TWI639810B - Calibration method of gravity sensor - Google Patents

Calibration method of gravity sensor Download PDF

Info

Publication number
TWI639810B
TWI639810B TW106132166A TW106132166A TWI639810B TW I639810 B TWI639810 B TW I639810B TW 106132166 A TW106132166 A TW 106132166A TW 106132166 A TW106132166 A TW 106132166A TW I639810 B TWI639810 B TW I639810B
Authority
TW
Taiwan
Prior art keywords
axis
gravity
coordinate
angle
gravity sensor
Prior art date
Application number
TW106132166A
Other languages
Chinese (zh)
Other versions
TW201915435A (en
Inventor
馮笙瑀
陳瑞和
林柏翰
Original Assignee
和碩聯合科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 和碩聯合科技股份有限公司 filed Critical 和碩聯合科技股份有限公司
Priority to TW106132166A priority Critical patent/TWI639810B/en
Priority to CN201810455825.0A priority patent/CN109521501A/en
Application granted granted Critical
Publication of TWI639810B publication Critical patent/TWI639810B/en
Publication of TW201915435A publication Critical patent/TW201915435A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V13/00Manufacturing, calibrating, cleaning, or repairing instruments or devices covered by groups G01V1/00 – G01V11/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Testing Of Balance (AREA)

Abstract

一種重力感測器的校準方法。所述方法包括下列步驟。取得重力感測器所提供的初始重力座標,其中初始重力座標為裝載重力感測器的電子裝置平放於測試平台時所測得。基於Z軸旋轉初始重力座標第一角度,使初始重力座標於X軸及Y軸的其中之一的分量為0,以取得平面座標。基於分量為0的X軸或Y軸旋轉平面座標第二角度,以使平面座標於X軸及Y軸的其中另一的分量為0。儲存第一角度以及第二角度,以供重力感測器感測重力座標時,依據第一角度及第二角度進行校準,以取得校準後重力座標。A calibration method for a gravity sensor. The method includes the following steps. Obtain the initial gravity coordinates provided by the gravity sensor, where the initial gravity coordinates are measured when the electronic device loaded with the gravity sensor is placed on a test platform. The first angle of the initial gravity coordinate is rotated based on the Z axis, so that the component of the initial gravity coordinate in one of the X axis and the Y axis is 0 to obtain a plane coordinate. The second angle of the plane coordinate is rotated based on the X-axis or Y-axis having a component of 0, so that the component of the plane coordinate on the other of the X-axis and the Y-axis is 0. The first angle and the second angle are stored so that when the gravity sensor senses the gravity coordinates, calibration is performed according to the first angle and the second angle to obtain the calibrated gravity coordinates.

Description

重力感測器的校準方法Calibration method of gravity sensor

本發明是有關於一種校準方法,且特別是有關於一種重力感測器的校準方法。The invention relates to a calibration method, and in particular to a calibration method for a gravity sensor.

隨著資訊科技的發達,電子裝置的功能不斷的增加,而電子裝置內所需要的感測元件也不斷增加。由於重力感測器可以判斷電子裝置的移動及轉動,在眾多應用中,重力感測器已是不可或缺的感測元件。然而,重力感測器安裝於電子裝置時,重力感測器的Z軸與電子裝置的Z軸可能會有誤差,造成感測結果不正確。因此,如何消除重力感測器的Z軸與電子裝置的Z軸之間的誤差則是設計電子裝置的一個重要課題。With the development of information technology, the functions of electronic devices continue to increase, and the number of sensing elements required in electronic devices continues to increase. Since the gravity sensor can judge the movement and rotation of the electronic device, the gravity sensor is an indispensable sensing element in many applications. However, when the gravity sensor is installed in an electronic device, there may be an error between the Z-axis of the gravity sensor and the Z-axis of the electronic device, resulting in incorrect sensing results. Therefore, how to eliminate the error between the Z-axis of the gravity sensor and the Z-axis of the electronic device is an important issue in designing the electronic device.

本發明提供一種重力感測器的校準方法,可使校準後的重力座標確實表示電子裝置的轉動狀態及/或位移狀態。The invention provides a method for calibrating a gravity sensor, so that the calibrated gravity coordinates can indeed indicate the rotation state and / or displacement state of the electronic device.

本發明的重力感測器的校準方法,包括下列步驟。取得重力感測器所提供的初始重力座標,其中初始重力座標為裝載重力感測器的電子裝置平放於測試平台時所測得。基於Z軸旋轉初始重力座標第一角度,使初始重力座標於X軸及Y軸的其中之一的分量為0,以取得平面座標。基於分量為0的X軸或Y軸旋轉平面座標第二角度,以使平面座標於X軸及Y軸的其中另一的分量為0。儲存第一角度以及第二角度,以供重力感測器感測重力座標時,依據第一角度及第二角度進行校準,以取得校準後重力座標。The calibration method of the gravity sensor of the present invention includes the following steps. Obtain the initial gravity coordinates provided by the gravity sensor, where the initial gravity coordinates are measured when the electronic device loaded with the gravity sensor is placed on a test platform. The first angle of the initial gravity coordinate is rotated based on the Z axis, so that the component of the initial gravity coordinate in one of the X axis and the Y axis is 0 to obtain a plane coordinate. The second angle of the plane coordinate is rotated based on the X-axis or Y-axis having a component of 0, so that the component of the plane coordinate on the other of the X-axis and the Y-axis is 0. The first angle and the second angle are stored so that when the gravity sensor senses the gravity coordinates, calibration is performed according to the first angle and the second angle to obtain the calibrated gravity coordinates.

基於上述,本發明實施例的重力感測器的校準方法,會先算出重力感測器的座標軸與電子裝置的座標軸之間的角度差,並且透過上述角度差旋轉重力感測器的重力座標,以取得校準後的重力座標。藉此,校準後的重力座標可確實表示電子裝置的轉動狀態及/或位移狀態。Based on the above, the calibration method of the gravity sensor according to the embodiment of the present invention first calculates an angle difference between the coordinate axis of the gravity sensor and the coordinate axis of the electronic device, and rotates the gravity coordinate of the gravity sensor through the angle difference. To get the calibrated gravity coordinates. Thereby, the calibrated gravity coordinates can definitely indicate the rotation state and / or displacement state of the electronic device.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above features and advantages of the present invention more comprehensible, embodiments are hereinafter described in detail with reference to the accompanying drawings.

圖1為依據本發明一實施例的電子裝置的系統示意圖。請參照圖1,在本實施例中,電子裝置100包括重力感測器110、驅動電路120、儲存器130及承載平台140,其中承載平台140可以是背板、電路板、或電子裝置100的殼體,但本發明實施例不以此為限。FIG. 1 is a system schematic diagram of an electronic device according to an embodiment of the invention. Please refer to FIG. 1. In this embodiment, the electronic device 100 includes a gravity sensor 110, a driving circuit 120, a storage 130, and a supporting platform 140. The supporting platform 140 may be a backplane, a circuit board, or the electronic device 100. A casing, but the embodiment of the present invention is not limited thereto.

重力感測器110安裝於承載平台140,以提供重力座標Gxyz,其中重力座標Gxyz可用來計算電子裝置100的轉動狀態及/或位移狀態。在理想狀態下,重力感測器110在水平且靜止的平面上所感測之重力座標Gxyz僅會具有Z軸分量(即,地心引力)。然而,重力感測器110與承載平台140可能無法完美結合,重力感測器110的座標軸與電子裝置100的座標軸之間會有誤差,而產生除了Z軸外的分量。此時,驅動電路120會接收重力座標Gxyz,並且在初始化期間,驅動電路120會計算重力感測器110的座標軸與電子裝置100的座標軸之間的角度差。The gravity sensor 110 is mounted on the carrying platform 140 to provide a gravity coordinate Gxyz, wherein the gravity coordinate Gxyz can be used to calculate a rotation state and / or a displacement state of the electronic device 100. In an ideal state, the gravity coordinate Gxyz sensed by the gravity sensor 110 on a horizontal and stationary plane will only have a Z-axis component (ie, gravity). However, the gravity sensor 110 and the bearing platform 140 may not be perfectly combined, and there may be an error between the coordinate axis of the gravity sensor 110 and the coordinate axis of the electronic device 100, and components other than the Z axis may be generated. At this time, the driving circuit 120 receives the gravity coordinate Gxyz, and during the initialization, the driving circuit 120 calculates an angle difference between the coordinate axis of the gravity sensor 110 and the coordinate axis of the electronic device 100.

接著,驅動電路120將重力感測器110的座標軸與電子裝置100的座標軸之間的角度差儲存於儲存器130,接著依據重力感測器110的座標軸與電子裝置100的座標軸之間的角度差校準重力座標Gxyz,以提供校準後的重力座標AGxyz。Next, the driving circuit 120 stores the angle difference between the coordinate axis of the gravity sensor 110 and the coordinate axis of the electronic device 100 in the storage 130, and then according to the angle difference between the coordinate axis of the gravity sensor 110 and the coordinate axis of the electronic device 100 The gravity coordinate Gxyz is calibrated to provide the calibrated gravity coordinate AGxyz.

依據上述,校準後的重力座標AGxyz已消除重力感測器110的座標軸與電子裝置100的座標軸之間的誤差,因此校準後的重力座標AGxyz可確實表示電子裝置100的轉動狀態及/或位移狀態。也就是說,當重力感測器110置於水平且靜止的平面上,校準後的重力座標AGxyz僅剩下Z軸的分量,X軸以及Y軸之分量為零。According to the above, the calibrated gravity coordinate AGxyz has eliminated the error between the coordinate axis of the gravity sensor 110 and the coordinate axis of the electronic device 100, so the calibrated gravity coordinate AGxyz can truly indicate the rotation state and / or displacement state of the electronic device 100 . That is, when the gravity sensor 110 is placed on a horizontal and stationary plane, only the Z-axis component is left in the calibrated gravity coordinate AGxyz, and the X-axis and Y-axis components are zero.

圖2A為依據本發明一實施例的初始重力座標的校準示意圖。請參照圖1及圖2A,在本實施例中,在初始化期間,驅動電路120會取得重力感測器110提供的一組初始重力座標OGxyz,其中初始重力座標OGxyz為裝置重力感測器110的電子裝置100平放於測試平台(未繪示)所測得。較佳地,測試平台為水平且靜止之一平面。接著,在取得一組的重力座標OGxyz之後,驅動電路120會基於Z軸旋轉初始重力座標OGxyz第一角度θ11至YZ平面,以取得平面座標MGyz,亦即X軸的分量為0。FIG. 2A is a schematic diagram of calibrating an initial gravity coordinate according to an embodiment of the present invention. Please refer to FIG. 1 and FIG. 2A. In this embodiment, during the initialization, the driving circuit 120 obtains a set of initial gravity coordinates OGxyz provided by the gravity sensor 110, where the initial gravity coordinate OGxyz is a value of the device gravity sensor 110. The electronic device 100 is measured by being laid flat on a test platform (not shown). Preferably, the test platform is a horizontal and stationary plane. Then, after obtaining a set of gravity coordinates OGxyz, the driving circuit 120 rotates the initial gravity coordinates OGxyz based on the Z axis to the first angle θ11 to the YZ plane to obtain the plane coordinates MGyz, that is, the component of the X axis is 0.

進一步來說,基於Z軸旋轉初始重力座標OGxyz的第一旋轉矩陣滿足下列方程式 ….(1)。 Further, the first rotation matrix based on the Z-axis rotation initial gravity coordinate OGxyz satisfies the following equation ….(1).

其中,θ11為第一角度,Gx、Gy及Gz分別為初始重力座標OGxyz在X軸、Y軸以及Z軸上的三個分量,Gy'及Gz'分別為平面座標MGyz的兩個分量。並且,基於為第一角度θ11來運作的第一旋轉矩陣(1)會儲存於儲存器130中。Among them, θ11 is the first angle, Gx, Gy, and Gz are three components of the initial gravity coordinate OGxyz on the X-axis, Y-axis, and Z-axis, respectively, and Gy 'and Gz' are two components of the plane coordinate MGyz, respectively. In addition, the first rotation matrix (1) operating based on the first angle θ11 is stored in the storage 130.

然後,驅動電路120會基於X軸將平面座標MGyz旋轉第二角度θ12至Z軸,而取得Z軸的分量為1(亦即1G)而X軸及Y軸的分量為0的校準後初始重力座標AOGxyz。進一步來說,基於X軸旋轉平面座標MGyz的第二旋轉矩滿足下列方程式 ….(2)。 Then, the driving circuit 120 rotates the plane coordinate MGyz by a second angle θ12 to the Z axis based on the X axis, and obtains the calibrated initial gravity of the Z axis component being 1 (ie, 1G) and the X and Y axis components being 0 Coordinates AOGxyz. Further, the second rotation moment based on the X-axis rotation plane coordinate MGyz satisfies the following equation ….(2).

其中,θ12為第二角度,Gz''為Z軸上的分量且值為1G。並且,基於為第二角度θ12來運作的第二旋轉矩陣(2)會儲存於儲存器130中。Among them, θ12 is the second angle, Gz '' is the component on the Z axis, and the value is 1G. And, the second rotation matrix (2) operating based on the second angle θ12 is stored in the storage 130.

圖2B為依據本發明一實施例一操作期間重力座標的校準示意圖。其中,操作期間指的是電子裝置100處於一使用或一操作狀態。請參照圖1、圖2A及圖2B,在本實施例中,在操作期間,重力感測器110會感測重力座標PG1xyz,並且驅動電路120會依序利用第一旋轉矩陣(1)及第二旋轉矩陣(2)校準重力座標PG1xyz。進一步來說,在取得重力座標PG1xyz後,會先利用第一角度θ11進行旋轉,以取得中間重力座標MG1xyz。接著,再利用第二角度θ12進行旋轉,以取得校準後重力座標APG1xyz。也就是說,校準後重力座標APG1xyz可由旋轉重力座標PG1xyz與第一旋轉矩陣(1)及第二旋轉矩陣(2)進行矩陣相乘所得出,其運算方法可參照下列方程式 其中,PG1x、PG1y及PG1z分別為重力座標PG1xyz在X軸、Y軸以及Z軸上的三個分量,AG1x、AG1y及PG1z分別為校準後重力座標APG1xyz在X軸、Y軸以及Z軸上的三個分量。 FIG. 2B is a schematic diagram of calibration of gravity coordinates during an operation according to an embodiment of the present invention. The operation period refers to that the electronic device 100 is in a use or an operation state. Please refer to FIGS. 1, 2A and 2B. In this embodiment, during operation, the gravity sensor 110 will sense the gravity coordinate PG1xyz, and the driving circuit 120 will sequentially use the first rotation matrix (1) and the first Two rotation matrices (2) calibrate the gravity coordinate PG1xyz. Further, after obtaining the gravity coordinate PG1xyz, it is first rotated by using the first angle θ11 to obtain the intermediate gravity coordinate MG1xyz. Then, the second angle θ12 is used to rotate to obtain the calibrated gravity coordinate APG1xyz. In other words, the calibrated gravity coordinate APG1xyz can be obtained by multiplying the rotation gravity coordinate PG1xyz with the first rotation matrix (1) and the second rotation matrix (2), and the calculation method can refer to the following equation Among them, PG1x, PG1y, and PG1z are the three components of the gravity coordinate PG1xyz on the X, Y, and Z axes, and AG1x, AG1y, and PG1z are the calibrated gravity coordinates APG1xyz on the X, Y, and Z axes Three components.

依據上述,在電子裝置100平放於水平且靜止的平面時,重力感測器110的重力座標Gxyz上僅有Z軸存有為1G的分量Gz,因此在初始化期間驅動電路120可依據初始重力座標OGxyz計算出重力感測器110的座標軸與電子裝置100的座標軸之間的第一角度θ11及第二角度θ12,進而導入第一旋轉矩陣(1)及第二旋轉矩陣(2)。接著,同樣利用第一旋轉矩陣(1)及第二旋轉矩陣(2)對重力座標PG1xyz進行矩陣相乘而取得校準後重力座標APG1xyz。藉此,存在於重力感測器110的座標軸與電子裝置100的座標軸之間的誤差,可透過第一旋轉矩陣(1)及第二旋轉矩陣(2)來消除。According to the above, when the electronic device 100 lies on a horizontal and stationary plane, only the Z axis of the gravity coordinate Gxyz of the gravity sensor 110 has a component Gz of 1G, so the driving circuit 120 may be based on the initial gravity during the initialization The coordinate OGxyz calculates a first angle θ11 and a second angle θ12 between the coordinate axis of the gravity sensor 110 and the coordinate axis of the electronic device 100, and further introduces a first rotation matrix (1) and a second rotation matrix (2). Next, the first rotation matrix (1) and the second rotation matrix (2) are used to multiply the gravity coordinate PG1xyz by matrix to obtain the calibrated gravity coordinate APG1xyz. Accordingly, the error existing between the coordinate axis of the gravity sensor 110 and the coordinate axis of the electronic device 100 can be eliminated through the first rotation matrix (1) and the second rotation matrix (2).

圖3A為依據本發明另一實施例的初始重力座標的校準示意圖。請參照圖1及圖3A,在本實施例中,在初始化期間,驅動電路120會取得重力感測器110提供的一組初始重力座標OGxyz,其中裝置重力感測器110的電子裝置100平放於測試平台(未繪示,為水平且靜止的平面)。接著,在測得一組的重力座標OGxyz之後,驅動電路120會基於Z軸旋轉初始重力座標OGxyz第一角度θ21至XZ平面,以取得平面座標MGxz,亦即Y軸的分量為0。FIG. 3A is a schematic diagram of calibrating an initial gravity coordinate according to another embodiment of the present invention. Please refer to FIG. 1 and FIG. 3A. In this embodiment, during the initialization, the driving circuit 120 obtains a set of initial gravity coordinates OGxyz provided by the gravity sensor 110, wherein the electronic device 100 that is installed with the gravity sensor 110 is placed flat. On the test platform (not shown, it is a horizontal and stationary plane). Then, after a set of gravity coordinates OGxyz is measured, the driving circuit 120 rotates the initial gravity coordinates OGxyz based on the Z axis to the first angle θ21 to the XZ plane to obtain the plane coordinate MGxz, that is, the component of the Y axis is 0.

進一步來說,基於Z軸旋轉初始重力座標OGxyz的第一旋轉矩陣滿足下列方程式 ….(3)。 Further, the first rotation matrix based on the Z-axis rotation initial gravity coordinate OGxyz satisfies the following equation …. (3).

其中,θ21為第一角度,Gx、Gy及Gz分別為初始重力座標OGxyz在X軸、Y軸以及Z軸上的三個分量,Gx'及Gz'分別為平面座標MGxz的兩個分量。並且,基於為第一角度θ21來運作的第一旋轉矩陣(3)會儲存於儲存器130中。Among them, θ21 is a first angle, Gx, Gy, and Gz are three components of the initial gravity coordinate OGxyz on the X-axis, Y-axis, and Z-axis, respectively, and Gx ′ and Gz ′ are two components of the plane coordinate MGxz, respectively. In addition, the first rotation matrix (3) operating based on the first angle θ21 is stored in the storage 130.

然後,驅動電路120會基於Y軸將平面座標MGxz旋轉第二角度θ22至Z軸,而取得Z軸的分量為1(亦即1G)而X軸及Y軸的分量為0的校準後初始重力座標AOGxyz。進一步來說,基於Y軸旋轉平面座標MGyz的第二旋轉矩滿足下列方程式 …(4)。 Then, the driving circuit 120 rotates the plane coordinate MGxz by a second angle θ22 to the Z axis based on the Y axis, and obtains the calibrated initial gravity of the Z axis component being 1 (that is, 1G) and the X and Y axis components being 0. Coordinates AOGxyz. Further, the second rotation moment based on the Y-axis rotation plane coordinate MGyz satisfies the following equation ... (4).

其中,θ22為第二角度,Gz''為Z軸上的分量且值為1G。並且,基於為第二角度θ22來運作的第二旋轉矩陣(4)會儲存於儲存器130中。Among them, θ22 is the second angle, Gz '' is the component on the Z axis, and the value is 1G. And, the second rotation matrix (4) operating based on the second angle θ22 is stored in the storage 130.

圖3B為依據本發明另一實施例一操作期間重力座標的校準示意圖。其中,操作期間指的是電子裝置100處於一使用或一操作狀態。請參照圖1、圖3A及圖3B,在本實施例中,在操作期間,重力感測器110會感測重力座標PG2xyz,並且驅動電路120會依序利用第一角度θ21及第二角度θ22校準重力座標PG2xyz。進一步來說,在取得重力座標PG2xyz後,會先利用第一角度θ21進行旋轉,以取得中間重力座標MG2xyz。接著,再利用第二角度θ22進行旋轉,以取得校準後重力座標APG2xyz,其運算方法可參照下列方程式 其中,PG2x、PG2y及PG2z分別為重力座標PG2xyz在X軸、Y軸以及Z軸上的三個分量,AG2x、AG2y及PG2z分別為校準後重力座標APG2xyz在X軸、Y軸以及Z軸上的三個分量。 FIG. 3B is a schematic diagram of calibration of gravity coordinates during operation according to another embodiment of the present invention. The operation period refers to that the electronic device 100 is in a use or an operation state. Please refer to FIGS. 1, 3A, and 3B. In this embodiment, during operation, the gravity sensor 110 will sense the gravity coordinate PG2xyz, and the driving circuit 120 will sequentially use the first angle θ21 and the second angle θ22. Calibrate the gravity coordinate PG2xyz. Further, after obtaining the gravity coordinate PG2xyz, it is first rotated by using the first angle θ21 to obtain the intermediate gravity coordinate MG2xyz. Then, the second angle θ22 is used to rotate to obtain the calibrated gravity coordinate APG2xyz. The calculation method can refer to the following equation Among them, PG2x, PG2y, and PG2z are the three components of the gravity coordinate PG2xyz on the X, Y, and Z axes, and AG2x, AG2y, and PG2z are the calibrated gravity coordinates APG2xyz on the X, Y, and Z axes, respectively. Three components.

依據上述,在電子裝置100平放於水平且靜止的平面時,重力感測器110的重力座標Gxyz上僅有Z軸存有為1G的分量Gz,因此在初始化期間驅動電路120可依據初始重力座標OGxyz計算出重力感測器110的座標軸與電子裝置100的座標軸之間的第一角度θ21及第二角度θ22,進而導入第一旋轉矩陣(3)及第二旋轉矩陣(4)。接著,同樣利用第一旋轉矩陣(3)及第二旋轉矩陣(4)對重力座標PG2xyz進行矩陣相乘而取得校準後重力座標APG2xyz。藉此,存在於重力感測器110的座標軸與電子裝置100的座標軸之間的誤差,可透過座標的旋轉來消除。According to the above, when the electronic device 100 lies on a horizontal and stationary plane, only the Z axis of the gravity coordinate Gxyz of the gravity sensor 110 has a component Gz of 1G, so the driving circuit 120 may be based on the initial gravity during the initialization The coordinate OGxyz calculates a first angle θ21 and a second angle θ22 between the coordinate axis of the gravity sensor 110 and the coordinate axis of the electronic device 100, and further introduces a first rotation matrix (3) and a second rotation matrix (4). Next, the first rotation matrix (3) and the second rotation matrix (4) are used to multiply the gravity coordinate PG2xyz by matrix to obtain the calibrated gravity coordinate APG2xyz. Therefore, the error existing between the coordinate axis of the gravity sensor 110 and the coordinate axis of the electronic device 100 can be eliminated by rotating the coordinate.

圖4為依據本發明一實施例的重力感測器的校準方法的流程圖。請參照圖4,在本實施例中,重力感測器的校準方法包括下列步驟。在步驟S410中,在初始化期間,取得重力感測器提供的初始重力座標,其中初始重力座標為裝載重力感測器的電子裝置平放於測試平台所測得。在步驟S420中,基於Z軸旋轉初始重力座標第一角度,使初始重力座標於X軸及Y軸的其中之一的分量為0,以取得平面座標。在步驟S430中,儲存第一角度。在步驟S440中,基於分量為0的X軸或Y軸旋轉平面座標第二角度,以使平面座標於X軸及Y軸的其中另一的分量為0。在步驟S450中,儲存第二角度。在步驟S460中,以供重力感測器感測重力座標時依據第一角度及第二角度進行校準,以取得校準後重力座標。其中,步驟S410、S420、S430、S440、S450及S460的順序為用以說明,本發明實施例不以此為限。並且,步驟S410、S420、S430、S440、S450及S460的細節可參照圖1、圖2A、圖2B、圖3A及圖3B所示實施例,在此則不再贅述。FIG. 4 is a flowchart of a method for calibrating a gravity sensor according to an embodiment of the invention. Please refer to FIG. 4. In this embodiment, the calibration method of the gravity sensor includes the following steps. In step S410, during the initialization, an initial gravity coordinate provided by the gravity sensor is obtained, where the initial gravity coordinate is measured by the electronic device on which the gravity sensor is placed on a test platform. In step S420, a first angle of the initial gravity coordinate is rotated based on the Z axis, and a component of the initial gravity coordinate on one of the X axis and the Y axis is 0 to obtain a plane coordinate. In step S430, the first angle is stored. In step S440, the second angle of the plane coordinate is rotated based on the X-axis or Y-axis having a component of 0, so that the component of the plane coordinate on the other of the X-axis and the Y-axis is 0. In step S450, the second angle is stored. In step S460, when the gravity sensor senses the gravity coordinates, the calibration is performed according to the first angle and the second angle to obtain the calibrated gravity coordinates. The sequence of steps S410, S420, S430, S440, S450, and S460 is for illustration, and the embodiment of the present invention is not limited thereto. In addition, details of steps S410, S420, S430, S440, S450, and S460 may refer to the embodiments shown in FIG. 1, FIG. 2A, FIG. 2B, FIG. 3A, and FIG. 3B, and details are not described herein again.

綜上所述,本發明實施例的重力感測器的校準方法,會先算出重力感測器的座標軸與電子裝置的座標軸之間的角度差,並且透過上述角度差旋轉重力感測器的重力座標,以取得校準到後的重力座標。藉此,校準後的重力座標可確實表示電子裝置的轉動狀態及/或位移狀態。To sum up, the calibration method of the gravity sensor according to the embodiment of the present invention first calculates the angle difference between the coordinate axis of the gravity sensor and the coordinate axis of the electronic device, and rotates the gravity of the gravity sensor through the angle difference. Coordinates to get the gravity coordinates after calibration. Thereby, the calibrated gravity coordinates can definitely indicate the rotation state and / or displacement state of the electronic device.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above with the examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some modifications and retouching without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be determined by the scope of the attached patent application.

100‧‧‧電子裝置
110‧‧‧重力感測器
120‧‧‧驅動電路
130‧‧‧儲存器
140‧‧‧承載平台
AGxyz‧‧‧校準後的重力座標
AOGxyz‧‧‧校準後初始重力座標
APG1xyz、APG2xyz‧‧‧校準後重力座標
Gxyz‧‧‧重力座標
MG1xyz、MG2xyz‧‧‧中間重力座標
MGyz、MGxz‧‧‧平面座標
OGxyz‧‧‧初始重力座標
PG1xzy、PG2xzy‧‧‧重力座標
θ11、θ21‧‧‧第一角度
θ12、θ22‧‧‧第二角度
S410、S420、S430、S440、S450、S460‧‧‧步驟
100‧‧‧ electronic device
110‧‧‧gravity sensor
120‧‧‧Drive circuit
130‧‧‧Storage
140‧‧‧bearing platform
AGxyz ‧‧‧ calibrated gravity coordinates
AOGxyz‧‧‧ Initial gravity coordinates after calibration
APG1xyz, APG2xyz‧‧‧ gravity coordinates after calibration
Gxyz‧‧‧ gravity coordinates
MG1xyz, MG2xyz‧‧‧Intermediate gravity coordinates
MGyz, MGxz‧‧‧ plane coordinates
OGxyz ‧‧‧ initial gravity coordinates
PG1xzy, PG2xzy‧‧‧ gravity coordinates θ11, θ21‧‧‧ first angle θ12, θ22‧‧‧ second angle
S410, S420, S430, S440, S450, S460‧‧‧ steps

圖1為依據本發明一實施例的電子裝置的系統示意圖。 圖2A為依據本發明一實施例的初始重力座標的校準示意圖。 圖2B為依據本發明一實施例重力座標的校準示意圖。 圖3A為依據本發明另一實施例的初始重力座標的校準示意圖。 圖3B為依據本發明另一實施例重力座標的校準示意圖。 圖4為依據本發明一實施例的重力感測器的校準方法的流程圖。FIG. 1 is a system schematic diagram of an electronic device according to an embodiment of the invention. FIG. 2A is a schematic diagram of calibrating an initial gravity coordinate according to an embodiment of the present invention. FIG. 2B is a schematic diagram of calibration of gravity coordinates according to an embodiment of the present invention. FIG. 3A is a schematic diagram of calibrating an initial gravity coordinate according to another embodiment of the present invention. FIG. 3B is a schematic diagram of calibration of a gravity coordinate according to another embodiment of the present invention. FIG. 4 is a flowchart of a method for calibrating a gravity sensor according to an embodiment of the invention.

Claims (12)

一種重力感測器的校準方法,包括:取得一重力感測器所提供的一初始重力座標,其中該初始重力座標為裝載該重力感測器的一電子裝置平放於一測試平台時所測得;基於一Z軸旋轉該初始重力座標一第一角度,使該初始重力作標於一X軸及一Y軸的其中之一的分量為零,以取得一平面座標;基於分量為零的該X軸或該Y軸旋轉該平面座標一第二角度,以使該平面座標於該X軸及該Y軸的其中另一的分量為零;以及儲存該第一角度以及該第二角度,以供該重力感測器感測一重力座標時,依據該第一角度及該第二角度取得一第一旋轉矩陣以及一第二旋轉矩陣,以及依據該重力座標、該第一旋轉矩陣以及該第二旋轉矩陣取得一校準後重力座標。A method for calibrating a gravity sensor includes: obtaining an initial gravity coordinate provided by a gravity sensor, wherein the initial gravity coordinate is measured when an electronic device carrying the gravity sensor is placed on a test platform. Get; rotating the initial gravity coordinate by a first angle based on a Z axis, making the component of the initial gravity plotted on one of an X axis and a Y axis to be zero to obtain a plane coordinate; based on the zero component The X axis or the Y axis rotates the plane coordinate by a second angle, so that the component of the plane coordinate on the X axis and the Y axis is zero; and storing the first angle and the second angle, For the gravity sensor to sense a gravity coordinate, obtain a first rotation matrix and a second rotation matrix according to the first angle and the second angle, and according to the gravity coordinate, the first rotation matrix and the The second rotation matrix obtains a calibrated gravity coordinate. 如申請專利範圍第1項所述的重力感測器的校準方法,其中該初始重力座標基於該Z軸旋轉至一YZ平面,以使該初始重力座標於該X軸的分量為零。The method for calibrating a gravity sensor according to item 1 of the scope of the patent application, wherein the initial gravity coordinate is rotated to a YZ plane based on the Z axis, so that the component of the initial gravity coordinate on the X axis is zero. 如申請專利範圍第2項所述的重力感測器的校準方法,其中基於該Z軸旋轉該初始重力座標的該第一旋轉矩陣滿足其中,θ11為該第一角度,Gx、Gy及Gz分別為該初始重力座標在該X軸、該Y軸以及該Z軸上的分量,Gy'及Gz'分別為該平面座標在該Y軸以及該Z軸上的分量。The method for calibrating a gravity sensor according to item 2 of the scope of patent application, wherein the first rotation matrix that rotates the initial gravity coordinate based on the Z axis satisfies Among them, θ11 is the first angle, Gx, Gy, and Gz are the components of the initial gravity coordinate on the X axis, the Y axis, and the Z axis, respectively, and Gy 'and Gz' are the plane coordinates on the Y axis, respectively. And the component on that Z axis. 如申請專利範圍第3項所述的重力感測器的校準方法,其中該平面座標基於該X軸旋轉至該Z軸,以使該Y軸的分量為0。The method for calibrating a gravity sensor according to item 3 of the patent application scope, wherein the plane coordinate is rotated based on the X-axis to the Z-axis so that the component of the Y-axis is 0. 如申請專利範圍第4項所述的重力感測器的校準方法,其中基於該X軸旋轉該平面座標的該第二旋轉矩陣滿足其中,θ12為該第二角度,Gz"為該Z軸的分量。The method for calibrating a gravity sensor according to item 4 of the scope of patent application, wherein the second rotation matrix based on rotating the plane coordinate based on the X axis satisfies Where θ12 is the second angle and Gz "is the component of the Z axis. 如申請專利範圍第5項所述的重力感測器的校準方法,其中該校準後重力座標為該重力座標與該第一旋轉矩陣以及該第二旋轉矩陣進行矩陣相乘所得出。The method for calibrating a gravity sensor according to item 5 of the scope of patent application, wherein the calibrated gravity coordinate is obtained by matrix multiplication of the gravity coordinate with the first rotation matrix and the second rotation matrix. 如申請專利範圍第1項所述的重力感測器的校準方法,其中該初始重力座標基於該Z軸旋轉至一XZ平面,以使該Y軸的分量為零。The method for calibrating a gravity sensor according to item 1 of the scope of patent application, wherein the initial gravity coordinate is rotated to an XZ plane based on the Z axis so that the component of the Y axis is zero. 如申請專利範圍第7項所述的重力感測器的校準方法,其中基於該Z軸旋轉該初始重力座標的該第一旋轉矩陣滿足其中,θ21為該第一角度,Gx、Gy及Gz分別為該初始重力座標在該X軸、該Y軸以及該Z軸上的分量,Gx'及Gz'分別為該平面座標在該X軸以及該Y軸的分量。The method for calibrating a gravity sensor according to item 7 of the scope of patent application, wherein the first rotation matrix that rotates the initial gravity coordinate based on the Z axis satisfies Among them, θ21 is the first angle, Gx, Gy, and Gz are components of the initial gravity coordinate on the X axis, the Y axis, and the Z axis, respectively, and Gx 'and Gz' are the plane coordinates on the X axis, respectively. And the Y-axis component. 如申請專利範圍第8項所述的重力感測器的校準方法,其中該平面座標基於該Y軸旋轉至該Z軸,以使該X軸的分量為零。The method for calibrating a gravity sensor according to item 8 of the scope of patent application, wherein the plane coordinate is rotated to the Z axis based on the Y axis so that the component of the X axis is zero. 如申請專利範圍第9項所述的重力感測器的校準方法,其中基於該Y軸旋轉該平面座標的該第二旋轉矩陣滿足其中,θ22為該第二角度,Gx'及Gz'構成該平面座標,Gz"為該Z軸的分量。The method for calibrating a gravity sensor according to item 9 of the scope of patent application, wherein the second rotation matrix based on rotating the plane coordinate based on the Y-axis satisfies Among them, θ22 is the second angle, Gx 'and Gz' constitute the plane coordinate, and Gz "is a component of the Z axis. 如申請專利範圍第10項所述的重力感測器的校準方法,其中該校準後重力座標為該重力座標與該第一旋轉矩陣以及該第二旋轉矩陣進行矩陣相乘所得出。The method for calibrating a gravity sensor according to item 10 of the scope of the patent application, wherein the calibrated gravity coordinate is obtained by matrix multiplication of the gravity coordinate with the first rotation matrix and the second rotation matrix. 如申請專利範圍第1項所述的重力感測器的校準方法,其中該測試平台為水平且靜止之一平面。The method for calibrating the gravity sensor according to item 1 of the patent application scope, wherein the test platform is a horizontal and stationary plane.
TW106132166A 2017-09-20 2017-09-20 Calibration method of gravity sensor TWI639810B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW106132166A TWI639810B (en) 2017-09-20 2017-09-20 Calibration method of gravity sensor
CN201810455825.0A CN109521501A (en) 2017-09-20 2018-05-14 Calibration method of gravity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106132166A TWI639810B (en) 2017-09-20 2017-09-20 Calibration method of gravity sensor

Publications (2)

Publication Number Publication Date
TWI639810B true TWI639810B (en) 2018-11-01
TW201915435A TW201915435A (en) 2019-04-16

Family

ID=65034180

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106132166A TWI639810B (en) 2017-09-20 2017-09-20 Calibration method of gravity sensor

Country Status (2)

Country Link
CN (1) CN109521501A (en)
TW (1) TWI639810B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000055652A1 (en) * 1999-03-17 2000-09-21 Input/Output, Inc. Calibration of sensors
CA2745752A1 (en) * 2008-12-04 2010-06-10 Baker Hughes Incorporated Rotatable orientation independent gravity sensor and methods for correcting systematic errors
TWI338137B (en) * 2008-01-29 2011-03-01 Topseed Technology Corp
WO2011097169A2 (en) * 2010-02-03 2011-08-11 Baker Hughes Incorporated Measurement method for a component of the gravity vector
CN105716577A (en) * 2016-01-31 2016-06-29 湖南大学 Method and device for measuring dip angles based on biaxial gravity acceleration sensor
CN106125160A (en) * 2016-06-14 2016-11-16 重庆蓝岸通讯技术有限公司 Automatically the system and method in gravity sensor direction is calibrated

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2921815B1 (en) * 2014-03-19 2016-08-24 Services Pétroliers Schlumberger System and method for caliper calibration
CN105404182B (en) * 2015-11-03 2017-11-24 杨歆乐 Acceleration of gravity instrument obtains the method that directional information carries out behavioural analysis
CN105510632B (en) * 2015-11-24 2018-12-28 上海汽车集团股份有限公司 Obtain the method and apparatus of pickup data
CN106645799B (en) * 2016-09-14 2019-09-06 邹红斌 Parameter calibrating method and device
CN106610301B (en) * 2016-09-14 2019-08-20 简极科技有限公司 The calibration method of one bulb inner sensor
CN106500722A (en) * 2016-09-30 2017-03-15 深圳市虚拟现实科技有限公司 Method and system of the attitude measuring from dynamic(al) correction
CN106483334A (en) * 2016-10-10 2017-03-08 乐视控股(北京)有限公司 A kind of calibration steps of Gravity accelerometer and calibration system
CN106990451B (en) * 2017-02-07 2018-10-19 中国人民解放军国防科学技术大学 Earth magnetism vector measurement system error calibration method based on lagrange's method of multipliers
CN106706003A (en) * 2017-02-15 2017-05-24 重庆邮电大学 Online calibration method for north-seeking rotation on basis of triaxial MEMS (Micro-Electromechanical System) gyroscope

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000055652A1 (en) * 1999-03-17 2000-09-21 Input/Output, Inc. Calibration of sensors
TWI338137B (en) * 2008-01-29 2011-03-01 Topseed Technology Corp
CA2745752A1 (en) * 2008-12-04 2010-06-10 Baker Hughes Incorporated Rotatable orientation independent gravity sensor and methods for correcting systematic errors
WO2011097169A2 (en) * 2010-02-03 2011-08-11 Baker Hughes Incorporated Measurement method for a component of the gravity vector
CN105716577A (en) * 2016-01-31 2016-06-29 湖南大学 Method and device for measuring dip angles based on biaxial gravity acceleration sensor
CN106125160A (en) * 2016-06-14 2016-11-16 重庆蓝岸通讯技术有限公司 Automatically the system and method in gravity sensor direction is calibrated

Also Published As

Publication number Publication date
CN109521501A (en) 2019-03-26
TW201915435A (en) 2019-04-16

Similar Documents

Publication Publication Date Title
JP5046509B2 (en) Gradient sensor and method of using the same
US20090259424A1 (en) Parameter estimation for accelerometers, processes, circuits, devices and systems
US20090013755A1 (en) Calibration jig and algorithms for accelerometer
US9453855B2 (en) System and method for calibrating an inertial measurement unit
CN109459061A (en) Micro inertial measurement unit scaling method, equipment and computer readable storage medium
TWI428602B (en) Method and module for measuring rotation and portable apparatus comprising the module
JP2005509149A (en) Method and apparatus for self-calibration inertial measurement system
US20140025330A1 (en) Dynamic temperature calibration
JP2007040763A (en) Correction device of acceleration sensor
CN107431030A (en) For determining the method and system of plane internal deformation in the substrate
JP5445270B2 (en) Calibration data acquisition method, acceleration sensor output correction method, and calibration data acquisition system
CN108827291B (en) Zero offset compensation method and device for output of MEMS gyroscope under motion carrier
TWI555994B (en) Dynamically calibrating magnetic sensors
WO2016027838A1 (en) Failure diagnosis device, rotation angle sensor, failure diagnosis method, and program
TWI639810B (en) Calibration method of gravity sensor
CN106199758A (en) Measurement data calibration steps and electronic equipment
US20150260545A1 (en) Gyroscope calibration
AU2013251335B2 (en) Calibration system for simultaneous calibration of multiple motion capture elements
CN108759861A (en) IMU calibration methods, device and storage medium based on holder
JP2012237682A (en) Multi-axis sensor output correction device and multi-axis sensor output correction method
WO2021134415A1 (en) Method and apparatus for zero-g offset calibration for a mems-based accelerometer
WO2019196093A1 (en) Pan tilt head-based imu calibration method and device and storage medium
CN113959464A (en) Gyroscope-assisted accelerometer field calibration method and system
CN113227714B (en) Method for characterizing an inertial measurement unit
Ozyagcilar Accuracy of angle estimation in ecompass and 3d pointer applications