TWI646052B - A method of recovery of rare earth lanthanum ions - Google Patents

A method of recovery of rare earth lanthanum ions Download PDF

Info

Publication number
TWI646052B
TWI646052B TW105109457A TW105109457A TWI646052B TW I646052 B TWI646052 B TW I646052B TW 105109457 A TW105109457 A TW 105109457A TW 105109457 A TW105109457 A TW 105109457A TW I646052 B TWI646052 B TW I646052B
Authority
TW
Taiwan
Prior art keywords
rare earth
ethylhexyl
earth metal
cerium ions
cerium
Prior art date
Application number
TW105109457A
Other languages
Chinese (zh)
Other versions
TW201710188A (en
Inventor
謝子陽
韓佳耘
王大銘
謝學真
李清華
劉玉玲
黃進文
Original Assignee
中國科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中國科技大學 filed Critical 中國科技大學
Priority to TW105109457A priority Critical patent/TWI646052B/en
Publication of TW201710188A publication Critical patent/TW201710188A/en
Application granted granted Critical
Publication of TWI646052B publication Critical patent/TWI646052B/en

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Removal Of Specific Substances (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本發明提供回收稀土金屬鈰離子和鑭離子的方法,該方法包含:提供一含有稀土金屬鈰離子和鑭離子的進料混合溶液,藉由一萃取液進行稀土金屬鈰離子和鑭離子的分離;並再使用一反萃取劑同步進行一回收程序可得到鈰離子純度大於97%之濃縮液和鑭離子純度大於98%之回收液。 The invention provides a method for recovering rare earth metal cerium ions and cerium ions, the method comprising: providing a mixed solution of a rare earth metal cerium ion and cerium ions, and separating the rare earth metal cerium ions and cerium ions by an extract; Further, using a stripping agent to carry out a recovery procedure simultaneously, a concentrate having a purity of more than 97% of cesium ions and a recovery liquid having a purity of cesium ions of more than 98% can be obtained.

Description

一種回收純化稀土金屬鑭離子的方法 Method for recovering and purifying rare earth metal cerium ions

本發明係關於一種回收稀土金屬鈰離子和鑭離子的方法,特別是關於一種藉由支撐式液膜法進行分離並同步回收稀土金屬鈰離子和鑭離子的方法。 The present invention relates to a method for recovering rare earth metal cerium ions and cerium ions, and more particularly to a method for separating and simultaneously recovering rare earth metal cerium ions and cerium ions by a supported liquid membrane method.

由於光學產業及電子科技之高度發展,鈰基玻璃拋光粉已廣泛應用於高科技領域及高精密功能性材料,包括平板電腦之玻璃、眼鏡鏡片及鏡框、光學鏡頭、液晶顯示器、陰極射線管、積體電路基板、半導體晶片、各種寶石、精密金屬製品及裝飾材料等的拋光程序。拋光是表面加工之必要單元程序之一,而玻璃拋光粉則是拋光程序中的關鍵性材料。一般玻璃拋光粉稀土玻璃拋光粉的主要成分為氧化鈰、氧化鑭等,其中二氧化鈰為極有效的拋光用化合物。 Due to the high development of optical industry and electronic technology, bismuth-based glass polishing powder has been widely used in high-tech fields and high-precision functional materials, including glass for tablet computers, spectacle lenses and frames, optical lenses, liquid crystal displays, cathode ray tubes, Polishing procedures for integrated circuit boards, semiconductor wafers, various gemstones, precision metal products, and decorative materials. Polishing is one of the necessary unit procedures for surface processing, while glass polishing powder is a key material in the polishing process. Generally, the main components of the glass polishing powder rare earth glass polishing powder are cerium oxide, cerium oxide, etc., and cerium oxide is an extremely effective polishing compound.

然而,在光學玻璃拋光過程中常因接觸到一些金屬材料,會衍生出固體廢棄物(廢玻璃拋光粉,俗稱鈰泥),而目前相關技術對於廢玻璃拋光粉尚無法有效管理或再利用的機制,故常被作為一般垃圾堆置或掩埋。因此,若能有效將廢玻璃拋光粉中 所含之有價且有限的鑭、鈰稀土資源進行分離及回收再利用,除了能降低廢鈰泥對環境之危害,並可提供光學電子產業資源再利用稀土金屬,故廢鈰泥中稀土金屬元素的分離和回收技術之發明已成為刻不容緩的趨勢。 However, in the process of polishing optical glass, due to the contact with some metal materials, solid waste (waste glass polishing powder, commonly known as mud) is derived, and the related technology for the waste glass polishing powder cannot be effectively managed or reused. Therefore, it is often used as a general waste dump or buried. Therefore, if it can effectively remove waste glass polishing powder Separation and recycling of valuable and limited rare earth resources, in addition to reducing the environmental hazards of waste mud, and providing optical and electronic industry resources to reuse rare earth metals, so the rare earth metal elements in waste mud The invention of separation and recycling technology has become an urgent trend.

目前分離及回收稀土鑭及鈰稀土金屬以及評估回收再利用稀土金屬的歷史文獻資料付之闕如,故本發明將進行分離並回收廢鈰泥中鑭/鈰稀土金屬離子之技術開發,同時考量稀土金屬分離及回收效率,將會對光電相關產業有實質的經濟貢獻,故本發明對廢鈰泥中鑭鈰稀土金屬離子之分離回收技術係屬新創且極具應用價值。 At present, the historical literature on the separation and recovery of rare earth lanthanum and lanthanum rare earth metals and the evaluation of the recovery and reuse of rare earth metals is indispensable. Therefore, the present invention will carry out the technology development for separating and recovering lanthanum/cerium rare earth metal ions in waste mash, and considering rare earths. The metal separation and recovery efficiency will have substantial economic contribution to the optoelectronic related industry. Therefore, the separation and recovery technology of the rare earth metal ions in the waste mud is a new and highly valuable application.

美國專利號US6,291,705揭露利用支撐式液膜法應用於處理廢水中的銅、鋅、汞及鈷金屬離子,但是對於要如何應用在其他金屬離子的分離,特別是關於稀土金屬鈰和鑭的分離則完全沒有提及或教導。 U.S. Patent No. 6,291,705 discloses the use of a supported liquid membrane process for the treatment of copper, zinc, mercury and cobalt metal ions in wastewater, but how it is applied to the separation of other metal ions, particularly with respect to rare earth metals strontium and barium. Separation is not mentioned or taught at all.

綜上所述,對於具有同時兼顧降低廢鈰泥對環境之污染衝擊的汙染防治技術和稀土金屬鈰離子和鑭離子的分離及回收的技術研發,實為一刻不容緩以及極具發展潛力的產業技術領域。 In summary, the research and development of pollution prevention technologies and the separation and recovery of rare earth metal strontium ions and strontium ions, which simultaneously reduce the pollution impact of waste mud on the environment, are industrial technologies that cannot be delayed and have great development potential. field.

鑒於上述之發明背景,為了符合產業上之要求,本發明之目的在於提供一種回收稀土金屬鈰離子和鑭離子的方法,特別是關於一種藉由支撐式液膜法進行分離並同步回收稀土金屬鈰離子和鑭離子的方法。 In view of the above-mentioned background of the invention, in order to meet the requirements of the industry, an object of the present invention is to provide a method for recovering rare earth metal cerium ions and cerium ions, in particular, a method for separating and simultaneously recovering rare earth metal cerium by a supported liquid membrane method. Method of ion and helium ions.

本發明之第一目的在於提供一種回收稀土金屬鈰離子的方法,該回收稀土金屬鈰離子方法包含:提供一進料混合溶液,該進料混合溶液包含稀土金屬鈰離子和鑭離子,其中上述之進料混合溶液的pH係為0.4~1.5之間,藉由一萃取液進行一分離程序分離上述之進料混合溶液並藉由一反萃取劑同步進行一回收程序,可得到一含鈰離子純度大於97%的鈰離子濃縮液。 A first object of the present invention is to provide a method for recovering rare earth metal cerium ions. The method for recovering rare earth metal cerium ions comprises: providing a feed mixed solution comprising rare earth metal cerium ions and cerium ions, wherein the above The pH of the feed mixed solution is between 0.4 and 1.5, and the feed mixture solution is separated by a separation process and a recovery process is performed by a stripping agent to obtain a purity of the ruthenium ion. More than 97% cerium ion concentrate.

於一實施例,上述之萃取液包含二-(2-乙基己基)磷酸和2-乙基己基磷酸-2-乙基己基單酯,且二-(2-乙基己基)磷酸和2-乙基己基磷酸-2-乙基己基單酯的莫耳濃度比例介於0.2~0.5之間。 In one embodiment, the extract comprises bis-(2-ethylhexyl)phosphoric acid and 2-ethylhexylphosphoric acid 2-ethylhexyl monoester, and bis-(2-ethylhexyl)phosphoric acid and 2- The molar concentration ratio of ethylhexyl phosphate-2-ethylhexyl monoester is between 0.2 and 0.5.

於一較佳實施例,上述之二-(2-乙基己基)磷酸和2-乙基己基磷酸-2-乙基己基單酯的莫耳濃度比例是0.25,且二-(2-乙基己基)磷酸的莫耳濃度是7.5mM,2-乙基己基磷酸-2-乙基己基單酯的莫耳濃度是30mM。 In a preferred embodiment, the molar ratio of bis-(2-ethylhexyl)phosphoric acid and 2-ethylhexylphosphoric acid 2-ethylhexyl monoester is 0.25, and di-(2-ethyl The molar concentration of hexylphosphoric acid was 7.5 mM, and the molar concentration of 2-ethylhexylphosphoric acid 2-ethylhexyl monoester was 30 mM.

於一實施例,上述之進料混合溶液所包含的稀土金屬鈰離子和鑭離子的濃度比值範圍係在5~1之間。 In one embodiment, the concentration ratio of the rare earth metal cerium ions and cerium ions contained in the feed mixed solution is in the range of 5 to 1.

於一實施例,上述之分離程序是具分散反萃取相支撐式液膜法。 In one embodiment, the separation procedure described above is a dispersion-backed phase supported liquid membrane method.

於一實施例,上述之含鈰離子純度大於97%的鈰離子濃縮液之回收率大於80%。 In one embodiment, the above-mentioned cerium ion concentrate having a cerium ion purity greater than 97% has a recovery greater than 80%.

於一實施例,上述之反萃取劑包含鹽酸和硫酸。 In one embodiment, the above stripping agent comprises hydrochloric acid and sulfuric acid.

於一較佳實施例,上述之反萃取劑是鹽酸,且該鹽酸的濃度範圍係為3~5M。 In a preferred embodiment, the above stripping agent is hydrochloric acid, and the concentration of the hydrochloric acid is in the range of 3 to 5 M.

本發明之第二目的在於提供一種回收稀土金屬鑭離子的方法,該回收稀土金屬鑭離子的方法包含:提供一含鑭離子之溶液,該含鑭離子之溶液的PH值是3.5~5,藉由一萃取液進行一提取程序;並藉由一反萃取劑同步進行一回收程序,可得到一回收率大於80%之含鑭離子的回收液,且上述之回收液中的鑭離子之純度大於98%。 A second object of the present invention is to provide a method for recovering rare earth metal cerium ions. The method for recovering rare earth metal cerium ions comprises: providing a solution containing cerium ions, wherein the pH of the cerium ion-containing solution is 3.5 to 5, An extraction process is carried out from an extract; and a recovery process is carried out by synchronizing a stripping agent to obtain a recovery solution containing cerium ions having a recovery ratio of more than 80%, and the purity of the cerium ions in the recovered liquid is greater than 98%.

於一實施例,上述之萃取液包含二-(2-乙基己基)磷酸和2-乙基己基磷酸-2-乙基己基單酯,且二-(2-乙基己基)磷酸和2-乙基已基磷酸-2-乙基己基單酯的莫耳濃度比例介於0.2~0.5。 In one embodiment, the extract comprises bis-(2-ethylhexyl)phosphoric acid and 2-ethylhexylphosphoric acid 2-ethylhexyl monoester, and bis-(2-ethylhexyl)phosphoric acid and 2- The molar concentration of ethylhexyl phosphate 2-ethylhexyl monoester is between 0.2 and 0.5.

於一較佳實施例,上述之二-(2-乙基己基)磷酸和2-乙基己基磷酸-2-乙基己基單酯的莫耳濃度比例係為0.25,且二-(2-乙基己基)磷酸的莫耳濃度是7.5mM,2-乙基己基磷酸-2-乙基己基單酯的莫耳濃度是30mM。 In a preferred embodiment, the molar ratio of bis-(2-ethylhexyl)phosphoric acid and 2-ethylhexylphosphoric acid 2-ethylhexyl monoester is 0.25, and di-(2-B) The molar concentration of the hexyl hexyl phosphate was 7.5 mM, and the molar concentration of 2-ethylhexyl phosphate-2-ethylhexyl monoester was 30 mM.

於一實施例,上述之反萃取劑係為鹽酸,且該鹽酸之莫耳濃度是0.15~3M。 In one embodiment, the above stripping agent is hydrochloric acid, and the molar concentration of the hydrochloric acid is 0.15-3M.

於一較佳實施例,上述之鹽酸之莫耳濃度是0.15M。 In a preferred embodiment, the molar concentration of hydrochloric acid described above is 0.15M.

於一實施例,上述之含鑭離子溶液的PH值是4。 In one embodiment, the pH of the cerium-containing ion solution described above is 4.

於一實施例,上述之提取程序是具分散反萃取相支撐式液膜法。 In one embodiment, the extraction procedure described above is a dispersion-backed phase supported liquid membrane method.

根據本發明所提供的回收稀土金屬鈰離子和鑭離子的方法,該方法具有高度選擇性且能有效率地分別回收稀土金屬鈰離子和鑭離子,上述的回收稀土金屬鈰離子和鑭離子的方法係藉由控制進料混合溶液之pH和藉由具分散反萃取相支 撐式液膜法進行分離程序或提取程序後,再藉由一反萃取劑同步回收得到一含稀土金屬鈰離子之純度大於97%的濃縮液和一含鑭離子之純度大於98%的回收液,因而可廣泛的應用在稀土金屬鈰離子和鑭離子的回收工業領域。 According to the method for recovering rare earth metal cerium ions and cerium ions provided by the present invention, the method has high selectivity and can efficiently recover rare earth metal cerium ions and cerium ions, and the above method for recovering rare earth metal cerium ions and cerium ions By controlling the pH of the feed mixture solution and by dispersing the back extraction phase After the separation process or the extraction process is carried out by the support liquid membrane method, a concentrate containing a rare earth metal cerium ion having a purity greater than 97% and a recovery liquid having a cerium ion purity greater than 98% are simultaneously recovered by a stripping agent. Therefore, it can be widely used in the recycling industry of rare earth metal cerium ions and cerium ions.

有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之一較佳實施例的詳細說明中,將可清楚的呈現。為了能徹底地瞭解本發明,將在下列的描述中提出詳盡的步驟及其組成。顯然地,本發明的施行並未限定於該領域之技藝者所熟習的特殊細節。另一方面,眾所周知的組成或步驟並未描述於細節中,以避免造成本發明不必要之限制。本發明的較佳實施例會詳細描述如下,然而除了這些詳細描述之外,本發明還可以廣泛地施行在其他的實施例中,且本發明的範圍不受限定,其以之後的專利範圍為準。 The above and other technical contents, features and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments. In order to thoroughly understand the present invention, detailed steps and compositions thereof will be set forth in the following description. Obviously, the practice of the invention is not limited to the specific details that are apparent to those skilled in the art. On the other hand, well-known components or steps are not described in detail to avoid unnecessarily limiting the invention. The preferred embodiments of the present invention are described in detail below, but the present invention may be widely practiced in other embodiments, and the scope of the present invention is not limited by the scope of the following patents. .

根據本發明的第一實施例,本發明提供一種回收稀土金屬鈰離子的方法,該回收稀土金屬鈰離子的方法包含:提供一進料混合溶液,該進料混合溶液包含稀土金屬鈰離子和鑭離子,其中上述之進料混合溶液的pH係為0.4~1.5之間,藉由一萃取液進行一分離程序分離上述之進料混合溶液,並藉由一反萃取劑同步進行一回收程序,可得到一含鈰離子純度大於97%的鈰離子濃縮液。 According to a first embodiment of the present invention, the present invention provides a method for recovering rare earth metal cerium ions, the method for recovering rare earth metal cerium ions comprising: providing a feed mixed solution comprising rare earth metal cerium ions and cerium The ion, wherein the pH of the above-mentioned feed mixed solution is between 0.4 and 1.5, and the above-mentioned feed mixed solution is separated by a separating process, and a recovery process is performed by a stripping agent simultaneously. A cerium ion concentrate having a cerium ion purity greater than 97% is obtained.

於一實施例,上述之萃取液包含二-(2-乙基己基)磷酸和2-乙基己基磷酸-2-乙基己基單酯,且二-(2-乙基己基)磷 酸和2-乙基己基磷酸-2-乙基己基單酯的莫耳濃度比例介於0.2~0.5之間。 In one embodiment, the extract comprises bis-(2-ethylhexyl)phosphoric acid and 2-ethylhexylphospho-2-ethylhexyl monoester, and bis-(2-ethylhexyl)phosphorus The molar concentration ratio of the acid and 2-ethylhexyl phosphate-2-ethylhexyl monoester is between 0.2 and 0.5.

於一較佳實施例,上述之二-(2-乙基己基)磷酸和2-乙基己基磷酸-2-乙基己基單酯的莫耳濃度比例是0.25,且二-(2-乙基己基)磷酸的莫耳濃度是7.5mM,2-乙基己基磷酸-2-乙基己基單酯的莫耳濃度是30mM。 In a preferred embodiment, the molar ratio of bis-(2-ethylhexyl)phosphoric acid and 2-ethylhexylphosphoric acid 2-ethylhexyl monoester is 0.25, and di-(2-ethyl The molar concentration of hexylphosphoric acid was 7.5 mM, and the molar concentration of 2-ethylhexylphosphoric acid 2-ethylhexyl monoester was 30 mM.

於一實施例,上述之進料混合溶液所包含的稀土金屬鈰離子和鑭離子的濃度比值範圍係在5~1之間。 In one embodiment, the concentration ratio of the rare earth metal cerium ions and cerium ions contained in the feed mixed solution is in the range of 5 to 1.

於一實施例,上述之分離程序是具分散反萃取相支撐式液膜法。 In one embodiment, the separation procedure described above is a dispersion-backed phase supported liquid membrane method.

於一實施例,上述含鈰離子純度大於97%的鈰離子濃縮液之回收率大於80%。 In one embodiment, the recovery of the cerium ion concentrate containing more than 97% of the cerium ion purity is greater than 80%.

於一實施例,上述之反萃取劑包含鹽酸和硫酸。 In one embodiment, the above stripping agent comprises hydrochloric acid and sulfuric acid.

於一較佳實施例,上述之鹽酸濃度範圍係為3~5M。 In a preferred embodiment, the concentration of hydrochloric acid is in the range of 3 to 5 M.

根據本發明之第二實施例,本發明提供一種回收稀土金屬鑭離子的方法,該回收稀土金屬鑭離子的方法包含:提供一含鑭離子溶液,該含鑭離子溶液的PH值是3.5~5,藉由一萃取液進行一提取程序;並藉由一反萃取劑同步進行一回收程序,可得到一回收率大於80%之含鑭離子之回收液,且鑭離子之純度大於98%。 According to a second embodiment of the present invention, the present invention provides a method for recovering rare earth metal cerium ions. The method for recovering rare earth metal cerium ions comprises: providing a cerium ion containing solution having a pH of 3.5 to 5 An extraction process is carried out by using an extract; and a recovery process is carried out by a stripping agent simultaneously to obtain a recovery solution containing cerium ions having a recovery rate of more than 80%, and the purity of the cerium ions is greater than 98%.

於一實施例,上述之萃取液包含二-(2-乙基己基)磷酸和2-乙基己基磷酸-2-乙基己基單酯,且二-(2-乙基己基)磷酸和2-乙基己基磷酸-2-乙基己基單酯的莫耳濃度比例介於 0.2~0.5。 In one embodiment, the extract comprises bis-(2-ethylhexyl)phosphoric acid and 2-ethylhexylphosphoric acid 2-ethylhexyl monoester, and bis-(2-ethylhexyl)phosphoric acid and 2- The molar concentration ratio of ethylhexyl phosphate-2-ethylhexyl monoester is between 0.2~0.5.

於一較佳實施例,上述之二-(2-乙基己基)磷酸和2-乙基己基磷酸-2-乙基己基單酯的莫耳濃度比例係為0.25,且二-(2-乙基己基)磷酸的莫耳濃度是7.5mM,2-乙基己基磷酸-2-乙基己基單酯的莫耳濃度是30mM。 In a preferred embodiment, the molar ratio of bis-(2-ethylhexyl)phosphoric acid and 2-ethylhexylphosphoric acid 2-ethylhexyl monoester is 0.25, and di-(2-B) The molar concentration of the hexyl hexyl phosphate was 7.5 mM, and the molar concentration of 2-ethylhexyl phosphate-2-ethylhexyl monoester was 30 mM.

於一實施例,上述之反萃取劑係為鹽酸,且該鹽酸之莫耳濃度是0.15~3M。 In one embodiment, the above stripping agent is hydrochloric acid, and the molar concentration of the hydrochloric acid is 0.15-3M.

於一較佳實施例,上述之鹽酸之莫耳濃度是0.15M。 In a preferred embodiment, the molar concentration of hydrochloric acid described above is 0.15M.

於一實施例,上述之含鑭離子溶液的PH值是4。 In one embodiment, the pH of the cerium-containing ion solution described above is 4.

於一實施例,上述之提取程序是具分散反萃取相支撐式液膜法。 In one embodiment, the extraction procedure described above is a dispersion-backed phase supported liquid membrane method.

參考第1圖所示,根據本發明的第一實施例,本發明提供一種回收稀土金屬鈰離子的方法100,該回收稀土金屬鈰離子的方法包含:提供一進料混合溶液101,該進料混合溶液包含稀土金屬鈰離子和鑭離子,其中上述之進料混合溶液的pH係為於0.4~1.5之間;藉由一萃取液進行一分離程序102分離上述之進料混合溶液,並藉由一反萃取劑同步進行一回收程序103,可得到一含鈰離子純度大於97%的鈰離子濃縮液104。 Referring to FIG. 1, in accordance with a first embodiment of the present invention, there is provided a method 100 for recovering rare earth metal cerium ions, the method of recovering rare earth metal cerium ions comprising: providing a feed mixed solution 101, the feed The mixed solution comprises a rare earth metal cerium ion and a cerium ion, wherein the pH of the above-mentioned feed mixed solution is between 0.4 and 1.5; and the above-mentioned feed mixed solution is separated by a separating process 102, and by A stripping agent is simultaneously subjected to a recovery procedure 103 to obtain a cerium ion concentrate 104 having a cerium ion purity greater than 97%.

以下係說明本發明第一實施例所述之分離程序102之技術內容,上述之分離程序102係為具分散反萃取相支撐式液膜法,該具分散反萃取相支撐式液膜法係使用一萃取液進行稀土金屬鈰離子和鑭離子的分離,上述之萃取液包含二-(2-乙基己基)磷酸和2-乙基己基磷酸-2-乙基己基單酯,且二-(2-乙基己基)磷 酸和2-乙基己基磷酸-2-乙基己基單酯的莫耳濃度比例介於0.2~0.5,較佳地,二-(2-乙基己基)磷酸的莫耳濃度是7.5mM,2-乙基己基磷酸-2-乙基己基單酯的莫耳濃度是30mM,當在適當溶劑下進行稀釋和充分混合後,在一中空纖維模組裝置中使上述之萃取液和進料混合溶液101進行對流(counter-current)萃取,上述之萃取液選擇性地分離進料混合溶液101所含有的稀土金屬鈰離子和鑭離子。 The following is a description of the technical content of the separation program 102 according to the first embodiment of the present invention. The separation program 102 is a liquid chromatography method with a dispersed back extraction phase supported liquid membrane method. An extract is used for separating the rare earth metal cerium ions and cerium ions, and the above extract comprises bis-(2-ethylhexyl)phosphoric acid and 2-ethylhexylphosphoric acid 2-ethylhexyl monoester, and two-(2) -ethylhexyl)phosphorus The molar concentration ratio of the acid and 2-ethylhexylphosphoric acid 2-ethylhexyl monoester is between 0.2 and 0.5, preferably, the molar concentration of bis-(2-ethylhexyl)phosphoric acid is 7.5 mM, 2 - ethylhexylphosphoric acid 2-ethylhexyl monoester has a molar concentration of 30 mM, and after dilution and thorough mixing in a suitable solvent, the above-mentioned extract and feed mixed solution are placed in a hollow fiber module device. 101 performs counter-current extraction, and the above extract selectively separates the rare earth metal cerium ions and cerium ions contained in the feed mixed solution 101.

於一具體實施例,根據本發明所提供的一種回收稀土金屬鈰離子的方法,該回收稀土金屬鈰離子的方法包含:提供一進料混合溶液,該進料混合溶液係由一濃度在40至60毫克/公升之間的稀土金屬鈰離子的硫酸溶液和一濃度在20至30毫克/公升之間的稀土金屬鑭離子的硫酸溶液所組成,其中上述之進料混合溶液的pH係為1.5;提供一萃取液,該萃取液包含二-(2-乙基己基)磷酸和2-乙基己基磷酸-2-乙基己基單酯,且二-(2-乙基己基)磷酸和2-乙基己基磷酸-2-乙基己基單酯的莫耳濃度比例介於0.2~0.5,較佳地,二-(2-乙基己基)磷酸的莫耳濃度是7.5mM,2-乙基己基磷酸-2-乙基己基單酯的莫耳濃度是30mM,其中上述之萃取液更包含一石油醚,進行一分離程序,該分離程序係在一中空聚丙烯纖維模組中藉由具分散反萃取相支撐式液膜法使上述之進料混合溶液中的稀土金屬鈰離子和鑭離子被分離和藉由一反萃取劑同步進行回收程序,該反萃取劑係為5M的鹽酸,藉此,可得到一含鈰離子純度大於97%的濃縮液,且上述含鈰離子純度大於97%的濃縮液之回收率大於97%。 In a specific embodiment, according to the present invention, a method for recovering rare earth metal cerium ions, the method for recovering rare earth metal cerium ions comprises: providing a feed mixed solution, the feed mixed solution is from a concentration of 40 to a sulfuric acid solution of a rare earth metal cerium ion between 60 mg / liter and a sulfuric acid solution of a rare earth metal cerium ion in a concentration of 20 to 30 mg / liter, wherein the pH of the above feed mixed solution is 1.5; Providing an extract comprising bis-(2-ethylhexyl)phosphoric acid and 2-ethylhexylphosphoric acid 2-ethylhexyl monoester, and di-(2-ethylhexyl)phosphoric acid and 2-B The molar concentration ratio of 2-ethylhexyl monoethyl hexyl phosphate is from 0.2 to 0.5, preferably, the molar concentration of bis-(2-ethylhexyl) phosphate is 7.5 mM, 2-ethylhexyl phosphate The molar concentration of 2-ethylhexyl monoester is 30 mM, wherein the above extract further comprises a petroleum ether, and a separation procedure is carried out in a hollow polypropylene fiber module by means of dispersed back extraction Phase-supported liquid membrane method for rare earth metal cerium ions in the above mixed solution The ruthenium ion is separated and the recovery process is carried out simultaneously by a stripping agent, which is 5M hydrochloric acid, whereby a concentrate containing cesium ion purity greater than 97% can be obtained, and the cesium ion purity is obtained. The recovery of greater than 97% concentrate is greater than 97%.

於一具體實施例,根據本發明所提供的一種回收稀土金屬鑭離子的方法,該回收稀土金屬鑭離子的方法係提供一包含鑭離子之溶液,該包含鑭離子之溶液的PH值是4,上述之PH值為4的鑭離子溶液可為本發明第一實施例在分離鈰鑭離子之後所得到的鑭離子溶液,並藉由一萃取液進行一提取程序,該萃取液包含二-(2-乙基己基)磷酸和2-乙基己基磷酸-2-乙基己基單酯,且二-(2-乙基己基)磷酸和2-乙基己基磷酸-2-乙基己基單酯的莫耳濃度比例介於0.2~0.5,較佳地,二-(2-乙基己基)磷酸的莫耳濃度是7.5mM,且2-乙基己基磷酸-2-乙基己基單酯的莫耳濃度是30Mm,而其中上述之萃取液更包含一石油醚。上述之提取程序係在一中空聚丙烯纖維模組中藉由具分散反萃取相支撐式液膜法進行鑭離子的提取,並藉由一反萃取劑同步進行鑭離子的回收,可得到一回收率大於98%之含鑭離子的回收液,其中上述之反萃取劑係為0.15M的鹽酸。 In a specific embodiment, according to the present invention, a method for recovering rare earth metal cerium ions, the method for recovering rare earth metal cerium ions provides a solution containing cerium ions, and the pH of the solution containing cerium ions is 4. The above-mentioned cerium ion solution having a pH of 4 may be the cerium ion solution obtained after separating the cerium ions in the first embodiment of the present invention, and an extraction process is carried out by using an extract liquid, the extract liquid containing two-(2) -ethylhexyl)phosphoric acid and 2-ethylhexylphosphoric acid 2-ethylhexyl monoester, and di-(2-ethylhexyl)phosphoric acid and 2-ethylhexylphosphoric acid-2-ethylhexyl monoester The ear concentration ratio is between 0.2 and 0.5, preferably, the molar concentration of bis-(2-ethylhexyl)phosphoric acid is 7.5 mM, and the molar concentration of 2-ethylhexyl phosphate-2-ethylhexyl monoester It is 30 Mm, and the above extract contains a petroleum ether. The above extraction procedure is carried out by extracting cerium ions in a hollow polypropylene fiber module by a dispersed back-extraction phase-supported liquid membrane method, and simultaneously recovering cerium ions by a stripping agent to obtain a recovery. The recovery liquid containing cerium ions having a rate of more than 98%, wherein the above-mentioned stripping agent is 0.15 M hydrochloric acid.

於上述實施例中所述及之稀土金屬鈰離子和鑭離子的分析鑑定係利用感應耦合電漿原子發射光譜分析儀(ICP-AES)進行;首先以標準液配製不同濃度的稀土金屬溶液,以作為後續校正曲線製作時之溶液所需,將實驗中所吸取的樣品以0.2μL的過濾裝置去除稀土金屬溶液中沉澱物,並以去離子水稀釋至適當的濃度範圍,而稀釋過後的濃度範圍必須要在校正曲線之內,並在電腦軟體中建立稀土金屬鈰離子和鑭離子的相關資料,並選擇適當的分析光譜線,同時建立標準溶液資料,再導入各濃度之標準樣品,紀錄原子放射光譜線及各濃度所得之面積和製作標準品之濃度-信號面積對應圖,最後導 入待測樣品進行量測。 The analysis and identification of the rare earth metal cerium ions and cerium ions described in the above embodiments are carried out by means of an inductively coupled plasma atomic emission spectrometer (ICP-AES); firstly, different concentrations of rare earth metal solutions are prepared in a standard solution to As a solution for the subsequent calibration curve preparation, the sample taken in the experiment was used to remove the precipitate in the rare earth metal solution with a 0.2 μL filter device, and diluted to a suitable concentration range with deionized water, and the concentration range after dilution. It is necessary to establish relevant data of rare earth metal strontium ions and strontium ions in the calibration software, and select appropriate analytical spectral lines, and establish standard solution data, and then introduce standard samples of each concentration to record atomic emission. The spectral line and the area obtained from each concentration and the concentration-signal area corresponding map of the fabricated standard, the final guide The sample to be tested is measured.

以下代表範例係依據上述實施例所述之步驟所進行的實驗,並據此做為本發明的詳細說明。 The following representative examples are experiments conducted in accordance with the steps described in the above embodiments, and are based on the detailed description of the present invention.

代表範例: Representative example:

利用具分散反萃取相支撐式液膜法分離稀土金屬鈰離子和鑭離子,其實驗裝置示意圖如第2圖所示。 The rare earth metal cerium ions and cerium ions were separated by a liquid crystal membrane supported by a dispersed back extraction phase. The experimental apparatus is shown in Fig. 2.

代表範例所使用之各式溶液:進料混合溶液是使用硫酸鈰/硫酸鑭晶體經酸化後分別溶於去離子水中;而萃取液係使用二-(2-乙基己基)磷酸、2-乙基己基磷酸-2-乙基己基單酯或上述兩者之混合液,並以石油醚(Isopar-L)稀釋至所需濃度;另外反萃取劑係使用不同濃度的濃硝酸、濃鹽酸或濃硫酸,並以去離子水稀釋至所需濃度。 Representative solutions used in various examples: The feed mixture solution is acidified in barium sulfate/barium sulfate crystals and dissolved in deionized water; the extract is made using bis-(2-ethylhexyl)phosphoric acid, 2-B. 2-ethylhexyl monoester of hexyl hexyl phosphate or a mixture of the two, and diluted to the desired concentration with petroleum ether (Isopar-L); in addition, the stripping agent uses different concentrations of concentrated nitric acid, concentrated hydrochloric acid or concentrated Sulfuric acid and diluted to the desired concentration with deionized water.

回收程序:準備一材質為聚丙烯的中空纖維模組裝置,並控制分離程序的操作溫度在20至30℃之間,然後將上述製備好之含有不同濃度之稀土金屬鈰離子和鑭離子以及不同酸鹼值的進料混合溶液和上述製備好之萃取液以對流方式(counter-current)輸送至該中空纖維模組裝置中藉由具分散反萃取相支撐式液膜法進行萃取分離程序。其中上述之進料混合溶液藉由幫浦輸送通過上述之中空纖維模組之內管(tube side),而上述之萃取液及均勻分布於萃取液中的反萃取液液滴則輸送通過上述中空纖維模組之外管(shell side),內管與外管之流體以對流(Counter-current flow)方式進行。程序操作中並額外施加壓力於內管,使內管壓力大於外管2-5psi,以防止萃取液中的有機萃取液逆向進入進料混合溶液。萃取/反萃取程 序主要是使萃取分離程序在中空纖維薄膜的表面進行,而反萃取反應則在有機萃取液與反萃取劑之表面進行,並在不同的操作時間點進行取樣,然後使用感應耦合電漿原子發射光譜分析儀(ICP-AES)測量上述取樣品中的稀土金屬鈰離子或鑭離子的濃度,並使用感應耦合電漿原子發射光譜分析儀(ICP-AES)鑑定分析回收液中的稀土金屬離子。 Recycling program: prepare a hollow fiber module device made of polypropylene, and control the separation process to operate at a temperature between 20 and 30 ° C, and then prepare the above-mentioned rare earth metal cerium ions and cerium ions with different concentrations and different The pH-mixed feed mixture solution and the above-prepared extract are delivered to the hollow fiber module device in a counter-current manner by an extraction and separation process with a dispersed stripping phase supported liquid membrane method. Wherein the feed mixed solution is transported through the tube side of the hollow fiber module by the pump, and the extract liquid and the back extract liquid uniformly distributed in the extract are transported through the hollow The shell side of the fiber module, the fluid of the inner tube and the outer tube is performed in a counter-current flow manner. During the procedure, additional pressure is applied to the inner tube so that the inner tube pressure is greater than 2-5 psi of the outer tube to prevent the organic extract in the extract from entering the feed mixture solution in the reverse direction. Extraction/reverse extraction The order is mainly to carry out the extraction separation process on the surface of the hollow fiber membrane, and the back extraction reaction is carried out on the surface of the organic extract and the stripping agent, and sampling at different operation time points, and then using inductively coupled plasma atomic emission. A spectrum analyzer (ICP-AES) measures the concentration of rare earth metal cerium ions or cerium ions in the above samples, and uses an inductively coupled plasma atomic emission spectrometer (ICP-AES) to identify and analyze rare earth metal ions in the recovered liquid.

根據代表範例中所詳述的分離和回收稀土金屬鈰離子和鑭離子的方法進行實驗,並分析探討進料混合溶液之酸鹼值、萃取液中的組成成分和其他相關實驗參數對於稀土金屬鈰/鑭離子的分離和鈰離子的回收程序之影響,所得到的實驗結果和分析如表一所示。 Experiments were carried out according to the method for separating and recovering rare earth metal cerium ions and cerium ions as detailed in the representative example, and the pH value of the mixed solution of the feed, the composition of the extract and other relevant experimental parameters were analyzed for the rare earth metal lanthanum. The experimental results and analysis of the separation of ruthenium ions and the recovery procedure of ruthenium ions are shown in Table 1.

回收率R%(recovery)係用來判定進料混合溶液中的稀土金屬離子量可被回收至萃取液之效果,其計算方式如下式所示: The recovery rate R% (recovery) is used to determine the effect of the amount of rare earth metal ions in the feed mixture solution can be recovered to the extract, and the calculation method is as follows:

其中Csf代表實驗達成平衡時的萃取液中反萃取相中待萃取物質濃度,Vs代表反萃取相的體積,Cf0代表實驗初始時進料混合溶液中待萃取物質濃度,Vf代表進料混合溶液體積。 Wherein C sf represents the concentration of the substance to be extracted in the extract phase in the extract when the experiment reaches equilibrium, V s represents the volume of the stripping phase, and C f0 represents the concentration of the substance to be extracted in the feed mixed solution at the beginning of the experiment, and V f represents Mix the volume of the solution.

萃取劑A:二-(2-乙基己基)磷酸 Extractant A: bis-(2-ethylhexyl)phosphoric acid

萃取劑B:2-乙基己基磷酸-2-乙基己基單酯 Extractant B: 2-ethylhexyl phosphate-2-ethylhexyl monoester

根據表一的實驗結果,可整理歸納當萃取液的組成是7.5mM的二-(2-乙基己基)磷酸和30mM的2-乙基己基磷酸-2-乙基己基單酯時,再配合3~5M的鹽酸作為反萃取劑,藉由具分散反萃取相支撐式液膜法可以選擇性的從進料混合溶液中優先分離和同步回收鈰離子,而得到鈰離子純度大於97%的濃縮液,且鈰離子的回收率大於80%。且最佳的分離回收條件是當反萃取劑是5MHCl時,鈰離子之回收率更大於98%。 According to the experimental results in Table 1, it can be sorted and summarized when the composition of the extract is 7.5 mM of di-(2-ethylhexyl)phosphoric acid and 30 mM of 2-ethylhexylphosphoric acid 2-ethylhexyl monoester. 3~5M hydrochloric acid is used as a stripping agent. By means of a dispersed back-extracted phase-supported liquid membrane method, the cesium ions can be selectively separated and synchronously recovered from the feed mixed solution to obtain a cerium ion purity greater than 97%. Liquid, and the recovery of strontium ions is greater than 80%. And the best separation and recovery conditions are that when the stripping agent is 5M HCl, the recovery of cerium ions is greater than 98%.

在一最適化條件實驗例,當進料混合溶液為52mg/L的硫酸鈰離子以及26mg/L的硫酸鑭離子,混摻萃取液是7.5mM的二-(2-乙基己基)磷酸和30mM的2-乙基己基磷酸-2-乙基己基單酯時,反萃取相為5M鹽酸溶液,進料混合溶液之pH值控制於1.5。如第3圖和第4圖顯示鈰鑭離子濃度變化隨著分離萃取程序 及反萃取回收(stripping)之操作時間變化情形,經過180分鐘的分離萃取程序,進料混合溶液之鈰離子濃度自52mg/L下降至2.34mg/L,反萃取劑中鈰離子濃度上升至218mg/L,回收率達到98.1%,離子透過係數為2.68×10-4m/min;而鑭離子經過180分鐘的分離萃取程序,進料混合溶液之鑭離子濃度自26mg/L下降至24.3mg/L,反萃取劑中鑭離子濃度幾乎沒有明顯釋出,回收率僅為0.45%,透過係數為4.06×10-7m/min,鈰鑭離子經純化後的純度分別為99.76%及0.0024%。 In an experimental example of optimum conditions, when the feed mixed solution was 52 mg/L barium sulfate ion and 26 mg/L barium sulfate ion, the mixed extract was 7.5 mM bis-(2-ethylhexyl)phosphoric acid and 30 mM. In the case of 2-ethylhexylphosphoric acid 2-ethylhexyl monoester, the stripping phase is a 5M hydrochloric acid solution, and the pH of the feed mixed solution is controlled at 1.5. As shown in Fig. 3 and Fig. 4, the change of the cesium ion concentration with the change of the operation time of the separation extraction procedure and the stripping recovery process, after 180 minutes of the separation and extraction procedure, the cesium ion concentration of the feed mixture solution is from 52 mg. /L decreased to 2.34mg/L, the antimony ion concentration in the stripping agent increased to 218mg/L, the recovery rate reached 98.1%, the ion permeability coefficient was 2.68×10 -4 m/min; and the cesium ion was separated and extracted after 180 minutes. In the procedure, the cesium ion concentration of the feed mixture solution decreased from 26 mg/L to 24.3 mg/L, and the cesium ion concentration in the stripping agent was hardly released, the recovery rate was only 0.45%, and the permeability coefficient was 4.06×10 -7 m. /min, the purity of the cesium ion after purification was 99.76% and 0.0024%, respectively.

單成份鑭離子之回收程序的實驗結果則如表二所示。 The experimental results of the single component cesium ion recovery procedure are shown in Table 2.

萃取劑A:二-(2-乙基己基)磷酸 Extractant A: bis-(2-ethylhexyl)phosphoric acid

萃取劑B:2-乙基己基磷酸-2-乙基己基單酯 Extractant B: 2-ethylhexyl phosphate-2-ethylhexyl monoester

根據表二的實驗結果,當進料溶液是單成份鑭離子,其鑭離子純度大於98%,且該進料溶液的PH值是4時,而萃取液的組成是7.5mM的二-(2-乙基己基)磷酸和30mM的2-乙基己基磷酸-2-乙基己基單酯,再配合0.15M的鹽酸作為反萃取劑,藉由具分散反萃取相支撐式液膜法可以有效的從單成份鑭離子進料溶液中提取回收鑭離子,其鑭離子的回收率大於 98%。而當反萃取劑的濃度過高時(5M HCl),反而造成鑭離子的回收率小於70%。因此,相較於習知技術所需要高濃度的鹽酸作為反萃取劑時,本發明所提供的鑭離子的回收方法,必須使用低濃度的鹽酸作為反萃取劑時才可大幅提升鑭離子的回收率達80%以上,特別是當使用0.15M的稀鹽酸時,更可以達到回收率98%以上的優異效果。因此,關於鑭離子回收方法中的反萃取劑的設計及其濃度的調控相較於習知技術是具有無法預期的效果和進步性的。 According to the experimental results in Table 2, when the feed solution is a single component cesium ion, the cesium ion purity is greater than 98%, and the pH of the feed solution is 4, and the composition of the extract is 7.5 mM bis-(2) -ethylhexyl)phosphoric acid and 30 mM 2-ethylhexylphosphoric acid 2-ethylhexyl monoester, combined with 0.15 M hydrochloric acid as a stripping agent, can be effectively treated by a dispersion-backed phase-supported liquid membrane method The cerium ion is recovered from the single component cerium ion feed solution, and the recovery of cerium ions is greater than 98%. When the concentration of the stripping agent is too high (5M HCl), the recovery of cerium ions is less than 70%. Therefore, compared with the high concentration of hydrochloric acid required as a stripping agent in the prior art, the method for recovering cerium ions provided by the present invention must use a low concentration of hydrochloric acid as a stripping agent to greatly enhance the recovery of cerium ions. The rate is over 80%, especially when using 0.15M of dilute hydrochloric acid, the excellent recovery rate of 98% or more can be achieved. Therefore, the design of the stripping agent in the helium ion recovery method and the regulation of its concentration are unpredictable and progressive compared to the prior art.

綜上所述,根據本發明所提供的回收稀土金屬鈰離子和鑭離子的方法,可選擇性且有效率地回收稀土金屬鈰離子和鑭離子,上述的回收稀土金屬鈰離子和鑭離子的方法可廣泛的應用在稀土金屬鈰離子和鑭離子的回收工業。 In summary, according to the method for recovering rare earth metal cerium ions and cerium ions provided by the present invention, the rare earth metal cerium ions and cerium ions can be selectively and efficiently recovered, and the above method for recovering rare earth metal cerium ions and cerium ions It can be widely used in the recycling industry of rare earth metal cerium ions and cerium ions.

以上雖以特定範例說明本發明,但並不因此限定本發明之範圍,只要不脫離本發明之要旨,熟悉本技藝者瞭解在不脫離本發明的意圖及範圍下可進行各種變形或變更。此外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並非用來限制本發明之權利範圍。 The present invention has been described by way of example only, and the scope of the invention is not to be construed as limited by the scope of the invention. In addition, the abstract sections and headings are only used to assist in the search of patent documents and are not intended to limit the scope of the invention.

第1圖表示本發明第二實施例之回收稀土金屬鈰離子之方法流程圖;第2圖表示代表範例之具分散反萃取相支撐式液膜法之實驗裝置示意圖;第3圖表示具分散反萃取相支撐式液膜溶液進料端(Feed)中鑭鈰離子濃度變化(進料組成:52mg/L鈰離子,26mg/L鑭離子,pH=1.5,萃取液:7.5mM的二-(2-乙基己基)磷酸和30mM的2-乙基己基磷酸-2-乙基己基單酯,反萃取劑:5M HCl);和第4圖表示具分散反萃取相支撐式液膜反萃取劑(stripping)中鑭鈰離子濃度變化(進料組成:52mg/L鈰離子,26mg/L鑭離子,pH=1.5,萃取液:7.5mM的二-(2-乙基己基)磷酸和30mM的2-乙基己基磷酸-2-乙基己基單酯,反萃取劑:5M HCl)。 1 is a flow chart showing a method for recovering rare earth metal ruthenium ions according to a second embodiment of the present invention; FIG. 2 is a schematic view showing an exemplary experimental apparatus for a dispersed back extraction phase supported liquid membrane method; and FIG. 3 is a view showing a dispersion reaction The concentration of cesium ions in the feed end of the extract phase supported liquid membrane solution (feed composition: 52 mg/L strontium ion, 26 mg/L strontium ion, pH=1.5, extract: 7.5 mM bis-(2) -ethylhexyl)phosphoric acid and 30 mM 2-ethylhexylphosphoric acid 2-ethylhexyl monoester, stripping agent: 5M HCl); and Figure 4 shows a dispersed stripping phase supported liquid membrane stripping agent ( Stripping) change in cesium ion concentration (feed composition: 52 mg/L strontium ion, 26 mg/L strontium ion, pH=1.5, extract: 7.5 mM bis-(2-ethylhexyl)phosphoric acid and 30 mM 2- Ethylhexylphosphoric acid 2-ethylhexyl monoester, stripping agent: 5M HCl).

Claims (6)

一種回收稀土金屬鑭離子的方法,該回收稀土金屬鑭離子的方法包含:提供一單成份鑭離子之溶液,該單成份鑭離子之溶液的PH值是3.5~5,藉由一萃取液進行一提取程序;和藉由一反萃取劑同步進行一回收程序,可得到一回收率大於80%之含鑭離子的回收液,其中上述之反萃取劑是鹽酸,且該鹽酸之莫耳濃度是0.15~3M,其中上述之提取程序係為具分散反萃取相支撐式液膜法。 A method for recovering rare earth metal cerium ions, the method for recovering rare earth metal cerium ions comprises: providing a solution of a single component cerium ion, wherein the pH of the solution of the single component cerium ions is 3.5 to 5, by using an extract The extraction process; and a recovery process by a re-extraction agent to obtain a recovery solution containing more than 80% of cerium ions, wherein the above-mentioned stripping agent is hydrochloric acid, and the molar concentration of the hydrochloric acid is 0.15 ~3M, wherein the above extraction procedure is a liquid membrane method with a dispersed back extraction phase supported. 根據申請專利範圍第1項之回收稀土金屬鑭離子的方法,其中上述之萃取液包含二-(2-乙基己基)磷酸和2-乙基己基磷酸-2-乙基己基單酯,且二-(2-乙基己基)磷酸和2-乙基己基磷酸-2-乙基己基單酯的莫耳濃度比例介於0.2~0.5之間。 The method for recovering rare earth metal cerium ions according to claim 1, wherein the extract comprises bis-(2-ethylhexyl)phosphoric acid and 2-ethylhexylphosphoric acid-2-ethylhexyl monoester, and The molar concentration ratio of -(2-ethylhexyl)phosphoric acid and 2-ethylhexylphosphoric acid-2-ethylhexyl monoester is between 0.2 and 0.5. 根據申請專利範圍第2項之回收稀土金屬鑭離子的方法,其中上述之二-(2-乙基己基)磷酸和2-乙基己基磷酸-2-乙基己基單酯的莫耳濃度比例係為0.25,且二-(2-乙基己基)磷酸的莫耳濃度是7.5mM,2-乙基己基磷酸-2-乙基己基單酯的莫耳濃度是30mM。 The method for recovering rare earth metal cerium ions according to claim 2, wherein the molar concentration ratio of the above-mentioned bis-(2-ethylhexyl)phosphoric acid and 2-ethylhexylphosphonic acid-2-ethylhexyl monoester is The molar concentration of 0.25 and bis-(2-ethylhexyl)phosphoric acid was 7.5 mM, and the molar concentration of 2-ethylhexylphosphoric acid-2-ethylhexyl monoester was 30 mM. 根據申請專利範圍第1項之回收稀土金屬鑭離子的方法,其中上述之含鑭離子溶液的PH值是4。 The method for recovering rare earth metal cerium ions according to claim 1, wherein the cerium ion-containing solution has a pH of 4. 根據申請專利範圍第4項之回收稀土金屬鑭離子的方法,其中上述之鹽酸之莫耳濃度是0.15M。 The method for recovering rare earth metal cerium ions according to the fourth aspect of the patent application, wherein the molar concentration of the above hydrochloric acid is 0.15M. 根據申請專利範圍第1項之回收稀土金屬鑭離子的方法,其中上述之回收率大於80%之含鑭離子的回收液的鑭離子純度大於98%。 The method for recovering rare earth metal cerium ions according to the first aspect of the patent application, wherein the cerium ion-containing recovery liquid having a recovery ratio of more than 80% has a cerium ion purity of more than 98%.
TW105109457A 2015-09-07 2015-09-07 A method of recovery of rare earth lanthanum ions TWI646052B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105109457A TWI646052B (en) 2015-09-07 2015-09-07 A method of recovery of rare earth lanthanum ions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105109457A TWI646052B (en) 2015-09-07 2015-09-07 A method of recovery of rare earth lanthanum ions

Publications (2)

Publication Number Publication Date
TW201710188A TW201710188A (en) 2017-03-16
TWI646052B true TWI646052B (en) 2019-01-01

Family

ID=58774256

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105109457A TWI646052B (en) 2015-09-07 2015-09-07 A method of recovery of rare earth lanthanum ions

Country Status (1)

Country Link
TW (1) TWI646052B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2760693C1 (en) * 2021-04-08 2021-11-29 федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский горный университет» METHOD FOR EXTRACTING La (III) FROM AN AQUEOUS SOLUTION OF LANTHANUM (III) NITRATE OBTAINED DURING MONAZITE PROCESSING

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1880489A (en) * 2006-02-27 2006-12-20 有研稀土新材料股份有限公司 Non-saponifiable extraction full-separating process for high concentration rare earth solution
CN101230420A (en) * 2008-02-28 2008-07-30 廖春生 Hybrid extraction method and extractant for extraction separation of rare earth elements
TW201032881A (en) * 2009-03-04 2010-09-16 Univ Chung Yuan Christian Indium recovery by supported liquid membrane with strip dispersion
CN101928829A (en) * 2009-06-17 2010-12-29 信越化学工业株式会社 Method for extracting and separating rare earth elements

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1880489A (en) * 2006-02-27 2006-12-20 有研稀土新材料股份有限公司 Non-saponifiable extraction full-separating process for high concentration rare earth solution
CN101230420A (en) * 2008-02-28 2008-07-30 廖春生 Hybrid extraction method and extractant for extraction separation of rare earth elements
TW201032881A (en) * 2009-03-04 2010-09-16 Univ Chung Yuan Christian Indium recovery by supported liquid membrane with strip dispersion
CN101928829A (en) * 2009-06-17 2010-12-29 信越化学工业株式会社 Method for extracting and separating rare earth elements

Also Published As

Publication number Publication date
TW201710188A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
Yang et al. Recovery of indium and yttrium from Flat Panel Display waste using solvent extraction
Innocenzi et al. Application of solvent extraction operation to recover rare earths from fluorescent lamps
Liu et al. Recovery and separation of gallium (III) and germanium (IV) from zinc refinery residues: Part II: Solvent extraction
Ruan et al. Recovery of indium from scrap TFT-LCDs by solvent extraction
Tunsu et al. A hydrometallurgical process for the recovery of rare earth elements from fluorescent lamp waste fractions
Virolainen et al. Recovery of indium from indium tin oxide by solvent extraction
Kulkarni Recovery of uranium (VI) from acidic wastes using tri-n-octylphosphine oxide and sodium carbonate based liquid membranes
Kato et al. Separation and concentration of indium from a liquid crystal display via homogeneous liquid–liquid extraction
Lupi et al. In (III) hydrometallurgical recovery from secondary materials by solvent extraction
Nguyen et al. A review on the separation of niobium and tantalum by solvent extraction
Desouky et al. Liquid–liquid extraction of yttrium using primene-JMT from acidic sulfate solutions
Shaohua et al. Study on separation technology of Pr and Nd in D2EHPA-HCl-LA coordination extraction system
Yen et al. Recovery of indium from LCD waste by solvent extraction and the supported liquid membrane with strip dispersion using D2EHPA as the extractant
De Jong et al. Lanthanum (III) and gadolinium (III) separation by cloud point extraction
CN111020196B (en) Method for separating thorium and enriching rare earth from radioactive waste residue leachate based on POAA
CN105039698A (en) Method of high-effectively recycling rare earth from waste CRT fluorescent powder
Al-Areqi et al. Solvent extraction of thorium from rare earth elements in monazite thorium concentrate
TWI646052B (en) A method of recovery of rare earth lanthanum ions
Zhang et al. Extraction mechanism and separation behaviors of low-concentration Nd3+ and Al3+ in P507–H2SO4 system
KR100524263B1 (en) Method for treating of etching waste acid containing phosphric acid, acetic acid and nitric acid
TWI537220B (en) A method of recovery of rare earth cerium and lanthanum ions
Zhang et al. Recovery of rare earth elements from deep-sea mud using acid leaching followed by selective solvent extraction with N1923 and TBP
Wu et al. Separation of strontium from associated elements with selective specific resin and extraction chromatography
Kubota et al. Application of ionic liquids for rare-earth recovery from waste electric materials
CN111961849B (en) Method for extracting and separating scandium

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees