TWI641931B - Device and method for automatically generating machine tool control instructions and parameters - Google Patents

Device and method for automatically generating machine tool control instructions and parameters Download PDF

Info

Publication number
TWI641931B
TWI641931B TW105101149A TW105101149A TWI641931B TW I641931 B TWI641931 B TW I641931B TW 105101149 A TW105101149 A TW 105101149A TW 105101149 A TW105101149 A TW 105101149A TW I641931 B TWI641931 B TW I641931B
Authority
TW
Taiwan
Prior art keywords
parameters
trajectory
module
machine tool
machining
Prior art date
Application number
TW105101149A
Other languages
Chinese (zh)
Other versions
TW201725458A (en
Inventor
邊平遠
Original Assignee
捷準科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 捷準科技股份有限公司 filed Critical 捷準科技股份有限公司
Priority to TW105101149A priority Critical patent/TWI641931B/en
Priority to CN201610987373.1A priority patent/CN107065779B/en
Publication of TW201725458A publication Critical patent/TW201725458A/en
Application granted granted Critical
Publication of TWI641931B publication Critical patent/TWI641931B/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • G05B19/40937Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine concerning programming of machining or material parameters, pocket machining
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35349Display part, programmed locus and tool path, traject, dynamic locus

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

本發明指令與參數的生成裝置包含:解譯模組、規劃模組、模擬分析模組及最佳化演算模組,而本發明指令與參數生成方法是由解譯模組將工件程式解譯產生出加工件的軌跡座標;再以規劃模組對軌跡座標進行插值演算,產生刀具加工的路徑訊息與速度訊息;隨後模擬分析模組由路徑訊息與速度訊息分析出刀具的運動軌跡特性,並同時進行切削模擬訊息;最後,最佳化演算模組依據加工件不同區塊的運動軌跡特性與切削模擬訊息,生成對應區塊的最佳化控制參數。本發明乃可建置在工具機控制系統之外獨立運行的輔助裝置,或是可當作工具機控制系統的子單元,運作於工具機控制系統中。 The device for generating instructions and parameters of the present invention includes: an interpretation module, a planning module, a simulation analysis module, and an optimization algorithm module, and the method of generating instructions and parameters of the present invention is to interpret the workpiece program by the interpretation module. Generate the trajectory coordinates of the machined part; then use the planning module to interpolate the trajectory coordinates to generate the path information and speed information of the tool processing; then the simulation analysis module analyzes the tool's motion trajectory characteristics from the path information and speed information, and Simultaneous cutting simulation messages are performed at the same time. Finally, the optimization calculation module generates optimized control parameters of corresponding blocks according to the motion trajectory characteristics and cutting simulation information of different blocks of the workpiece. The present invention is an auxiliary device that can be built to run independently of a machine tool control system, or can be used as a sub-unit of a machine tool control system to operate in the machine tool control system.

Description

工具機控制指令與參數的自動生成裝置及其方法 Device and method for automatically generating machine tool control instructions and parameters

本發明有關於一種工具機中控制指令與參數的自動生成裝置以及自動生成方法,特別是指將加工件通過事先的模擬分析演算,針對各區塊不同的運動軌跡特性與模擬切削品質來產生最佳化控制參數的生成裝置及生成方法。 The invention relates to an automatic generating device and an automatic generating method of control instructions and parameters in a machine tool, and particularly to generating the most optimized machining target for different motion trajectory characteristics and simulated cutting quality of each block through prior simulation analysis and calculation. Generating device and method for optimizing control parameters.

請參閱圖1A所示習知工具機的數值控制,主要是在實際進行加工時,對於刀具的軌跡規劃與運動控制乃是在調機階段便以調整決定一加工參數,因此,在面對多樣性的加工工件內含各種不同特性的刀具軌跡時,僅能將加工品質與效率妥協於一組固定參數。 Please refer to the numerical control of the conventional machine tool shown in FIG. 1A, mainly during the actual processing, the trajectory planning and motion control of the tool are determined during the tuning phase to determine a processing parameter. Therefore, When the machining workpiece contains various tool trajectories with different characteristics, the machining quality and efficiency can only be compromised with a fixed set of parameters.

請參閱圖1B所示習知另一種工具機的數值控制,可依據特定的刀具路徑條件,或是以事先設定工件加工的類型條件,切換所使用的參數來解決固定參數所造成加工品質與效率的限制。然而,此種切換使用加工參數條件的方式,亦不過只是另一個在調機時期便已決定或甚至是內部不可變動的固定參數。 Please refer to Figure 1B for the numerical control of another machine tool. It can switch the parameters used to solve the processing quality and efficiency caused by the fixed parameters according to the specific tool path conditions or the type conditions of the workpiece processing. limits. However, this method of switching the use of processing parameter conditions is just another fixed parameter that has been decided or even internally immutable during the tuning period.

為解決單一參數或固定條件下所決定選用的參數條件,造成加工品質與效率有所限制,請參閱圖1C所示習知再一種工具機的數值控制,此種方式乃是提供一組高速高精控制指令讓使用者可視需求改變預設的加工參數,竟自行將加工參數***於工件程式中,讓使用者實際在加工過程中,依據習知的經驗或經過反復測試修改,以求最佳化的加工結果。 In order to solve the parameter conditions determined under a single parameter or a fixed condition, which limits the processing quality and efficiency, please refer to the conventional numerical control of a machine tool shown in Figure 1C. This method is to provide a set of high-speed high-speed The precise control instruction allows users to change the preset processing parameters according to their needs, and actually inserts the processing parameters into the workpiece program by themselves, allowing the user to modify the actual processing process based on known experience or repeated tests to optimize Results of processing.

然而前述三種習知工具機的數值控制方法,就算能部份解決固定參數與實際加工品質與效率之間的妥協,但仍無法避免經過反復實際測試加工修改所帶來時間與資源上的浪費。 However, even though the three numerical control methods of the conventional machine tools can partially solve the compromise between the fixed parameters and the actual processing quality and efficiency, it still cannot avoid the waste of time and resources caused by repeated actual test processing modifications.

本發明的主要目的在於提供一種採用新型演算技術的控制指令與參數生裝置及方法,協助使用者快速地依據不同工件程式或是工件中不同區塊的加工軌跡特性與加工幾何精度、表面精度的要求,在相對應不同區塊的工件程式中,最佳化對應區塊中的相關加工參數。讓傳統工具機數值控制中能夠對加工參數進行調整,同時具備彈性、最佳化與效率。 The main purpose of the present invention is to provide a control instruction and parameter generating device and method using a new algorithm, which helps users quickly follow the processing trajectory characteristics, processing geometric accuracy, and surface accuracy of different workpiece programs or different blocks in the workpiece. It is required to optimize the relevant processing parameters in the corresponding block in the workpiece programs corresponding to different blocks. The traditional machine tool numerical control can adjust the processing parameters, and at the same time has flexibility, optimization and efficiency.

本發明的次要目的在於讓使用者快速完成調整之後,提供精確的即時刀具加工路徑與切削模擬,並以立即預覽方式驗證高速高精控制指令所進行加工參數最佳化的結果。 The secondary purpose of the present invention is to allow users to quickly and accurately adjust the machining path and provide cutting simulation after the adjustment is completed, and to verify the results of the optimization of the machining parameters performed by the high-speed and high-precision control instructions in an immediate preview manner.

為達前述目的,本發明工具機控制指令與參數的自動生成裝置包含:一解譯模組、一規劃模組、一參數模組、一模擬分析模組以及一最佳化演算模組。上述解譯模組讀入一工件程式,並解譯上述工件程式產生一加工件的軌跡座標。上述規劃模組電性連接於上述解譯模組,用以取得上述軌跡座標,並依據上述軌跡座標插值演算產生刀具加工的一路徑訊息與一速度訊息。上述參數模組內建有複數個加工參數的設定值;上述模擬分析模組電性連接於上述規劃模組以及參數模組,用以取得上述路徑訊息、速度訊息以及加工參數,並依據上述路徑訊息與速度訊息分析出刀具的運動軌跡特性,並產生切削模擬訊息。上述最佳化演算模組電性連接於上述模擬分析模組以及解譯模組,用以取 得上述運動軌跡特性以及切削模擬訊息,並依上述加工件不同區塊所採用的運動軌跡特性與切削模擬訊息,生成對應區塊的最佳化控制參數。 To achieve the foregoing object, the automatic generating device for control instructions and parameters of the machine tool of the present invention includes: an interpretation module, a planning module, a parameter module, a simulation analysis module, and an optimization algorithm module. The interpretation module reads a workpiece program and interprets the workpiece program to generate a trajectory coordinate of a workpiece. The planning module is electrically connected to the interpretation module to obtain the trajectory coordinates, and generate a path information and a speed information for tool processing according to the trajectory coordinate interpolation calculation. The above-mentioned parameter module has a plurality of set values of processing parameters built-in; the above-mentioned simulation analysis module is electrically connected to the above-mentioned planning module and parameter module, for obtaining the path information, speed information and processing parameters, and according to the path The information and speed information analyze the characteristics of the tool's motion path and generate cutting simulation information. The optimization algorithm module is electrically connected to the simulation analysis module and the interpretation module for obtaining Obtain the above-mentioned motion trajectory characteristics and cutting simulation information, and generate optimized control parameters of corresponding blocks according to the above-mentioned motion trajectory characteristics and cutting simulation information used in different blocks of the workpiece.

其中,上述最佳化控制參數是由一內建於上述最佳化演算模組中的資料庫自動擷取或是由一使用者手動微調所生成。 The optimization control parameters are automatically acquired by a database built in the optimization calculation module or generated by a user's manual fine-tuning.

此外,上述最佳化控制參數後續將傳送至上述解譯模組,由上述解譯模組將上述工件程式與最佳控制參數共解譯出上述加工件的最佳化軌跡座標。後續,上述解譯模組可進一步將上述最佳化軌跡座標傳輸給上述規劃模組進行第二次插值演算與速度規劃。亦或是將上述最佳化軌跡座標傳輸給一伺服執行單元進行實際產品加工。 In addition, the above-mentioned optimized control parameters will be subsequently transmitted to the above-mentioned interpretation module, and the above-mentioned workpiece program and the best control parameters will be jointly interpreted by the above-mentioned interpretation module to obtain the optimized trajectory coordinates of the machining part. Subsequently, the interpretation module can further transmit the optimized trajectory coordinates to the planning module for a second interpolation calculation and speed planning. Or the above-mentioned optimized trajectory coordinates are transmitted to a servo execution unit for actual product processing.

於一可行實施例中,上述最佳化演算模組可在加工件的每一區塊生成對應的最佳化控制參數。於另一可行實施例中,上述最佳化演算模組亦可在加工件的局部區塊生成對應的最佳化控制參數。 In a feasible embodiment, the above-mentioned optimization calculation module can generate corresponding optimization control parameters in each block of the workpiece. In another feasible embodiment, the above-mentioned optimization calculation module may also generate corresponding optimization control parameters in a local block of the workpiece.

再者,上述運動軌跡特性包含:加工軌跡之角度、加工軌跡之角度變化程度、加工軌跡之曲率、加工軌跡之曲率變化、小線段近似為曲線之擬和弦誤差(Chord Error)、在轉角與曲線軌跡在急衝度(Jerk)與精度要求下之運動速度、加速度上限,相鄰軌跡之曲率、角度變化一致性的其中至少一種資料。 Furthermore, the aforementioned motion trajectory characteristics include: the angle of the machining trajectory, the degree of the angular change of the machining trajectory, the curvature of the machining trajectory, the curvature change of the machining trajectory, the chord error of the small line approximating a curve, and the corner and curve At least one kind of data of the trajectory's speed (Jerk) and the accuracy requirements of the trajectory, the upper limit of acceleration, and the consistency of the curvature and angle of adjacent trajectories.

上述最佳化控制參數包含:加減速時間、最短加減速時間、切線與向心加速度上限、曲線與單軸急衝度上限、小線段近似為曲線之擬和弦誤差上限、直線轉角所允許之誤差上限與誤差控制下之曲線擬和功能開關、連續小線段近似為圓弧功能開關、進階伺服控制補償機制之調整與開關、伺服前饋控制之調整與開關的其中至少一種。 The above optimization control parameters include: acceleration / deceleration time, minimum acceleration / deceleration time, upper limit of tangent and centripetal acceleration, upper limit of curve and single axis impulse, upper limit of pseudo-chord error of small line approximate curve, and allowable error of straight angle At least one of curve fitting and function switching, continuous small line segments under upper limit and error control, arc-shaped function switching, advanced servo control compensation mechanism adjustment and switch, and servo feedforward control adjustment and switch.

上述模擬分析模組用以產生模擬加工工件之表面精度或表面光潔度評估、模擬加工工件之過切與欠切預測、模擬加工工件之振紋或異常紋路預測的其中至少一種工件加工表面特性的分析資料。 The simulation analysis module is used to generate at least one of the workpiece surface characteristics analysis to simulate the surface accuracy or surface finish evaluation of the simulated machining workpiece, simulate the overcut and undercut prediction of the machining workpiece, and simulate the vibration or abnormal grain prediction of the machining workpiece. data.

上述自動生成裝置進一步包含有一預覽模組,上述預覽模組電性連接於上述模擬分析模組取得上述切削模擬訊息,用以顯示預覽的切削加工模擬路徑。 The automatic generating device further includes a preview module. The preview module is electrically connected to the simulation analysis module to obtain the cutting simulation information, and is used to display the preview cutting simulation path.

另外,本發明工具機控制指令與參數的自動生成方法包含:一解譯步驟,解譯一工件程式產生出一加工件的軌跡座標;一規劃步驟,對上述軌跡座標進行插值演算,並產生刀具加工的一路徑訊息與一速度訊息;一模擬分析步驟,由上述路徑訊息與速度訊息分析出刀具的運動軌跡特性,並同時產生切削模擬訊息;一最佳化演算步驟,依上述加工件不同區塊所採用的運動軌跡特性與切削模擬訊息,生成對應區塊的最佳化控制參數。 In addition, the method for automatically generating control instructions and parameters of the machine tool of the present invention includes: an interpreting step, which interprets a workpiece program to generate the trajectory coordinates of a machined part; a planning step, which performs interpolation calculation on the trajectory coordinates and generates a tool A path information and a speed information for processing; a simulation analysis step, which analyzes the tool's movement trajectory characteristics from the above path information and speed information, and generates cutting simulation information at the same time; an optimization calculation step, according to the above-mentioned different areas of the workpiece The motion trajectory characteristics and cutting simulation information used by the block generate the optimized control parameters of the corresponding block.

於一較佳實施例中,上述最佳化演算步驟之前進一步包含一預覽步驟,顯示預覽的切削加工模擬路徑。且上述最佳化演算步驟之後進一步包含一二次解譯步驟,對上述工件程式與最佳化控制參數進行插值演算,產生出上述加工件的最佳化軌跡座標。 In a preferred embodiment, the optimization calculation step further includes a preview step before displaying the previewed cutting simulation path. In addition, the optimization calculation step further includes one or two interpretation steps, and the interpolation calculation is performed on the workpiece program and the optimization control parameters to generate the optimized trajectory coordinates of the machining part.

其中,上述最佳化演算步驟是由一資料庫自動擷取、一使用者手動微調或是同時經由資料庫自動擷取與使用者手動微調的其中一種方式生成上述最佳化控制參數。 The optimization calculation step is to generate the optimization control parameters by one of the methods of automatic retrieval by a database, manual fine-tuning by a user, or automatic retrieval by a database and manual fine-tuning by the user at the same time.

上述模擬分析步驟判定上述運動軌跡特性的加工軌跡之角度、加工軌跡之角度變化程度、加工軌跡之曲率、加工軌跡之曲率變化、小線段近似為曲線之擬和弦誤差(Chord Error)、在轉角與曲線軌跡在急衝度(Jerk)與精度要求 下之運動速度、加速度上限,相鄰軌跡之曲率、角度變化一致性的其中至少一種資料。 The simulation analysis step determines the angle of the machining trajectory, the degree of the angular change of the machining trajectory, the curvature of the machining trajectory, the curvature of the machining trajectory, the chord error of the small line approximating a curve, and the Curve trajectory in Jerk and accuracy requirements At least one of the following information is the speed of movement, the upper limit of acceleration, and the consistency of the curvature and angle of adjacent trajectories.

上述模擬分析步驟經由上述軌跡座標的插值演算後,估算與分析加工路徑軌跡、加工路徑軌跡曲率、加工路徑軌跡曲率變化率、加工路徑軌跡角度、加工路徑軌跡角度變化率、加工路徑軌跡與原工件程式之誤差、相鄰加工路徑軌跡之相似性含梯度變化率、距離變化率的其中至少一種幾何資料。 After the simulation analysis step is performed through the interpolation calculation of the trajectory coordinates, the processing path trajectory, the processing path trajectory curvature, the processing path trajectory curvature change rate, the processing path trajectory angle, the processing path trajectory angle change rate, the processing path trajectory and the original workpiece are estimated and analyzed. The error of the program and the similarity of the trajectories of adjacent processing paths include at least one of geometrical data of gradient change rate and distance change rate.

上述模擬分析步驟經由上述最佳化軌跡座標的插值演算後,估算與分析經由上述規劃模組規劃出實際運動速度後之進給速度、進給加速度、進給急衝度、相鄰加工路徑進給速度一致性、實際加工之輪廓誤差、實際加工之加工時間的其中至少一種運動資料。 The above simulation analysis step is based on the interpolation calculation of the optimized trajectory coordinates, and then estimates and analyzes the feed speed, feed acceleration, feed rush, and adjoining processing path after planning the actual motion speed through the planning module. Give at least one kind of motion data of speed consistency, actual contour error, and actual processing time.

本發明特點在於依據刀具加工路徑之幾何分析與內建刀路特性資料庫等輔助功能與單元,能自動判別出不同工件刀具路徑之特性,並同時參酌使用者指定之加工幾何精度、表面精度之要求與設定之相關加工參數,即時模擬計算出實際加工之刀具軌跡與精確之切削擬,以協助使用者快速地依據不同工件程式或工件中不同區塊之加工軌跡特性與加工幾何精度、表面精度之要求在相對應不同區塊之工件程式中彈性地最佳化該區塊相關之加工參數。 The feature of the invention is that it can automatically identify the characteristics of the tool path of different workpieces according to the auxiliary functions and units such as the geometric analysis of the tool processing path and the built-in tool path characteristic database, and at the same time refer to the processing geometric accuracy and surface accuracy specified by the user. Relevant processing parameters required and set, real-time simulation and calculation of the actual machining tool path and accurate cutting plan, to help users quickly follow the machining path characteristics and machining geometric accuracy and surface accuracy of different workpiece programs or different blocks in the workpiece The requirement is to flexibly optimize the processing parameters related to the block in the workpiece programs corresponding to different blocks.

本發明採事前模擬並自動生成最佳化之高速高精控制指令與參數,將可大幅降低或免除往復加工測試與調整所造成之時間與資源之浪費。且本發明自動依據各工件區塊不同刀具路徑與加工品質分別以高速高精控制指令與參數加以調整,進一步免除了工件整體加工品質對於固定控制參數的妥協。 The invention simulates and automatically generates optimized high-speed and high-precision control instructions and parameters before the event, which can greatly reduce or eliminate the waste of time and resources caused by reciprocating machining testing and adjustment. In addition, the invention automatically adjusts the high-speed and high-precision control instructions and parameters according to the different tool paths and processing quality of each workpiece block, thereby further eliminating the compromise of the overall processing quality of the workpiece to the fixed control parameters.

1‧‧‧自動生成裝置 1‧‧‧ automatic generation device

10‧‧‧解譯模組 10‧‧‧ Interpretation Module

11‧‧‧規劃模組 11‧‧‧Planning Module

12‧‧‧參數模組 12‧‧‧parameter module

13‧‧‧模擬分析模組 13‧‧‧analysis module

14‧‧‧預覽模組 14‧‧‧ Preview Module

15‧‧‧最佳化演算模組 15‧‧‧ Optimization Algorithm Module

16‧‧‧工件程式 16‧‧‧Workpiece program

17‧‧‧伺服執行單元 17‧‧‧Servo execution unit

18‧‧‧最佳化控制參數 18‧‧‧Optimized control parameters

P1‧‧‧解譯步驟 P1‧‧‧Interpretation steps

P2‧‧‧規劃步驟 P2‧‧‧ planning steps

P3‧‧‧模擬分析步驟 P3‧‧‧Simulation and analysis steps

P4‧‧‧預覽步驟 P4‧‧‧Preview steps

P5‧‧‧最佳化演算步驟 P5‧‧‧ optimization algorithm steps

P6‧‧‧二次解譯步驟 P6‧‧‧Second Interpretation Steps

圖1A至圖1C為習知三種不同工具機內建數值控制模組的方塊圖;圖2為本發明工具機控制指令與參數自動生成裝置的方塊圖;圖3為本發明工具機控制指令與參數自動生成方法的流程圖;圖4為本發明模擬分析模組產生刀具加工路徑模擬的示意圖;圖5為本發明模擬分析模組產生加工切削模擬的示意圖;圖6為本發明最佳化演算模組對刀具加工路徑特性判別的示意圖;圖7為本發明最佳化演算模組自動生成最佳化控制參數的示意圖。 1A to 1C are block diagrams of three types of machine tool built-in numerical control modules; FIG. 2 is a block diagram of a machine tool control instruction and parameter automatic generating device of the present invention; and FIG. 3 is a machine tool control instruction and parameter of the present invention. Flow chart of automatic parameter generation method; FIG. 4 is a schematic diagram of a tool cutting path simulation generated by the simulation analysis module of the present invention; FIG. 5 is a schematic diagram of a machining cutting simulation generated by the simulation analysis module of the present invention; FIG. 6 is an optimization calculation of the present invention Schematic diagram of the module's discrimination of tool processing path characteristics; FIG. 7 is a schematic diagram of the optimization algorithm module of the present invention automatically generating optimized control parameters.

茲為便於更進一步對本發明之構造、使用及其特徵有更深一層明確、詳實的認識與瞭解,爰舉出較佳實施例,配合圖式詳細說明如下: In order to facilitate a deeper and clearer and more detailed understanding and understanding of the structure, use and characteristics of the present invention, the preferred embodiments are given below, and the detailed description in conjunction with the drawings is as follows:

請參閱圖2所示一較佳實施例,本發明自動生成裝置1乃可建置在工具機控制系統之外獨立運行的輔助裝置,或是可當作工具機控制系統的子單元,運作於工具機控制系統中。上述自動生成裝置1包含:一解譯模組10、一規劃模組11、一參數模組12、一模擬分析模組13、一預覽模組14以及一最佳化演算模組15等五部分。 Please refer to a preferred embodiment shown in FIG. 2. The automatic generating device 1 of the present invention is an auxiliary device that can be built independently of the machine tool control system, or can be used as a sub-unit of the machine tool control system and operates in Machine control system. The automatic generating device 1 includes: an interpretation module 10, a planning module 11, a parameter module 12, a simulation analysis module 13, a preview module 14, and an optimization algorithm module 15. .

其中,上述規劃模組11電性連接於上述解譯模組10,上述參數模組12電性連接於上述規劃模組11,上述模擬分析模組13電性連接於上述規劃模組11,上述預覽模組14電性連接於上述模擬分析模組13,而上述最佳化演算模組15分別上述模擬分析模組13以及解譯模組10電性連接。 The planning module 11 is electrically connected to the interpretation module 10, the parameter module 12 is electrically connected to the planning module 11, and the simulation analysis module 13 is electrically connected to the planning module 11. The preview module 14 is electrically connected to the simulation analysis module 13, and the optimization calculation module 15 is electrically connected to the simulation analysis module 13 and the interpretation module 10 respectively.

當一工件程式16傳輸至上述解譯模組10,上述解譯模組10將解譯上述工件程式16,並產生一加工件的軌跡座標,再將上述軌跡座標傳輸至上述規劃模組11。 When a workpiece program 16 is transmitted to the above-mentioned interpretation module 10, the above-mentioned interpretation module 10 will interpret the above-mentioned workpiece program 16 and generate a trajectory coordinate of a processed part, and then transmit the trajectory coordinate to the planning module 11.

上述規劃模組11於取得上述軌跡座標的資料後,將對上述軌跡座標進行插值演算,並產生刀具加工的一路徑訊息與一速度訊息,再將上述路徑訊息與速度訊息傳輸至上述模擬分析模組13。 After obtaining the data of the above-mentioned trajectory coordinates, the planning module 11 performs interpolation calculation on the above-mentioned trajectory coordinates, and generates a path information and a speed information for tool processing, and then transmits the path information and the speed information to the simulation analysis model. Group 13.

上述參數模組12內建有複數個不同加工件的加工參數的設定值,並將上述加工參數傳輸至上述模擬分析模組13。 The parameter module 12 has built-in setting values of processing parameters of a plurality of different processed parts, and transmits the processing parameters to the simulation analysis module 13.

上述模擬分析模組13於取得上述路徑訊息、速度訊息以及加工參數後,將依據上述路徑訊息與速度訊息分析出刀具的運動軌跡特性,並同時進行切削模擬訊息,後續再把上述運動軌跡特性以及切削模擬訊息傳輸至上述最佳化演算模組15。 After the simulation analysis module 13 obtains the path information, speed information, and processing parameters, it will analyze the motion trajectory characteristics of the tool according to the path information and speed information, and simultaneously perform cutting simulation information. Subsequently, the motion trajectory characteristics and The cutting simulation information is transmitted to the above-mentioned optimization calculation module 15.

上述預覽模組14於取得上述切削模擬訊息後,即可顯示預覽的切削加工模擬路徑。 After the preview module 14 obtains the cutting simulation information, the preview cutting simulation path can be displayed.

上述最佳化演算模組15於取得上述運動軌跡特性以及切削模擬訊息後,針對上述加工件不同區塊所採用的運動軌跡特性與切削模擬訊息,生成對應區塊的最佳化控制參數18。 After obtaining the motion trajectory characteristics and cutting simulation information, the optimization calculation module 15 generates optimization control parameters 18 corresponding to the motion trajectory characteristics and cutting simulation information used in different blocks of the workpiece.

其中,上述最佳化控制參數18是由一內建於上述最佳化演算模組15中的資料庫自動擷取或是由一使用者手動微調所生成。且上述最佳化演算模組15可在加工件的每一區塊生成對應的最佳化控制參數18,或者是上述最佳化演算模組15亦可在加工件的局部區塊生成對應的最佳化控制參數18。 The optimization control parameter 18 is automatically acquired by a database built in the optimization calculation module 15 or is manually generated by a user. In addition, the above-mentioned optimization algorithm module 15 can generate corresponding optimization control parameters 18 in each block of the workpiece, or the above-mentioned optimization algorithm module 15 can also generate corresponding parameters in local blocks of the workpiece. Optimize the control parameters 18.

此外,上述最佳化控制參數18後續將傳送至上述解譯模組10,由上述解譯模組10將上述工件程式16與最佳控制參數共解譯出上述加工件的最佳化軌跡座標。後續,上述解譯模組10可進一步將上述最佳化軌跡座標傳輸給上 述規劃模組11進行第二次插值演算,亦或是將上述最佳化軌跡座標傳輸給一伺服執行單元17進行實際產品加工。 In addition, the above-mentioned optimized control parameters 18 will be subsequently transmitted to the above-mentioned interpretation module 10, and the above-mentioned workpiece module 16 and the optimal control parameters will be used to interpret the optimized trajectory coordinates of the machining part by the above-mentioned interpretation module 10. . Subsequently, the above-mentioned interpretation module 10 may further transmit the above-mentioned optimized trajectory coordinates to the above The planning module 11 performs the second interpolation calculation, or transmits the optimized trajectory coordinates to a servo execution unit 17 for actual product processing.

於一可行實施例中,上述運動軌跡特性包含:加工軌跡之角度、加工軌跡之角度變化程度、加工軌跡之曲率、加工軌跡之曲率變化、小線段近似為曲線之擬和弦誤差(Chord Error)、在轉角與曲線軌跡在急衝度(Jerk)與精度要求下之運動速度、加速度上限,相鄰軌跡之曲率、角度變化一致性的其中至少一種資料。 In a feasible embodiment, the aforementioned motion trajectory characteristics include: the angle of the processing trajectory, the degree of change in the angle of the processing trajectory, the curvature of the processing trajectory, the curvature change of the processing trajectory, the quasi-chord error (Chord Error) of the small line approximating a curve, At least one kind of data of the rotation speed and the maximum trajectory of the curve and trajectory under the requirements of Jerk and accuracy, and the consistency of the curvature and angle changes of adjacent trajectories.

上述最佳化控制參數18包含:加減速時間、最短加減速時間、切線與向心加速度上限、曲線與單軸急衝度上限、小線段近似為曲線之擬和弦誤差上限、直線轉角所允許之誤差上限與誤差控制下之曲線擬和功能開關、連續小線段近似為圓弧功能開關、進階伺服控制補償機制之調整與開關、伺服前饋控制之調整與開關。 The above-mentioned optimization control parameters 18 include: acceleration / deceleration time, minimum acceleration / deceleration time, upper limit of tangent and centripetal acceleration, upper limit of curve and single axis impulse, upper limit of pseudo-chord error of small line approximate curve, allowable for straight angle The upper limit of the error and the curve control under the error control function switch, continuous small line segments are approximately arc function switch, adjustment and switch of advanced servo control compensation mechanism, adjustment and switch of servo feedforward control.

上述模擬分析模組13用以產生模擬加工工件之表面精度或表面光潔度評估、模擬加工工件之過切與欠切預測、模擬加工工件之振紋或異常紋路預測的其中至少一種工件加工表面特性的分析資料。 The simulation analysis module 13 is used to generate at least one of the machining surface characteristics of the workpiece to simulate the surface accuracy or surface finish evaluation of the simulated machining workpiece, the prediction of the overcut and undercut of the machining workpiece, and the prediction of the chatter or abnormal grain of the machining workpiece. Analyze the data.

請參閱圖3所示,於一較佳實施例中,本發明方法包含:一解譯步驟P1;一規劃步驟P2;一模擬分析步驟P3、一預覽步驟P4、一最佳化演算步驟P5以及一二次解譯步驟P6等六部分。 Please refer to FIG. 3. In a preferred embodiment, the method of the present invention includes: an interpretation step P1; a planning step P2; a simulation analysis step P3, a preview step P4, an optimization calculation step P5 and Interpret the six parts of step P6 once or twice.

其中,上述解譯步驟P1解譯一工件程式16產生出一加工件的軌跡座標;上述規劃步驟P2對上述軌跡座標進行插值演算,並產生刀具加工的一路徑訊息與一速度訊息。 Wherein, the above-mentioned interpreting step P1 interprets a workpiece program 16 to generate a trajectory coordinate of a machining part; the above-mentioned planning step P2 performs interpolation calculation on the trajectory coordinate, and generates a path information and a speed information of tool processing.

請參閱圖4及圖5所示,上述模擬分析步驟P3於讀取上述路徑訊息與速度訊息後,分析規劃出加工刀具的實際運動軌跡特性,並同時進行切削模擬訊息,隨後再由上述預覽步驟P4即時顯示預覽的切削加工模擬路徑。 Please refer to FIG. 4 and FIG. 5. After reading the path information and speed information, the simulation analysis step P3 analyzes and plans the actual motion trajectory characteristics of the machining tool, and simultaneously performs cutting simulation information. P4 shows the previewed cutting simulation path in real time.

其中,上述模擬分析步驟P3判定上述運動軌跡特性的加工軌跡之角度、加工軌跡之角度變化程度、加工軌跡之曲率、加工軌跡之曲率變化、小線段近似為曲線之擬和弦誤差(Chord Error)、在轉角與曲線軌跡在急衝度(Jerk)與精度要求下之運動速度、加速度上限,相鄰軌跡之曲率、角度變化一致性的其中至少一種資料。 The simulation analysis step P3 determines the angle of the machining trajectory, the degree of the angular change of the machining trajectory, the curvature of the machining trajectory, the curvature of the machining trajectory, the quasi-chord error of the small line approximated to the curve, At least one kind of data of the rotation speed and the maximum trajectory of the curve and trajectory under the requirements of Jerk and accuracy, and the consistency of the curvature and angle changes of adjacent trajectories.

請參閱圖6及圖7所示,上述最佳化演算步驟P5依上述加工件不同區塊所採用的運動軌跡特性與切削模擬訊息,選出上述加工件加工路徑不同的特性,自動生成對應區塊(前部曲塊或部分區塊)的最佳化控制參數18。 Please refer to FIG. 6 and FIG. 7. The above optimization calculation step P5 automatically selects the different characteristics of the machining path of the machining part according to the motion trajectory characteristics and cutting simulation information used in the different blocks of the machining part, and automatically generates corresponding blocks. (Precursor block or partial block) optimization control parameter 18.

如圖所示,上述最佳化演算步驟P5是由一資料庫自動擷取生成上述最佳化控制參數18。然而此僅用為方便舉例說明之用,亦即上述最佳化演算步驟P5亦可由一使用者手動微調生成上述最佳化控制參數18,或者是同時經由上述資料庫的自動擷取與使用者的手動微調來生成上述最佳化控制參數18。 As shown in the figure, the optimization calculation step P5 is automatically obtained by a database to generate the optimization control parameter 18. However, this is only for convenience of illustration, that is, the above optimization calculation step P5 can also be manually fine-tuned by a user to generate the above-mentioned optimization control parameter 18, or it can be automatically retrieved from the database at the same time as the user. Manual fine-tuning to generate the optimized control parameters 18 described above.

最後,上述二次解譯步驟P6對上述工件程式16與最佳化控制參數18進行插值演算,產生出上述加工件的最佳化軌跡座標。 Finally, the second interpretation step P6 performs interpolation calculation on the workpiece program 16 and the optimization control parameter 18 to generate the optimized trajectory coordinates of the workpiece.

其中,上述模擬分析步驟P3經由上述軌跡座標的插值演算後,估算與分析加工路徑軌跡、加工路徑軌跡曲率、加工路徑軌跡曲率變化率、加工路徑軌跡角度、加工路徑軌跡角度變化率、加工路徑軌跡與原工件程式之誤差、相鄰加工路徑軌跡之相似性含梯度變化率、距離變化率的其中至少一種幾何資料。 Wherein, the above-mentioned simulation analysis step P3 estimates and analyzes the processing path trajectory, the processing path trajectory curvature, the processing path trajectory curvature change rate, the processing path trajectory angle, the processing path trajectory angle change rate, and the processing path trajectory after interpolation calculation of the trajectory coordinates. The error from the original workpiece program and the similarity of the adjacent machining path trajectories include at least one of geometric data of gradient change rate and distance change rate.

另外,若上述模擬分析步驟P3經由上述最佳化軌跡座標的插值演算後,估算與分析經由上述規劃模組11規劃出實際運動速度後之進給速度、進給加速度、進給急衝度、相鄰加工路徑進給速度一致性、實際加工之輪廓誤差、實際加工之加工時間的其中至少一種運動資料。 In addition, if the simulation analysis step P3 is performed through the interpolation calculation of the optimized trajectory coordinates, the feed speed, the feed acceleration, the feed rush, and the feed speed after the actual motion speed is planned through the planning module 11 are estimated and analyzed. At least one of the movement data of the feed speed consistency of adjacent processing paths, the contour error of the actual processing, and the processing time of the actual processing.

以上所舉實施例,僅用為方便說明本發明並非加以限制,在不偏離本發明精神範疇,熟悉此一行業技藝人士依本發明申請專利範圍及發明說明所作之各種簡易變形與修飾,均仍應含括於以下申請專利範圍中。 The above-mentioned embodiments are only used for the convenience of explanation of the present invention and are not limited. Without departing from the spirit of the present invention, various simple deformations and modifications made by those skilled in the industry in accordance with the scope of patent application and invention description of the present invention are still Should be included in the scope of patent applications below.

Claims (19)

一種工具機控制指令與參數的自動生成裝置,包含:一解譯模組,讀入一工件程式,並解譯上述工件程式產生一加工件的軌跡座標;一規劃模組,電性連接於上述解譯模組,用以取得上述軌跡座標,並依據上述軌跡座標插值演算產生刀具加工的一路徑訊息與一速度訊息;一參數模組,內建有複數個不同加工件的加工參數;一模擬分析模組,電性連接於上述規劃模組與參數模組,用以取得上述路徑訊息、速度訊息以及加工參數,並依據上述路徑訊息與速度訊息分析出刀具的運動軌跡特性,並產生切削模擬訊息;一最佳化演算模組,電性連接於上述模擬分析模組以及解譯模組,用以取得上述運動軌跡特性以及切削模擬訊息,並依上述加工件不同區塊所採用的運動軌跡特性與切削模擬訊息,生成對應區塊的最佳化控制參數;以及其中,上述最佳化控制參數將傳送至上述解譯模組,由上述解譯模組將上述工件程式與最佳控制參數共解譯出上述加工件的最佳化軌跡座標。An automatic generating device for machine tool control instructions and parameters includes: an interpreting module, which reads a workpiece program and interprets the workpiece program to generate a trajectory coordinate of a machining part; a planning module, which is electrically connected to the above An interpretation module for obtaining the above-mentioned trajectory coordinates, and generating a path information and a speed information of tool processing according to the above-mentioned trajectory coordinate interpolation calculation; a parameter module, which has a plurality of different processing parameters built-in; a simulation The analysis module is electrically connected to the planning module and the parameter module to obtain the path information, speed information, and processing parameters, and analyzes the motion trajectory characteristics of the tool according to the path information and speed information, and generates a cutting simulation. Information; an optimization algorithm module, electrically connected to the simulation analysis module and the interpretation module, to obtain the above-mentioned motion trajectory characteristics and cutting simulation information, and according to the motion trajectories used in different blocks of the machining part Characteristics and cutting simulation information to generate optimized control parameters of the corresponding block; and wherein the above-mentioned optimized control parameters Will be sent to the above interpretation module, the module is interpreted by the program and the workpiece, the optimal control parameters were the best interpretation of the machining path grid member. 根據申請專利範圍第1項所述工具機控制指令與參數的自動生成裝置,其中,上述解譯模組進一步將上述最佳化軌跡座標傳輸給上述規劃模組進行第二次插值演算。According to the automatic generating device for the control instructions and parameters of the machine tool according to item 1 of the scope of the patent application, the interpretation module further transmits the optimized trajectory coordinates to the planning module for a second interpolation calculation. 根據申請專利範圍第1項所述工具機控制指令與參數的自動生成裝置,其中,上述解譯模組進一步將上述最佳化軌跡座標傳輸給一伺服執行單元進行實際產品加工。According to the automatic generating device for the control instructions and parameters of the machine tool according to item 1 of the scope of the patent application, the interpretation module further transmits the optimized trajectory coordinates to a servo execution unit for actual product processing. 根據申請專利範圍第1項所述工具機控制指令與參數的自動生成裝置,其中,上述自動生成裝置進一步包含一預覽模組,電性連接於上述模擬分析模組取得上述切削模擬訊息,用以顯示預覽的切削加工模擬路徑。According to the automatic generating device for the control instructions and parameters of the machine tool according to item 1 of the scope of the patent application, the automatic generating device further includes a preview module electrically connected to the simulation analysis module to obtain the cutting simulation information for Show preview cutting simulation path. 根據申請專利範圍第1項所述工具機控制指令與參數的自動生成裝置,其中,上述最佳化演算模組在加工件的每一區塊生成對應的最佳化控制參數。According to the automatic generating device for the control instructions and parameters of the machine tool according to Item 1 of the scope of the patent application, the optimization algorithm module generates a corresponding optimized control parameter in each block of the workpiece. 根據申請專利範圍第1項所述工具機控制指令與參數的自動生成裝置,其中,上述最佳化演算模組在加工件的局部區塊生成對應的最佳化控制參數。According to the automatic generating device for the control instructions and parameters of the machine tool according to item 1 of the scope of the patent application, the optimization algorithm module generates corresponding optimized control parameters in a local block of the workpiece. 根據申請專利範圍第1項所述工具機控制指令與參數的自動生成裝置,其中,上述最佳化控制參數是由一內建於上述最佳化演算模組中的資料庫自動擷取或是由一使用者手動微調所生成。According to the automatic generating device for the control instructions and parameters of the machine tool according to item 1 of the scope of the patent application, the optimization control parameters are automatically retrieved from a database built in the optimization algorithm module or Generated by a user's manual fine-tuning. 根據申請專利範圍第1項所述工具機控制指令與參數的自動生成裝置,其中,上述運動軌跡特性包含:加工軌跡之角度、加工軌跡之角度變化程度、加工軌跡之曲率、加工軌跡之曲率變化、小線段近似為曲線之擬和弦誤差(Chord Error)、在轉角與曲線軌跡在急衝度(Jerk)與精度要求下之運動速度、加速度上限,相鄰軌跡之曲率、角度變化一致性的其中至少一種資料。According to the automatic generating device for the control instructions and parameters of the machine tool according to item 1 of the scope of the patent application, the motion trajectory characteristics include: the angle of the machining trajectory, the degree of the angular change of the machining trajectory, the curvature of the machining trajectory, and the curvature change of the machining trajectory The small line segment is approximated by the chord error of the curve, the upper limit of the speed and acceleration of the movement of the corner and the curve trajectory under the Jerk and accuracy requirements, and the consistency of the curvature and angle changes of adjacent trajectories. At least one source. 根據申請專利範圍第1項所述工具機控制指令與參數的自動生成裝置,其中,上述最佳化控制參數包含:加減速時間、最短加減速時間、切線與向心加速度上限、曲線與單軸急衝度上限、小線段近似為曲線之擬和弦誤差上限、直線轉角所允許之誤差上限與誤差控制下之曲線擬和功能開關、連續小線段近似為圓弧功能開關、進階伺服控制補償機制之調整與開關、伺服前饋控制之調整與開關的其中至少一種。The automatic generating device for machine tool control instructions and parameters according to item 1 of the scope of patent application, wherein the above-mentioned optimized control parameters include: acceleration / deceleration time, minimum acceleration / deceleration time, upper limit of tangent and centripetal acceleration, curve and single axis Upper limit of sharpness, small line segment is approximately the upper limit of quasi-chord error of the curve, upper limit of error allowed by the straight line angle and curve fitting and function switch under error control, continuous small line is approximately arc function switch, advanced servo control compensation mechanism At least one of adjustment and switching of servo feedforward control and adjustment and switching of servo feedforward control. 根據申請專利範圍第1項所述工具機控制指令與參數的自動生成裝置,其中,上述模擬分析模組用以產生模擬加工工件之表面精度或表面光潔度評估、模擬加工工件之過切與欠切預測、模擬加工工件之振紋或異常紋路預測的其中至少一種工件加工表面特性的分析資料。According to the automatic generating device for the control instructions and parameters of the machine tool according to item 1 of the scope of the patent application, the simulation analysis module is used to generate the surface accuracy or surface finish evaluation of the simulated machining workpiece, and the overcutting and undercutting of the machining workpiece. Analytical data for predicting and simulating at least one of the workpiece's chattering or abnormal texture prediction. 一種工具機控制指令與參數的自動生成方法,包含:一解譯步驟,解譯一工件程式產生出一加工件的軌跡座標;一規劃步驟,對上述軌跡座標進行插值演算,並產生刀具加工的一路徑訊息與一速度訊息;一模擬分析步驟,由上述路徑訊息、上述速度訊息以及內建於一參數模組的加工參數來分析出刀具的運動軌跡特性,並同時產生切削模擬訊息;一最佳化演算步驟,依上述加工件不同區塊所採用的運動軌跡特性與切削模擬訊息,生成對應區塊的最佳化控制參數。An automatic generation method of machine tool control instructions and parameters includes: an interpreting step, which interprets a workpiece program to generate the trajectory coordinates of a machined part; a planning step, which performs interpolation calculation on the trajectory coordinates and generates a tool machining A path information and a speed information; a simulation analysis step, the path information of the tool is analyzed from the path information, the speed information and the processing parameters built in a parameter module, and cutting simulation information is generated at the same time; The optimization calculation step generates the optimal control parameters of the corresponding block according to the motion trajectory characteristics and cutting simulation information used in the different blocks of the above-mentioned machined part. 根據申請專利範圍第11項所述工具機控制指令與參數的自動生成方法,其中,上述最佳化演算步驟之前進一步包含一預覽步驟,顯示預覽的切削加工模擬路徑。According to the method for automatically generating the control instructions and parameters of the machine tool according to item 11 of the scope of the patent application, the optimization calculation step further includes a preview step before the preview of the cutting simulation simulation path. 根據申請專利範圍第11項所述工具機控制指令與參數的自動生成方法,其中,上述最佳化演算步驟之後進一步包含一二次解譯步驟,對上述工件程式與最佳化控制參數進行插值演算,產生出上述加工件的最佳化軌跡座標。According to the method for automatically generating control instructions and parameters of a machine tool according to item 11 of the scope of the patent application, wherein the optimization calculation step further includes a secondary interpretation step to interpolate the workpiece program and the optimization control parameters. The calculation results in the optimized trajectory coordinates of the machined part. 根據申請專利範圍第11項所述工具機控制指令與參數的自動生成方法,其中,上述最佳化演算步驟是由一資料庫自動擷取生成上述最佳化控制參數。According to the method for automatically generating control instructions and parameters of a machine tool according to item 11 of the scope of the patent application, wherein the optimization calculation step is to automatically retrieve and generate the optimization control parameters from a database. 根據申請專利範圍第11項所述工具機控制指令與參數的自動生成方法,其中,上述最佳化演算步驟是由一使用者手動微調生成上述最佳化控制參數。According to the method for automatically generating control instructions and parameters of a machine tool according to item 11 of the scope of the patent application, wherein the optimization calculation step is a user to manually fine-tune and generate the optimization control parameters. 根據申請專利範圍第11項所述工具機控制指令與參數的自動生成方法,其中,上述最佳化演算步驟是同時經由一資料庫自動擷取與一使用者手動微調來生成上述最佳化控制參數。According to the method for automatically generating machine tool control instructions and parameters according to item 11 of the scope of the patent application, wherein the optimization calculation step is to simultaneously generate the optimization control through a database automatic acquisition and a user manual fine-tuning. parameter. 根據申請專利範圍第11項所述工具機控制指令與參數的自動生成方法,其中,上述模擬分析步驟判定上述運動軌跡特性的加工軌跡之角度、加工軌跡之角度變化程度、加工軌跡之曲率、加工軌跡之曲率變化、小線段近似為曲線之擬和弦誤差(Chord Error)、在轉角與曲線軌跡在急衝度(Jerk)與精度要求下之運動速度、加速度上限,相鄰軌跡之曲率、角度變化一致性的其中至少一種資料。According to the automatic generation method of machine tool control instructions and parameters according to item 11 of the scope of the patent application, the simulation analysis step determines the angle of the processing trajectory of the motion trajectory characteristic, the degree of angular change of the processing trajectory, the curvature of the processing trajectory, and processing. The curvature change of the trajectory, the small line segment is approximated by the chord error of the curve (Chord Error), the movement speed and acceleration limit under the corner and curve trajectory under the Jerk and accuracy requirements, and the curvature and angle change of the adjacent trajectory Consistency of at least one of these sources. 根據申請專利範圍第11項所述工具機控制指令與參數的自動生成方法,其中,上述模擬分析步驟經由上述軌跡座標的插值演算後,估算與分析加工路徑軌跡、加工路徑軌跡曲率、加工路徑軌跡曲率變化率、加工路徑軌跡角度、加工路徑軌跡角度變化率、加工路徑軌跡與原工件程式之誤差、相鄰加工路徑軌跡之相似性含梯度變化率、距離變化率的其中至少一種幾何資料。According to the method for automatically generating control instructions and parameters of a machine tool according to item 11 of the scope of the patent application, the simulation analysis step is to estimate and analyze the machining path trajectory, the machining path trajectory curvature, and the machining path trajectory after the interpolation calculation of the trajectory coordinates. The curvature change rate, the machining path trajectory angle, the machining path trajectory angle change rate, the error between the machining path trajectory and the original workpiece program, and the similarity of adjacent machining path trajectories include at least one of geometric data of gradient change rate and distance change rate. 根據申請專利範圍第11項所述工具機控制指令與參數的自動生成方法,其中,上述模擬分析步驟經由上述最佳化軌跡座標的插值演算後,估算與分析經由上述規劃模組規劃出實際運動速度後之進給速度、進給加速度、進給急衝度、相鄰加工路徑進給速度一致性、實際加工之輪廓誤差、實際加工之加工時間的其中至少一種運動資料。According to the automatic generation method of machine tool control instructions and parameters according to item 11 of the scope of the patent application, wherein the simulation analysis step is performed by the interpolation calculation of the optimized trajectory coordinates, the estimation and analysis are used to plan the actual motion through the planning module. At least one kind of motion data of feed speed, feed acceleration, feed jerk, consistency of feed speed of adjacent processing paths, contour error of actual processing, and processing time of actual processing.
TW105101149A 2016-01-14 2016-01-14 Device and method for automatically generating machine tool control instructions and parameters TWI641931B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105101149A TWI641931B (en) 2016-01-14 2016-01-14 Device and method for automatically generating machine tool control instructions and parameters
CN201610987373.1A CN107065779B (en) 2016-01-14 2016-11-10 Automatic generation device and method for machine tool control command and parameter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105101149A TWI641931B (en) 2016-01-14 2016-01-14 Device and method for automatically generating machine tool control instructions and parameters

Publications (2)

Publication Number Publication Date
TW201725458A TW201725458A (en) 2017-07-16
TWI641931B true TWI641931B (en) 2018-11-21

Family

ID=59618569

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105101149A TWI641931B (en) 2016-01-14 2016-01-14 Device and method for automatically generating machine tool control instructions and parameters

Country Status (2)

Country Link
CN (1) CN107065779B (en)
TW (1) TWI641931B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6705768B2 (en) * 2017-04-06 2020-06-03 ファナック株式会社 Information processing equipment
CN109960832A (en) * 2017-12-22 2019-07-02 财团法人工业技术研究院 Tune machine method and its tune machine system and simulation unit and emulation mode
TWI684841B (en) * 2018-09-10 2020-02-11 捷準科技股份有限公司 Program code generating method and device of multi-axis machine tool for machining inclined plane the same
TWI680360B (en) * 2018-10-09 2019-12-21 財團法人工業技術研究院 Arc processing device and method using the same
JP6885910B2 (en) * 2018-10-15 2021-06-16 ファナック株式会社 Numerical control device
JP6878378B2 (en) * 2018-10-31 2021-05-26 ファナック株式会社 Numerical control device
CN111679632A (en) * 2020-06-17 2020-09-18 上海柏楚电子科技股份有限公司 Cutting control processing method and device, electronic equipment and storage medium
TWI763233B (en) 2021-01-05 2022-05-01 財團法人工業技術研究院 Processing method and system for automatically generating machining feature
CN117075534B (en) * 2023-10-12 2023-12-26 南通百盛精密机械有限责任公司 Intelligent control method for numerical control machine tool production line
CN117742242B (en) * 2023-12-26 2024-05-17 巨野县职业中等专业学校 Dynamic regulation and control method and system for numerical control machine tool
CN118331170A (en) * 2024-06-11 2024-07-12 中科航迈数控软件(深圳)有限公司 Track analysis system and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198984A (en) * 1988-08-31 1993-03-30 Okuma Corporation Numerical control method for correcting machine tool path errors
TW200603940A (en) * 2004-07-20 2006-02-01 Top Work Industry Co Ltd Method of setting parameters for processing cutter
US20080027704A1 (en) * 2006-07-28 2008-01-31 Emerson Process Management Power & Water Solutions, Inc. Real-time synchronized control and simulation within a process plant
US20090326892A1 (en) * 2008-06-26 2009-12-31 Siemens Product Lifecycle Management Software Inc. System and method for constructing virtual nc controllers for machine tool simulation
TW201025054A (en) * 2008-12-16 2010-07-01 Glacier Tech Co Ltd User-friendly human interactive CAD/CAM system
CN102707671A (en) * 2012-05-29 2012-10-03 苏州新代数控设备有限公司 Processing path optimization method applied to machine tool
CN103809512A (en) * 2012-11-02 2014-05-21 财团法人工业技术研究院 Target-oriented numerical control automatic adjustment system and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102147600B (en) * 2011-04-30 2012-09-19 上海交通大学 Numerical control interpolation system for real-time generation of curvature-continuous path
JP5469190B2 (en) * 2012-03-26 2014-04-09 ファナック株式会社 Machining program creation device capable of machining simulation on interactive screen
TWI524162B (en) * 2013-10-18 2016-03-01 Hurco Automation Ltd Spatial Machining Path Trajectory Smoothing Algorithm
CN103792885B (en) * 2014-01-20 2016-07-13 北京理工大学 A kind of numerical controlled bending of pipe machining simulation method and device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198984A (en) * 1988-08-31 1993-03-30 Okuma Corporation Numerical control method for correcting machine tool path errors
TW200603940A (en) * 2004-07-20 2006-02-01 Top Work Industry Co Ltd Method of setting parameters for processing cutter
US20080027704A1 (en) * 2006-07-28 2008-01-31 Emerson Process Management Power & Water Solutions, Inc. Real-time synchronized control and simulation within a process plant
US20090326892A1 (en) * 2008-06-26 2009-12-31 Siemens Product Lifecycle Management Software Inc. System and method for constructing virtual nc controllers for machine tool simulation
TW201025054A (en) * 2008-12-16 2010-07-01 Glacier Tech Co Ltd User-friendly human interactive CAD/CAM system
CN102707671A (en) * 2012-05-29 2012-10-03 苏州新代数控设备有限公司 Processing path optimization method applied to machine tool
CN103809512A (en) * 2012-11-02 2014-05-21 财团法人工业技术研究院 Target-oriented numerical control automatic adjustment system and method

Also Published As

Publication number Publication date
CN107065779B (en) 2019-10-11
TW201725458A (en) 2017-07-16
CN107065779A (en) 2017-08-18

Similar Documents

Publication Publication Date Title
TWI641931B (en) Device and method for automatically generating machine tool control instructions and parameters
EP0879674B1 (en) Generation of measurement program in nc machining and machining management based on the measurement program
EP3213161B1 (en) Method for optimizing the productivity of a machining process of a cnc machine
US10990078B2 (en) Computer-implemented method for part analytics of a workpiece machined by at least one CNC machine
US7933679B1 (en) Method for analyzing and optimizing a machining process
US7269471B2 (en) Tool path data generation apparatus for NC machine tool and numerical controller provided with it
CN102467112B (en) Machining method for machine tool
JP6043234B2 (en) Numerical controller
JP4233147B2 (en) How to determine an applicable feed rate for a machine tool
WO2021044641A1 (en) Device for automatically operating machining center using cad data
JP2005521127A (en) Intelligent STEP-NC controller
Königs et al. Process-parallel virtual quality evaluation for metal cutting in series production
RU2528923C2 (en) Article adaptive machining at nc machines
CN106557072B (en) The aided programming method of numerically controlled processing equipment execution program
Petrakov et al. IMachining technology analysis for contour milling
Petrakov et al. Contour milling programming technology for virtual basing on a CNC machine
KR20100135513A (en) Numerical control system having graphic-based user interface
CN109318051A (en) A kind of curved surface part numerical control processing localization method
KR101405039B1 (en) Manufacturing process automation method and system
KR101896291B1 (en) Tool path correction method of machining tools
JP2008046913A (en) Numerical control device of machine tools
US6678575B1 (en) Method and system for generating numerically controlled tool paths on a solid model
KR20070068797A (en) Automation processing method for propeller
CN112257252A (en) Method for simulating and analyzing influence of machine tool space error on workpiece machining precision
WO2009101688A1 (en) Electric discharge machining device