TWI646764B - Inductively coupled dc-dc power converter - Google Patents

Inductively coupled dc-dc power converter Download PDF

Info

Publication number
TWI646764B
TWI646764B TW106132138A TW106132138A TWI646764B TW I646764 B TWI646764 B TW I646764B TW 106132138 A TW106132138 A TW 106132138A TW 106132138 A TW106132138 A TW 106132138A TW I646764 B TWI646764 B TW I646764B
Authority
TW
Taiwan
Prior art keywords
diode
capacitor
output
electrically connected
voltage
Prior art date
Application number
TW106132138A
Other languages
Chinese (zh)
Other versions
TW201916563A (en
Inventor
楊隆生
林家慶
鄭至焜
Original Assignee
遠東科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 遠東科技大學 filed Critical 遠東科技大學
Priority to TW106132138A priority Critical patent/TWI646764B/en
Application granted granted Critical
Publication of TWI646764B publication Critical patent/TWI646764B/en
Publication of TW201916563A publication Critical patent/TW201916563A/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

一種耦合電感型直流電壓轉換器,包括:一輸入單元、一耦合電感型直流電壓轉換電路以及一輸出單元。藉由該輸入單元輸入一低電壓之直流電至該耦合電感型直流電壓轉換電路進行轉換,以得一高電壓之直流電,且其電壓增益為,D為責任週期,D介於0至1之間。藉此,除了保有高電壓增益比之功效,並改善了習知結合耦合電感及輸出疊接技術的直流電壓轉換器之輸入/輸出未共地以及切換開關較多之問題。 A coupled inductive DC voltage converter includes: an input unit, a coupled inductive DC voltage conversion circuit, and an output unit. The input unit inputs a low voltage direct current to the coupled inductive DC voltage conversion circuit for conversion to obtain a high voltage direct current, and the voltage gain thereof is , D is the duty cycle, and D is between 0 and 1. In this way, in addition to maintaining the high voltage gain ratio, the problem of the input/output of the DC voltage converter combined with the coupled inductor and the output splicing technology is not common and the switching switch is more.

Description

耦合電感型直流電壓轉換器 Coupled Inductive DC Voltage Converter

本發明係關於一種耦合電感型直流電壓轉換器,尤指一種利用一輸入單元輸入一低電壓之直流電至一耦合電感型直流電壓轉換電路,以得一高電壓之直流電,且得一電壓增益為而D為責任週期之耦合電感型直流電壓轉換器。 The present invention relates to a coupled inductive DC voltage converter, in particular to an input unit that inputs a low voltage DC to a coupled inductive DC voltage conversion circuit to obtain a high voltage DC power, and obtain a voltage gain of D is a coupled inductor DC voltage converter with a duty cycle.

為了響應環保,相關綠色能源不斷開發,有如太陽能、風力能、地熱能、水力能、潮汐能、海洋能及生質能等,而一般這些綠色能源所產生的電力,其電壓係多為低電壓,為較佳提供給一般用電系統如市電等使用,需將所產生的電力進行升壓,以供使用,而習知常見有使用一直流電壓轉換器進行所述之升壓。 In response to environmental protection, related green energy is continuously developed, such as solar energy, wind energy, geothermal energy, hydropower, tidal energy, ocean energy and biomass energy. Generally, the power generated by these green energy sources is mostly low voltage. In order to be preferably used for a general power system such as a commercial power supply, the generated power needs to be boosted for use, and it is conventional to use a DC voltage converter to perform the boosting.

參閱第十四圖所示,係為一種傳統耦合電感型直流電壓轉換器(A),包含有一輸入端(A1)、一耦合電感器(A21)、一第一二極體(A22)、一第二二極體(A23)、一切換開關(A24)、一輸出電容(A31)以及一負載(A32)。其中,該耦合電感器(A21)包含一一次側繞組(A211)以及一二次側繞組(A212),該一次側繞組(A211)之一第一端係電性連接該輸入端(A1)之一正端,該一次側繞組(A211)之一第二端係電性連接該第一二極體(A22)之陽極端、該第二二極體(A23)之陽極端以及該切換開關(A24)之一第一端,該第二二極體(A23)之陰極端係電性連接該二次側繞組(A212)之一第一端,該第一二極體(A22)之陰極端係電性連接該二次側繞組(A212)之一第二端、該輸出電容(A31)之一第一端以及該負 載(A32)之一第一端,該負載(A32)之一第二端係電性連接該輸出電容(A31)之一第二端、該切換開關(A24)之一第二端以及該輸入端(A1)之一負端。而該傳統耦 合電感型直流電壓轉換器(A)之電壓增益比為:,D為責任週期,D介於0 至1之間,匝數比Referring to FIG. 14, a conventional coupled inductive DC voltage converter (A) includes an input terminal (A1), a coupled inductor (A21), a first diode (A22), and a The second diode (A23), a switch (A24), an output capacitor (A31), and a load (A32). The coupled inductor (A21) includes a primary side winding (A211) and a secondary side winding (A212), and the first end of the primary side winding (A211) is electrically connected to the input end (A1) One of the positive ends, the second end of the primary winding (A211) is electrically connected to the anode end of the first diode (A22), the anode end of the second diode (A23), and the switch a first end of (A24), the cathode end of the second diode (A23) is electrically connected to one of the first ends of the secondary winding (A212), and the cathode of the first diode (A22) The extreme pole is electrically connected to one of the second end of the secondary winding (A212), the first end of the output capacitor (A31), and the first end of the load (A32), one of the loads (A32) The two ends are electrically connected to one of the second end of the output capacitor (A31), the second end of one of the switch (A24), and one of the negative ends of the input (A1). The voltage-gain ratio of the conventional coupled inductive DC voltage converter (A) is: , D is the duty cycle, D is between 0 and 1, the turns ratio .

然而,上述傳統耦合電感型直流電壓轉換器(A),其電壓增益比仍有可再改善的空間。 However, the above-described conventional coupled inductive DC voltage converter (A) has a room for improvement in voltage gain ratio.

參閱第十五圖所示,係為一種結合耦合電感及輸出疊接技術的直流電壓轉換器(B),包含有一輸入端(B1)、一耦合電感器(B21)、一第一二極體(B22)、一第二二極體(B23)、一第三二極體(B24)、一第四二極體(B25)、一第一電容(B26)、一第二電容(B27)、一第一切換開關(B28)、一第二切換開關(B29)以及一負載(B3)。其中,該耦合電感器(B21)包含一一次側繞組(B211)以及一二次側繞組(B212),該一次側繞組(B211)之一第一端係電性連接該輸入端(B1)之一正端,該一次側繞組(B211)之一第二端係電性連接該第三二極體(B24)之陽極端以及該第四二極體(B25)之陽極端,該第四二極體(B25)之陰極端係電性連接該二次側繞組(B212)之一第一端,該第三二極體(B24)之陰極端係電性連接該二次側繞組(B212)之一第二端、該第一二極體(B22)之陽極端以及該第一切換開關(B28)之一第一端,該第一二極體(B22)之陰極端係電性連接該第一電容(B26)之一第一端以及該負載(B3)之一第一端,該第一電容(B26)之一第二端係電性連接該第一切換開關(B28)之一第二端、該第二切換開關(B29)之一第一端以及該第二電容(B27)之一第一端,該負載(B3)之一第二端係電性連接該第二電容(B27)之一第二端以及該第二二極體(B23)之陽極端,該第二二極體(B23)之陰極端係電性該第二切換開關(B29)之一第二端以及該輸入端(B1)之一負端。而該結合耦合電感及輸出疊接技術的直流電壓轉換器(B)之電壓增益比為:,D為 責任週期,D介於0至1之間,匝數比,可看出,係可提供較前述傳統耦合電感型直流電壓轉換器兩倍的輸出電壓,使電壓轉換應用範圍較廣。 Referring to FIG. 15 , a DC voltage converter (B) combining a coupled inductor and an output splicing technology includes an input terminal (B1), a coupled inductor (B21), and a first diode. (B22), a second diode (B23), a third diode (B24), a fourth diode (B25), a first capacitor (B26), a second capacitor (B27), A first switch (B28), a second switch (B29), and a load (B3). The coupled inductor (B21) includes a primary side winding (B211) and a secondary side winding (B212), and the first end of the primary side winding (B211) is electrically connected to the input end (B1) One of the positive ends, the second end of the primary winding (B211) is electrically connected to the anode end of the third diode (B24) and the anode end of the fourth diode (B25), the fourth The cathode end of the diode (B25) is electrically connected to one of the first ends of the secondary winding (B212), and the cathode end of the third diode (B24) is electrically connected to the secondary winding (B212) a second end, an anode end of the first diode (B22), and a first end of the first switch (B28), the cathode end of the first diode (B22) is electrically connected a first end of the first capacitor (B26) and a first end of the load (B3), and a second end of the first capacitor (B26) is electrically connected to one of the first switch (B28) a second end, a first end of the second switch (B29), and a first end of the second capacitor (B27), wherein the second end of the load (B3) is electrically connected to the second capacitor ( B27) one of the second ends and the anode of the second diode (B23) One (B1), the second diode cathode (B23) of the second terminal based electrically switch (B29) and a second end of one end of the negative input terminal. The voltage gain ratio of the DC voltage converter (B) combined with the coupled inductor and the output splicing technology is: , D is the duty cycle, D is between 0 and 1, the turns ratio It can be seen that it can provide twice the output voltage of the conventional coupled inductive DC voltage converter, so that the voltage conversion application range is wider.

然而,上述結合耦合電感及輸出疊接技術的直流電壓轉換器(B),係有輸入/輸出未共地以及切換開關較多的問題,而有可再改善之空間。 However, the above-mentioned DC voltage converter (B) combined with the coupled inductor and the output splicing technology has problems in that the input/output is not common and the switching switches are large, and there is room for improvement.

爰此,為改善上述之不足與缺失之處,本發明人乃致力於研究與創新,提出本發明之耦合電感型直流電壓轉換器,包括:一輸入單元,用以輸入一直流電;一耦合電感型直流電壓轉換電路,包含有一耦合電感器、一第一二極體、一第二二極體、一第三二極體、一第一電容、一第二電容、一電感以及一切換開關,其中,該耦合電感器包含一一次側繞組以及一二次側繞組,該一次側繞組之一第一端係電性連接該輸入單元之一正端,該一次側繞組之一第二端係電性連接該第一二極體之陽極端以及該第二二極體之陽極端,該第二二極體之陰極端係電性連接該二次側繞組之一第一端,該第一二極體之陰極端係電性連接該二次側繞組之一第二端、該第二電容之一第一端、該第三二極體之陽極端以及該切換開關之一第一端,該第二電容之一第二端係電性連接該電感之一第一端,該電感之一第二端係電性連接該第三二極體之陰極端以及該第一電容之一第一端,該第一電容之一第二端係電性連接該切換開關之一第二端以及該輸入單元之一負端;一輸出單元,包含有一輸出二極體、一輸出電容以及一負載,其中,該輸出二極體之陽極端係電性連接該第二電容之該第二端以及該電感之該第一端,該輸出二極體之陰極端係電性連接該輸出電容之一第一端以及該負載之一第一端,該輸出電容之一第二端係電性連接該負載之一第二端、該第一電容之該第二端、該切換開關之該第二端以及該輸入單元之該負端。 Therefore, in order to improve the above-mentioned deficiencies and omissions, the present inventors have devoted themselves to research and innovation, and proposed a coupled inductor type DC voltage converter of the present invention, comprising: an input unit for inputting a constant current; a coupled inductor The DC voltage conversion circuit includes a coupled inductor, a first diode, a second diode, a third diode, a first capacitor, a second capacitor, an inductor, and a switch. The coupled inductor includes a primary side winding and a secondary side winding. The first end of the primary side winding is electrically connected to one of the input ends of the input unit, and the second end of the primary side winding is Electrically connecting the anode end of the first diode and the anode end of the second diode, the cathode end of the second diode is electrically connected to one of the first ends of the secondary winding, the first a cathode end of the diode is electrically connected to a second end of the secondary winding, a first end of the second capacitor, an anode end of the third diode, and a first end of the switch The second end of the second capacitor is electrically connected to the electric One of the first ends, the second end of the inductor is electrically connected to the cathode end of the third diode and the first end of the first capacitor, and the second end of the first capacitor is electrically connected a second end of the switch and a negative end of the input unit; an output unit comprising an output diode, an output capacitor, and a load, wherein an anode end of the output diode is electrically connected to the The second end of the second capacitor and the first end of the inductor, the cathode end of the output diode is electrically connected to a first end of the output capacitor and a first end of the load, the output capacitor A second end is electrically connected to the second end of the load, the second end of the first capacitor, the second end of the switch, and the negative end of the input unit.

進一步,係利用一脈波寬度調變技術控制該切換開關之導通與截止。 Further, a pulse width modulation technique is used to control the on and off of the switch.

進一步,該切換開關係為一N型金屬氧化物半導體場效電晶體。 Further, the switching relationship is an N-type metal oxide semiconductor field effect transistor.

進一步,該輸入單元輸入之直流電為一太陽能電池或一燃料電池其中之一。 Further, the direct current input by the input unit is one of a solar battery or a fuel battery.

根據上述技術特徵可達成以下功效: According to the above technical features, the following effects can be achieved:

1.該輸出單元的電壓與該輸入單元的電壓之比值為,其中,D為責任週期,D介於0至1之間,除了仍保有高電壓增益比之功效,並改善了習知結合耦合電感及輸出疊接技術的直流電壓轉換器之輸入/輸出未共地以及切換開關較多之問題。 1. The ratio of the voltage of the output unit to the voltage of the input unit Where D is the duty cycle, D is between 0 and 1, in addition to maintaining the high voltage gain ratio, and improving the input/output of the conventional DC voltage converter combined with the coupled inductor and output splicing technology. A lot of problems with the ground and switching switches.

2.本發明之耦合電感型直流電壓轉換器僅使用一個切換開關,使控制更為簡單,且可減少切換開關帶來的切換損失,並減低使用切換開關的成本。 2. The coupled inductive DC voltage converter of the present invention uses only one switching switch, which makes the control simpler, reduces the switching loss caused by the switching switch, and reduces the cost of using the switching switch.

3.可供一低電壓直流電輸入至該耦合電感型直流電壓轉換電路轉換而得一高電壓直流電,具高電壓增益比之功效,可用於對綠色能源之電力進行升壓。 3. A low voltage DC input can be converted to the coupled inductive DC voltage conversion circuit to obtain a high voltage direct current with a high voltage gain ratio effect, which can be used to boost the power of the green energy.

(1)‧‧‧耦合電感型直流電壓轉換器 (1)‧‧‧Coupled Inductive DC Voltage Converter

(11)‧‧‧輸入單元 (11)‧‧‧ Input unit

(12)‧‧‧耦合電感型直流電壓轉換電路 (12)‧‧‧Coupled Inductive DC Voltage Conversion Circuit

(121)‧‧‧耦合電感器 (121)‧‧‧Coupled Inductors

(1211)‧‧‧一次側繞組 (1211)‧‧‧First side winding

(1212)‧‧‧二次側繞組 (1212)‧‧‧secondary winding

(1213)‧‧‧磁化電感 (1213)‧‧‧Magnetic Inductance

(1214)‧‧‧一次側漏電感 (1214)‧‧‧One side leakage inductance

(1215)‧‧‧二次側漏電感 (1215)‧‧‧Second-side leakage inductance

(122)‧‧‧第一二極體 (122)‧‧‧First Diode

(123)‧‧‧第二二極體 (123)‧‧‧Secondary diode

(124)‧‧‧第三二極體 (124)‧‧‧ Third Dipole

(125)‧‧‧第一電容 (125)‧‧‧first capacitor

(126)‧‧‧第二電容 (126)‧‧‧second capacitor

(127)‧‧‧電感 (127)‧‧‧Inductance

(128)‧‧‧切換開關 (128)‧‧‧Switch

(13)‧‧‧輸出單元 (13)‧‧‧Output unit

(131)‧‧‧輸出二極體 (131)‧‧‧ Output diodes

(132)‧‧‧輸出電容 (132)‧‧‧ Output capacitance

(133)‧‧‧負載 (133)‧‧‧ Load

(A)‧‧‧傳統耦合電感型直流電壓轉換器 (A)‧‧‧Traditional coupled inductive DC voltage converter

(A1)‧‧‧輸入端 (A1)‧‧‧ Input

(A21)‧‧‧耦合電感器 (A21)‧‧‧Coupled Inductors

(A211)‧‧‧一次側繞組 (A211) ‧‧ ‧ primary winding

(A212)‧‧‧二次側繞組 (A212) ‧ ‧ secondary winding

(A22)‧‧‧第一二極體 (A22)‧‧‧First Diode

(A23)‧‧‧第二二極體 (A23) ‧ ‧ second diode

(A24)‧‧‧切換開關 (A24)‧‧‧Toggle switch

(A31)‧‧‧輸出電容 (A31)‧‧‧ Output capacitance

(A32)‧‧‧負載 (A32) ‧ ‧ load

(B)‧‧‧結合耦合電感及輸出疊接技術的直流電壓轉換器 (B) ‧‧‧DC voltage converter combined with coupled inductor and output splicing technology

(B1)‧‧‧輸入端 (B1)‧‧‧ input

(B21)‧‧‧耦合電感器 (B21)‧‧‧Coupled Inductors

(B211)‧‧‧一次側繞組 (B211) ‧‧‧ primary winding

(B212)‧‧‧二次側繞組 (B212) ‧‧‧ secondary winding

(B22)‧‧‧第一二極體 (B22) ‧‧‧First Diode

(B23)‧‧‧第二二極體 (B23) ‧‧‧Secondary

(B24)‧‧‧第三二極體 (B24) ‧ ‧ third diode

(B25)‧‧‧第四二極體 (B25) ‧ ‧ fourth diode

(B26)‧‧‧第一電容 (B26)‧‧‧First Capacitor

(B27)‧‧‧第二電容 (B27) ‧ ‧ second capacitor

(B28)‧‧‧第一切換開關 (B28)‧‧‧First switch

(B29)‧‧‧第二切換開關 (B29)‧‧‧Second switch

(B3)‧‧‧負載 (B3) ‧ ‧ load

[第一圖]係為本發明實施例之耦合電感型直流電壓轉換器之電路圖。 [First FIG. 1] is a circuit diagram of a coupled inductive DC voltage converter according to an embodiment of the present invention.

[第二圖]係為本發明實施例之耦合電感型直流電壓轉換器之等效電路圖。 [Second diagram] is an equivalent circuit diagram of a coupled inductive DC voltage converter according to an embodiment of the present invention.

[第三圖]係為本發明實施例之耦合電感型直流電壓轉換器於單一切換週期之主要波形圖。 [Third Diagram] is a main waveform diagram of a coupled inductive DC voltage converter according to an embodiment of the present invention in a single switching cycle.

[第四圖]係為本發明實施例之耦合電感型直流電壓轉換器操作於模式一之電流路徑圖。 [Fourth Diagram] is a current path diagram of the coupled inductor type DC voltage converter operating in mode one according to an embodiment of the present invention.

[第五圖]係為本發明實施例之耦合電感型直流電壓轉換器操作於模式二之電流路徑圖。 [Fifth Diagram] is a current path diagram of the coupled inductor type DC voltage converter operating in mode 2 according to an embodiment of the present invention.

[第六圖]係為本發明實施例之耦合電感型直流電壓轉換器操作於模式三之電流路徑圖。 [Sixth Diagram] is a current path diagram of the coupled inductor type DC voltage converter operating in mode three according to an embodiment of the present invention.

[第七圖]係為本發明實施例之耦合電感型直流電壓轉換器操作於模式四之電流路徑圖。 [Seventh] is a current path diagram of the coupled inductive DC voltage converter operating in mode four according to an embodiment of the present invention.

[第八圖]係為本發明實施例之耦合電感型直流電壓轉換器操作於模式五之電流路徑圖。 [Embodiment 8] is a current path diagram of the coupled inductive DC voltage converter operating in mode 5 according to an embodiment of the present invention.

[第九圖]係為本發明實施例操作在輸入電壓Vin為24V、輸出電壓Vo為200V、滿載輸出功率為200W以及該耦合電感器(121)之匝數比為1.5時,該切換開關(128)之觸發信號vGS1、該耦合電感器(121)之磁化電感(1213)之電流iLm以及該電感(127)之電流iL3之模擬波形圖,其波形圖之刻度數值為:iLm/iL3:5A/div,時間:10μs/div。 [Ninth aspect] is the operation of the embodiment of the present invention when the input voltage V in is 24 V, the output voltage V o is 200 V, the full-load output power is 200 W, and the coupled inductor (121) has a turns ratio of 1.5. The analog waveform diagram of the trigger signal v GS1 of the switch (128), the current i Lm of the magnetization inductance (1213) of the coupled inductor (121), and the current i L3 of the inductor (127), the scale values of the waveform diagram are: i Lm /i L3 : 5A/div, time: 10μs/div.

[第十圖]係為本發明實施例操作在輸入電壓Vin為24V、輸出電壓Vo為200V、滿載輸出功率為200W以及該耦合電感器(121)之匝數比為1.5時,該輸入單元(11)之輸入電壓Vin、該第一電容(125)之電壓Vc1、該第二電容(126)之電壓Vc2以及跨於該負載(133)兩端之輸出電壓Vo之模擬波形圖,其波形圖之刻度數值為:Vin/Vc1/Vc2/Vo:50V/div,時間:2ms/div。 [Tenth] is an operation of the embodiment of the present invention when the input voltage V in is 24V, the output voltage V o is 200V, the full-load output power is 200W, and the coupled inductor (121) has a turns ratio of 1.5. means (11) of the input voltage V in, the first capacitor (125) of the voltage V c1, the second capacitor (126) across the voltage V c2, and to the load (133) at both ends of the analog output voltage V o of Waveform diagram, the scale value of the waveform diagram is: V in /V c1 /V c2 /V o :50V/div, time: 2ms/div.

[第十一圖]係為本發明實施例操作在輸入電壓Vin為24V、輸出電壓Vo為200V、滿載輸出功率為200W以及該耦合電感器(121)之匝數比為1.5時,該耦合電感器(121)之該一次側漏電感(1214)之電流iLk1以及該二次側漏電感 (1215)之電流iLk2之模擬波形圖,其波形圖之刻度數值為:iLk1/iLk2:5A/div,時間:10μs/div。 [11] is an operation of the embodiment of the present invention when the input voltage V in is 24 V, the output voltage V o is 200 V, the full-load output power is 200 W, and the coupled inductor (121) has a turns ratio of 1.5. The analog waveform of the current i Lk1 of the primary side leakage inductance (1214) of the coupled inductor (121) and the current i Lk2 of the secondary side leakage inductance (1215), the scale value of the waveform diagram is: i Lk1 /i Lk2 : 5A/div, time: 10 μs/div.

[第十二圖]係為本發明實施例操作在輸入電壓Vin為24V、輸出電壓Vo為200V、滿載輸出功率為200W以及該耦合電感器(121)之匝數比為1.5時,該第一二極體(122)之電流iD1以及該切換開關(128)之電流iS1之模擬波形圖,其波形圖之刻度數值為:iD1/iS1:5A/div,時間:10μs/div。 [12th] is an embodiment of the present invention, when the input voltage V in is 24V, the output voltage V o is 200V, the full-load output power is 200W, and the coupled inductor (121) has a turns ratio of 1.5, The analog waveform of the current i D1 of the first diode (122) and the current i S1 of the switch (128), the scale value of the waveform diagram is: i D1 /i S1 : 5 A / div, time: 10 μs / Div.

[第十三圖]係為本發明實施例之耦合電感型直流電壓轉換器之電壓增益曲線圖。 [Thirteenth Diagram] is a voltage gain graph of a coupled inductive DC voltage converter according to an embodiment of the present invention.

[第十四圖]係為習知傳統耦合電感型直流電壓轉換器之電路圖。 [Fourteenth] is a circuit diagram of a conventional coupled inductive DC voltage converter.

[第十五圖]係為習知結合耦合電感及輸出疊接技術的直流電壓轉換器之電路圖。 [fifteenth] is a circuit diagram of a conventional DC voltage converter combined with a coupled inductor and an output splicing technique.

綜合上述技術特徵,本發明耦合電感型直流電壓轉換器的主要功效將可於下述實施例清楚呈現。 In summary of the above technical features, the main effects of the coupled inductive DC voltage converter of the present invention will be apparent from the following embodiments.

參閱第一圖所示,係本發明實施例之耦合電感型直流電壓轉換器(1)之電路圖,該耦合電感型直流電壓轉換器(1)包括一輸入單元(11)、一耦合電感型直流電壓轉換電路(12)以及一輸出單元(13),其中: Referring to the first figure, there is shown a circuit diagram of a coupled inductive DC voltage converter (1) according to an embodiment of the present invention. The coupled inductive DC voltage converter (1) includes an input unit (11) and a coupled inductive DC. a voltage conversion circuit (12) and an output unit (13), wherein:

該輸入單元(11)係用以輸入一直流電,本實施例之該輸入單元(11)所輸入之直流電係可為一太陽能電池、一燃料電池或其他綠色能源之任一所提供,係為低電壓之直流電。 The input unit (11) is used for inputting the current. The DC system input by the input unit (11) in this embodiment can be provided by any one of a solar cell, a fuel cell or other green energy sources. DC power of voltage.

該耦合電感型直流電壓轉換電路(12)係包含有一耦合電感器(121)、一第一二極體(122)、一第二二極體(123)、一第三二極體(124)、一第一電容(125)、一第二電容(126)、一電感(127)以及一切換開關(128)。其中,該耦合電感器(121)包含一一次側繞組(1211)以及一二次側繞組(1212),該一次側繞 組(1211)之一第一端係電性連接該輸入單元(11)之一正端,該一次側繞組(1211)之一第二端係電性連接該第一二極體(122)之陽極端以及該第二二極體(123)之陽極端,該第二二極體(123)之陰極端係電性連接該二次側繞組(1212)之一第一端,該第一二極體(122)之陰極端係電性連接該二次側繞組(1212)之一第二端、該第二電容(126)之一第一端、該第三二極體(124)之陽極端以及該切換開關(128)之一第一端,該第二電容(126)之一第二端係電性連接該電感(127)之一第一端,該電感(127)之一第二端係電性連接該第三二極體(124)之陰極端以及該第一電容(125)之一第一端,該第一電容(125)之一第二端係電性連接該切換開關(128)之一第二端以及該輸入單元(11)之一負端。其中,該切換開關(128)係例如為一N型金屬氧化物半導體場效電晶體。 The coupled inductive DC voltage conversion circuit (12) includes a coupled inductor (121), a first diode (122), a second diode (123), and a third diode (124). a first capacitor (125), a second capacitor (126), an inductor (127), and a switch (128). The coupled inductor (121) includes a primary side winding (1211) and a secondary side winding (1212), the primary side winding One of the first ends of the group (1211) is electrically connected to one of the positive ends of the input unit (11), and one of the second ends of the primary winding (1211) is electrically connected to the first diode (122). An anode end and an anode end of the second diode (123), the cathode end of the second diode (123) is electrically connected to one of the first ends of the secondary winding (1212), the first two The cathode end of the pole body (122) is electrically connected to one second end of the secondary side winding (1212), the first end of the second capacitor (126), and the anode of the third diode (124) And one of the first ends of the switch (128), the second end of the second capacitor (126) is electrically connected to one of the first ends of the inductor (127), and the second one of the inductors (127) The terminal is electrically connected to the cathode end of the third diode (124) and the first end of the first capacitor (125), and the second end of the first capacitor (125) is electrically connected to the switch (128) one of the second ends and one of the negative ends of the input unit (11). The switch (128) is, for example, an N-type metal oxide semiconductor field effect transistor.

該輸出單元(13)係包含有一輸出二極體(131)、一輸出電容(132)以及一負載(133),其中,該輸出二極體(131)之陽極端係電性連接該第二電容(126)之該第二端以及該電感(127)之該第一端,該輸出二極體(131)之陰極端係電性連接該輸出電容(132)之一第一端以及該負載(133)之一第一端,該輸出電容(132)之一第二端係電性連接該負載(133)之一第二端、該第一電容(125)之該第二端、該切換開關(128)之該第二端以及該輸入單元(11)之該負端。 The output unit (13) includes an output diode (131), an output capacitor (132), and a load (133), wherein an anode end of the output diode (131) is electrically connected to the second The second end of the capacitor (126) and the first end of the inductor (127), the cathode end of the output diode (131) is electrically connected to one of the first ends of the output capacitor (132) and the load (133) one of the first ends, the second end of the output capacitor (132) is electrically connected to one of the second end of the load (133), the second end of the first capacitor (125), the switching The second end of the switch (128) and the negative end of the input unit (11).

參閱第二圖所示,係為前述第一圖之等效電路圖,將該耦合電感器(121)視為一個理想變壓器以及一個磁化電感(1213),並有一一次側漏電感(1214)以及一二次側漏電感(1215),而該理想變壓器包含有該一次側繞組(1211)以及該二次側繞組(1212),該一次側繞組(1211)係與該磁化電感(1213)並聯,再與該一次側漏電感(1214)串聯,再電性連接於該第一二極體(122)之陽極端以及該第二二極體(123)之陽極端,而該二次側繞組(1212)之該第二端係先與該二次側漏電感(1215)串聯,再電性連接於該第一二極體(122)之陰極端、該第二電容 (126)之該第一端、該第三二極體(124)之該陽極端以及該切換開關(128)之該第一端。 Referring to the second figure, which is the equivalent circuit diagram of the first figure, the coupled inductor (121) is regarded as an ideal transformer and a magnetizing inductor (1213), and has a side leakage inductance (1214) and a a secondary side leakage inductance (1215), and the ideal transformer includes the primary side winding (1211) and the secondary side winding (1212), the primary side winding (1211) is connected in parallel with the magnetizing inductance (1213), and then The first side leakage inductance (1214) is connected in series, and is electrically connected to the anode end of the first diode (122) and the anode end of the second diode (123), and the secondary winding (1212) The second end is first connected in series with the secondary side leakage inductance (1215), and is electrically connected to the cathode end of the first diode (122), the second capacitor The first end of the (126), the anode end of the third diode (124), and the first end of the switch (128).

參閱第三圖所示,係本實施例之耦合電感型直流電壓轉換器(1)[該耦合電感型直流電壓轉換器(1)如第二圖所示]於單一切換週期之主要波形圖,係使用一脈波寬度調變技術控制該切換開關(128)[該切換開關(128)如第二圖所示]之導通與截止,並包含操作於下述五個操作模式: Referring to the third figure, the main waveform of the coupled inductive DC voltage converter (1) [the coupled inductive DC voltage converter (1) is shown in the second figure] in a single switching cycle, A pulse width modulation technique is used to control the on and off of the switch (128) [the switch (128) as shown in the second figure] and includes operating in the following five modes of operation:

模式一:參閱第三圖以及第四圖所示,操作區間為[t0,t1]。在t=t0時,該切換開關(128)導通,電流路徑如第四圖之箭頭指向所示。在此區間內,該輸入單元(11)的能量傳送至該耦合電感器(121)之該磁化電感(1213)以及該一次側漏電感(1214)。儲存於該耦合電感器(121)之該二次側漏電感(1215)的能量則回送至該耦合電感器(121)之該磁化電感(1213)。儲存於該第一電容(125)的能量傳送至該電感(127)以及該第二電容(126)。該輸出電容(132)則供應能量至該負載(133)。因此,如第三圖所示,該磁化電感(1213)之電流iLm、該一次側漏電感(1214)之電流iLk1以及該電感(127)之電流iL3係呈線性增加,而該二次側漏電感(1215)之電流iLk2則呈線性減少。當t=t1時,模式一結束,該耦合電感器(121)之該二次側漏電感(1215)的能量回收完畢,該二次側漏電感(1215)之電流iLk2降至零。此時,該磁化電感(1213)之電流iLm等於該一次側漏電感(1214)之電流iLk1。 Mode 1: Refer to the third and fourth figures, the operation interval is [t0, t1]. At t=t0, the switch (128) is turned on, and the current path is as indicated by the arrow in the fourth figure. In this interval, the energy of the input unit (11) is transferred to the magnetizing inductance (1213) of the coupled inductor (121) and the primary side leakage inductance (1214). The energy stored in the secondary side leakage inductance (1215) of the coupled inductor (121) is then returned to the magnetizing inductance (1213) of the coupled inductor (121). The energy stored in the first capacitor (125) is transferred to the inductor (127) and the second capacitor (126). The output capacitor (132) supplies energy to the load (133). Therefore, as shown in the third figure, the current iLm of the magnetizing inductance (1213), the current iLk1 of the primary side leakage inductance (1214), and the current iL3 of the inductance (127) linearly increase, and the secondary side leakage The current iLk2 of the sense (1215) decreases linearly. When t=t1, when the mode is over, the energy of the secondary side leakage inductance (1215) of the coupled inductor (121) is recovered, and the current iLk2 of the secondary side leakage inductance (1215) is reduced to zero. At this time, the current iLm of the magnetizing inductance (1213) is equal to the current iLk1 of the primary side leakage inductance (1214).

模式二:參閱第三圖以及第五圖所示,操作區間為[t1,t2]。在t=t1時,該切換開關(128)持續導通,電流路徑如第五圖所示。此區間,該輸入單元(11)的能量持續傳送至該耦合電感器(121)之該磁化電感(1213)以及該一次側漏電感(1214)。儲存於第一電容(125)的能量持續傳送至該電感(127)以及該第二電容(126)。該輸出電容(132)則供應能量至該負載(133)。因此,如第三圖所示,該磁化電感(1213)之電流iLm、該一次側漏電感(1214)之電流iLk1以及該電感 (127)之電流iL3持續呈線性增加。當t=t2時,該切換開關(128)切換為截止,模式二結束。 Mode 2: Referring to the third and fifth figures, the operation interval is [t1, t2]. At t=t1, the switch (128) is continuously turned on, and the current path is as shown in the fifth figure. In this interval, the energy of the input unit (11) is continuously transmitted to the magnetizing inductance (1213) of the coupled inductor (121) and the primary side leakage inductance (1214). The energy stored in the first capacitor (125) is continuously transmitted to the inductor (127) and the second capacitor (126). The output capacitor (132) supplies energy to the load (133). Therefore, as shown in the third figure, the current iLm of the magnetizing inductance (1213), the current iLk1 of the primary side leakage inductance (1214), and the inductance The current iL3 of (127) continues to increase linearly. When t=t2, the switch (128) switches to off and mode two ends.

模式三:參閱第三圖以及第六圖所示,操作區間為[t2,t3]。在t=t2時,該切換開關(128)截止,此時Vc1>Vo-Vc2,電流路徑如第六圖所示。此區間,該輸入單元(11)、該耦合電感器(121)之該磁化電感(1213)、該一次側漏電感(1214)以及該第二電容(126)串聯,將其能量釋放至該輸出電容(132)以及該負載(133)。因此,儲存於該一次側漏電感(1214)的能量可被回收。儲存於該磁化電感(1213)的部份能量則經由理想變壓器傳送至該耦合電感器(121)之該二次側漏電感(1215)。該第一電容(125)以及該電感(127)串聯傳送其能量至該輸出電容(132)以及該負載(133)。因此,如第三圖所示,該磁化電感(1213)之電流iLm、該一次側漏電感(1214)之電流iLk1以及該電感(127)之電流iL3呈線性減少,而該二次側漏電感(1215)之電流iLk2則呈線性增加。當t=t3時,該一次側漏電感(1214)之電流iLk1等於該二次側漏電感(1215)之電流iLk2,模式三結束。 Mode 3: Referring to the third and sixth figures, the operation interval is [t2, t3]. At t=t2, the switch (128) is turned off, at which time Vc1>Vo-Vc2, and the current path is as shown in the sixth figure. In this interval, the input unit (11), the magnetizing inductance (1213) of the coupled inductor (121), the primary side leakage inductance (1214), and the second capacitor (126) are connected in series to release energy to the output. Capacitor (132) and the load (133). Therefore, the energy stored in the primary side leakage inductance (1214) can be recovered. A portion of the energy stored in the magnetizing inductor (1213) is transmitted to the secondary side leakage inductance (1215) of the coupled inductor (121) via an ideal transformer. The first capacitor (125) and the inductor (127) transmit their energy in series to the output capacitor (132) and the load (133). Therefore, as shown in the third figure, the current iLm of the magnetizing inductance (1213), the current iLk1 of the primary side leakage inductance (1214), and the current iL3 of the inductance (127) linearly decrease, and the secondary side leakage inductance The current iLk2 of (1215) increases linearly. When t=t3, the current iLk1 of the primary side leakage inductance (1214) is equal to the current iLk2 of the secondary side leakage inductance (1215), and mode three ends.

模式四:參閱第三圖以及第七圖所示,操作區間為[t3,t4]。在t=t3時,該切換開關(128)持續截止,此時Vc1>Vo-Vc2,電流路徑如第七圖所示。此區間,該輸入單元(11)、該耦合電感器(121)之該磁化電感(1213)、該一次側漏電感(1214)、該二次側漏電感(1215)以及該第二電容(126)串聯,將其能量釋放至該輸出電容(132)以及該負載(133)。該第一電容(125)以及該電感(127)串聯持續傳送其能量至該輸出電容(132)以及該負載(133)。因此,如第三圖所示,該磁化電感(1213)之電流iLm、該一次側漏電感(1214)之電流iLk1、該二次側漏電感(1215)之電流iLk2以及該電感(127)之電流iL3呈線性減少。當t=t4時,Vc1=Vo-Vc2,模式四結束。 Mode 4: Referring to the third and seventh diagrams, the operation interval is [t3, t4]. At t=t3, the switch (128) is continuously turned off, at which time Vc1>Vo-Vc2, and the current path is as shown in the seventh figure. In the interval, the input unit (11), the magnetizing inductance (1213) of the coupled inductor (121), the primary side leakage inductance (1214), the secondary side leakage inductance (1215), and the second capacitance (126) In series, its energy is released to the output capacitor (132) and the load (133). The first capacitor (125) and the inductor (127) continue to deliver their energy in series to the output capacitor (132) and the load (133). Therefore, as shown in the third figure, the current iLm of the magnetizing inductance (1213), the current iLk1 of the primary side leakage inductance (1214), the current iLk2 of the secondary side leakage inductance (1215), and the inductance (127) The current iL3 decreases linearly. When t=t4, Vc1=Vo-Vc2, mode four ends.

模式五:參閱第三圖以及第八圖所示,操作區間為[t4,t5]。在t=t4時,該切換開關(128)持續截止,此時Vc1=Vo-Vc2,電流路徑如第八圖所示。 此區間,該輸入單元(11)、該耦合電感器(121)之該磁化電感(1213)、該一次側漏電感(1214)以及該二次側漏電感(1215)串聯,將其能量釋放至該第一電容(125)。此外,該輸入單元(11)、該耦合電感器(121)之該磁化電感(1213)、該一次側漏電感(1214)以及該二次側漏電感(1215),分別與該第二電容(126)以及該電感(127)串聯,再將其能量釋放至該輸出電容(132)以及該負載(133)。因此,如第三圖所示,該磁化電感(1213)之電流iLm、該一次側漏電感(1214)之電流iLk1、該二次側漏電感(1215)之電流iLk2以及該電感(127)之電流iL3呈持續線性減少。當t=t5時,該切換開關(128)切換為導通,模式五結束,下一切換週期開始。 Mode 5: Referring to the third and eighth figures, the operation interval is [t4, t5]. At t=t4, the switch (128) is continuously turned off, at which time Vc1=Vo-Vc2, and the current path is as shown in the eighth figure. In this interval, the input unit (11), the magnetizing inductance (1213) of the coupled inductor (121), the primary side leakage inductance (1214), and the secondary side leakage inductance (1215) are connected in series, and the energy is released to The first capacitor (125). In addition, the input unit (11), the magnetizing inductance (1213) of the coupled inductor (121), the primary side leakage inductance (1214), and the secondary side leakage inductance (1215) are respectively associated with the second capacitor ( 126) and the inductor (127) is connected in series, and then its energy is released to the output capacitor (132) and the load (133). Therefore, as shown in the third figure, the current iLm of the magnetizing inductance (1213), the current iLk1 of the primary side leakage inductance (1214), the current iLk2 of the secondary side leakage inductance (1215), and the inductance (127) The current iL3 is continuously linearly reduced. When t=t5, the switch (128) is switched to be on, mode five is ended, and the next switching cycle is started.

本實施例之耦合電感型直流電壓轉換器(1)之電壓增益(M)為:,其中為匝數比,D為責任週期。 The voltage gain (M) of the coupled inductive DC voltage converter (1) of this embodiment is: ,among them For the turns ratio, D is the duty cycle.

配合參閱第九圖所示,係為本實施例操作在輸入電壓Vin為24V、輸出電壓Vo為200V、滿載輸出功率為200W以及該耦合電感器(121)之匝數比為1.5時,該切換開關(128)之觸發信號vGS1、該耦合電感器(121)之磁化電感(1213)之電流iLm以及該電感(127)之電流iL3之模擬波形圖,其波形圖之刻度數值為:iLm/iL3:5A/div,時間:10μs/div,可看出該耦合電感器(121)以及該電感(127)皆操作於連續導通模式,且責任週期約為0.63。 Referring to FIG. 9 , when the input voltage V in is 24V, the output voltage V o is 200V, the full-load output power is 200W, and the turns ratio of the coupled inductor (121) is 1.5, The analog waveform diagram of the trigger signal v GS1 of the switch (128), the current i Lm of the magnetization inductance (1213) of the coupled inductor (121), and the current i L3 of the inductor (127), the scale value of the waveform diagram For: i Lm /i L3 : 5A / div, time: 10μs / div, it can be seen that the coupled inductor (121) and the inductor (127) are operated in continuous conduction mode, and the duty cycle is about 0.63.

配合參閱第十圖所示,係為本實施例操作在輸入電壓Vin為24V、輸出電壓Vo為200V、滿載輸出功率為200W以及該耦合電感器(121)之匝數比為1.5時,該輸入單元(11)之輸入電壓Vin、該第一電容(125)之電壓Vc1、該第二電容(126)之電壓Vc2以及跨於該負載(133)兩端之輸出電壓Vo之模擬波形圖,其波形圖之刻度數值為:Vin/Vc1/Vc2/Vo:50V/div,時間:2ms/div,可看出本實施例之耦合電感型直流電壓轉換器(1)可達到高升壓比之功能。 Referring to FIG. 10, when the input voltage V in is 24V, the output voltage V o is 200V, the full-load output power is 200W, and the turns ratio of the coupled inductor (121) is 1.5, the input unit (11) of the input voltage V in, the first capacitor (125) of the voltage V c1, the second capacitor (126) and the voltage V c2 across the output voltage to the load (133) at both ends of the V o The analog waveform diagram, the scale value of the waveform diagram is: V in /V c1 /V c2 /V o :50V/div, time: 2ms/div, the coupled inductor type DC voltage converter of the embodiment can be seen ( 1) The function of high boost ratio can be achieved.

配合參閱第十一圖所示,係為本實施例操作在輸入電壓Vin為24V、輸出電壓Vo為200V、滿載輸出功率為200W以及該耦合電感器(121)之匝數比為1.5時,該耦合電感器(121)之該一次側漏電感(1214)之電流iLk1以及該二次側漏電感(1215)之電流iLk2之模擬波形圖,其波形圖之刻度數值為:iLk1/iLk2:5A/div,時間:10μs/div。 Referring to FIG. 11 , the input voltage V in is 24V, the output voltage V o is 200V, the full-load output power is 200W, and the turns ratio of the coupled inductor (121) is 1.5. The analog waveform diagram of the primary side leakage inductance (1214) current i Lk1 of the coupled inductor (121) and the secondary side leakage inductance (1215) current i Lk2 , the scale value of the waveform diagram is: i Lk1 /i Lk2 : 5A/div, time: 10μs/div.

配合參閱第十二圖所示,係為本實施例操作在輸入電壓Vin為24V、輸出電壓Vo為200V、滿載輸出功率為200W以及該耦合電感器(121)之匝數比為1.5時,該第一二極體(122)之電流iD1以及該切換開關(128)之電流iS1之模擬波形圖,其波形圖之刻度數值為:iD1/iS1:5A/div,時間:10μs/div,可看出與前述模式一、模式二、模式三、模式四以及模式五之分析相符。 Referring to FIG. 12, the input voltage V in is 24V, the output voltage V o is 200V, the full-load output power is 200W, and the turns ratio of the coupled inductor (121) is 1.5. The analog waveform of the current i D1 of the first diode (122) and the current i S1 of the switch (128), the scale value of the waveform diagram is: i D1 /i S1 : 5A/div, time: 10μs/div can be seen to be consistent with the analysis of Mode 1, Mode 2, Mode 3, Mode 4 and Mode 5 mentioned above.

配合參閱第十三圖所示,係本實施例之耦合電感型直流電壓轉換器(1)之電壓增益曲線圖,可看出具有高電壓增益比。 Referring to the thirteenth figure, the voltage gain curve of the coupled inductive DC voltage converter (1) of this embodiment can be seen to have a high voltage gain ratio.

綜合上述實施例之說明,當可充分瞭解本發明之操作、使用及本發明產生之功效,惟以上所述實施例僅係為本發明之較佳實施例,當不能以此限定本發明實施之範圍,即依本發明申請專利範圍及發明說明內容所作簡單的等效變化與修飾,皆屬本發明涵蓋之範圍內。 In view of the foregoing description of the embodiments, the operation and the use of the present invention and the effects of the present invention are fully understood, but the above described embodiments are merely preferred embodiments of the present invention, and the invention may not be limited thereto. Included within the scope of the present invention are the scope of the present invention.

Claims (4)

一種耦合電感型直流電壓轉換器,包括:一輸入單元,用以輸入一直流電;一耦合電感型直流電壓轉換電路,包含有一耦合電感器、一第一二極體、一第二二極體、一第三二極體、一第一電容、一第二電容、一電感以及一切換開關,其中,該耦合電感器包含一一次側繞組以及一二次側繞組,該一次側繞組之一第一端係電性連接該輸入單元之一正端,該一次側繞組之一第二端係電性連接該第一二極體之陽極端以及該第二二極體之陽極端,該第二二極體之陰極端係電性連接該二次側繞組之一第一端,該第一二極體之陰極端係電性連接該二次側繞組之一第二端、該第二電容之一第一端、該第三二極體之陽極端以及該切換開關之一第一端,該第二電容之一第二端係電性連接該電感之一第一端,該電感之一第二端係電性連接該第三二極體之陰極端以及該第一電容之一第一端,該第一電容之一第二端係電性連接該切換開關之一第二端以及該輸入單元之一負端;一輸出單元,包含有一輸出二極體、一輸出電容以及一負載,其中,該輸出二極體之陽極端係電性連接該第二電容之該第二端以及該電感之該第一端,該輸出二極體之陰極端係電性連接該輸出電容之一第一端以及該負載之一第一端,該輸出電容之一第二端係電性連接該負載之一第二端、該第一電容之該第二端、該切換開關之該第二端以及該輸入單元之該負端。 A coupled inductive DC voltage converter includes: an input unit for inputting a constant current; a coupled inductive DC voltage conversion circuit comprising a coupled inductor, a first diode, a second diode, a third diode, a first capacitor, a second capacitor, an inductor, and a switch, wherein the coupled inductor includes a primary winding and a secondary winding, the primary winding One end is electrically connected to one of the input ends of the input unit, and the second end of the primary side winding is electrically connected to the anode end of the first diode and the anode end of the second diode, the second The cathode end of the diode is electrically connected to one of the first ends of the secondary winding, and the cathode end of the first diode is electrically connected to one of the second ends of the secondary winding, and the second capacitor a first end, an anode end of the third diode, and a first end of the switch, the second end of the second capacitor is electrically connected to the first end of the inductor, and the inductor is The two ends are electrically connected to the cathode end of the third diode and the first The first end of the first capacitor is electrically connected to the second end of the switch and the negative end of the input unit; an output unit includes an output diode and an output a capacitor and a load, wherein an anode end of the output diode is electrically connected to the second end of the second capacitor and the first end of the inductor, and a cathode end of the output diode is electrically connected to the cathode end a first end of the output capacitor and a first end of the load, the second end of the output capacitor is electrically connected to the second end of the load, the second end of the first capacitor, and the switch The second end and the negative end of the input unit. 如申請專利範圍第1項所述之耦合電感型直流電壓轉換器,其中,係利用一脈波寬度調變技術控制該切換開關之導通與截止。 The coupled inductive DC voltage converter according to claim 1, wherein the switching of the switching switch is controlled by a pulse width modulation technique. 如申請專利範圍第1項所述之耦合電感型直流電壓轉換器,其中,該切換開關係為一N型金屬氧化物半導體場效電晶體。 The coupled inductive DC voltage converter according to claim 1, wherein the switching relationship is an N-type metal oxide semiconductor field effect transistor. 如申請專利範圍第1項所述之耦合電感型直流電壓轉換器,其中,該輸入單元輸入之直流電為一太陽能電池或一燃料電池其中之一。 The coupled inductive DC voltage converter according to claim 1, wherein the DC power input by the input unit is one of a solar cell or a fuel cell.
TW106132138A 2017-09-19 2017-09-19 Inductively coupled dc-dc power converter TWI646764B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106132138A TWI646764B (en) 2017-09-19 2017-09-19 Inductively coupled dc-dc power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106132138A TWI646764B (en) 2017-09-19 2017-09-19 Inductively coupled dc-dc power converter

Publications (2)

Publication Number Publication Date
TWI646764B true TWI646764B (en) 2019-01-01
TW201916563A TW201916563A (en) 2019-04-16

Family

ID=65804040

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106132138A TWI646764B (en) 2017-09-19 2017-09-19 Inductively coupled dc-dc power converter

Country Status (1)

Country Link
TW (1) TWI646764B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI800388B (en) * 2022-05-27 2023-04-21 遠東科技大學 Power converter with boost function

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI351806B (en) * 2008-05-29 2011-11-01 Univ Yuan Ze High step-up isolated converter with two input pow
TWI398088B (en) * 2010-11-12 2013-06-01 Univ Nat Cheng Kung Single-phase pfc ac-dc power converter
TWI403082B (en) * 2008-07-31 2013-07-21 Advanced Analogic Tech Inc Step-up dc/dc voltage converter with improved transient current capability
TW201517694A (en) * 2013-10-28 2015-05-01 Sheng-Hann Lee Flicker-free power converter for driving light-emitting diodes and flicker-free power converter
US20160072394A1 (en) * 2014-09-08 2016-03-10 Infineon Technologies Austria Ag Multi-cell power conversion method and multi-cell power converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI351806B (en) * 2008-05-29 2011-11-01 Univ Yuan Ze High step-up isolated converter with two input pow
TWI403082B (en) * 2008-07-31 2013-07-21 Advanced Analogic Tech Inc Step-up dc/dc voltage converter with improved transient current capability
TWI398088B (en) * 2010-11-12 2013-06-01 Univ Nat Cheng Kung Single-phase pfc ac-dc power converter
TW201517694A (en) * 2013-10-28 2015-05-01 Sheng-Hann Lee Flicker-free power converter for driving light-emitting diodes and flicker-free power converter
US20160072394A1 (en) * 2014-09-08 2016-03-10 Infineon Technologies Austria Ag Multi-cell power conversion method and multi-cell power converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI800388B (en) * 2022-05-27 2023-04-21 遠東科技大學 Power converter with boost function

Also Published As

Publication number Publication date
TW201916563A (en) 2019-04-16

Similar Documents

Publication Publication Date Title
CN111371315B (en) Zero-input-current ripple high-gain DC-DC converter
CN113394975B (en) High-voltage gain DC-DC direct current converter
TWI569565B (en) Staggered high boost DC converter
WO2021093667A1 (en) Forward and flyback switch power supply circuit
TWI489750B (en) High-efficiency bidirectional single-input and multi-outputs dc/dc converter
US9356527B2 (en) Multi-mode active clamping power converter
TWI554014B (en) High step-up dc power converter
TWI646764B (en) Inductively coupled dc-dc power converter
TW201724717A (en) High voltage gain power converter
CN203645540U (en) A high-efficiency high-gain DC-DC converter with coupling inductors
TWI687031B (en) High step-down ration direct current power converter
TWI516005B (en) DC - DC power conversion device with high step - down ratio
TWI614981B (en) Isolated high step-down ratio DC-DC converter
TWI547078B (en) An isolated high step-down power converter with the feature of recycling energy stored in parasitic elements of transformer
CN104092370B (en) A kind of self-excited type Boost circuit
CN103762841B (en) A kind of embedded single switch Buck-Boost converter
CN103762852B (en) High-efficiency high-gain DC-DC converter with double coupling inductors
CN109905025B (en) High-gain DC-DC switch converter
TWI528702B (en) High power factor and high step-down ac-dc converter
CN107395020B (en) Double-tube forward Z-source direct-current voltage converter
TWI439034B (en) Zero voltage switching power converter
CN201499089U (en) DC/DC converter of lossless demagnetizing circuit
TWI459705B (en) Single - stage high - boost ratio DC - DC converter
CN103633833A (en) Single-switching-tube converter Boost-Buck-Boost converter
TWI538376B (en) A novel power converter device with extra step-up/down feature

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees