work in such a manner that a laser beam is incident on a commanded target position. When the incident position of the laser beam is stabilized at the commanded target position, the control device 55 is notified of the end of stabilization. [0019] The display device 56 displays an image under the control from the control device 55. The operator inputs various control parameters for performing laser processing by operating the input device 57. The control device 55 acquires control parameters input from the input device 57 and stores them in a storage device. The display device 56 uses, for example, a liquid crystal display. The input device 57 uses, for example, a keyboard, a pointing device, and the like. A touch panel can be used for the display device 56 and the input device 57. [0020] FIGS. 2A to 2D are cross-sectional views of the printed circuit board 60 as a processing object before processing, in the middle of processing, and at the end of processing. 2A to 2D show an example of processing by a laser pulse toward the first processing path MP1 (FIG. 1). In the second machining path MP2 (FIG. 1), drilling is also performed by the same process as that shown in FIGS. 2A to 2D. [0021] As shown in FIG. 2A, the printed circuit board 60 has a three-layer structure in which a surface copper layer 62, a resin layer 61, and a bottom copper layer 63 are laminated. As shown in FIG. 2B, the laser pulse LP11 is incident on the surface copper layer 62 to form a recess 65. The recessed portion 65 penetrates the surface copper layer 62 and reaches halfway in the depth direction of the resin layer 61. The laser pulse LP11 is cut out from the original laser pulse, and the aforementioned original laser pulse is output from the laser light source 10. A laser pulse directed to the second processing path MP2 is further cut from the original laser pulse of the laser pulse LP11, and the same processing is performed in the second processing path MP2. [0022] As shown in FIG. 2C, the laser pulse LP12 is incident on the bottom surface of the concave portion 65 to deepen the concave portion 65. At this time, the recessed portion 65 did not reach the bottom copper layer 63. The laser pulse LP12 is cut out from the other original laser pulses following the original laser pulse after cutting out the laser pulse LP11 (FIG. 2B). A laser pulse directed to the second processing path MP2 is further cut out from the original laser pulse, and the same processing is performed in the second processing path MP2. [0023] As shown in FIG. 2D, the laser pulse LP13 is incident on the bottom surface of the concave portion 65 to further deepen the concave portion 65. At this time, the recessed portion 65 reaches the bottom copper layer 63 and forms a blind via. The laser pulse LP13 is cut out from the other original laser pulses following the original laser pulse after cutting out the laser pulse LP12 (FIG. 2C). A laser pulse directed to the second processing path MP2 is further cut out from the original laser pulse, and the same processing is performed in the second processing path MP2. [0024] The laser pulse LP11 (FIG. 2B) has a pulse energy capable of penetrating the surface copper layer 62. The pulse energy of the laser pulse LP12 (FIG. 2C) is smaller than the pulse energy of the laser pulse LP11. The pulse energy of the laser pulse LP12 is set to a magnitude such that the recessed portion 65 does not reach the bottom copper layer 63 and can penetrate into the resin layer 61. The pulse energy of the laser pulse LP13 (FIG. 2D) is the same as the pulse energy of the laser pulse LP12 (FIG. 2C). [0025] In the example shown in FIGS. 2A to 2D, one blind via is formed by three laser pulses LP11, LP12, and LP13, but one blind via is also processed by using four or more laser pulses. The situation of the hole. The number of laser pulses used for processing and the pulse energy of the laser pulses LP12 and LP13 are adjusted according to the thickness of the resin layer 61, thereby optimizing the viewpoint of reducing damage to the bottom copper layer 63. For example, the pulse energy of the laser pulse LP13 may be sufficient to expose the bottom copper layer 63 sufficiently, and may be smaller than the pulse energy of the laser pulse LP12. By reducing the pulse energy of the laser pulse LP13, damage to the bottom copper layer 63 can be reduced. 3A shows the waveform of the original laser pulse LO output from the laser light source 10 (FIG. 1) and cuts from the original laser pulse LO to the first processing path MP1 and the second processing path MP2 (FIG. 1), respectively. The waveforms of the first laser pulse LP1 and the second laser pulse LP2 are shown. [0027] As shown in the upper stage of FIG. 3A, the original laser pulse LO rises at a rising time t0, and drops sharply from a falling time t5. The inclination of the light intensity from the rising time t0 to the falling time t5 is not constant, and it gradually decreases with time. The control device 55 cuts the first laser pulse LP1 toward the first processing path MP1 from the first half of the original laser pulse LO, and cuts the second laser toward the second processing path MP2 from the second half of the original laser pulse LO. Shooting pulse LP2. The pulse width of the first laser pulse LP1 is the same as the pulse width of the second laser pulse LP2. [0028] The diffraction efficiency to the first processing path MP1 by the beam deflector 20 is set to 100%. Therefore, the light intensity (the height of the waveform) of the first laser pulse LP1 coincides with the light intensity (the height of the waveform) of the original laser pulse LO. The diffraction efficiency to the second processing path MP2 by the beam deflector 20 is set to less than 100%. Therefore, the light intensity (the height of the waveform) of the second laser pulse LP2 is lower than the light intensity (the height of the waveform) of the original laser pulse LO. The ratio of the diffraction efficiency to the first processing path MP1 and the diffraction efficiency to the second processing path MP2 is set so that the pulse energy of the first laser pulse LP1 and the pulse energy of the second laser pulse LP2 become equal. The pulse energy of the laser pulse is equivalent to the area of the pulse waveform (a value obtained by integrating the pulse waveform with time). [0029] The lower stage of FIG. 3A shows an example in which the pulse widths of the first laser pulse LP1 and the second laser pulse LP2 are shortened to be shorter than those shown in the upper stage. Compared with the pulse waveform shown in the upper stage of FIG. 3A, the control device 55 uses the rising time t0 of the original laser pulse LO as a reference, shifts the rising time t1 of the first laser pulse LP1 backward, and moves the falling time t2 toward The forward displacement shortens the pulse width of the first laser pulse LP1. Similarly, using the rising time t0 of the original laser pulse LO as a reference, the rising time t3 of the second laser pulse LP2 is shifted backward, and the falling time t4 is shifted forward, thereby shortening the time of the second laser pulse LP2. Pulse Width. [0030] When the pulse width of the first laser pulse LP1 is increased, the rising time t1 of the first laser pulse LP1 may be shifted forward and the falling time t2 may be shifted backward. Similarly, when the pulse width of the second laser pulse LP2 is lengthened, the rising time t3 of the second laser pulse LP2 may be shifted forward and the falling time t4 may be shifted backward. [0031] As described above, the control device 55 changes the pulse widths of the first laser pulse LP1 and the second laser pulse LP2 by shifting the rising time and the falling time of the laser pulse in opposite directions to each other. At this time, when the waveform of the original laser pulse LO in the lower stage and the waveform of the original laser pulse LO in the upper stage are superimposed, the rise and fall of the waveform of the first laser pulse LP1 in the lower stage are located in the first stage of the upper stage, respectively. The rise and fall of the waveform of the laser pulse LP1 are shifted in opposite directions to each other, and the rise and fall of the waveform of the second laser pulse LP2 in the lower stage are located in the rise and fall of the waveform of the second laser pulse Lp2 in the upper stage, respectively. Positions displaced in opposite directions to each other. [0032] Next, the excellent effect of the embodiment shown in FIG. 3A will be described in comparison with the comparative example shown in FIG. 3B. 3B shows the waveform of the original laser pulse LO and the first laser pulse LP1 cut out from the original laser pulse LO to the first processing path MP1 and the second processing path MP2 by a method based on a comparative example. And the waveform of the second laser pulse LP2. [0034] The waveform shown in the upper stage of FIG. 3B is the same as the waveform shown in the upper stage of FIG. 3A. At the pulse width shown in the upper part of FIG. 3B, the diffraction efficiency of the beam deflector 20 (FIG. 1) is adjusted so that the pulse energy of the first laser pulse LP1 and the pulse energy of the second laser pulse LP2 are equal. [0035] The lower stage of FIG. 3B shows an example of shortening the pulse widths of the first laser pulse LP1 and the second laser pulse LP2 to be shorter than those shown in the upper stage. Taking the rising time t0 of the original laser pulse LO as a reference, the rising time t1 of the first laser pulse LP1 is fixed, and only the falling time t2 is shifted forward. Similarly, the rising time t3 of the second laser pulse LP2 is fixed, and only the falling time t4 is shifted forward. [0036] The slope of the waveform of the original laser pulse LO at the position where the first laser pulse LP1 is cut out is steeper than the slope of the waveform of the original laser pulse LO at the position where the second laser pulse LP2 is cut out. Therefore, if the pulse width is shortened by the method based on the comparative example, the pulse energy ratio of the first laser pulse LP1 is greatly reduced compared with the pulse energy of the second laser pulse LP2. If the diffraction efficiency of the beam deflector 20 (FIG. 1) is not changed, the pulse energy of the first laser pulse LP1 becomes smaller than the pulse energy of the second laser pulse LP2. If the pulse energy of the first laser pulse LP1 is different from the pulse energy of the second laser pulse LP2, the same quality processing cannot be performed on the first processing path MP1 and the second processing path MP2. [0037] Each time the pulse widths of the first laser pulse LP1 and the second laser pulse LP2 are changed, the first laser pulse can be made by modifying the diffraction efficiency to the first processing path MP1 and the second processing path MP2. The pulse energy of LP1 is the same as the pulse energy of the second laser pulse LP2. However, when the pulse widths of the first laser pulse LP1 and the second laser pulse LP2 are changed, it is difficult to readjust the diffraction efficiency every time. [0038] In the case of changing the pulse width, it is better not to readjust the diffraction efficiency and maintain the pulse energy of the first laser pulse LP1 and the pulse energy of the second laser pulse LP2 to be almost equal. [0039] In the embodiment shown in FIG. 3A, when the pulse widths of the first laser pulse LP1 and the second laser pulse LP2 are changed, both the rising time and the falling time of the laser pulse are shifted in opposite directions from each other. Therefore, the difference between the change rate of the pulse energy of the first laser pulse LP1 and the change rate of the pulse energy of the second laser pulse LP2 when the pulse width is changed is smaller than in the case of the comparative example. As a result, it is possible to reduce variations in processing quality between the first processing path MP1 and the second processing path MP2. [0040] Next, a cutting method of a laser pulse cutting device based on a modification of the embodiment will be described with reference to FIG. 4. [0041] FIG. 4 is a diagram showing the waveforms of the first laser pulse LP1 and the second laser pulse LP2 cut out by using a laser pulse cutting device based on a modified example, and the waveform of the original laser pulse LO. In this modification, the first reference time tr1 and the second reference time tr2 fixed within the pulse width of the original laser pulse LO are set. For example, the elapsed time from the rising time t0 of the original laser pulse LO to the first reference time tr1 and the second reference time tr2 is constant throughout the original laser pulse LO. [0042] The first reference time tr1 and the second reference time tr2 are multiplied by the height of the waveform of the original laser pulse LO at the first reference time tr1 by the value H1 of the diffraction efficiency toward the first processing path MP1 and the second reference time The height of the waveform of the original laser pulse LO in tr2 multiplied by the value H2 of the diffraction efficiency toward the second processing path MP2 is set to be equal. [0043] When changing the pulse widths of the first laser pulse LP1 and the second laser pulse LP2, the control device 55 includes the first reference time tr1 in the pulse width of the first laser pulse LP1, and the second reference time tr2 The method included in the pulse width of the second laser pulse LP2 shifts the rising time and the falling time of each laser pulse. [0044] As shown in the upper part of FIG. 4, the control device 55 sets the time interval TF of the waveform of the first laser pulse LP1 extending forward from the first reference time tr1 and the waveform of the first laser pulse LP1 extending backward. The first laser pulse LP1 is cut out in such a way that the time interval TB changes equally. Similarly, the second time interval TF of the waveform of the second laser pulse LP2 extending forward from the second reference time tr2 is equal to the time interval TB of the waveform of the second laser pulse LP2 extending backward. 2 laser pulses LP2. The time interval TF of the first laser pulse LP1 is equal to the time interval TF of the second laser pulse LP2, and the time interval TB of the first laser pulse LP1 is equal to the time interval TB of the second laser pulse LP2. [0045] When the pulse width is shortened, as shown in the lower part of FIG. 4, the time interval TF of the waveform of the first laser pulse LP1 extending forward from the first reference time tr1 and the time of the first laser pulse LP1 extending backward are shortened. The time interval of the waveform is TB. Similarly, the time interval TF of the waveform of the second laser pulse LP2 extending forward from the second reference time tr2 and the time interval TB of the waveform of the second laser pulse LP2 extending backward are shortened. At this time, the control device 55 shortens the pulse width while maintaining the condition that the time interval TF is equal to the time interval TB. [0046] Next, a method for determining the first reference time tr1 and the second reference time tr2 will be described. First, determine the maximum pulse width of the laser pulse required for drilling. For example, the maximum pulse width of the first laser pulse LP1 and the second laser pulse LP2 can be determined from the pulse energy required to form the recess 65 (FIG. 2B) penetrating the surface copper layer 62 (FIG. 2A). [0047] Based on the maximum pulse widths of the first laser pulse LP1 and the second laser pulse LP2, the pulse width of the original laser pulse LO (FIG. 4) is determined. The pulse width of the original laser pulse LO can be, for example, from the waiting time interval required from the rising time of the original laser pulse LO to the rising time of the first laser pulse LP1 to the falling time of the first laser pulse LP1 to The waiting time interval required for the rising time of the second laser pulse LP2 and the waiting time interval required from the falling time of the second laser pulse LP2 to the falling time of the original laser pulse LO plus the first laser pulse LP1 and The maximum value of the pulse width of the second laser pulse LP2 is determined. [0048] The center point on the time axis of the waveform of the first laser pulse LP1 when the first laser pulse LP1 and the second laser pulse LP2 having the largest pulse width are cut out from the original laser pulse LO is taken as the first 1 reference time tr1, and the center point on the time axis of the waveform of the second laser pulse LP2 may be the second reference time tr2. Based on the ratio of the height of the waveform of the original laser pulse LO at the first reference time tr1 to the height of the waveform of the original laser pulse LO at the second reference time tr2, the diffraction efficiency of the beam deflector 20 may be set. [0049] The three standby time intervals are set in the control device 55 in advance. If the operator operates the input device 57 to input the maximum pulse width of the laser pulse required for processing, the control device 55 calculates the original laser based on the maximum input pulse width and the preset standby time interval. The pulse width of the shot pulse LO, the first reference time tr1, and the second reference time tr2. [0050] In the modification shown in FIG. 4, even when the pulse widths of the first laser pulse LP1 and the second laser pulse LP2 are changed, the center on the time axis of the waveform of the first laser pulse LP1 is It is fixed at the first reference time tr1, and the center on the time axis of the waveform of the second laser pulse LP2 is fixed at the second reference time tr2. Therefore, even if the pulse width is changed, the light intensity (the height of the waveform of the laser pulse) at the center position on the time axis of the waveforms of the first laser pulse LP1 and the second laser pulse LP2 does not change. Therefore, in the modification shown in FIG. 4, even if the pulse widths of the first laser pulse LP1 and the second laser pulse LP2 are changed, the pulse energy of both can be maintained almost the same. [0051] Next, a cutting method of a laser pulse cutting device based on another modification of the embodiment will be described with reference to FIG. 5. [0052] FIG. 5 is a diagram showing the waveforms of the first laser pulse LP1 and the second laser pulse LP2 and the waveforms of the original laser pulse LO cut out by using the laser pulse cutting device based on this modification. [0053] In this modification, as in the modification shown in FIG. 4, the first reference time tr1 and the second reference time tr2 fixed within the pulse width of the original laser pulse LO are set. [0054] As shown in the upper part of FIG. 5, the control device 55 (FIG. 1) multiplies the height H1 of the waveform of the first laser pulse LP1 at the first reference time tr1 by the value of the pulse width PW of the first laser pulse The first laser pulse LP1 is cut out so that H1 × PW and the area A1 of the waveform of the first laser pulse LP1 become equal. When the gradient of the waveform of the original laser pulse LO is linear, the first reference time tr1 is located at the center of a period from the rise to the fall of the first laser pulse LP1. Actually, since the waveform of the original laser pulse LO is a curve, strictly speaking, the first reference time tr1 deviates from the center of the period from the rise to the fall of the first laser pulse LP1. The relationship between the second laser pulse LP2 and the second reference time tr2 is also the same. That is, the value of the height H2 of the waveform of the second laser pulse LP2 at the second reference time tr2 multiplied by the pulse width PW of the second laser pulse H2 × PW is equal to the area A2 of the waveform of the second laser pulse LP2. [0055] As shown in the lower part of FIG. 5, even when the pulse widths of the first laser pulse LP1 and the second laser pulse LP2 are shortened, the relationship between the first laser pulse LP1 and the first reference time tr1 and the first The relationship between the 2 laser pulse LP2 and the second reference time tr2 also satisfies the above conditions. That is, H1 × PW is equal to the area A1 of the waveform of the first laser pulse LP1, and H2 × PW is equal to the area A2 of the waveform of the second laser pulse LP2. [0056] Under the condition that the waveform of the original laser pulse LO cut out from the source is almost constant, the heights of the waveforms at the first reference time tr1 and the second reference time tr2 are almost constant. Therefore, if the pulse widths of the first laser pulse LP1 and the second laser pulse LP2 are changed by the method based on this modification, the pulse energy of the two after the pulse width changes becomes almost the same. [0057] In the above embodiments and modification examples, the laser pulses are cut out from one original laser pulse LO to two processing paths, but the laser pulses may also be cut out to three or more processing paths. In this case, if the pulse width of the cut-out laser pulse is changed, the rising and falling time of the cut-out laser pulse may also be shifted by the same method as the above-mentioned embodiment or modification. [0058] The above embodiments are examples, and it is a matter of course that partial replacement or combination of structures shown in different embodiments can be implemented. The same effects based on the same structure in a plurality of embodiments will not be explained one by one for each embodiment. Moreover, the present invention is not limited to the embodiments described above. It will be apparent to those skilled in the art that various modifications, improvements, combinations and the like can be implemented.

[0059][0059]

10‧‧‧雷射光源10‧‧‧laser light source

11‧‧‧光學系統11‧‧‧ Optical System

13‧‧‧射束阻尼器13‧‧‧ Beam Damper

20‧‧‧光束偏轉器20‧‧‧ Beam Deflector

21‧‧‧聲光晶體21‧‧‧Acoustooptic Crystal

22‧‧‧換能器22‧‧‧ Transducer

23‧‧‧驅動器23‧‧‧Driver

24‧‧‧路徑切換端子24‧‧‧Path switching terminal

25‧‧‧切出端子25‧‧‧Cut out the terminal

26‧‧‧第1衍射效率調整旋鈕26‧‧‧The first diffraction efficiency adjustment knob

27‧‧‧第2衍射效率調整旋鈕27‧‧‧Second diffraction efficiency adjustment knob

30‧‧‧反射鏡30‧‧‧Reflector

31‧‧‧射束掃描儀31‧‧‧ Beam Scanner

32‧‧‧fθ透鏡32‧‧‧fθ lens

33‧‧‧加工對象物33‧‧‧Processing object

40‧‧‧反射鏡40‧‧‧Mirror

41‧‧‧射束掃描儀41‧‧‧ Beam Scanner

42‧‧‧fθ透鏡42‧‧‧fθ lens

43‧‧‧加工對象物43‧‧‧Processing object

50‧‧‧載物台50‧‧‧ stage

55‧‧‧控制裝置55‧‧‧control device

56‧‧‧顯示裝置56‧‧‧ display device

57‧‧‧輸入裝置57‧‧‧input device

60‧‧‧印刷基板60‧‧‧printed substrate

61‧‧‧樹脂層61‧‧‧resin layer

62‧‧‧表面銅層62‧‧‧Surface copper layer

63‧‧‧底面銅層63‧‧‧ bottom copper layer

65‧‧‧凹部65‧‧‧ recess

LO‧‧‧原始雷射脈衝LO‧‧‧ original laser pulse

LP1‧‧‧第1雷射脈衝LP1‧‧‧The first laser pulse

LP2‧‧‧第2雷射脈衝LP2‧‧‧2nd laser pulse

[0010]   圖1係使用基於實施例之雷射脈衝切出裝置之雷射加工裝置(雷射鑽孔)的概略圖。   圖2中,圖2A~圖2D係作為加工對象物之印刷基板的加工前、加工中途階段及加工結束時之剖視圖。   圖3中,圖3A係表示從雷射光源(圖1)輸出之原始雷射脈衝的波形及藉由基於實施例之雷射脈衝切出裝置從原始雷射脈衝向第1加工路徑及第2加工路徑分別切出之第1雷射脈衝及第2雷射脈衝的波形之圖,圖3B係表示原始雷射脈衝及藉由基於比較例之雷射脈衝切出裝置切出之第1雷射脈衝及第2雷射脈衝的波形之圖。   圖4係表示使用基於變形例之雷射脈衝切出裝置切出之第1雷射脈衝及第2雷射脈衝的波形及原始雷射脈衝的波形之圖。   圖5係表示使用基於其他變形例之雷射脈衝切出裝置切出之第1雷射脈衝及第2雷射脈衝的波形及原始雷射脈衝的波形之圖。[0010] FIG. 1 is a schematic diagram of a laser processing device (laser drilling) using a laser pulse cutting device based on an embodiment. In FIG. 2, FIGS. 2A to 2D are cross-sectional views of a printed circuit board as a processing object before processing, in the middle of processing, and at the end of processing. In FIG. 3, FIG. 3A shows the waveform of the original laser pulse output from the laser light source (FIG. 1), and the laser pulse cutting device based on the embodiment from the original laser pulse to the first processing path and the second The waveforms of the first laser pulse and the second laser pulse cut out by the processing path, respectively. FIG. 3B shows the original laser pulse and the first laser cut out by the laser pulse cutting device based on the comparative example. The waveform of the pulse and the second laser pulse. FIG. 4 is a diagram showing the waveforms of the first laser pulse and the second laser pulse, and the waveform of the original laser pulse, which are cut out using the laser pulse cutting device based on the modification. FIG. 5 is a diagram showing the waveforms of the first laser pulse and the second laser pulse, and the waveform of the original laser pulse, which are cut out by using a laser pulse cutting device based on another modification.

Claims (5)

一種雷射脈衝切出裝置,具有控制裝置,前述控制裝置藉由來自外部的指令,將指令賦予給將入射之雷射光束轉向朝向加工對象物之第1加工路徑及第2加工路徑中任一個之光束偏轉器,藉此從入射至前述光束偏轉器之1個原始雷射脈衝切出朝向前述第1加工路徑之第1雷射脈衝及朝向前述第2加工路徑之第2雷射脈衝,   前述控制裝置在改變前述第1雷射脈衝及前述第2雷射脈衝的脈衝寬度時,將前述原始雷射脈衝的上升時刻作為基準,使前述第1雷射脈衝的上升時刻及下降時刻雙方相互向相反方向位移,並且使前述第2雷射脈衝的上升時刻及下降時刻雙方相互向相反方向位移。A laser pulse cutting-out device includes a control device, and the control device gives an instruction to any one of a first processing path and a second processing path for turning an incident laser beam toward a processing object by an external command. A beam deflector to cut out the first laser pulse toward the first processing path and the second laser pulse toward the second processing path from an original laser pulse incident on the beam deflector, When changing the pulse widths of the first laser pulse and the second laser pulse, the control device uses the rising time of the original laser pulse as a reference, and makes the rising time and the falling time of the first laser pulse face each other. Displace in the opposite direction, and displace both the rising time and the falling time of the second laser pulse in the opposite direction. 如申請專利範圍第1項所述之雷射脈衝切出裝置,其中,   前述控制裝置以固定在前述原始雷射脈衝的脈衝寬度內之第1基準時刻及第2基準時刻分別包含在前述第1雷射脈衝及前述第2雷射脈衝的脈衝寬度內,並且前述第1基準時刻中之前述第1雷射脈衝的波形的高度與前述第2基準時刻中之前述第2雷射脈衝的波形的高度變成相同之方式改變前述第1雷射脈衝及前述第2雷射脈衝的脈衝寬度。The laser pulse cutting-out device according to item 1 of the scope of the patent application, wherein: the control device includes the first reference time and the second reference time fixed within the pulse width of the original laser pulse, respectively, in the first reference time Within the pulse width of the laser pulse and the second laser pulse, and the height of the waveform of the first laser pulse at the first reference time and the waveform of the waveform of the second laser pulse at the second reference time The heights change the pulse widths of the first laser pulse and the second laser pulse in the same manner. 如申請專利範圍第2項所述之雷射脈衝切出裝置,其中,   前述控制裝置以使從前述第1基準時刻向前延伸之前述第1雷射脈衝的波形的時間間隔與向後延伸之前述第1雷射脈衝的波形的時間間隔變成相等,並且使從前述第2基準時刻向前延伸之前述第2雷射脈衝的波形的時間間隔與向後延伸之前述第2雷射脈衝的波形的時間間隔變成相等之方式改變前述第1雷射脈衝及前述第2雷射脈衝的脈衝寬度。The laser pulse cutting-out device according to item 2 of the scope of the patent application, wherein: 装置 the control device makes the time interval of the waveform of the first laser pulse extending forward from the first reference time point and the foregoing extending backward The time interval of the waveform of the first laser pulse becomes equal, and the time interval of the waveform of the second laser pulse extending forward from the second reference time and the time of the waveform of the second laser pulse extending backward are made equal. The pulse widths of the first laser pulse and the second laser pulse are changed so that the intervals become equal. 如申請專利範圍第2項所述之雷射脈衝切出裝置,其中,   前述控制裝置以使前述第1基準時刻中之前述第1雷射脈衝的波形的高度乘以前述第1雷射脈衝的脈衝寬度之值與前述第1雷射脈衝的波形的面積變成相等,並且使前述第2基準時刻中之前述第2雷射脈衝的波形的高度乘以前述第2雷射脈衝的脈衝寬度之值與前述第2雷射脈衝的波形的面積變成相等之方式改變前述第1雷射脈衝及前述第2雷射脈衝的脈衝寬度。The laser pulse cutting device according to item 2 of the scope of patent application, wherein: the control device multiplies the height of the waveform of the first laser pulse at the first reference time by the height of the first laser pulse. The value of the pulse width is equal to the area of the waveform of the first laser pulse, and the height of the waveform of the second laser pulse at the second reference time is multiplied by the value of the pulse width of the second laser pulse. The pulse widths of the first laser pulse and the second laser pulse are changed so as to be equal to the area of the waveform of the second laser pulse. 一種雷射脈衝切出方法,具有:   從第1原始雷射脈衝朝向第1加工路徑切出第1雷射脈衝,同時朝向第2加工路徑切出第2雷射脈衝之製程;以及   從具有與前述第1原始雷射脈衝相同的脈衝寬度之第2原始雷射脈衝朝向前述第1加工路徑切出第3雷射脈衝,同時朝向前述第2加工路徑切出第4雷射脈衝之製程,   使前述第2原始雷射脈衝的波形與前述第1原始雷射脈衝的波形重疊時,前述第3雷射脈衝的波形的上升及下降分別位於使前述第1雷射脈衝的波形的上升及下降相互向相反方向位移之位置,並且前述第4雷射脈衝的波形的上升及下降分別位於使前述第2雷射脈衝的波形的上升及下降相互向相反方向位移之位置。A laser pulse cutting method includes: (1) a process of cutting a first laser pulse from a first original laser pulse toward a first processing path, and simultaneously cutting a second laser pulse toward a second processing path; and The process of cutting the second laser pulse with the same pulse width as the first original laser pulse toward the first processing path and cutting the fourth laser pulse toward the second processing path at the same time. When the waveform of the second original laser pulse and the waveform of the first original laser pulse overlap, the rise and fall of the waveform of the third laser pulse are located so that the rise and fall of the waveform of the first laser pulse are mutually The positions shifted in opposite directions, and the rise and fall of the waveform of the fourth laser pulse are located at positions where the rise and fall of the waveform of the second laser pulse are shifted in opposite directions.
TW106143394A 2016-12-13 2017-12-11 Laser pulse cutting-out device and cutting-out method TWI649144B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-241215 2016-12-13
JP2016241215A JP6682148B2 (en) 2016-12-13 2016-12-13 Laser pulse cutting device and cutting method

Publications (2)

Publication Number Publication Date
TW201821199A TW201821199A (en) 2018-06-16
TWI649144B true TWI649144B (en) 2019-02-01

Family

ID=62558413

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106143394A TWI649144B (en) 2016-12-13 2017-12-11 Laser pulse cutting-out device and cutting-out method

Country Status (5)

Country Link
JP (1) JP6682148B2 (en)
KR (1) KR102287590B1 (en)
CN (1) CN110035863B (en)
TW (1) TWI649144B (en)
WO (1) WO2018110391A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI734373B (en) * 2019-03-19 2021-07-21 日商住友重機械工業股份有限公司 Laser control device and pulse laser output device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6822699B1 (en) * 2019-09-24 2021-01-27 フェニックス電機株式会社 Laser irradiation device and surface roughening treatment method using it

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313471A (en) * 2000-02-24 2001-11-09 Matsushita Electric Works Ltd Method for forming viahole of wiring board
JP2004098121A (en) * 2002-09-09 2004-04-02 Sumitomo Heavy Ind Ltd Method and apparatus for laser beam machining
JP2005028369A (en) * 2003-07-07 2005-02-03 Sumitomo Heavy Ind Ltd Laser beam machining method
JP2005034859A (en) * 2003-07-17 2005-02-10 Sumitomo Heavy Ind Ltd Laser beam machining device
JP2005074479A (en) * 2003-09-01 2005-03-24 Sumitomo Heavy Ind Ltd Laser beam machining device and laser beam machining method
JP2009142825A (en) * 2007-12-11 2009-07-02 Sumitomo Heavy Ind Ltd Apparatus and method for laser beam machining
JP2010516476A (en) * 2007-01-26 2010-05-20 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Method and system for generating a pulse train for material processing
JP2012106266A (en) * 2010-11-18 2012-06-07 Sumitomo Heavy Ind Ltd Laser beam machining method and laser beam machining device
JP2015186822A (en) * 2014-03-27 2015-10-29 住友重機械工業株式会社 Laser processing device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273387A (en) * 1994-03-31 1995-10-20 Fanuc Ltd Output waveform control system
JP3213882B2 (en) * 1997-03-21 2001-10-02 住友重機械工業株式会社 Laser processing apparatus and processing method
CN101617448B (en) * 2007-01-26 2012-05-23 伊雷克托科学工业股份有限公司 Methods and systems for generating pulse trains for material processing
CN102834216B (en) * 2010-03-16 2015-01-21 爱信精机株式会社 Pulse laser device, transparent member welding method, and transparent member welding device
JP6415357B2 (en) * 2015-03-06 2018-10-31 住友重機械工業株式会社 Laser processing equipment
JP6449094B2 (en) * 2015-04-23 2019-01-09 ビアメカニクス株式会社 Laser processing apparatus and laser processing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313471A (en) * 2000-02-24 2001-11-09 Matsushita Electric Works Ltd Method for forming viahole of wiring board
JP2004098121A (en) * 2002-09-09 2004-04-02 Sumitomo Heavy Ind Ltd Method and apparatus for laser beam machining
JP2005028369A (en) * 2003-07-07 2005-02-03 Sumitomo Heavy Ind Ltd Laser beam machining method
JP2005034859A (en) * 2003-07-17 2005-02-10 Sumitomo Heavy Ind Ltd Laser beam machining device
JP2005074479A (en) * 2003-09-01 2005-03-24 Sumitomo Heavy Ind Ltd Laser beam machining device and laser beam machining method
JP2010516476A (en) * 2007-01-26 2010-05-20 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Method and system for generating a pulse train for material processing
JP2009142825A (en) * 2007-12-11 2009-07-02 Sumitomo Heavy Ind Ltd Apparatus and method for laser beam machining
JP2012106266A (en) * 2010-11-18 2012-06-07 Sumitomo Heavy Ind Ltd Laser beam machining method and laser beam machining device
JP2015186822A (en) * 2014-03-27 2015-10-29 住友重機械工業株式会社 Laser processing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI734373B (en) * 2019-03-19 2021-07-21 日商住友重機械工業股份有限公司 Laser control device and pulse laser output device

Also Published As

Publication number Publication date
JP2018094594A (en) 2018-06-21
KR102287590B1 (en) 2021-08-06
KR20190094334A (en) 2019-08-13
WO2018110391A1 (en) 2018-06-21
CN110035863A (en) 2019-07-19
TW201821199A (en) 2018-06-16
CN110035863B (en) 2021-05-28
JP6682148B2 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
TWI655987B (en) Laser pulse cutting device and laser processing method
TWI658892B (en) Laser processing device
JP3872462B2 (en) Laser processing apparatus and laser processing method
JP5808267B2 (en) Laser processing apparatus and laser processing method
TWI649144B (en) Laser pulse cutting-out device and cutting-out method
JP2009142825A (en) Apparatus and method for laser beam machining
JP4338536B2 (en) Laser processing apparatus and laser processing method
TWI691374B (en) Laser control device and laser processing method
JP2015186822A (en) Laser processing device
KR20210154813A (en) Laser processing equipment, laser processing system, rotator unit device, laser processing method and probe card production method
JP4937011B2 (en) Laser processing apparatus and laser processing method
JP2008036697A (en) Laser beam machining method and apparatus
JP2019076937A (en) Laser processing device
JP2012045554A (en) Laser machining device and laser machining method
JP3491591B2 (en) Laser processing machine and processing method
JP2007111749A (en) Laser beam machining device and laser beam machining method
JP2005246450A (en) Laser beam machining method, laser beam machining device, and intensity adjuster
JP2008073733A (en) Laser beam machining apparatus
JP2022128033A (en) Laser processing apparatus and laser processing method
JP6644421B2 (en) Laser processing equipment
JP2017159316A (en) Laser beam machining device
KR20220098081A (en) Laser processing method of printed circuit board and laser processing machine for printed circuit board
JP2022153033A (en) Laser processing device
JP2005107186A (en) Optical device and method for manufacturing substrate