TWI645999B - Lane model with modulation weighting for vehicle lateral control system and method thereof - Google Patents

Lane model with modulation weighting for vehicle lateral control system and method thereof Download PDF

Info

Publication number
TWI645999B
TWI645999B TW106139527A TW106139527A TWI645999B TW I645999 B TWI645999 B TW I645999B TW 106139527 A TW106139527 A TW 106139527A TW 106139527 A TW106139527 A TW 106139527A TW I645999 B TWI645999 B TW I645999B
Authority
TW
Taiwan
Prior art keywords
weight
vehicle
lane
steering
preview
Prior art date
Application number
TW106139527A
Other languages
Chinese (zh)
Other versions
TW201922546A (en
Inventor
古昆隴
徐錦衍
林泓邦
張統凱
Original Assignee
財團法人車輛研究測試中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人車輛研究測試中心 filed Critical 財團法人車輛研究測試中心
Priority to TW106139527A priority Critical patent/TWI645999B/en
Application granted granted Critical
Publication of TWI645999B publication Critical patent/TWI645999B/en
Publication of TW201922546A publication Critical patent/TW201922546A/en

Links

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

本發明提供一種可權重調變車道模型之車輛橫向控制系統,包含攝影機、影像處理裝置、控制器及轉向裝置,其中攝影機朝向車輛之前方攝影並輸出車前畫面資料。影像處理裝置接收並分析車前畫面資料以得到車道特徵點,然後依據車道特徵點與預視權重建立車道擬合曲線。控制器包含車輛動態參數及預視距離,預視權重根據預視距離的改變而變化。控制器依據車道擬合曲線及車輛動態參數計算產生轉向控制力權重。轉向裝置依據轉向控制力權重控制車輛的轉向。藉此,透過預視權重以及轉向控制力權重調節轉向裝置介入的控制力大小,能平順地切換控制力。 The invention provides a vehicle lateral control system capable of re-adjusting a lane change model, comprising a camera, an image processing device, a controller and a steering device, wherein the camera shoots and outputs the front picture data toward the front of the vehicle. The image processing device receives and analyzes the image of the front of the vehicle to obtain a lane feature point, and then establishes a lane fitting curve according to the lane feature point and the preview weight. The controller includes vehicle dynamic parameters and preview distances, and the preview weights vary according to changes in the preview distance. The controller generates the steering control force weight according to the lane fitting curve and the vehicle dynamic parameter calculation. The steering device controls the steering of the vehicle based on the steering control force weight. Thereby, the control force of the steering device intervention can be adjusted by the pre-view weight and the steering control force weight, and the control force can be smoothly switched.

Description

可權重調變車道模型之車輛橫向控制系 統及其方法 Vehicle lateral control system with weighted variable lane model System and its method

本發明是關於一種車輛橫向控制系統及其方法,特別是關於一種可權重調變車道模型之車輛橫向控制系統及其方法。 The present invention relates to a vehicle lateral control system and method thereof, and more particularly to a vehicle lateral control system and method thereof for a weight-adjustable lane change model.

車道線跟踪控制系統是利用從攝像頭傳感器獲得的圖像信息檢測車道線,並根據車道線檢測結果防止車輛偏離車道線的車輛控制系統,亦可稱為車輛橫向控制系統。一般車道線跟踪控制系統是使轉向控制裝置發生輔助轉向力矩而控制轉向,從而控制車輛在行駛中不偏離車道線。此外,車道線跟踪控制系統還開發出一種控制車輛轉向而使車輛跟踪道路中心行駛,以實施車道線跟踪控制的道路中心跟踪控制系統。 The lane line tracking control system is a vehicle control system that detects a lane line using image information obtained from a camera sensor and prevents the vehicle from deviating from the lane line according to the lane line detection result, and may also be referred to as a vehicle lateral control system. The general lane line tracking control system controls the steering by causing the steering control device to generate an auxiliary steering torque, thereby controlling the vehicle to not deviate from the lane line during traveling. In addition, the lane line tracking control system has also developed a road center tracking control system that controls vehicle steering so that the vehicle tracks the road center to implement lane line tracking control.

目前有許多車輛橫向控制系統被提出,但傳統的車輛橫向控制系統是根據駕駛員的駕駛傾向設定車輛需要跟踪的基準與跟踪位置,因此道路或者駕駛員的狀態對 其產生較大影響。當車輛偏離基準跟踪位置時,為了跟踪基準跟踪位置,系統會突然施加控制而容易給駕駛員造成不適感。再者,傳統的車輛橫向控制系統利用均等權重之車道模型來計算橫向誤差,在車道曲線擬合的過程中,往往容易發生橫向誤差以及不準確的現象,而且此現象會造成車輛橫向控制系統有誤判的狀況。此外,在習知技術中,切換轉向控制力的過程容易發生突發控制力的產生、突發控制力所造成之不安全情況以及影響駕駛操控感受的問題。 At present, many vehicle lateral control systems are proposed, but the conventional vehicle lateral control system sets the reference and tracking position that the vehicle needs to track according to the driving tendency of the driver, so the state of the road or the driver is It has a big impact. When the vehicle deviates from the reference tracking position, in order to track the reference tracking position, the system suddenly exerts control and easily causes discomfort to the driver. Furthermore, the traditional vehicle lateral control system uses the lane model of equal weight to calculate the lateral error. In the process of lane curve fitting, lateral errors and inaccuracies are often prone to occur, and this phenomenon will cause the vehicle lateral control system to have The condition of misjudgment. Further, in the prior art, the process of switching the steering control force is prone to occurrence of sudden control force, unsafe conditions caused by sudden control force, and problems affecting the feeling of driving control.

由此可知,目前市場上缺乏一種可增加人機切換轉向控制力之平順性、安全性及穩定度的可權重調變車道模型之車輛橫向控制系統及其方法,故相關業者均在尋求其解決之道。 It can be seen that there is a lack of a vehicle lateral control system and method for the weight-adjustable lane change model that can improve the ride comfort, safety and stability of man-machine switching steering control, so the relevant operators are seeking to solve it. The way.

因此,本發明之目的在於提供一種可權重調變車道模型之車輛橫向控制系統及其方法,其車道特徵點(lane marker)可根據控制器中所需的預視距離進行權重調整,再進行曲線擬合得到較精準的車道模型。此外,透過多重考量的轉向控制力權重來調節轉向裝置介入的控制力大小,能依據需求作彈性地調整與規劃,且可平順地切換控制力,進而提高切換控制權的安全性並大幅降低突發控制力對駕駛的不良影響及不舒服的感受。另外,在預視權重(target weighting)與轉向控制力權重之交互調控下, 系統能平順地切換轉向控制力,以解決習知技術中切換轉向控制力的過程容易發生突發控制力的產生、突發控制力所造成之不安全情況以及影響駕駛操控感受的問題。 Therefore, the object of the present invention is to provide a vehicle lateral control system and a method thereof, which can adjust the lane change model, and the lane marker can perform weight adjustment according to the required preview distance in the controller, and then perform the curve. The fitting results in a more accurate lane model. In addition, the steering control force weight is adjusted by multiple measures to adjust the control force of the steering device intervention, and can be flexibly adjusted and planned according to the demand, and the control force can be smoothly switched, thereby improving the safety of the switching control right and greatly reducing the safety. Control the adverse effects of driving and uncomfortable feelings. In addition, under the interaction of the target weighting and the steering control power weight, The system can smoothly switch the steering control force to solve the problem that the process of switching the steering control force in the prior art is prone to sudden control force generation, unsafe conditions caused by sudden control force, and problems affecting driving control feeling.

依據本發明的結構態樣之一實施方式提供一種可權重調變車道模型之車輛橫向控制系統,其用以控制一車輛。此可權重調變車道模型之車輛橫向控制系統包含攝影機、影像處理裝置、控制器以及轉向裝置,其中攝影機設於車輛上,且攝影機朝向車輛之前方攝影並輸出一車前畫面資料。而影像處理裝置訊號連接攝影機,影像處理裝置接收並分析車前畫面資料以得到複數個車道特徵點,且影像處理裝置依據車道特徵點與預視權重建立一車道擬合曲線。此外,控制器訊號連接影像處理裝置並包含複數個車輛動態參數及一預視距離,而預視權重根據預視距離的改變而變化。控制器依據車道擬合曲線及車輛動態參數計算產生一轉向控制力權重。至於轉向裝置則訊號連接控制器且設於車輛上,轉向裝置依據轉向控制力權重控制車輛的轉向。 One embodiment of the structural aspect of the present invention provides a vehicle lateral control system that can be used to control a lane change model. The vehicle lateral control system of the weight-adjustable lane change model includes a camera, an image processing device, a controller, and a steering device, wherein the camera is disposed on the vehicle, and the camera photographs and outputs a front image of the vehicle toward the front of the vehicle. The image processing device is connected to the camera, and the image processing device receives and analyzes the front image data to obtain a plurality of lane feature points, and the image processing device establishes a lane fitting curve according to the lane feature point and the preview weight. In addition, the controller signal is coupled to the image processing device and includes a plurality of vehicle dynamic parameters and a preview distance, and the preview weight changes according to the change in the preview distance. The controller generates a steering control force weight according to the lane fitting curve and the vehicle dynamic parameter calculation. As for the steering device, the signal is connected to the controller and is provided on the vehicle, and the steering device controls the steering of the vehicle according to the steering control force weight.

藉此,本發明的可權重調變車道模型之車輛橫向控制系統透過多重考量的轉向控制力權重來調節轉向裝置介入的控制力大小,能依據需求作彈性地調整與規劃,且可平順地切換控制力,進而提高切換控制權的安全性並大幅降低突發控制力對駕駛的不良影響及不舒服的感受。 Thereby, the vehicle lateral control system of the weight-adjustable lane model of the present invention adjusts the control force of the steering device intervention through multiple considerations of the steering control force weight, can be flexibly adjusted and planned according to requirements, and can be smoothly switched. Controlling power, thereby improving the safety of switching control rights and greatly reducing the adverse effects of unintended feelings of sudden control on driving.

前述實施方式之其他實施例如下:前述控制器之轉向控制力權重可為一橫向偏移權重值,而車輛與車道 擬合曲線相隔一橫向偏移距離,橫向偏移權重值隨著橫向偏移距離增加而遞增。再者,前述控制器之轉向控制力權重可為一預估超過車道線時間權重值,且控制器依據車速、加速度及偏航角速度運算求得一超過車道線時間。當超過車道線時間小於等於一預設時間時,預估超過車道線時間權重值等於1。反之,當超過車道線時間大於預設時間時,預估超過車道線時間權重值隨著超過車道線時間增加而遞減。此外,前述控制器之轉向控制力權重可依據一橫向偏移權重值與一預估超過車道線時間權重值之最大值決定。另外,前述控制器之轉向控制力權重可包含橫向偏移權重值、第一百分比參數、預估超過車道線時間權重值及第二百分比參數。轉向控制力權重等於橫向偏移權重值乘以第一百分比參數減去預估超過車道線時間權重值乘以第二百分比參數。第一百分比參數與第二百分比參數之總合為100%。再者,前述轉向裝置可包含電流控制機構、驅動機構以及轉向機構,其中電流控制機構提供一驅動電流,此電流控制機構依據轉向控制力權重調控驅動電流的大小。驅動機構電性連接電流控制機構且受驅動電流控制。轉向機構受驅動機構連結帶動,此轉向機構依據驅動電流控制車輛的轉向。此外,前述驅動電流可隨著轉向控制力權重增加而變大,且驅動電流隨著轉向控制力權重減少而變小。另外,前述車輛動態參數可包含車速、加速度、偏航角速度、轉角及駕駛扭矩。再者,前述預視距離內之預視權重可大於預視距離外之預視權重。 Other implementations of the foregoing embodiments include: the steering control force weight of the controller may be a lateral offset weight value, and the vehicle and the lane The fitting curves are separated by a lateral offset distance, and the lateral offset weight values are incremented as the lateral offset distance increases. Furthermore, the steering control force weight of the controller may be an estimated over lane line time weight value, and the controller calculates an excess lane line time based on the vehicle speed, acceleration, and yaw rate calculations. When the lane line time is less than or equal to a preset time, the estimated lane line time weight value is equal to 1. Conversely, when the lane line time is greater than the preset time, the estimated lane line time weight value decreases as the lane line time increases. In addition, the steering control force weight of the controller may be determined according to a horizontal offset weight value and a maximum value of an estimated excess lane line time weight value. In addition, the steering control force weight of the controller may include a lateral offset weight value, a first percentage parameter, an estimated excess lane line time weight value, and a second percentage parameter. The steering control weight is equal to the lateral offset weight value multiplied by the first percentage parameter minus the estimated excess lane line time weight value multiplied by the second percentage parameter. The sum of the first percentage parameter and the second percentage parameter is 100%. Furthermore, the steering device may include a current control mechanism, a driving mechanism, and a steering mechanism, wherein the current control mechanism provides a driving current, and the current control mechanism regulates the magnitude of the driving current according to the steering control force weight. The drive mechanism is electrically connected to the current control mechanism and is controlled by the drive current. The steering mechanism is driven by a driving mechanism that controls the steering of the vehicle according to the driving current. Further, the aforementioned drive current may become larger as the steering control force weight increases, and the drive current becomes smaller as the steering control force weight decreases. Additionally, the aforementioned vehicle dynamics parameters may include vehicle speed, acceleration, yaw rate, angle, and driving torque. Furthermore, the preview weight within the aforementioned preview distance may be greater than the preview weight outside the preview distance.

依據本發明的方法態樣之一實施方式提供一種可權重調變車道模型之車輛橫向控制方法,其用以控制車輛,此可權重調變車道模型之車輛橫向控制方法包含車前畫面擷取步驟、影像處理步驟、控制力權重產生步驟以及車輛轉向控制步驟。其中車前畫面擷取步驟係提供一攝影機朝向車輛之前方攝影並輸出一車前畫面資料。影像處理步驟係提供一影像處理裝置接收並分析車前畫面資料以得到複數個車道特徵點,且依據這些車道特徵點與一預視權重建立一車道擬合曲線。此外,控制力權重產生步驟係提供一控制器依據車道擬合曲線及複數個車輛動態參數計算產生一轉向控制力權重。控制器包含一預視距離,而預視權重根據預視距離的改變而變化。而車輛轉向控制步驟係提供一轉向裝置依據轉向控制力權重控制車輛的轉向。 According to an embodiment of the method aspect of the present invention, a vehicle lateral control method capable of adjusting a lane change model is provided for controlling a vehicle, and the vehicle lateral control method for the weight-adjustable lane model includes a front view of the vehicle , image processing steps, control force weight generation steps, and vehicle steering control steps. The front screen capture step provides a camera to photograph the front of the vehicle and output a pre-vehicle picture data. The image processing step provides an image processing device for receiving and analyzing the image of the front of the vehicle to obtain a plurality of lane feature points, and establishing a lane fitting curve according to the lane feature points and a preview weight. In addition, the control force weight generating step provides a controller to generate a steering control force weight according to the lane fitting curve and the plurality of vehicle dynamic parameter calculations. The controller includes a look-ahead distance, and the look-ahead weight changes according to the change in the look-ahead distance. The vehicle steering control step provides a steering device that controls the steering of the vehicle based on the steering control force weight.

藉此,本發明的可權重調變車道模型之車輛橫向控制方法可依據轉向控制力權重對驅動電流作適應性之調變,不但能讓轉向控制力平順地切換,還可提高切換過程的安全性與舒適度。 Thereby, the vehicle lateral control method of the weight-adjustable lane changing model of the present invention can adapt the driving current according to the steering control force weight, which not only enables the steering control force to smoothly switch, but also improves the safety of the switching process. Sex and comfort.

前述實施方式之其他實施例如下:前述控制力權重產生步驟中,控制器之轉向控制力權重為一橫向偏移權重值。車輛與車道擬合曲線相隔一橫向偏移距離,橫向偏移權重值隨著橫向偏移距離增加而遞增。此外,在前述控制力權重產生步驟中,控制器之轉向控制力權重可為一預估超過車道線時間權重值,且控制器依據車速、加速度及偏航角速度運算求得一超過車道線時間。當超過車道線 時間小於等於一預設時間時,預估超過車道線時間權重值等於1。反之,當超過車道線時間大於預設時間時,預估超過車道線時間權重值隨著超過車道線時間增加而遞減。再者,在前述控制力權重產生步驟中,控制器之轉向控制力權重可依據一橫向偏移權重值與一預估超過車道線時間權重值之最大值決定。另外,在前述控制力權重產生步驟中,控制器之轉向控制力權重包含一橫向偏移權重值、一第一百分比參數、一預估超過車道線時間權重值及一第二百分比參數,且轉向控制力權重等於橫向偏移權重值乘以第一百分比參數減去預估超過車道線時間權重值乘以第二百分比參數。其中第一百分比參數與第二百分比參數之總合為100%。此外,前述車輛轉向控制步驟可包含電流控制子步驟、驅動子步驟以及轉向子步驟,其中電流控制子步驟係提供一電流控制機構依據轉向控制力權重調控一驅動電流的大小。而驅動子步驟係利用驅動電流控制一驅動機構。至於轉向子步驟則提供一個受驅動機構連結帶動之轉向機構依據驅動電流控制車輛的轉向。另外,在前述車輛轉向控制步驟中,驅動電流隨著轉向控制力權重增加而變大,且驅動電流隨著轉向控制力權重減少而變小。再者,在前述控制力權重產生步驟中,預視距離內之預視權重大於預視距離外之預視權重。 Other implementations of the foregoing embodiments include: in the foregoing control power weight generating step, the steering control force weight of the controller is a lateral offset weight value. The vehicle is offset from the lane fitting curve by a lateral offset distance, and the lateral offset weight value is increased as the lateral offset distance increases. In addition, in the foregoing control power weight generating step, the steering control force weight of the controller may be an estimated exceeding the lane line time weight value, and the controller calculates an excess lane line time according to the vehicle speed, the acceleration, and the yaw angular speed operation. When the lane line is exceeded When the time is less than or equal to a preset time, the estimated timeline weight exceeding the lane line is equal to 1. Conversely, when the lane line time is greater than the preset time, the estimated lane line time weight value decreases as the lane line time increases. Furthermore, in the aforementioned control force weight generating step, the steering control force weight of the controller may be determined according to a horizontal offset weight value and a maximum value of the estimated excess lane line time weight value. In addition, in the foregoing control power weight generating step, the steering control force weight of the controller includes a lateral offset weight value, a first percentage parameter, an estimated over lane line time weight value, and a second percentage. The parameter, and the steering control force weight is equal to the lateral offset weight value multiplied by the first percentage parameter minus the estimated excess lane line time weight value multiplied by the second percentage parameter. The sum of the first percentage parameter and the second percentage parameter is 100%. In addition, the foregoing vehicle steering control step may include a current control sub-step, a driving sub-step, and a steering sub-step, wherein the current control sub-step provides a current control mechanism that adjusts the magnitude of a driving current according to the steering control force weight. The driver substep uses a drive current to control a drive mechanism. As for the steering sub-step, a steering mechanism driven by the driving mechanism is provided to control the steering of the vehicle according to the driving current. Further, in the aforementioned vehicle steering control step, the drive current becomes larger as the steering control force weight increases, and the drive current becomes smaller as the steering control force weight decreases. Furthermore, in the aforementioned control power weight generating step, the preview power within the preview distance is greater than the preview weight outside the preview distance.

100‧‧‧可權重調變車道模型之車輛橫向控制系統 100‧‧‧Vehicle lateral control system capable of re-adjusting the lane change model

110‧‧‧車輛 110‧‧‧ Vehicles

200‧‧‧攝影機 200‧‧‧ camera

210‧‧‧車前畫面資料 210‧‧ ‧ front screen information

300‧‧‧影像處理裝置 300‧‧‧Image processing device

310‧‧‧車道特徵點 310‧‧‧ lane feature points

320‧‧‧車道特徵點辨識單元 320‧‧‧ Lane feature point identification unit

330‧‧‧車道特徵點權重調整單元 330‧‧‧ Lane feature point weight adjustment unit

340‧‧‧曲線擬合單元 340‧‧‧Curve fitting unit

400‧‧‧控制器 400‧‧‧ Controller

410‧‧‧車輛動態參數 410‧‧‧ Vehicle dynamic parameters

420‧‧‧預視距離計算單元 420‧‧‧Preview distance calculation unit

430‧‧‧側向位移補償單元 430‧‧‧ lateral displacement compensation unit

440‧‧‧啟停條件計算單元 440‧‧‧Start-stop condition calculation unit

600、600a‧‧‧可權重調變車道模型之車輛橫向控制方法 600, 600a‧‧‧ Vehicle lateral control method capable of re-adjusting lane change model

S12、S22‧‧‧車前畫面擷取步驟 S12, S22‧‧ ‧ front screen capture steps

S14、S24‧‧‧影像處理步驟 S14, S24‧‧‧ image processing steps

S16、S26‧‧‧控制力權重產生步驟 S16, S26‧‧‧ control weight generation steps

S18、S28‧‧‧車輛轉向控制步驟 S18, S28‧‧‧ Vehicle Steering Control Procedure

S282‧‧‧電流控制子步驟 S282‧‧‧ Current Control Substep

S284‧‧‧驅動子步驟 S284‧‧‧Drive substeps

S286‧‧‧轉向子步驟 S286‧‧‧ Turning substeps

w image (x i )‧‧‧預視權重 w image ( x i )‧‧‧Preview weight

y‧‧‧車道擬合曲線 y ‧‧‧ lane fitting curve

(x i ,y i )‧‧‧座標資訊 ( x i , y i ) ‧ ‧ coordinates information

x i y i iabcdpqr‧‧‧參數 x i , y i , i , a , b , c , d , p , q , r ‧‧‧ parameters

442‧‧‧啟停訊號 442‧‧‧Start-stop signal

450‧‧‧轉向控制力權重計算單元 450‧‧‧ steering control weight calculation unit

500‧‧‧轉向裝置 500‧‧‧ steering gear

510‧‧‧角度控制單元 510‧‧‧Angle control unit

520‧‧‧速度控制單元 520‧‧‧Speed Control Unit

522‧‧‧電流命令 522‧‧‧current command

530‧‧‧權重運算單元 530‧‧‧weighted arithmetic unit

540‧‧‧轉向控制力決定單元 540‧‧‧Steering Control Decision Unit

550‧‧‧電流控制機構 550‧‧‧current control mechanism

552‧‧‧驅動電流 552‧‧‧Drive current

560‧‧‧驅動機構 560‧‧‧ drive mechanism

570‧‧‧轉向機構 570‧‧‧steering mechanism

D‧‧‧預視距離 D‧‧‧Preview distance

W R ‧‧‧轉向控制力權重 W R ‧‧‧ steering control weight

W1‧‧‧橫向偏移權重值 W1‧‧‧ lateral offset weight value

y_offset‧‧‧橫向偏移距離 Y_offset‧‧‧lateral offset distance

W2‧‧‧預估超過車道線時間權重值 W2‧‧‧ Estimated over lane line time weight value

T‧‧‧超過車道線時間 T‧‧‧Overline lane time

T1‧‧‧預設時間 T 1 ‧‧‧Preset time

TF‧‧‧預視時間 T F ‧‧‧ Preview time

e‧‧‧第一百分比參數 E‧‧‧first percentage parameter

f‧‧‧第二百分比參數 F‧‧‧second percentage parameter

θ‧‧‧轉向角 Θ‧‧‧steering angle

EPS_i‧‧‧電動輔助轉向參數 EPS_ i ‧‧‧Power assisted steering parameters

第1圖係繪示本發明一實施例的可權重調變車道模型之車輛橫向控制系統的示意圖。 1 is a schematic diagram showing a vehicle lateral control system of a weight-adjustable lane changing model according to an embodiment of the present invention.

第2圖係繪示第1圖的可權重調變車道模型之車輛橫向控制系統的外觀示意圖。 2 is a schematic diagram showing the appearance of a vehicle lateral control system of the weight-adjustable lane changing model of FIG. 1.

第3圖係繪示本發明的預視距離對應車道模型之示意圖。 Figure 3 is a schematic diagram showing the pre-view distance corresponding lane model of the present invention.

第4圖係繪示習知與本發明的車道擬合曲線之示意圖。 Figure 4 is a schematic diagram showing the lane fitting curve of the conventional and the present invention.

第5A圖係繪示本發明第一實施例的預視權重之示意圖。 FIG. 5A is a schematic diagram showing the preview weight of the first embodiment of the present invention.

第5B圖係繪示本發明第二實施例的預視權重之示意圖。 FIG. 5B is a schematic diagram showing the preview weight of the second embodiment of the present invention.

第6圖係繪示第1圖的轉向裝置之示意圖。 Fig. 6 is a schematic view showing the steering device of Fig. 1.

第7圖係繪示第6圖的轉向控制力權重之橫向偏移權重值的示意圖。 Fig. 7 is a view showing the lateral shift weight value of the steering control force weight of Fig. 6.

第8圖係繪示第6圖的轉向控制力權重之預估超過車道線時間權重值的示意圖。 Fig. 8 is a schematic diagram showing the estimation of the steering control force weight of Fig. 6 exceeding the lane line time weight value.

第9圖係繪示本發明一實施例的可權重調變車道模型之車輛橫向控制方法的流程示意圖。 FIG. 9 is a flow chart showing a vehicle lateral control method of a weight-adjustable lane changing model according to an embodiment of the present invention.

第10圖係繪示本發明另一實施例的可權重調變車道模型之車輛橫向控制方法的流程示意圖。 FIG. 10 is a schematic flow chart showing a vehicle lateral control method of a weight-adjustable lane changing model according to another embodiment of the present invention.

以下將參照圖式說明本發明之複數個實施例。為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施例中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣 用的結構與元件在圖式中將以簡單示意的方式繪示之;並且重複之元件將可能使用相同的編號表示之。 Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. For the sake of clarity, many practical details will be explained in the following description. However, it should be understood that these practical details are not intended to limit the invention. That is, in some embodiments of the invention, these practical details are not necessary. In addition, some of the conventions used to simplify the schema The structures and elements used in the drawings are illustrated in a simplified schematic form; and the repeated elements may be represented by the same reference numerals.

請一併參閱第1至8圖,第1圖係繪示本發明一實施例的可權重調變車道模型之車輛橫向控制系統100的示意圖。第2圖係繪示第1圖的可權重調變車道模型之車輛橫向控制系統100的外觀示意圖。第3圖係繪示本發明的預視距離D對應車道模型之示意圖。第4圖係繪示習知與本發明的車道擬合曲線y之示意圖。第5A圖係繪示本發明第一實施例的預視權重w image (x i )之示意圖。第5B圖係繪示本發明第二實施例的預視權重w image (x i )之示意圖。第6圖係繪示第1圖的轉向裝置500之示意圖。第7圖係繪示第6圖的轉向控制力權重W R之橫向偏移權重值W1的示意圖。第8圖係繪示第6圖的轉向控制力權重W R 之預估超過車道線時間權重值W2的示意圖。如圖所示,本發明的可權重調變車道模型之車輛橫向控制系統100用以控制一車輛110,且此可權重調變車道模型之車輛橫向控制系統100包含攝影機200、影像處理裝置300、控制器400以及轉向裝置500。 Please refer to FIG. 1 to FIG. 1 together. FIG. 1 is a schematic diagram showing a vehicle lateral control system 100 of a weight-adjustable lane changing model according to an embodiment of the present invention. 2 is a schematic diagram showing the appearance of a vehicle lateral control system 100 of the weight-adjustable lane changing model of FIG. 1. FIG. 3 is a schematic diagram showing the lane-of-sight model corresponding to the preview distance D of the present invention. Figure 4 is a schematic diagram showing the lane fitting curve y of the conventional and the present invention. Fig. 5A is a schematic diagram showing the preview weight w image ( x i ) of the first embodiment of the present invention. FIG. 5B is a schematic diagram showing the preview weight w image ( x i ) of the second embodiment of the present invention. Fig. 6 is a schematic view showing the steering device 500 of Fig. 1. Fig. 7 is a view showing the lateral shift weight value W1 of the steering control force weight W R of Fig. 6. Fig. 8 is a view showing the prediction of the steering control force weight W R of Fig. 6 exceeding the lane line time weight value W2. As shown in the figure, the vehicle lateral control system 100 of the weight-adjustable lane model of the present invention is used to control a vehicle 110, and the vehicle lateral control system 100 of the weight-adjustable lane model includes a camera 200, an image processing apparatus 300, Controller 400 and steering device 500.

攝影機200設於車輛110上,且攝影機200朝向車輛110之前方攝影並輸出一車前畫面資料210。此車前畫面資料210可為二維或三維影像,端看攝影機200之功能。攝影機200所輸出的車前畫面資料210用以提供給影像處理裝置300作後續運算處理。 The camera 200 is disposed on the vehicle 110, and the camera 200 photographs and outputs a pre-vehicle picture material 210 toward the front of the vehicle 110. The front camera data 210 can be a two-dimensional or three-dimensional image, and the function of the camera 200 is viewed. The pre-vehicle picture data 210 output by the camera 200 is supplied to the image processing apparatus 300 for subsequent arithmetic processing.

影像處理裝置300訊號連接攝影機200,影像處理裝置300接收並分析車前畫面資料210以得到複數個車道特徵點310,且影像處理裝置300依據車道特徵點310與預視權重w image (x i )建立一車道擬合曲線y。詳細地說,影像處理裝置300包含車道特徵點辨識單元320(lane marker recognizing unit)、車道特徵點權重調整單元330(lane marker weighting adjusting unit)以及曲線擬合單元340(curve fitting unit)。其中車道特徵點辨識單元320電性連接攝影機200並接收分析車前畫面資料210以得到複數個車道特徵點310。車道特徵點310對應車前畫面資料210中的車道線並用以建構車輛110的車道模型,而且車道特徵點310係由座標資訊(x i ,y i )表示之,其中參數x i y i 分別代表車道線對應X軸、Y軸方向的座標位置,參數i代表1至n的正整數。此外,車道特徵點權重調整單元330訊號連接車道特徵點辨識單元320與控制器400,且車道特徵點權重調整單元330接收車道特徵點310之座標資訊(x i ,y i )以及預視距離D並運算求得預視權重w image (x i )。預視權重w image (x i )代表車道模型的權重,亦即代表車道特徵點310的權重。預視權重w image (x i )會根據參數x i 的不同而改變。下列舉兩個例子來說明,第一個實施例的預視權重w image (x i )可利用式子(1)表示: 其中ab為自訂參數,a可調整預視權重w image (x i )波形的坡度,b代表預視權重w image (x i )為0.5的距離參數x i ,且b大於預視距離D。上述第一個實施例的預視距離D可等於15m,a可設定為1,b可設定為22,此預視權重w image (x i )如第5A圖所示。由第5A圖可知,預視距離D內之預視權重w image (x i )大於預視距離D外之預視權重w image (x i )。另外,第二個實施例的預視權重w image (x i )可利用式子(2)表示: 其中cd為自訂參數,c可調整預視權重w image (x i )波形的寬度,d可調整預視權重w image (x i )波形的坡度。上述第二個實施例的預視距離D可等於15m,c可設定為8,d可設定為4,此預視權重w image (x i )如第5B圖所示。另外,曲線擬合單元340訊號連接車道特徵點權重調整單元330並接收車道特徵點310之座標資訊(x i ,y i )以及預視權重w image (x i )。曲線擬合單元340會將每一個車道特徵點310的座標資訊(x i ,y i )乘上預視權重w image (x i ),並透過加權最小平方法擬合出車道擬合曲線y。其中車道擬合曲線y的擬合運算過程可利用式子(3)~(6)表示: [p q r]T=[F T W F]-1 F T W Y (5); 透過式子(3)~(6)並根據加權最小平方法可求得參數p、q、r。最後,曲線擬合單元340可運算得到並輸出車道擬合曲線y=p+qx+rx 2。當然,車道擬合曲線y不限定在二階方程式,也可應用在三階以上的方程式。藉此,本發明利用影像處理裝置300結合控制器400,並透過控制所需的預視距離D的位置點賦予車道特徵點310較大的權重值,以進行精準之車道模型計算,可大幅提升系統控制的效果以及車道擬合曲線y的精確度。 The image processing device 300 is connected to the camera 200. The image processing device 300 receives and analyzes the pre-vehicle image data 210 to obtain a plurality of lane feature points 310, and the image processing device 300 according to the lane feature point 310 and the preview weight w image ( x i ) Establish a lane fitting curve y . In detail, the image processing device 300 includes a lane marker recognizing unit 320, a lane marker weighting adjusting unit 330, and a curve fitting unit 340. The lane feature point identification unit 320 is electrically connected to the camera 200 and receives the analysis of the vehicle front screen data 210 to obtain a plurality of lane feature points 310. The lane feature point 310 corresponds to the lane line in the front picture data 210 and is used to construct the lane model of the vehicle 110, and the lane feature point 310 is represented by the coordinate information ( x i , y i ), wherein the parameters x i , y i respectively The representative lane line corresponds to the coordinate position of the X-axis and the Y-axis direction, and the parameter i represents a positive integer of 1 to n. In addition, the lane feature point weight adjustment unit 330 signals the lane feature point identification unit 320 and the controller 400, and the lane feature point weight adjustment unit 330 receives the coordinate information ( x i , y i ) of the lane feature point 310 and the preview distance D. The operation calculates the preview weight w image ( x i ). The look-ahead weight w image ( x i ) represents the weight of the lane model, that is, the weight of the lane feature point 310. The look-ahead weight w image ( x i ) will vary depending on the parameter x i . The following two examples are given to illustrate that the preview weight w image ( x i ) of the first embodiment can be expressed by the formula (1): Where a and b are custom parameters, a can adjust the slope of the pre-view weight w image ( x i ) waveform, b represents the distance parameter x i with the pre-view weight w image ( x i ) of 0.5, and b is greater than the pre-view distance D. The preview distance D of the first embodiment described above may be equal to 15 m, a may be set to 1, b may be set to 22, and the preview weight w image ( x i ) is as shown in Fig. 5A. Seen from the FIG. 5A, right preview preview weight within a distance D w image (x i) is greater than the right outer view of the pre-preview distance D weight w image (x i). In addition, the preview weight w image ( x i ) of the second embodiment can be expressed by the formula (2): Where c and d are custom parameters, c adjusts the width of the look-ahead weight w image ( x i ) waveform, and d adjusts the slope of the look-ahead weight w image ( x i ) waveform. The preview distance D of the second embodiment described above may be equal to 15 m, c may be set to 8, and d may be set to 4, and the preview weight w image ( x i ) is as shown in FIG. 5B. In addition, the curve fitting unit 340 signals the lane feature point weight adjustment unit 330 and receives the coordinate information ( x i , y i ) of the lane feature point 310 and the preview weight w image ( x i ). The curve fitting unit 340 multiplies the coordinate information ( x i , y i ) of each lane feature point 310 by the preview weight w image ( x i ), and fits the lane fitting curve y by the weighted least squares method. The fitting operation process of the lane fitting curve y can be expressed by the formulas (3)~(6): [ pqr ] T =[ F T WF ] -1 F T WY (5); The parameters p, q, and r can be obtained by the equations (3) to (6) and according to the weighted least squares method. Finally, the curve fitting unit 340 can calculate and output the lane fitting curve y = p + qx + rx 2 . Of course, the lane fitting curve y is not limited to the second-order equation, and can also be applied to equations of the third order or more. Therefore, the present invention utilizes the image processing device 300 in combination with the controller 400, and gives a greater weight value to the lane feature point 310 by controlling the position point of the required preview distance D to perform accurate lane model calculation, which can be greatly improved. The effect of the system control and the accuracy of the lane fitting curve y .

控制器400訊號連接影像處理裝置300並包含複數個車輛動態參數410及預視距離D,而預視權重w image (x i )根據預視距離D的改變而變化。控制器400依據車道擬合曲線y及車輛動態參數410計算產生一轉向控制力權重W R ,如第6、7、8圖所示。詳細地說,控制器 400包含預視距離計算單元420(target distance calculating unit)、側向位移補償單元430、啟停條件計算單元440以及轉向控制力權重計算單元450。其中預視距離計算單元420會先藉由車輛110的車輛動態參數410(例如:車速、方向盤的轉向角度)以及預視時間TF計算出預視距離D。預視時間TF的設定須大於控制系統的延遲時間,例如:相機的影像處理時所造成的時間延遲或者控制命令到實際反應的時間延遲。預視距離D等於車速乘以預視時間TF。若車速越快,則預視距離D會越長。但如果方向盤的轉向角度較大時,系統會調小預視時間TF,預視距離D會較短。預視距離D可以是一個或多個限定範圍,或者單個或多個數值。然後此預視距離D會傳送至影像處理裝置300,且影像處理裝置300會利用式子(1)或(2)運算出對應的預視權重w image (x i ),接著對每一個車道特徵點310的座標資訊(x i ,y i )乘上預視權重w image (x i ),並透過加權最小平方法擬合出車道擬合曲線y。藉此,本發明透過預視距離D與對應之預視權重w image (x i )計算車道模型,可得到精準且較為適用的車道擬合曲線y,以供後續轉向控制力之調整使用,進而能夠平順地切換轉向控制力並提高切換控制權的安全性。此外,側向位移補償單元430訊號連接預視距離計算單元420與曲線擬合單元340,並接收來自曲線擬合單元340的車道擬合曲線y以及預視距離計算單元420的預視距離D。在預視距離D之內,側向位移補償單元430透過車道擬合曲線y運算產生 轉向角θ以提供給轉向裝置500使用。再者,啟停條件計算單元440訊號連接曲線擬合單元340與轉向裝置500並接收車輛動態參數410,啟停條件計算單元440依據車輛動態參數410以及車道擬合曲線y計算產生啟停訊號442,此啟停訊號442會傳送至轉向裝置500,用以決定轉向裝置500為啟動狀態(由系統控制;turn on)或停止狀態(由駕駛控制;turn off)。此外,轉向控制力權重計算單元450訊號連接曲線擬合單元340與轉向裝置500並接收車輛動態參數410,且轉向控制力權重計算單元450依據車道擬合曲線y及車輛動態參數410計算產生一轉向控制力權重W R The controller 400 signals the image processing device 300 and includes a plurality of vehicle dynamic parameters 410 and a preview distance D, and the preview weight w image ( x i ) changes according to the change in the preview distance D. The controller 400 calculates a steering control force weight W R according to the lane fitting curve y and the vehicle dynamic parameter 410, as shown in FIGS. 6, 7, and 8. In detail, the controller 400 includes a target distance calculating unit 420, a lateral displacement compensating unit 430, a start/stop condition calculating unit 440, and a steering control force weight calculating unit 450. The preview distance calculation unit 420 first calculates the preview distance D by the vehicle dynamic parameters 410 of the vehicle 110 (for example, the vehicle speed, the steering angle of the steering wheel) and the preview time T F . The setting of the preview time T F must be greater than the delay time of the control system, for example, the time delay caused by the image processing of the camera or the time delay from the control command to the actual reaction. The preview distance D is equal to the vehicle speed multiplied by the preview time T F . If the speed is faster, the preview distance D will be longer. However, if the steering angle of the steering wheel is large, the system will reduce the preview time T F and the preview distance D will be shorter. The look-ahead distance D can be one or more defined ranges, or single or multiple values. Then, the preview distance D is transmitted to the image processing apparatus 300, and the image processing apparatus 300 calculates the corresponding preview weight w image ( x i ) by using the formula (1) or (2), and then for each lane feature. The coordinate information ( x i , y i ) of point 310 is multiplied by the pre-view weight w image ( x i ), and the lane fitting curve y is fitted by the weighted least squares method. Therefore, the present invention calculates the lane model by using the preview distance D and the corresponding preview weight w image ( x i ), so that a precise and applicable lane fitting curve y can be obtained for adjustment of the subsequent steering control force, and further It is possible to smoothly switch the steering control force and improve the safety of the switching control right. Further, the lateral displacement compensating unit 430 signals the pre-view distance calculating unit 420 and the curve fitting unit 340, and receives the lane fitting curve y from the curve fitting unit 340 and the preview distance D of the pre-view distance calculating unit 420. Within the preview distance D, the lateral displacement compensation unit 430 generates a steering angle θ through the lane fitting curve y operation for use by the steering device 500. Furthermore, the start and stop condition calculation unit 440 signals the curve fitting unit 340 and the steering device 500 and receives the vehicle dynamic parameter 410. The start and stop condition calculation unit 440 calculates the start and stop signal 442 according to the vehicle dynamic parameter 410 and the lane fitting curve y . The start and stop signal 442 is transmitted to the steering device 500 for determining whether the steering device 500 is in an activated state (controlled by the system; turned on) or stopped (by driving control; turn off). In addition, the steering control force weight calculation unit 450 signals the curve fitting unit 340 and the steering device 500 and receives the vehicle dynamic parameter 410, and the steering control force weight calculation unit 450 calculates a steering according to the lane fitting curve y and the vehicle dynamic parameter 410. Control weight W R .

舉例來說,請一併參閱第6及7圖,第一個實施例的轉向控制力權重W R 為一橫向偏移權重值W1,車輛110與車道擬合曲線y相隔一橫向偏移距離y_offset,橫向偏移權重值W1隨著橫向偏移距離y_offset增加而遞增。也就是說,當系統估測車輛110離車道擬合曲線y較遠時(即橫向偏移距離y_offset較小時),轉向控制力權重計算單元450會提供較小的轉向控制力權重W R (即較小的橫向偏移權重值W1),讓駕駛主導轉向並可手動調整轉向裝置500;當系統估測車輛110離車道擬合曲線y較近時(即橫向偏移距離y_offset較大時),轉向控制力權重計算單元450會提供較大的轉向控制力權重W R (即較大的橫向偏移權重值W1),使系統能主導控制轉向並自動調整轉向裝置500,進而讓車輛110回到車道中央。另外值得一提的是,若駕駛是主動要離開車道,此時啟停條件計算單元 440會依據車輛動態參數410的駕駛扭矩以及車道擬合曲線y計算產生啟停訊號442,此啟停訊號442為0以決定轉向裝置500為停止狀態(由駕駛控制轉向;turn off)。相反地,若駕駛沒有要離開車道,此時啟停條件計算單元440會依據車輛動態參數410的駕駛扭矩以及車道擬合曲線y計算產生啟停訊號442,此啟停訊號442為1以決定轉向裝置500為啟動狀態(由系統控制轉向;turn on)。 For example, referring to Figures 6 and 7, the steering control force weight W R of the first embodiment is a lateral offset weight value W1, and the vehicle 110 is separated from the lane fitting curve y by a lateral offset distance y_offset. The lateral offset weight value W1 is incremented as the lateral offset distance y_offset increases. That is, when the system estimates that the vehicle 110 is far from the lane fitting curve y (ie, when the lateral offset distance y_offset is small), the steering control force weight calculation unit 450 provides a smaller steering control force weight W R ( That is, the smaller lateral offset weight value W1) allows the driving to lead and can manually adjust the steering device 500; when the system estimates that the vehicle 110 is closer to the lane fitting curve y (ie, the lateral offset distance y_offset is larger) The steering control force weight calculation unit 450 provides a larger steering control force weight W R (ie, a larger lateral offset weight value W1), enabling the system to dominate the steering and automatically adjust the steering device 500, thereby allowing the vehicle 110 to return To the center of the driveway. It is also worth mentioning that if the driving is to leave the lane actively, the start and stop condition calculation unit 440 calculates the start and stop signal 442 according to the driving torque of the vehicle dynamic parameter 410 and the lane fitting curve y , and the start and stop signal 442 It is 0 to determine that the steering device 500 is in a stopped state (turned by driving control; turn off). Conversely, if the driving does not have to leave the lane, the start and stop condition calculation unit 440 calculates the start and stop signal 442 according to the driving torque of the vehicle dynamic parameter 410 and the lane fitting curve y , and the start and stop signal 442 is 1 to determine the steering. Device 500 is in an activated state (turned by system control; turn on).

請一併參閱第6及8圖,第二個實施例的轉向控制力權重W R 為一預估超過車道線時間權重值W2,且控制器400依據車速、加速度及偏航角速度(yaw rate)運算求得一超過車道線時間T,此超過車道線時間T代表系統預估車輛110會超過車道擬合曲線y的時間。當超過車道線時間T小於等於一預設時間T1時,預估超過車道線時間權重值W2等於1。當超過車道線時間T大於預設時間T1時,預估超過車道線時間權重值W2隨著超過車道線時間T增加而遞減。換句話說,當系統預估車輛110會在短時間內超過車道擬合曲線y時,轉向控制力權重計算單元450會提供較大的轉向控制力權重W R (即較大的預估超過車道線時間權重值W2),使系統能主導控制轉向並自動調整轉向裝置500;當系統預估車輛110在一定時間之後才會超過車道擬合曲線y時,轉向控制力權重計算單元450會提供較小的轉向控制力權重W R (即較小的預估超過車道線時間權重值W2),讓轉向的主導權還給駕駛,使駕駛能手動調整轉向裝置500。 Referring to FIGS. 6 and 8, the steering control force weight W R of the second embodiment is an estimated over lane line time weight value W2, and the controller 400 is based on the vehicle speed, the acceleration, and the yaw rate. The operation finds an excess of the lane line time T, which exceeds the lane line time T, which represents the time when the system predicts that the vehicle 110 will exceed the lane fitting curve y . When time T exceeds the lane line is less than a predetermined time T is equal to 1, the lane line than the estimated time is equal to a weight value W2. Lane line than temporal weighting value W2 as time T exceeds the lane line generally decrease when the time T exceeds the lane line. 1 greater than a preset time T, the prediction. In other words, when the system predicts that the vehicle 110 will exceed the lane fitting curve y in a short time, the steering control force weight calculation unit 450 will provide a larger steering control force weight W R (ie, a larger estimate exceeds the lane) The line time weight value W2) enables the system to dominate the steering and automatically adjusts the steering device 500; when the system predicts that the vehicle 110 will exceed the lane fitting curve y after a certain time, the steering control force weight calculation unit 450 provides a comparison The small steering control weight W R (i.e., the smaller estimate exceeds the lane line time weight value W2) allows the steering dominance to be returned to the drive so that the steering can manually adjust the steering device 500.

請一併參閱第6、7及8圖,第三個實施例的轉向控制力權重W R 係依據橫向偏移權重值W1與預估超過車道線時間權重值W2之最大值決定,亦即轉向控制力權重W R =max(W1,W2)。也就是說,轉向控制力權重W R 為橫向偏移權重值W1與預估超過車道線時間權重值W2之交互作用,而且系統會同時考量橫向偏移距離y_offset與超過車道線時間T之狀況,只要任一個達到條件而使權重值增加,系統即會調整轉向控制力的權重。此外,橫向偏移權重值W1可以不隨車速改變開口大小,亦即第7圖的橫向偏移權重值W1之形狀不會隨車速而改變。而預估超過車道線時間權重值W2則需考量車輛110的速度、加速度及偏航角速度。藉此,本發明利用多重考量的轉向控制力權重W R 來調節轉向裝置500介入的控制力大小,能平順地切換控制力。 Referring to Figures 6, 7, and 8, the steering control force weight W R of the third embodiment is determined according to the horizontal offset weight value W1 and the estimated maximum value of the lane line time weight value W2, that is, the steering The control force weight W R =max(W1, W2). That is to say, the steering control force weight W R is an interaction between the lateral offset weight value W1 and the estimated excess lane line time weight value W2, and the system considers both the lateral offset distance y_offset and the lane line time T. As long as any of the conditions reaches the condition and the weight value increases, the system adjusts the weight of the steering control force. Further, the lateral offset weight value W1 may not change the opening size with the vehicle speed, that is, the shape of the lateral offset weight value W1 of FIG. 7 does not change with the vehicle speed. The estimated timeline weight value W2 exceeds the speed, acceleration and yaw rate of the vehicle 110. Thereby, the present invention utilizes the multi-measurement steering control force weight W R to adjust the magnitude of the control force involved in the steering device 500, and can smoothly switch the control force.

請一併參閱第6、7及8圖,第四個實施例的轉向控制力權重W R 包含橫向偏移權重值W1、第一百分比參數e、預估超過車道線時間權重值W2以及第二百分比參數f。轉向控制力權重W R 等於橫向偏移權重值W1乘以第一百分比參數e減去預估超過車道線時間權重值W2乘以第二百分比參數f,其中第一百分比參數e與第二百分比參數f之總合為100%,亦即W R =W1×e+W2×f且f=1-e。第一百分比參數e與第二百分比參數f為可調參數,可視需求定之。藉此,本發明透過多重考量的轉向控制力權重W R 來調節轉向裝置500介入的控制力大小,能依據需 求作彈性地調整與規劃,且可平順地切換控制力,進而提高切換控制權的安全性並大幅降低突發控制力對駕駛的不良影響及不舒服的感受。 Referring to Figures 6, 7, and 8, the steering control force weight W R of the fourth embodiment includes a lateral offset weight value W1, a first percentage parameter e, an estimated excess lane line time weight value W2, and The second percentage parameter f. The steering control force weight W R is equal to the lateral offset weight value W1 multiplied by the first percentage parameter e minus the estimated excess lane line time weight value W2 multiplied by the second percentage parameter f, where the first percentage parameter The sum of e and the second percentage parameter f is 100%, that is, W R = W1 × e + W2 × f and f = 1 - e. The first percentage parameter e and the second percentage parameter f are adjustable parameters, which can be determined according to requirements. Thereby, the present invention adjusts the control force involved in the steering device 500 through multiple considerations of the steering control force weight W R , can be flexibly adjusted and planned according to requirements, and can smoothly switch the control force, thereby improving the switching control right. Safety and greatly reduce the adverse effects of sudden control on driving and uncomfortable feelings.

轉向裝置500則訊號連接控制器400且設於車輛110上,轉向裝置500依據轉向控制力權重W R 控制車輛110的轉向。詳細地說,轉向裝置500包含角度控制單元510、速度控制單元520、權重運算單元530、轉向控制力決定單元540、電流控制機構550、驅動機構560以及轉向機構570。其中角度控制單元510訊號連接速度控制單元520與側向位移補償單元430,角度控制單元510接收來自側向位移補償單元430的轉向角θ,且角度控制單元510與速度控制單元520用以運算產生轉向所需之電流命令522。再者,權重運算單元530訊號連接速度控制單元520與轉向控制力權重計算單元450,且權重運算單元530係將轉向控制力權重W R 與電流命令522相乘而輸出一電流權重參數。轉向控制力決定單元540訊號連接權重運算單元530並接收電流權重參數與電動輔助轉向參數EPS_i,轉向控制力決定單元540會依據電動輔助轉向參數EPS_i與電流權重參數決定施予驅動機構560的電流大小,以整合調節電動輔助轉向(electric power steering;EPS)介入的控制力大小。此外,電流控制機構550訊號連接轉向控制力決定單元540並提供一驅動電流552,電流控制機構550依據轉向控制力權重W R 調控驅動電流552的大小。驅動電流552隨著轉向控制力權重W R 增加而變大,且驅動電流552隨著轉向控制力權重W R 減少而變小。另外,驅動機構560電性連接電流控制機構550且受驅動電流552控制,本實施例之驅動機構560為一電動馬達。轉向機構570受驅動機構560連結帶動,轉向機構570藉由驅動機構560依據驅動電流552控制車輛110的轉向。本實施例之轉向機構570包含方向盤、減速機、齒輪、傳動軸、輪胎等,由於其為習知技術,故結構細節不再贅述。藉此,本發明的轉向裝置500結合電動輔助轉向,並依據電動輔助轉向參數EPS_i與電流權重參數決定施予驅動機構560的電流大小,以整合調節電動輔助轉向介入的控制力,進而增加切換控制力的平順度。 The steering device 500 is coupled to the controller 400 and is disposed on the vehicle 110. The steering device 500 controls the steering of the vehicle 110 in accordance with the steering control force weight W R . In detail, the steering device 500 includes an angle control unit 510, a speed control unit 520, a weight calculation unit 530, a steering control force determination unit 540, a current control mechanism 550, a drive mechanism 560, and a steering mechanism 570. The angle control unit 510 signals the connection speed control unit 520 and the lateral displacement compensation unit 430. The angle control unit 510 receives the steering angle θ from the lateral displacement compensation unit 430, and the angle control unit 510 and the speed control unit 520 are used to generate the operation. Turn to the desired current command 522. Furthermore, the weight operation unit 530 signals the connection speed control unit 520 and the steering control force weight calculation unit 450, and the weight operation unit 530 multiplies the steering control force weight W R by the current command 522 to output a current weight parameter. Steering control decision unit 540 is signal connected to the weight calculation unit 530 and receives the current weighting parameter of the electric assist steering parameters EPS_ i, a steering control decision unit 540 will assist steering based on the electric parameters EPS_ i and the weighting parameter current decision administering drive mechanism 560 The current is sized to integrate the control force that regulates the electric power steering (EPS) intervention. In addition, the current control mechanism 550 is connected to the steering control force determining unit 540 and provides a driving current 552. The current control mechanism 550 regulates the magnitude of the driving current 552 according to the steering control force weight W R . The drive current 552 becomes larger as the steering control force weight W R increases, and the drive current 552 becomes smaller as the steering control force weight W R decreases. In addition, the driving mechanism 560 is electrically connected to the current control mechanism 550 and controlled by the driving current 552. The driving mechanism 560 of the embodiment is an electric motor. The steering mechanism 570 is coupled by the drive mechanism 560, and the steering mechanism 570 controls the steering of the vehicle 110 by the drive mechanism 560 according to the drive current 552. The steering mechanism 570 of the present embodiment includes a steering wheel, a speed reducer, a gear, a transmission shaft, a tire, and the like. Since it is a conventional technique, the details of the structure will not be described again. Accordingly, the steering apparatus 500 of the present invention in conjunction with the electric assist steering, and steering assist electric current parameters EPS_ i weighting parameter determining the current magnitude of the driving mechanism 560 is administered according to integrate the electric-assisted steering control intervention, thereby increasing the handover Control the smoothness of the force.

請一併參閱第1及9圖,第9圖係繪示本發明一實施例的可權重調變車道模型之車輛橫向控制方法600的流程示意圖。如圖所示,此可權重調變車道模型之車輛橫向控制方法600包含車前畫面擷取步驟S12、影像處理步驟S14、控制力權重產生步驟S16以及車輛轉向控制步驟S18。 Please refer to FIG. 1 and FIG. 9 together. FIG. 9 is a schematic flow chart of a vehicle lateral control method 600 for a weight-adjustable lane changing model according to an embodiment of the present invention. As shown, the vehicle lateral control method 600 of the weight-adjustable lane model includes a vehicle front screen capture step S12, an image processing step S14, a control force weight generation step S16, and a vehicle steering control step S18.

車前畫面擷取步驟S12係提供一攝影機200朝向車輛110之前方攝影並輸出車前畫面資料210。 The front screen capture step S12 provides a camera 200 to shoot toward the front of the vehicle 110 and output the front screen material 210.

影像處理步驟S14係提供一影像處理裝置300接收並分析車前畫面資料210以得到複數個車道特徵點310,且依據這些車道特徵點310與預視權重w image (x i )建立車道擬合曲線y。預視權重w image (x i )的實施例可參見 前述之式子(1)與(2)。而車道擬合曲線y的擬合運算過程可參見前述之式子(3)~(6)。 The image processing step S14 provides an image processing device 300 for receiving and analyzing the pre-vehicle image data 210 to obtain a plurality of lane feature points 310, and establishing a lane fitting curve according to the lane feature points 310 and the preview weight w image ( x i ). y . For an embodiment of the preview weight w image ( x i ), reference can be made to the above equations (1) and (2). For the fitting operation process of the lane fitting curve y , refer to the above equations (3) to (6).

控制力權重產生步驟S16係提供一控制器400依據車道擬合曲線y及複數個車輛動態參數410計算產生一轉向控制力權重W R 。控制器400包含預視距離D,預視權重w image (x i )根據預視距離D的改變而變化,如第5A與5B圖所示。其中第5A圖可知,預視距離D內之預視權重w image (x i )大於預視距離D外之預視權重w image (x i )。再者,轉向控制力權重W R 可參閱第7及8圖,其可為橫向偏移權重值W1、預估超過車道線時間權重值W2或兩者之交互作用。以下舉四個實施例加以說明,在第一個實施例中,控制器400之轉向控制力權重W R 為一橫向偏移權重值W1,車輛110與車道擬合曲線y相隔一橫向偏移距離y_offset,橫向偏移權重值W1隨著橫向偏移距離y_offset增加而遞增,如第7圖所示。在第二個實施例中,控制器400之轉向控制力權重W R 為一預估超過車道線時間權重值W2,且控制器400依據車輛110的車速、加速度及偏航角速度運算求得一超過車道線時間T。當超過車道線時間T小於等於一預設時間T1時,預估超過車道線時間權重值W2等於1;當超過車道線時間T大於預設時間T1時,預估超過車道線時間權重值W2隨著超過車道線時間T增加而遞減。另外,在第三個實施例中,控制器400之轉向控制力權重W R 依據橫向偏移權重值W1與預估超過車道線時間權重值W2之最大值決定。而 在第四個實施例中,控制器400之轉向控制力權重W R 包含橫向偏移權重值W1、第一百分比參數e、預估超過車道線時間權重值W2及第二百分比參數f,轉向控制力權重W R 等於橫向偏移權重值W1乘以第一百分比參數e減去預估超過車道線時間權重值W2乘以第二百分比參數f,第一百分比參數e與第二百分比參數f之總合為100%。 The control force weight generating step S16 provides a controller 400 to generate a steering control force weight W R according to the lane fitting curve y and the plurality of vehicle dynamic parameters 410. The controller 400 includes a preview distance D, preview weight w image (x i) change according to the preview distance D, as shown in 5A and 5B of FIG. Wherein FIG. 5A shows that the right preview preview weight within a distance D w image (x i) is greater than the right outer view of the pre-preview distance D weight w image (x i). Furthermore, the steering control force weight W R can be referred to in FIGS. 7 and 8 , which can be a lateral offset weight value W1 , an estimated excess lane line time weight value W2 , or an interaction of the two. The following four embodiments are described. In the first embodiment, the steering control force weight W R of the controller 400 is a lateral offset weight value W1, and the vehicle 110 is separated from the lane fitting curve y by a lateral offset distance. Y_offset, the lateral offset weight value W1 is incremented as the lateral offset distance y_offset increases, as shown in FIG. In the second embodiment, the steering control force weight W R of the controller 400 is an estimated excess lane line time weight value W2, and the controller 400 calculates an excess based on the vehicle speed, acceleration, and yaw rate calculations of the vehicle 110. Lane line time T. When the lane line time T is less than or equal to a preset time T 1 , the estimated lane line time weight value W2 is equal to 1; when the lane lane time T is greater than the preset time T 1 , the estimated lane line time weight value is exceeded. W2 decreases as the time T of the lane line increases. Further, in the third embodiment, the steering control force weight W R of the controller 400 is determined in accordance with the maximum value of the lateral offset weight value W1 and the estimated excess lane line time weight value W2. In the fourth embodiment, the steering control force weight W R of the controller 400 includes a lateral offset weight value W1, a first percentage parameter e, an estimated excess lane line time weight value W2, and a second percentage. The parameter f, the steering control force weight W R is equal to the lateral offset weight value W1 multiplied by the first percentage parameter e minus the estimated over lane line time weight value W2 multiplied by the second percentage parameter f, the first percentage The sum of the ratio parameter e and the second percentage parameter f is 100%.

車輛轉向控制步驟S18係提供一轉向裝置500依據轉向控制力權重W R 控制車輛110的轉向。綜上,本發明透過多重考量的轉向控制力權重W R 來調節轉向裝置500介入的控制力大小,能依據需求作彈性地調整與規劃,且可平順地切換控制力,進而提高切換控制權的安全性並大幅降低突發控制力對駕駛的不良影響及不舒服的感受。 The vehicle steering control step S18 provides a steering device 500 that controls the steering of the vehicle 110 in accordance with the steering control force weight W R . In summary, the present invention adjusts the control force involved in the steering device 500 through multiple considerations of the steering control force weight W R , can be flexibly adjusted and planned according to requirements, and can smoothly switch the control force, thereby improving the switching control right. Safety and greatly reduce the adverse effects of sudden control on driving and uncomfortable feelings.

請一併參閱第1及10圖,第10圖係繪示本發明另一實施例的可權重調變車道模型之車輛橫向控制方法600a的流程示意圖。如圖所示,此可權重調變車道模型之車輛橫向控制方法600a包含車前畫面擷取步驟S22、影像處理步驟S24、控制力權重產生步驟S26以及車輛轉向控制步驟S28。 Please refer to FIG. 1 and FIG. 10 together. FIG. 10 is a schematic flow chart of a vehicle lateral control method 600a of a weight-adjustable lane changing model according to another embodiment of the present invention. As shown in the figure, the vehicle lateral control method 600a of the weight-adjustable lane change model includes a vehicle front screen capturing step S22, an image processing step S24, a control force weight generating step S26, and a vehicle steering control step S28.

配合參閱第9圖,在第10圖的實施例中,車前畫面擷取步驟S22、影像處理步驟S24、控制力權重產生步驟S26均與第9圖的車前畫面擷取步驟S12、影像處理步驟S14、控制力權重產生步驟S16之方塊相同,不再贅述。特別的是,第10圖實施例之車輛轉向控制步驟S28包含電流 控制子步驟S282、驅動子步驟S284以及轉向子步驟S286,其中電流控制子步驟S282係提供一電流控制機構550依據轉向控制力權重W R 調控一驅動電流552的大小。而驅動子步驟S284係利用驅動電流552控制一驅動機構560。至於轉向子步驟S286係提供受驅動機構560連結帶動之轉向機構570依據驅動電流552控制車輛110的轉向。此外,驅動電流552隨著轉向控制力權重W R 增加而變大,且驅動電流552隨著轉向控制力權重W R 減少而變小。藉此,本發明的驅動電流552可依據轉向控制力權重W R 作適應性之調變,不但能讓轉向控制力平順地切換,還可提高切換過程的安全性與舒適度。 Referring to FIG. 9, in the embodiment of FIG. 10, the front screen capture step S22, the image processing step S24, the control force weight generating step S26, and the front view screen capture step S12 of FIG. 9 and image processing. Step S14, the blocks of the control force weight generating step S16 are the same and will not be described again. In particular, the vehicle steering control step S28 of the embodiment of FIG. 10 includes a current control sub-step S282, a driving sub-step S284, and a steering sub-step S286, wherein the current control sub-step S282 provides a current control mechanism 550 according to the steering control force weight. W R regulates the magnitude of a drive current 552. The driving sub-step S284 controls a driving mechanism 560 by using the driving current 552. The steering sub-step S286 provides a steering mechanism 570 coupled by the drive mechanism 560 to control the steering of the vehicle 110 in accordance with the drive current 552. Further, the drive current 552 becomes larger as the steering control force weight W R increases, and the drive current 552 becomes smaller as the steering control force weight W R decreases. Thereby, the driving current 552 of the present invention can be adaptively adjusted according to the steering control force weight W R , which not only allows the steering control force to be smoothly switched, but also improves the safety and comfort of the switching process.

由上述實施方式可知,本發明具有下列優點:其一,利用影像處理裝置結合控制器,並透過控制所需的預視距離的位置點賦予車道特徵點較大的權重值,以進行精準之車道模型計算,可大幅提升系統控制的效果以及車道擬合曲線的精確度。其二,透過多重考量的轉向控制力權重來調節轉向裝置介入的控制力大小,能依據需求作彈性地調整與規劃,且可平順地切換控制力,進而提高切換控制權的安全性並大幅降低突發控制力對駕駛的不良影響及不舒服的感受。其三,驅動電流可依據轉向控制力權重作適應性之調變,不但能讓轉向控制力平順地切換,還可提高切換過程的安全性與舒適度。其四,在預視權重與轉向控制力權重之交互調控下,系統能平順地切換轉向控制力,以解決習知技術中切換轉向控制力的過程容易發生突 發控制力的產生、突發控制力所造成之不安全情況以及影響駕駛操控感受的問題。 It can be seen from the above embodiments that the present invention has the following advantages: First, the image processing device is combined with the controller, and the weight point value of the lane feature point is given to the precise lane by controlling the position point of the required preview distance. Model calculation can greatly improve the effect of system control and the accuracy of the lane fitting curve. Secondly, the steering control force weight is adjusted by multiple measures to adjust the control force of the steering device intervention, and can be flexibly adjusted and planned according to the demand, and the control force can be smoothly switched, thereby improving the safety of the switching control right and greatly reducing The adverse effects of sudden control on driving and uncomfortable feelings. Third, the drive current can be adaptively adjusted according to the steering control force weight, which not only allows the steering control force to smoothly switch, but also improves the safety and comfort of the switching process. Fourth, under the interaction control of the weight of the preview and the weight of the steering control, the system can smoothly switch the steering control force to solve the problem that the process of switching the steering control force in the prior art is prone to occur. The generation of control power, the unsafe situation caused by sudden control, and the problems affecting the driving control experience.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached.

Claims (17)

一種可權重調變車道模型之車輛橫向控制系統,用以控制一車輛,該可權重調變車道模型之車輛橫向控制系統包含:一攝影機,設於該車輛上,該攝影機朝向該車輛之前方攝影並輸出一車前畫面資料;一影像處理裝置,訊號連接該攝影機,該影像處理裝置接收並分析該車前畫面資料以得到複數車道特徵點,且該影像處理裝置依據該些車道特徵點與一預視權重建立一車道擬合曲線;一控制器,訊號連接該影像處理裝置並包含複數車輛動態參數及一預視距離,該預視權重根據該預視距離的改變而變化,該控制器依據該車道擬合曲線及該些車輛動態參數計算產生一轉向控制力權重;以及一轉向裝置,訊號連接該控制器且設於該車輛上,該轉向裝置依據該轉向控制力權重控制該車輛的轉向。 A vehicle lateral control system capable of re-adjusting a lane changing model for controlling a vehicle, wherein the vehicle lateral control system of the weight-adjustable lane changing model comprises: a camera disposed on the vehicle, the camera photographing toward the front of the vehicle And outputting a front camera data; an image processing device, the signal is connected to the camera, the image processing device receives and analyzes the front image data to obtain a plurality of lane feature points, and the image processing device is based on the lane feature points and a The preview weight establishes a lane fitting curve; a controller, the signal is connected to the image processing device and includes a plurality of vehicle dynamic parameters and a preview distance, the preview weight is changed according to the change of the preview distance, the controller is based on The lane fitting curve and the vehicle dynamic parameter calculations generate a steering control force weight; and a steering device, the signal is connected to the controller and disposed on the vehicle, and the steering device controls the steering of the vehicle according to the steering control force weight . 如申請專利範圍第1項所述之可權重調變車道模型之車輛橫向控制系統,其中該控制器之該轉向控制力權重為一橫向偏移權重值,該車輛與該車道擬合曲線相隔一橫向偏移距離,該橫向偏移權重值隨著該橫向偏移距離增加而遞增。 The vehicle lateral control system of the weight-adjustable lane changing model described in claim 1, wherein the steering control force weight of the controller is a lateral offset weight value, and the vehicle is separated from the lane fitting curve by a A lateral offset distance that increases as the lateral offset distance increases. 如申請專利範圍第1項所述之可權重調變車道模型之車輛橫向控制系統,其中該控制器之該轉向控 制力權重為一預估超過車道線時間權重值,且該控制器依據一車速、一加速度及一偏航角速度運算求得一超過車道線時間;其中,當該超過車道線時間小於等於一預設時間時,該預估超過車道線時間權重值等於1;其中,當該超過車道線時間大於該預設時間時,該預估超過車道線時間權重值隨著該超過車道線時間增加而遞減。 For example, the vehicle lateral control system of the weight-adjustable lane changing model described in claim 1 of the patent application, wherein the steering control of the controller The power weight is an estimated value exceeding the lane line time weight value, and the controller calculates an excess lane line time according to a vehicle speed, an acceleration and a yaw rate calculation; wherein, when the lane line time is less than or equal to one When the time is set, the estimated time exceeds the lane line time weight value is equal to 1; wherein, when the time exceeds the lane line time is greater than the preset time, the estimated excess lane line time weight value decreases as the excess lane line time increases . 如申請專利範圍第1項所述之可權重調變車道模型之車輛橫向控制系統,其中該控制器之該轉向控制力權重依據一橫向偏移權重值與一預估超過車道線時間權重值之最大值決定。 The vehicle lateral control system of the weight-adjustable lane changing model described in claim 1, wherein the steering control power weight of the controller is based on a lateral offset weight value and an estimated excess lane line time weight value. The maximum value is determined. 如申請專利範圍第1項所述之可權重調變車道模型之車輛橫向控制系統,其中該控制器之該轉向控制力權重包含一橫向偏移權重值、一第一百分比參數、一預估超過車道線時間權重值及一第二百分比參數,該轉向控制力權重等於該橫向偏移權重值乘以該第一百分比參數減去該預估超過車道線時間權重值乘以該第二百分比參數,該第一百分比參數與該第二百分比參數之總合為100%。 The vehicle lateral control system of the weight-adjustable lane changing model described in claim 1, wherein the steering control force weight of the controller comprises a lateral offset weight value, a first percentage parameter, and a pre-control Estimating a lane line time weight value and a second percentage parameter, the steering control force weight being equal to the lateral offset weight value multiplied by the first percentage parameter minus the estimated excess lane line time weight value multiplied by The second percentage parameter, the total of the first percentage parameter and the second percentage parameter is 100%. 如申請專利範圍第1項所述之可權重調變車道模型之車輛橫向控制系統,其中該轉向裝置包含: 一電流控制機構,提供一驅動電流,該電流控制機構依據該轉向控制力權重調控該驅動電流的大小;一驅動機構,電性連接該電流控制機構且受該驅動電流控制;及一轉向機構,受該驅動機構連結帶動,該轉向機構依據該驅動電流控制該車輛的轉向。 The vehicle lateral control system of the weight-adjustable lane changing model described in claim 1, wherein the steering device comprises: a current control mechanism provides a driving current, the current control mechanism adjusts the magnitude of the driving current according to the steering control force weight; a driving mechanism electrically connected to the current control mechanism and controlled by the driving current; and a steering mechanism, Driven by the drive mechanism, the steering mechanism controls the steering of the vehicle according to the drive current. 如申請專利範圍第6項所述之可權重調變車道模型之車輛橫向控制系統,其中該驅動電流隨著該轉向控制力權重增加而變大,且該驅動電流隨著該轉向控制力權重減少而變小。 The vehicle lateral control system of the weight-adjustable lane changing model described in claim 6 wherein the driving current becomes larger as the steering control force weight increases, and the driving current decreases with the steering control force weight. And become smaller. 如申請專利範圍第1項所述之可權重調變車道模型之車輛橫向控制系統,其中該些車輛動態參數包含一車速、一加速度、一偏航角速度、一轉角及一駕駛扭矩。 The vehicle lateral control system of the weight-changeable lane change model described in claim 1, wherein the vehicle dynamic parameters include a vehicle speed, an acceleration, a yaw rate, a corner, and a driving torque. 如申請專利範圍第1項所述之可權重調變車道模型之車輛橫向控制系統,其中該預視距離內之該預視權重大於該預視距離外之該預視權重。 The vehicle lateral control system of the weight-adjustable lane changing model described in claim 1, wherein the preview power within the preview distance is greater than the preview weight outside the preview distance. 一種可權重調變車道模型之車輛橫向控制方法,用以控制一車輛,該可權重調變車道模型之車輛橫向控制方法包含以下步驟: 一車前畫面擷取步驟,係提供一攝影機朝向該車輛之前方攝影並輸出一車前畫面資料;一影像處理步驟,係提供一影像處理裝置接收並分析該車前畫面資料以得到複數車道特徵點,且依據該些車道特徵點與一預視權重建立一車道擬合曲線;一控制力權重產生步驟,係提供一控制器依據該車道擬合曲線及複數車輛動態參數計算產生一轉向控制力權重,控制器包含一預視距離,該預視權重根據該預視距離的改變而變化;以及一車輛轉向控制步驟,係提供一轉向裝置依據該轉向控制力權重控制該車輛的轉向。 A vehicle lateral control method capable of re-adjusting a lane change model for controlling a vehicle, wherein the vehicle lateral control method of the weight-adjustable lane change model comprises the following steps: a front camera capture step is to provide a camera to photograph the front of the vehicle and output a front image of the vehicle; an image processing step is to provide an image processing device to receive and analyze the front image of the vehicle to obtain a plurality of lane features. Pointing, and establishing a lane fitting curve according to the lane feature points and a preview weight; a control power weight generating step is to provide a controller to generate a steering control force according to the lane fitting curve and the plurality of vehicle dynamic parameter calculations The weight, the controller includes a preview distance, the look-ahead weight changes according to the change of the preview distance; and a vehicle steering control step provides a steering device to control the steering of the vehicle according to the steering control force weight. 如申請專利範圍第10項所述之可權重調變車道模型之車輛橫向控制方法,其中在該控制力權重產生步驟中,該控制器之該轉向控制力權重為一橫向偏移權重值,該車輛與該車道擬合曲線相隔一橫向偏移距離,該橫向偏移權重值隨著該橫向偏移距離增加而遞增。 The vehicle lateral control method of the weight-adjustable lane changing model described in claim 10, wherein in the controlling force weight generating step, the steering control force weight of the controller is a lateral offset weight value, The vehicle is offset from the lane fitting curve by a lateral offset weight that increases as the lateral offset distance increases. 如申請專利範圍第10項所述之可權重調變車道模型之車輛橫向控制方法,其中在該控制力權重產生步驟中,該控制器之該轉向控制力權重為一預估超過車道線時間權重值,且該控制器依據一車速、一加速度及一偏航角速度運算求得一超過車道線時間;其中,當該超過車道線時間小於等於一預設時間時,該預估超過車道線時間權重值等於1; 其中,當該超過車道線時間大於該預設時間時,該預估超過車道線時間權重值隨著該超過車道線時間增加而遞減。 The vehicle lateral control method of the weight-adjustable lane changing model described in claim 10, wherein in the controlling force weight generating step, the steering control force weight of the controller is an estimated exceeding lane line time weight And the controller calculates an excess lane line time according to a vehicle speed, an acceleration, and a yaw rate calculation; wherein, when the time exceeding the lane line is less than or equal to a preset time, the estimation exceeds the lane line time weight The value is equal to 1; Wherein, when the time exceeds the lane line time is greater than the preset time, the estimated excess lane line time weight value decreases as the excess lane line time increases. 如申請專利範圍第10項所述之可權重調變車道模型之車輛橫向控制方法,其中在該控制力權重產生步驟中,該控制器之該轉向控制力權重依據一橫向偏移權重值與一預估超過車道線時間權重值之最大值決定。 The vehicle lateral control method of the weight-adjustable lane changing model described in claim 10, wherein in the controlling force weight generating step, the steering control force weight of the controller is based on a lateral offset weight value and a Estimated over the maximum value of the lane line time weight value. 如申請專利範圍第10項所述之可權重調變車道模型之車輛橫向控制方法,其中在該控制力權重產生步驟中,該控制器之該轉向控制力權重包含一橫向偏移權重值、一第一百分比參數、一預估超過車道線時間權重值及一第二百分比參數,該轉向控制力權重等於該橫向偏移權重值乘以該第一百分比參數減去該預估超過車道線時間權重值乘以該第二百分比參數,該第一百分比參數與該第二百分比參數之總合為100%。 The vehicle lateral control method of the weight-adjustable lane changing model described in claim 10, wherein in the controlling force weight generating step, the steering control force weight of the controller includes a lateral offset weight value, a first percentage parameter, an estimate exceeding a lane line time weight value, and a second percentage parameter, the steering control force weight being equal to the lateral offset weight value multiplied by the first percentage parameter minus the pre- The estimated lane line time weight value is multiplied by the second percentage parameter, and the sum of the first percentage parameter and the second percentage parameter is 100%. 如申請專利範圍第10項所述之可權重調變車道模型之車輛橫向控制方法,其中該車輛轉向控制步驟包含:一電流控制子步驟,係提供一電流控制機構依據該轉向控制力權重調控一驅動電流的大小;一驅動子步驟,係利用該驅動電流控制一驅動機構;及 一轉向子步驟,係提供受該驅動機構連結帶動之一轉向機構依據該驅動電流控制該車輛的轉向。 The vehicle lateral control method of the weight-adjustable lane changing model described in claim 10, wherein the vehicle steering control step comprises: a current control sub-step, providing a current control mechanism to adjust a weight according to the steering control force The magnitude of the driving current; a driving substep of controlling a driving mechanism by using the driving current; and A steering sub-step provides a steering mechanism that is coupled by the driving mechanism to control the steering of the vehicle according to the driving current. 如申請專利範圍第15項所述之可權重調變車道模型之車輛橫向控制方法,其中在該車輛轉向控制步驟中,該驅動電流隨著該轉向控制力權重增加而變大,且該驅動電流隨著該轉向控制力權重減少而變小。 The vehicle lateral control method of the weight-adjustable lane changing model described in claim 15 , wherein in the vehicle steering control step, the driving current becomes larger as the steering control force weight increases, and the driving current As the steering control force weight decreases, it becomes smaller. 如申請專利範圍第10項所述之可權重調變車道模型之車輛橫向控制方法,其中在該控制力權重產生步驟中,該預視距離內之該預視權重大於該預視距離外之該預視權重。 The vehicle lateral control method of the weight-adjustable lane change model described in claim 10, wherein in the control force weight generating step, the preview power within the preview distance is greater than the preview distance Preview weights.
TW106139527A 2017-11-15 2017-11-15 Lane model with modulation weighting for vehicle lateral control system and method thereof TWI645999B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106139527A TWI645999B (en) 2017-11-15 2017-11-15 Lane model with modulation weighting for vehicle lateral control system and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106139527A TWI645999B (en) 2017-11-15 2017-11-15 Lane model with modulation weighting for vehicle lateral control system and method thereof

Publications (2)

Publication Number Publication Date
TWI645999B true TWI645999B (en) 2019-01-01
TW201922546A TW201922546A (en) 2019-06-16

Family

ID=65803976

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106139527A TWI645999B (en) 2017-11-15 2017-11-15 Lane model with modulation weighting for vehicle lateral control system and method thereof

Country Status (1)

Country Link
TW (1) TWI645999B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060220912A1 (en) * 2003-07-31 2006-10-05 Heenan Adam J Sensing apparatus for vehicles
CN102663356A (en) * 2012-03-28 2012-09-12 柳州博实唯汽车科技有限公司 Method for extraction and deviation warning of lane line
CN104392212A (en) * 2014-11-14 2015-03-04 北京工业大学 Method for detecting road information and identifying forward vehicles based on vision

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060220912A1 (en) * 2003-07-31 2006-10-05 Heenan Adam J Sensing apparatus for vehicles
CN102663356A (en) * 2012-03-28 2012-09-12 柳州博实唯汽车科技有限公司 Method for extraction and deviation warning of lane line
CN104392212A (en) * 2014-11-14 2015-03-04 北京工业大学 Method for detecting road information and identifying forward vehicles based on vision

Also Published As

Publication number Publication date
TW201922546A (en) 2019-06-16

Similar Documents

Publication Publication Date Title
CN111417565B (en) Vehicle steering system
US10556621B2 (en) Steering assist apparatus
US10336366B2 (en) Driving support apparatus for vehicle
JP6809020B2 (en) Steering assistance device and steering assist method
US9227663B2 (en) Driving assist controller for vehicle
JP6638012B2 (en) Vehicle lane departure prevention control device
US9227634B2 (en) Lane keeping control system for vehicle
US8352124B2 (en) Steering control device
WO2009113224A1 (en) Vehicle travel support device, vehicle, and vehicle travel support program
JP3775120B2 (en) Lane tracking device
JP2017061284A (en) Vehicular operation support apparatus
JP5853552B2 (en) Vehicle travel control device
US10000209B2 (en) Vehicle steering control apparatus
JP5389360B2 (en) Lane tracking control device and lane tracking control method
JP4069912B2 (en) Vehicle motion control device
JP6722078B2 (en) Vehicle steering control device
JP2009226981A (en) Lane deviation preventive apparatus
KR101241621B1 (en) Lane keeping assist system considering driver's range of view and steering tendency by speed
JP6082319B2 (en) Vehicle lane keeping control device
TWI645999B (en) Lane model with modulation weighting for vehicle lateral control system and method thereof
JP4134683B2 (en) Automatic steering device
CN109774711B (en) Vehicle transverse control system capable of weight-modulating lane model and method thereof
JP6377971B2 (en) Vehicle behavior control apparatus and vehicle behavior control method
JP5483194B2 (en) Sliding mode control device and vehicle automatic steering control device
JP6374308B2 (en) Vehicle control apparatus and vehicle control method