TWI635742B - Dynamic image encoding apparatus and dynamic image encoding method - Google Patents

Dynamic image encoding apparatus and dynamic image encoding method Download PDF

Info

Publication number
TWI635742B
TWI635742B TW106100619A TW106100619A TWI635742B TW I635742 B TWI635742 B TW I635742B TW 106100619 A TW106100619 A TW 106100619A TW 106100619 A TW106100619 A TW 106100619A TW I635742 B TWI635742 B TW I635742B
Authority
TW
Taiwan
Prior art keywords
sum
data
circuit
weighted
frame prediction
Prior art date
Application number
TW106100619A
Other languages
Chinese (zh)
Other versions
TW201826788A (en
Inventor
林和源
Original Assignee
晨星半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晨星半導體股份有限公司 filed Critical 晨星半導體股份有限公司
Priority to TW106100619A priority Critical patent/TWI635742B/en
Priority to US15/794,253 priority patent/US20180199031A1/en
Publication of TW201826788A publication Critical patent/TW201826788A/en
Application granted granted Critical
Publication of TWI635742B publication Critical patent/TWI635742B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/147Data rate or code amount at the encoder output according to rate distortion criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/149Data rate or code amount at the encoder output by estimating the code amount by means of a model, e.g. mathematical model or statistical model
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/625Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using discrete cosine transform [DCT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/567Motion estimation based on rate distortion criteria

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

本發明提供一種動態影像編碼裝置,其中之控制器包含加總電路、資料量估計電路與評估電路。複數種框內預測/移動補償模式中的每一種模式各自對應於一組轉換量化後殘差資料。該加總電路針對每一組轉換量化後殘差資料,計算其中之非零元素的絕對值總和以及該等非零元素相對於一參考點的座標值總和。該資料量估計電路針對每一種框內預測/移動補償模式,根據其相對應轉換量化後殘差資料之該絕對值總和與該座標值總和,產生一資料量估計值。該評估電路根據該複數個資料量估計值,自該複數種框內預測/移動補償模式中選擇一最佳模式。 The invention provides a dynamic image encoding device, wherein the controller comprises a totaling circuit, a data amount estimating circuit and an evaluation circuit. Each of the plurality of in-frame prediction/motion compensation modes each corresponds to a set of converted quantized residual data. The summing circuit converts the quantized residual data for each group, calculates the sum of the absolute values of the non-zero elements therein, and the sum of the coordinate values of the non-zero elements with respect to a reference point. The data amount estimation circuit generates an estimated amount of data for each of the in-frame prediction/motion compensation modes according to the sum of the absolute values of the corresponding residual data and the coordinate value. The evaluation circuit selects an optimal mode from the plurality of in-frame prediction/motion compensation modes based on the plurality of data amount estimates.

Description

動態影像編碼裝置及動態影像編碼方法 Motion picture coding device and motion picture coding method

本發明與影像處理技術相關,並且尤其與根據資料量自多種影像處理模式中選擇一最佳模式的技術相關。 The present invention relates to image processing techniques and, in particular, to techniques for selecting an optimal mode from a plurality of image processing modes based on the amount of data.

近年來,隨著各種電子相關技術蓬勃發展,家庭劇院等多媒體系統日益普及。在多數多媒體系統中,最重要的硬體裝置便屬影像顯示設備。為了滿足觀看者對於逼真影像的需求,影像顯示設備目前的發展趨勢之一是持續提升圖框(frame)的尺寸和解析度,因而使得每一張圖框的影像資料量大幅增加。如何在保有良好畫質的同時,透過壓縮技術將影像資料量盡可能降低以節省儲存空間與傳輸資源,是值得關注的議題。 In recent years, with the rapid development of various electronic related technologies, multimedia systems such as home theaters have become increasingly popular. In most multimedia systems, the most important hardware device is an image display device. In order to meet the viewer's demand for realistic images, one of the current development trends of image display devices is to continuously increase the size and resolution of the frame, thereby greatly increasing the amount of image data of each frame. How to save the storage space and transmission resources through compression technology while maintaining good image quality is a topic worthy of attention.

圖一呈現目前被廣泛使用的動態影像編碼系統之功能方塊圖。每一圖框通常會被分割為多個影像區塊,做為編碼的基本單位。將一待編碼區塊的參考資料輸入框內預測(intra-prediction)/移動補償(motion compensation)電路101,上述電路101經過運算後輸出一參考區塊。其中框內預測(intra-prediction)/移動補償電路亦包含移動估測的功能,不在本發明討論範疇,在此不做贅述。接著,殘差產生電路102負責找出 待編碼區塊與參考區塊的差異。此通稱為殘差(residual)資料的區塊間差異會交由轉換電路103A進行離散餘弦轉換(discrete cosine transform,DCT)並交由量化電路103B進行量化(quantization)程序。隨後,熵編碼電路104負責對轉換量化後殘差資料及其相對應的中介資料(metadata)施以熵編碼(entropy encoding),以產生一編碼結果。 Figure 1 shows a functional block diagram of a currently widely used motion picture coding system. Each frame is usually divided into multiple image blocks as the basic unit of coding. The reference data of the block to be coded is input to an intra-prediction/motion compensation circuit 101, and the circuit 101 is operated to output a reference block. The intra-prediction/motion compensation circuit also includes the function of the motion estimation, which is not discussed in the scope of the present invention and will not be described herein. Next, the residual generation circuit 102 is responsible for finding out The difference between the block to be coded and the reference block. This inter-block difference, which is generally referred to as residual data, is subjected to a discrete cosine transform (DCT) by the conversion circuit 103A and subjected to quantization circuit 103B for quantization. Subsequently, the entropy encoding circuit 104 is responsible for applying entropy encoding to the converted quantized residual data and its corresponding mediation to generate an encoded result.

反量化電路106A與反轉換電路106B模擬影像解碼端接收到轉換量化後殘差資料後會產生的還原後殘差資料。加法電路107將還原後殘差資料與參考區塊相加之後存入緩衝器108,做為供框內預測/移動補償電路101使用的框內預測/移動補償參考資料。 The inverse quantization circuit 106A and the inverse conversion circuit 106B simulate the restored residual data which is generated after the image decoding end receives the converted residual residual data. The adding circuit 107 adds the restored residual data to the reference block and stores it in the buffer 108 as the in-frame prediction/motion compensation reference material for use in the in-frame prediction/motion compensation circuit 101.

實務上,框內預測/移動補償電路101可採用的框內預測/移動補償模式多達數十種,且各自導向不同的編碼結果。現行普遍採用拉格朗日法(Lagrange method)評估出最能兼顧低資料量與低失真兩種需求的框內預測/移動補償模式。在圖一繪示的動態影像編碼系統100中,控制電路110A控制框內預測/移動補償電路101逐一嘗試各種框內預測/移動補償模式。控制器110還包含一資料量計算電路110B、一失真量計算電路110C與一評估電路110D。資料量計算電路110B負責計算一編碼結果的資料量R。失真量計算電路110C則是分別接收殘差產生電路102產生的殘差資料與反轉換電路106B產生的還原後殘差資料,並據以計算出轉換電路103A與量化電路103B進行的程序會造成多大的失真量D,提供給評估電路110D參考。隨後,評估電路110D根據拉格朗日法為每一種框內預測/移動補償模式計算分數。概略地說,編碼結果的資料量R愈低,該 分數愈低;失真量D愈低,該分數也愈低。因此,評估電路110D會選出分數最低的框內預測/移動補償模式做為一最佳模式。 In practice, the in-frame prediction/motion compensation circuit 101 can employ up to dozens of in-frame prediction/motion compensation modes, and each directs different coding results. The Lagrange method is commonly used to estimate the in-frame prediction/motion compensation mode that best meets both low data volume and low distortion requirements. In the motion picture encoding system 100 illustrated in FIG. 1, the control circuit 110A controls the in-frame prediction/motion compensation circuit 101 to try various in-frame prediction/motion compensation modes one by one. The controller 110 further includes a data amount calculation circuit 110B, a distortion amount calculation circuit 110C, and an evaluation circuit 110D. The data amount calculation circuit 110B is responsible for calculating the data amount R of an encoded result. The distortion amount calculation circuit 110C receives the residual data generated by the residual generation circuit 102 and the restored residual data generated by the inverse conversion circuit 106B, respectively, and calculates how much the program performed by the conversion circuit 103A and the quantization circuit 103B is caused. The amount of distortion D is provided to the evaluation circuit 110D for reference. Subsequently, the evaluation circuit 110D calculates a score for each of the in-frame prediction/motion compensation modes according to the Lagrangian method. Roughly speaking, the lower the amount of data R of the coding result, the lower the score; the lower the distortion amount D , the lower the score. Therefore, the evaluation circuit 110D selects the lowest intra prediction/motion compensation mode as the best mode.

在評估電路110D選出最佳模式前,熵編碼電路104產生的每一個編碼結果都被先暫存在暫存記憶體109中。直到評估電路110D選出最佳模式,暫存記憶體109再送出最佳模式對應的編碼結果(在圖中標示為最佳編碼結果),做為動態影像編碼系統100的輸出信號。 Each of the encoded results generated by the entropy encoding circuit 104 is temporarily stored in the temporary memory 109 before the evaluation circuit 110D selects the optimum mode. Until the evaluation circuit 110D selects the best mode, the temporary memory 109 sends the encoded result corresponding to the optimal mode (labeled as the best encoding result in the figure) as the output signal of the motion picture encoding system 100.

動態影像編碼系統100中這種逐一計算出各框內預測/移動補償模式之編碼結果資料量以及失真量的做法雖然能準確選出最佳模式,但過程相當耗時,並且需要動用大量運算資源。 In the dynamic image encoding system 100, the method of calculating the data amount and the distortion amount of the encoding result in each frame in the prediction/motion compensation mode one by one can accurately select the optimal mode, but the process is quite time consuming and requires a large amount of computing resources.

為解決上述問題,本發明提出一種新的動態影像編碼裝置及動態影像編碼方法。 In order to solve the above problems, the present invention provides a new motion picture coding apparatus and a motion picture coding method.

根據本發明之一具體實施例為一種動態影像編碼裝置,其中包含一框內預測/移動補償電路、一殘差產生電路、一轉換電路、一量化電路與一控制器。該框內預測/移動補償電路分別採用複數種框內預測/移動補償模式為一待編碼影像區塊找出複數種參考區塊。該殘差產生電路根據該待編碼影像區塊與該複數種參考區塊產生相對應的複數組殘差資料。該轉換電路針對每一組殘差資料進行一離散餘弦轉換程序,以產生一轉換後矩陣。該量化電路針對每一個轉換後矩陣進行一量化程序,以產生一組轉換量化後殘差資料。該控制器包含一加總電路、一資料量估計電路與一評 估電路。該加總電路針對每一組轉換量化後殘差資料,計算其中之非零元素的絕對值總和以及該等非零元素相對於一參考點的座標值總和。該資料量估計電路針對每一種框內預測/移動補償模式,根據其相對應轉換量化後殘差資料之該絕對值總和與該座標值總和,產生一資料量估計值。該評估電路根據該複數個資料量估計值,自該複數種框內預測/移動補償模式中選擇一最佳模式。 According to an embodiment of the present invention, a dynamic image encoding device includes an in-frame prediction/motion compensation circuit, a residual generation circuit, a conversion circuit, a quantization circuit, and a controller. The in-frame prediction/motion compensation circuit uses a plurality of intra-frame prediction/motion compensation modes to find a plurality of reference blocks for a to-be-coded image block. The residual generation circuit generates corresponding complex array residual data according to the to-be-coded image block and the plurality of reference blocks. The conversion circuit performs a discrete cosine transform procedure for each set of residual data to produce a transformed matrix. The quantization circuit performs a quantization procedure for each of the transformed matrices to generate a set of transformed quantized residual data. The controller includes a total adding circuit, a data amount estimating circuit and a comment Estimate the circuit. The summing circuit converts the quantized residual data for each group, calculates the sum of the absolute values of the non-zero elements therein, and the sum of the coordinate values of the non-zero elements with respect to a reference point. The data amount estimation circuit generates an estimated amount of data for each of the in-frame prediction/motion compensation modes according to the sum of the absolute values of the corresponding residual data and the coordinate value. The evaluation circuit selects an optimal mode from the plurality of in-frame prediction/motion compensation modes based on the plurality of data amount estimates.

根據本發明之另一具體實施例為一種動態影像編碼方法。首先,分別採用複數種框內預測/移動補償模式,一待編碼影像區塊的複數種參考區塊被找出。接著,根據該待編碼影像區塊與該複數種參考區塊,相對應的複數組殘差資料被產生。隨後,每一組殘差資料被施加以一離散餘弦轉換程序與一量化程序,以產生一組轉換量化後殘差資料。針對每一組轉換量化後殘差資料,其中之非零元素的絕對值總和以及該等非零元素相對於一參考點的座標值總和被計算出來。針對每一種框內預測/移動補償模式,根據其相對應轉換量化後殘差資料之該絕對值總和與該座標值總和,一資料量估計值被產生。根據該複數個資料量估計值,自該複數種框內預測/移動補償模式中,一最佳模式被選出。 Another embodiment of the present invention is a dynamic image encoding method. First, a plurality of intra-frame prediction/motion compensation modes are respectively used, and a plurality of reference blocks of a to-be-coded image block are found. Then, according to the to-be-coded image block and the plurality of reference blocks, corresponding complex array residual data is generated. Subsequently, each set of residual data is applied with a discrete cosine transform procedure and a quantization procedure to produce a set of transformed quantized residual data. The quantized residual data is converted for each group, wherein the sum of the absolute values of the non-zero elements and the sum of the coordinate values of the non-zero elements with respect to a reference point are calculated. For each of the in-frame prediction/motion compensation modes, a data amount estimation value is generated according to the sum of the absolute values of the corresponding residual data and the coordinate value. Based on the plurality of data amount estimates, an optimal mode is selected from the plurality of in-frame prediction/motion compensation modes.

關於本發明的優點與精神可以藉由以下發明詳述及所附圖式得到進一步的瞭解。 The advantages and spirit of the present invention will be further understood from the following detailed description of the invention.

100、200‧‧‧動態影像編碼系統 100, 200‧‧‧ Motion Picture Coding System

101、201‧‧‧框內預測/移動補償電路 101, 201‧‧‧ In-frame prediction/motion compensation circuit

102、202‧‧‧殘差產生電路 102, 202‧‧‧ residual generation circuit

103A、203A‧‧‧轉換電路 103A, 203A‧‧‧ conversion circuit

103B、203B‧‧‧量化電路 103B, 203B‧‧‧Quantitative Circuit

104、204‧‧‧熵編碼電路 104, 204‧‧‧ Entropy coding circuit

106A、206A‧‧‧反量化電路 106A, 206A‧‧‧ inverse quantization circuit

106B、206B‧‧‧反轉換電路 106B, 206B‧‧‧ reverse conversion circuit

107、207‧‧‧加法電路 107, 207‧‧‧Addition circuit

108、208‧‧‧緩衝器 108, 208‧‧‧ buffer

109、209‧‧‧暫存記憶體 109, 209‧‧‧ temporary memory

110、210‧‧‧控制器 110, 210‧‧‧ controller

110A、210A‧‧‧控制電路 110A, 210A‧‧‧ control circuit

110B‧‧‧資料量計算電路 110B‧‧‧ data volume calculation circuit

210B‧‧‧資料量估計電路 210B‧‧‧ Data Estimation Circuit

110C、210C‧‧‧失真量計算電路 110C, 210C‧‧‧ distortion calculation circuit

110D、210D‧‧‧評估電路 110D, 210D‧‧‧Evaluation Circuit

210E‧‧‧加總電路 210E‧‧‧ total circuit

210F‧‧‧失真量估計電路 210F‧‧‧Distortion Estimation Circuit

S61~S67‧‧‧流程步驟 S61~S67‧‧‧ Process steps

S71~S74‧‧‧流程步驟 S71~S74‧‧‧ Process steps

圖一呈現一個目前廣泛使用的動態影像編碼系統之功能方塊圖。 Figure 1 presents a functional block diagram of a currently widely used motion picture coding system.

圖二為根據本發明之一實施例中的動態影像編碼系統之功能方塊圖。 2 is a functional block diagram of a motion picture coding system in accordance with an embodiment of the present invention.

圖三呈現一尺寸為4*4的資料矩陣範例。 Figure 3 presents an example of a data matrix of size 4*4.

圖四為根據本發明之另一實施例中的動態影像編碼系統之功能方塊圖。 4 is a functional block diagram of a motion picture coding system in accordance with another embodiment of the present invention.

圖五為根據本發明之又一實施例中的動態影像編碼系統之功能方塊圖。 Figure 5 is a functional block diagram of a motion picture coding system in accordance with still another embodiment of the present invention.

圖六為根據本發明之一實施例中的影像處理方法之流程圖。 6 is a flow chart of an image processing method in accordance with an embodiment of the present invention.

圖七為根據本發明之另一實施例中的影像處理方法之流程圖。 Figure 7 is a flow chart of an image processing method in accordance with another embodiment of the present invention.

須說明的是,本發明的圖式並非細部電路圖,且其中的連接線僅用以表示信號流。功能性元件及/或程序間的多種互動關係不一定要透過直接的電性連結始能達成。此外,個別元件的功能不一定要如圖式中繪示的方式分配,且分散式的區塊不一定要以分散式的電子元件實現。 It should be noted that the drawings of the present invention are not detailed circuit diagrams, and the connecting lines therein are only used to indicate signal flows. Multiple interactions between functional components and/or procedures do not have to be achieved through direct electrical connections. In addition, the functions of the individual components are not necessarily allotted in the manner illustrated in the drawings, and the decentralized blocks are not necessarily implemented in the form of decentralized electronic components.

根據本發明之一具體實施例為一動態影像編碼系統。請參閱圖二所示之功能方塊圖。動態影像編碼系統200包含框內預測/移動補償電路201、殘差產生電路202、轉換電路203A、量化電路203B、熵編碼電路204、反量化電路206A、反轉換電路206B、加法電路207、緩衝器208、暫存記憶體209以及控制器210。並且,控制器210中包含有一控制電路210A、一資料量估計電路210B、一失真量計算電路210C、一評估電路210D與一加總電路210E。 A dynamic image encoding system in accordance with an embodiment of the present invention. Please refer to the function block diagram shown in Figure 2. The motion picture coding system 200 includes an in-frame prediction/motion compensation circuit 201, a residual generation circuit 202, a conversion circuit 203A, a quantization circuit 203B, an entropy coding circuit 204, an inverse quantization circuit 206A, an inverse conversion circuit 206B, an addition circuit 207, and a buffer. 208. The temporary storage memory 209 and the controller 210. Moreover, the controller 210 includes a control circuit 210A, a data amount estimation circuit 210B, a distortion amount calculation circuit 210C, an evaluation circuit 210D, and a summing circuit 210E.

於此實施例中,框內預測/移動補償電路201、殘差產生電路202、轉換電路203A、量化電路203B、反量化電路206A、反轉換電路206B、加法電路207,以及緩衝器208為先前技術,其運作方式可參考圖一中各相對應電路的說明。動態影像編碼系統200與動態影像編碼系統100的主要差別之一在於,控制器210並非根據編碼結果的準確資料量來選擇最佳模式,而是改為參考一個根據轉換量化後殘差資料產生的資料量估計值,詳述如下。 In this embodiment, the in-frame prediction/motion compensation circuit 201, the residual generation circuit 202, the conversion circuit 203A, the quantization circuit 203B, the inverse quantization circuit 206A, the inverse conversion circuit 206B, the addition circuit 207, and the buffer 208 are prior art. For the operation mode, refer to the description of each corresponding circuit in Figure 1. One of the main differences between the dynamic image encoding system 200 and the dynamic image encoding system 100 is that the controller 210 does not select the optimal mode based on the accurate data amount of the encoding result, but instead refers to a residual data generated based on the converted quantization. The estimated amount of data is detailed below.

針對每一種框內預測/移動補償模式,量化電路203B都會產生一組轉換量化後殘差資料。圖三所示的4*4資料矩陣的範例,係代表轉換量化後殘差資料的二維資料,其矩陣中每一個資料值各自具有一橫座標x與一縱座標y。加總電路210E會計算其中之非零元素的絕對值總和SUM ABS ,以及該等非零元素相對於一參考點的座標值總和SUM CRD 。若以圖三的資料矩陣為例,加總電路210E所計算出的絕對值總和SUM ABS 會是:54+25+16+4+32+11+10+6+2+8+1=169。 For each of the in-frame prediction/motion compensation modes, the quantization circuit 203B generates a set of converted quantized residual data. The example of the 4*4 data matrix shown in FIG. 3 represents two-dimensional data representing the residual data after quantization, and each data value in the matrix has a horizontal coordinate x and an ordinate y. The summing circuit 210E calculates the sum of absolute values SUM ABS of the non-zero elements therein, and the sum of the coordinate values SUM CRD of the non-zero elements with respect to a reference point. Taking the data matrix of FIG. 3 as an example, the sum of absolute values SUM ABS calculated by the summing circuit 210E will be: 54+25+16+4+32+11+10+6+2+8+1=169.

於一實施例中,加總電路210E係將所有非零元素所在座標的縱向座標值與橫向座標值相加,做為座標值總和SUM CRD 。若以圖三的資料矩陣為例,加總電路210E用這種方式計算出的座標值總和SUM CRD 會是:(0+0)+(1+0)+(2+0)+(3+0)+(0+1)+(1+1)+(0+2)+(1+2)+(2+2)+(0+3)+(3+3)=27。 In one embodiment, the summing circuit 210E adds the longitudinal coordinate values of the coordinates of all non-zero elements to the lateral coordinate values as the coordinate value sum SUM CRD . Taking the data matrix of FIG. 3 as an example, the total value of the coordinates SUM CRD calculated by the summing circuit 210E in this way would be: (0+0)+(1+0)+(2+0)+(3+ 0) + (0 + 1) + (1 + 1) + (0 + 2) + (1 + 2) + (2+2) + (0 + 3) + (3 + 3) = 27.

針對每一種框內預測/移動補償模式,資料量估計電路210B根 據其相對應資料矩陣的絕對值總和SUM ABS 與座標值總和SUM CRD ,產生一資料量估計值。於一實施例中,資料量估計電路210B分別賦予絕對值總和SUM ABS 與座標值總和SUM CRD 一特定權重,然後根據該加權後絕對值總和與該加權後座標值總和產生資料量估計值。舉例而言,資料量估計電路210B可採用下列預設演算式: 其中的符號abc代表數值固定的參數(參數ab即為上述特定權重),可利用線性回歸等方法產生。更具體地說,電路設計者可預先配合圖一所示之資料量計算電路110B及多組樣本資料,找出絕對值總和SUM ABS 、座標值總和SUM CRD 與準確的實際資料量間的對應關係,並利用線性回歸等方法找出適當的演算式(亦即找出適當的參數abc)描述此對應關係。易言之,前述賦予絕對值總和SUM ABS 與座標值總和SUM CRD 的特定權重可以是利用線性回歸等方法所決定的。須說明的是,描述該對應關係的演算式亦可包含絕對值總和SUM ABS 及/或座標值總和SUM CRD 的多次項,亦即不以僅包含一次項的式一為限。 For each of the in-frame prediction/motion compensation modes, the data amount estimation circuit 210B generates a data amount estimation value according to the sum of the absolute values of the corresponding data matrices SUM ABS and the coordinate value sum SUM CRD . . In an embodiment, the data amount estimating circuit 210B respectively assigns a specific weight to the absolute value sum SUM ABS and the coordinate value sum SUM CRD , and then generates an estimated data amount according to the sum of the weighted absolute value and the weighted coordinate value. . For example, the data amount estimation circuit 210B can adopt the following preset calculation formula: The symbols a , b , and c represent fixed-valued parameters (parameters a and b are the above-mentioned specific weights), and can be generated by linear regression or the like. More specifically, the circuit designer can pre-comply with the data amount calculation circuit 110B and the plurality of sets of sample data shown in FIG. 1 to find the correspondence between the absolute value sum SUM ABS , the coordinate value sum SUM CRD and the accurate actual data amount. And use linear regression and other methods to find the appropriate calculus (that is, find the appropriate parameters a , b , c ) to describe the correspondence. In other words, the specific weight given to the absolute value sum SUM ABS and the coordinate value sum SUM CRD may be determined by a method such as linear regression. It should be noted that the formula for describing the correspondence may also include multiple items of the absolute value sum SUM ABS and/or the coordinate value sum SUM CRD , that is, not limited to the formula 1 including only one item.

於另一實施例中,針對每一組表示轉換量化後殘差資料的二維資料,加總電路210E計算其中的非零元素之橫向座標值總和SUM CRD_X 與縱向座標值總和SUM CRD_Y 。資料量估計電路210B分別賦予絕對值總和SUM ABS 、橫向座標值總和SUM CRD_X 與縱向座標值總和SUM CRD_Y 一特定權重,然後根據該加權後絕對值總和、該加權後縱向座標值總和與該加權後橫向座標值總和,產生資料量估計值。舉例而言,資料量估計電路210B可採用下列 預設演算式: 其中的參數ab1b2c可利用前述線性回歸等方法產生。 In another embodiment, for each set of two-dimensional data representing the transformed residual residual data, the summing circuit 210E calculates the sum of the lateral coordinate values of the non-zero elements SUM CRD_X and the longitudinal coordinate value sum SUM CRD_Y . The data amount estimating circuit 210B respectively assigns a specific weight to the absolute value sum SUM ABS , the lateral coordinate value sum SUM CRD_X and the longitudinal coordinate value sum SUM CRD_Y , and then according to the weighted absolute value sum, the weighted rear coordinate value sum and the weighted The sum of the lateral coordinate values, resulting in an estimate of the amount of data . For example, the data amount estimation circuit 210B can adopt the following preset calculation formula: The parameters a , b1 , b2 , and c can be generated by the aforementioned linear regression or the like.

如圖二所示,資料量估計電路210B產生的資料量估計值被提供至評估電路210D。針對同一待解碼影像區塊,控制電路210A可控制框內預測/移動補償電路201逐一進行各種框內預測/移動補償模式,資料量估計電路210B隨後根據各種模式相對應產生不同資料量估計值As shown in FIG. 2, the data amount estimation value generated by the data amount estimation circuit 210B is It is supplied to the evaluation circuit 210D. For the same image block to be decoded, the control circuit 210A can control the intra-frame prediction/motion compensation circuit 201 to perform various intra-frame prediction/motion compensation modes one by one, and the data quantity estimation circuit 210B subsequently generates different data quantity estimation values according to various modes. .

類似的,失真量計算模組207依據各種框內預測/移動補償模式對應產生不同的失真量D。更具體地說,反量化電路206A與反轉換電路206B會重建各個模式的轉換量化後殘差資料,以產生相對應的還原後殘差資料。失真量計算模組207係用以根據此還原後殘差資料與殘差產生電路202產生的殘差資料之間的差異值決定失真量D。評估電路210D可根據所有框內預測/移動補償模式的資料量估計值以及失真量D,利用拉格朗日法或類似的評估方式,自框內預測/移動補償電路201的複數種影像處理模式中,為目前的影像區塊選擇一種最佳模式(亦即最能兼顧低資料量與低失真量的模式)。 Similarly, the distortion amount calculation module 207 generates different distortion amounts D according to various in-frame prediction/motion compensation modes. More specifically, the inverse quantization circuit 206A and the inverse conversion circuit 206B reconstruct the converted quantized residual data of each mode to generate corresponding restored residual data. The distortion amount calculation module 207 is configured to determine the distortion amount D based on the difference value between the residual data after the restoration and the residual data generated by the residual generation circuit 202. The evaluation circuit 210D can estimate the data amount according to all the in-frame prediction/motion compensation modes. And the distortion amount D , using the Lagrangian method or the like, to select an optimal mode for the current image block from the plurality of image processing modes of the in-frame prediction/motion compensation circuit 201 (ie, the best mode) A mode of low data volume and low distortion.)

於一實施例中,在評估電路210D選出最佳模式前,轉換量化後殘差資料可被暫時存放在暫存記憶體209中。等到評估電路210D選出最佳模式後,暫存記憶體209便可將對應於最佳模式的轉換量化後殘差資料提供給熵編碼電路204,以對此轉換量化後殘差資料及其相對應的中介資 料施以熵編碼,以產生一編碼結果。 In one embodiment, the converted quantized residual data may be temporarily stored in the temporary memory 209 before the evaluation circuit 210D selects the best mode. After the evaluation circuit 210D selects the optimal mode, the temporary storage memory 209 can provide the converted quantized residual data corresponding to the optimal mode to the entropy encoding circuit 204 to convert the quantized residual data and corresponding thereto. Intermediary Entropy coding is applied to produce an encoded result.

於另一實施例中,暫存記憶體209中僅儲存目前已知的最佳模式之轉換量化後殘差資料。每當評估電路210D發現另一個框內預測/移動補償模式是更好的,便會以新的轉換量化後殘差資料取代暫存記憶體209中原本暫存的轉換量化後殘差資料。直到所有的框內預測/移動補償模式已被嘗試過,暫存記憶體209中所儲存的便是對應於最佳模式的轉換量化後殘差資料。這種做法的好處在於可節省暫存記憶體209的硬體空間。 In another embodiment, the temporary memory 209 stores only the converted quantized residual data of the best known mode. Whenever the evaluation circuit 210D finds that another in-frame prediction/motion compensation mode is better, the newly converted post-quantization residual data in the temporary storage memory 209 is replaced with the new converted quantized residual data. Until all of the in-frame prediction/motion compensation modes have been tried, the stored in the temporary memory 209 is the converted quantized residual data corresponding to the best mode. The advantage of this approach is that it saves the hardware space of the scratch memory 209.

於又一實施例中,在評估電路210D選出最佳模式前,暫存記憶體209不儲存任何的轉換量化後殘差資料,而是僅記錄(例如以索引的方式)目前的最佳模式是哪一種模式。直到所有的框內預測/移動補償模式皆被嘗試過,控制電路210A才會控制框內預測/移動補償電路201、殘差產生電路202、轉換電路203A、量化電路203B重新產生出對應於此最佳模式的轉換量化後殘差資料,供熵編碼電路204進行編碼。 In yet another embodiment, before the evaluation circuit 210D selects the best mode, the temporary memory 209 does not store any converted quantized residual data, but only records (eg, by index) that the current best mode is Which mode? Until all of the in-frame prediction/motion compensation modes have been tried, the control circuit 210A controls the in-frame prediction/motion compensation circuit 201, the residual generation circuit 202, the conversion circuit 203A, and the quantization circuit 203B to reproduce the most corresponding to this. The quantized residual residual data of the good mode is encoded by the entropy encoding circuit 204.

由以上說明可看出,在動態影像編碼系統200中,資料量估計電路210B係根據轉換量化後殘差資料產生資料量估計值。相較於圖一呈現的先前技術,熵編碼電路204只需要針對被選出的最佳模式所對應之轉換量化後殘差資料及中介資料進行編碼,而不需要對每一個模式所對應的轉換量化後殘差資料及中介資料進行編碼。動態影像編碼系統200可使用較短的時間與較少的運算資源即產生資料量估計值,做為評估電路210D選擇最佳模式的參考資料。 As can be seen from the above description, in the motion image encoding system 200, the data amount estimating circuit 210B generates an estimated amount of data based on the converted residual data. . Compared with the prior art presented in FIG. 1, the entropy encoding circuit 204 only needs to encode the converted quantized residual data and the intermediate data corresponding to the selected optimal mode, without the need to quantize the conversion corresponding to each mode. Post-residual data and intermediate data are encoded. The motion image encoding system 200 can generate data amount estimates using a shorter time and less computing resources. As a reference for the evaluation circuit 210D to select the best mode.

請參閱圖四。於另一實施例中,資料量估計電路210B亦對各種 框內預測/移動補償模式的中介資料進行資料量評估。以中介資料中某一參數以多個位元表示為例,此多個位元中若有一部份位元被分類為旁路(bypass)資料,即是指此部分位元無法藉由發生機率進行正確預測,所以熵編碼電路204不對此部分位元施以熵編碼程序。每一種模式之中介資料中各參數內容為旁路資料或非旁路(non-bypass)資料係為已知,因此資料量估計電路210B可依照這些資訊可算出相對應的中介資料之一旁路資料數量B P 與一非旁路資料數量B NP ,並據此產生一中介資料量估計值Please refer to Figure 4. In another embodiment, the data amount estimation circuit 210B also performs data volume evaluation on the mediation data of various in-frame prediction/motion compensation modes. Taking a parameter in an intermediary data as an example, if some of the multiple bits are classified as bypass data, it means that the bit cannot be generated by chance. The correct prediction is made, so the entropy encoding circuit 204 does not apply an entropy encoding procedure to this portion of the bits. The content of each parameter in the mediation data of each mode is known as bypass data or non-bypass data, so the data volume estimation circuit 210B can calculate one of the corresponding mediation materials according to the information. The quantity B P and the number of non-bypass data B NP , and an intervening data amount estimate is generated accordingly .

舉例而言,資料量估計電路210B可採用下列預設演算式: 其中符號α代表一加權參數,其數值可由電路設計者根據經驗決定,例如可被設定為等於1或略小於1。實務上,若各種中介資料的內容是固定的,資料量估計電路210B可利用查表的方式產生旁路資料數量B P 與非旁路資料數量B NP For example, the data amount estimation circuit 210B can adopt the following preset calculation formula: The symbol α represents a weighting parameter whose value can be determined empirically by the circuit designer, for example, can be set equal to 1 or slightly less than 1. In practice, if the content of the various intermediary materials is fixed, the data amount estimation circuit 210B can generate the bypass data quantity B P and the non-bypass data quantity B NP by means of look-up table.

除了各個模式的絕對值總和SUM ABS 與座標值總和SUM CRD ,圖四中的資料量估計電路210B在為每一種模式產生其資料量估計值時,亦將其中介資料量估計值納入考量。舉例而言,圖四中的資料量估計電路210B可將式一修改為: In addition to the absolute value sum SUM ABS of each mode and the coordinate value sum SUM CRD , the data amount estimating circuit 210B in FIG. 4 generates an estimated amount of data for each mode. Estimated value of the amount of information Inclusion considerations. For example, the data amount estimation circuit 210B in FIG. 4 can modify the formula 1 to:

圖五呈現動態影像編碼系統200的一種變化型。於此實施例中, 失真量計算模組210C被一失真量估計電路210F取代。失真量估計電路210F的輸入信號為轉換電路203A產生的轉換後矩陣,以及反量化電路206A產生的反量化結果。針對每一種框內預測/移動補償模式,失真量估計電路210F係計算該反量化結果與該轉換後矩陣之差異,做為一失真量估計值,供評估電路210D於選擇最佳模式時參考。相較於圖一呈現的先前技術,圖五所採用的做法在產生失真量估計值的過程中不需要進行反轉換程序,因而得以縮短產出失真量估計值所需要的時間,並且進一步節省運算資源。 FIG. 5 presents a variation of the dynamic image encoding system 200. In this embodiment, the distortion amount calculation module 210C is replaced by a distortion amount estimation circuit 210F. The input signal of the distortion amount estimating circuit 210F is the converted matrix generated by the converting circuit 203A, and the inverse quantization result generated by the inverse quantization circuit 206A. For each of the in-frame prediction/motion compensation modes, the distortion amount estimation circuit 210F calculates the difference between the inverse quantization result and the converted matrix as a distortion amount estimation value. For evaluation circuit 210D to refer to when selecting the best mode. Compared to the prior art presented in Figure 1, the approach taken in Figure 5 is to generate an estimate of the amount of distortion. There is no need to perform an inverse conversion procedure in the process, thus shortening the output distortion estimate The time required and further savings in computing resources.

此外,失真量估計電路210F可被設計為僅計算該轉換後矩陣與其反量化結果之一較高位元差異、忽略一較低位元差異。舉例而言,假設轉換後矩陣及反量化結果中的每一個元素係各自以長度十六位元的二進制資料表示,失真量估計電路210F可以僅計算兩個相對應元素的前八個較高位元的差異,忽略後八個較低位元的差異。這種做法也可以達到進一步節省運算時間與運算資源的效果。 Furthermore, the distortion amount estimation circuit 210F can be designed to calculate only a higher bit difference of the converted matrix and one of its inverse quantization results, ignoring a lower bit difference. For example, assuming that each element of the transformed matrix and the inverse quantization result is represented by binary data of length sixteen bits, the distortion amount estimation circuit 210F can calculate only the first eight higher bits of the two corresponding elements. The difference is ignored after the difference between the eight lower bits. This approach can also achieve the effect of further saving computing time and computing resources.

實務上,前述加總電路210E、資料量估計電路210B與失真量評估電路210F可各自被實現為但不限於固定式及/或可程式化的數位邏輯電路,包含可程式化邏輯閘陣列、特定應用積體電路、微控制器、微處理器、數位信號處理器,與其他必要電路。 In practice, the summing circuit 210E, the data amount estimating circuit 210B, and the distortion amount evaluating circuit 210F may each be implemented as, but not limited to, a fixed and/or programmable digital logic circuit, including a programmable logic gate array, and a specific Apply integrated circuits, microcontrollers, microprocessors, digital signal processors, and other necessary circuits.

根據本發明之另一具體實施例為一種動態影像編碼方法,其流程圖係繪示於圖六。首先,步驟S61為分別採用複數種框內預測/移動補償模式為一待編碼影像區塊找出複數種參考區塊。其次,步驟S62為根據 該待編碼影像區塊與該複數種參考區塊產生相對應的複數組殘差資料。隨後,步驟S63為針對每一組殘差資料進行一離散餘弦轉換程序,以產生一轉換後矩陣。步驟S64則是針對每一個轉換後矩陣進行一量化程序,以產生一組轉換量化後殘差資料。接著,步驟S65為針對每一組轉換量化後殘差資料,計算其中之非零元素的絕對值總和以及該等非零元素相對於一參考點的座標值總和。步驟S66是針對每一種框內預測/移動補償模式,根據其相對應轉換量化後殘差資料之該絕對值總和與該座標值總和,產生一資料量估計值。步驟S67則是根據該複數個資料量估計值,自該複數種框內預測/移動補償模式中選擇一最佳模式。 Another embodiment of the present invention is a dynamic image encoding method, and a flow chart thereof is shown in FIG. First, step S61 is to find a plurality of reference blocks for a to-be-encoded image block by using a plurality of in-frame prediction/motion compensation modes, respectively. Second, step S62 is based on The to-be-coded image block and the plurality of reference blocks generate corresponding complex array residual data. Subsequently, step S63 is to perform a discrete cosine transform procedure for each set of residual data to generate a transformed matrix. Step S64 is to perform a quantization process for each converted matrix to generate a set of converted quantized residual data. Next, in step S65, the quantized residual data is converted for each group, and the sum of the absolute values of the non-zero elements and the sum of the coordinate values of the non-zero elements with respect to a reference point are calculated. Step S66 is to generate a data amount estimation value according to the sum of the absolute values of the corresponding residual data and the coordinate value of the corresponding intra-frame prediction/motion compensation mode. Step S67 is to select an optimal mode from the plurality of in-frame prediction/motion compensation modes according to the plurality of data amount estimation values.

根據本發明之另一具體實施例為一種影像處理方法,其流程圖係繪示於圖七。首先,步驟S71為針對一影像資料進行一離散餘弦轉換程序,以產生一轉換後矩陣。其次,步驟S72為針對該轉換後矩陣進行一量化程序,以產生一轉換量化後資料。接著,步驟S73為針對該轉換量化後資料進行一反量化程序,以產生一反量化結果。隨後,步驟S74為根據該轉換後矩陣與該反量化結果的差異,決定一失真量估計值。 Another embodiment of the present invention is an image processing method, and a flow chart thereof is shown in FIG. First, step S71 is to perform a discrete cosine transform process for an image data to generate a converted matrix. Next, in step S72, a quantization process is performed on the converted matrix to generate a converted quantized data. Next, in step S73, an inverse quantization process is performed on the converted quantized data to generate an inverse quantization result. Subsequently, step S74 determines a distortion amount estimation value according to the difference between the converted matrix and the inverse quantization result.

藉由以上較佳具體實施例之詳述,係希望能更加清楚描述本發明之特徵與精神,而並非以上述所揭露的較佳具體實施例來對本發明之範疇加以限制。相反地,其目的是希望能涵蓋各種改變及具相等性的安排於本發明所欲申請之專利範圍的範疇內。 The features and spirit of the present invention will be more apparent from the detailed description of the preferred embodiments. On the contrary, the intention is to cover various modifications and equivalents within the scope of the invention as claimed.

Claims (14)

一種動態影像編碼裝置,包含:一框內預測/移動補償電路,分別採用複數種框內預測/移動補償模式為一待編碼影像區塊找出複數種參考區塊;一殘差產生電路,根據該待編碼影像區塊與該複數種參考區塊產生相對應的複數組殘差資料;一轉換電路,針對每一組殘差資料進行一離散餘弦轉換程序,以產生一轉換後矩陣;一量化電路,針對每一個轉換後矩陣進行一量化程序,以產生一組轉換量化後殘差資料;以及一控制器,包含:一加總電路,針對每一組轉換量化後殘差資料,計算其中之非零元素的絕對值總和以及該等非零元素相對於一參考點的座標值總和;一資料量估計電路,針對每一種框內預測/移動補償模式,根據其相對應轉換量化後殘差資料之該絕對值總和與該座標值總和,產生一資料量估計值;以及一評估電路,根據該複數個資料量估計值,自該複數種框內預測/移動補償模式中選擇一最佳模式。 A motion picture coding apparatus includes: an in-frame prediction/motion compensation circuit, which uses a plurality of in-frame prediction/motion compensation modes to find a plurality of reference blocks for a to-be-coded image block; a residual generation circuit, according to The to-be-coded image block and the plurality of reference blocks generate corresponding complex array residual data; a conversion circuit performs a discrete cosine conversion process for each set of residual data to generate a transformed matrix; a circuit, performing a quantization process for each converted matrix to generate a set of converted quantized residual data; and a controller comprising: a total adding circuit, converting the quantized residual data for each group, and calculating the residual data The sum of the absolute values of the non-zero elements and the sum of the coordinate values of the non-zero elements with respect to a reference point; a data amount estimation circuit, for each of the in-frame prediction/motion compensation modes, according to the corresponding converted residual residual data The sum of the absolute values and the coordinate value sum, generating a data amount estimate; and an evaluation circuit, based on the plurality of data amount estimates From the plurality of kinds of frame prediction / motion compensation mode, select a best mode. 如申請專利範圍第1項所述之動態影像編碼裝置,其中該資料量估計電路分別賦予該絕對值總和與該座標值總和一特定權重,以產生一加權後 絕對值總和與一加權後座標值總和;該資料量估計電路根據該加權後絕對值總和與該加權後座標值總和產生該資料量估計值。 The motion picture coding apparatus according to claim 1, wherein the data amount estimation circuit respectively assigns a sum of the absolute value sum and the coordinate value to a specific weight to generate a weighted The sum of the absolute value and the sum of the weighted post-coordinate values; the data quantity estimating circuit generates the data quantity estimation value according to the sum of the weighted absolute value sum and the weighted post-coordinate value. 如申請專利範圍第1項所述之動態影像編碼裝置,其中針對每一組轉換量化後殘差資料,該加總電路計算其中的非零元素之一縱向座標值總和與一橫向座標值總和;該資料量估計電路分別賦予該絕對值總和、該縱向座標值總和與該橫向座標值總和一特定權重,以產生一加權後絕對值總和、一加權後縱向座標值總和與一加權後橫向座標值總和;該資料量估計電路根據該加權後絕對值總和、該加權後縱向座標值總和與該加權後橫向座標值總和產生該資料量估計值。 The motion picture coding apparatus of claim 1, wherein the quantized circuit calculates a sum of a longitudinal coordinate value and a horizontal coordinate value of one of the non-zero elements; The data amount estimating circuit respectively assigns the sum of the absolute values, the sum of the longitudinal coordinate values and the sum of the lateral coordinate values to a specific weight to generate a weighted sum of absolute values, a weighted sum of longitudinal coordinate values and a weighted post-coordinate value a sum; the data quantity estimating circuit generates the data quantity estimated value according to the sum of the weighted absolute value, the sum of the weighted longitudinal coordinate values and the weighted horizontal coordinate value. 如申請專利範圍第1項所述之動態影像編碼裝置,其中該資料量估計電路進一步:針對每一種框內預測/移動補償模式,計算相對應的中介資料之一旁路資料數量與一非旁路資料數量,並據此產生一中介資料量估計值;以及於為每一種框內預測/移動補償模式產生其資料量估計值時,亦將其中介資料量估計值納入考量。 The dynamic image encoding device according to claim 1, wherein the data amount estimating circuit further calculates, for each of the in-frame prediction/motion compensation modes, a quantity of bypass data and a non-bypass The amount of data and the resulting estimate of the median amount; and the estimated amount of the data is also taken into account when estimating the amount of data for each of the in-frame prediction/motion compensation modes. 如申請專利範圍第1項所述之動態影像編碼裝置,進一步包含:一反量化電路,針對每一組轉換量化後殘差資料進行一反量化程序,以產生一反量化結果;且該控制器進一步包含:一失真量估計電路,針對每一種框內預測/移動補償模式,計算該反 量化結果與該轉換後矩陣之差異,做為一失真量估計值;其中該評估電路在選擇該最佳模式時,亦將各個框內預測/移動補償模式的失真量估計值納入考量。 The motion picture coding apparatus according to claim 1, further comprising: an inverse quantization circuit, performing an inverse quantization process for each set of converted quantized residual data to generate an inverse quantization result; and the controller Further comprising: a distortion amount estimation circuit for calculating each of the in-frame prediction/motion compensation modes The difference between the quantized result and the transformed matrix is used as a distortion amount estimation value; wherein the evaluation circuit also takes into account the estimation of the distortion amount of each in-frame prediction/motion compensation mode when selecting the optimal mode. 如申請專利範圍第5項所述之動態影像編碼裝置,其中在為一組轉換量化後殘差資料產生其失真量估計值時,該失真量估計電路計算該轉換後矩陣與其反量化結果之一較高位元差異、忽略一較低位元差異。 The motion picture coding apparatus according to claim 5, wherein the distortion amount estimation circuit calculates one of the converted matrix and the inverse quantization result thereof when the residual error data is generated for a set of converted quantized residual data Higher bit differences, ignoring a lower bit difference. 一種動態影像編碼方法,包含:(a)分別採用複數種框內預測/移動補償模式為一待編碼影像區塊找出複數種參考區塊;(b)根據該待編碼影像區塊與該複數種參考區塊產生相對應的複數組殘差資料;(c)針對每一組殘差資料進行一離散餘弦轉換程序,以產生一轉換後矩陣;(d)針對每一個轉換後矩陣進行一量化程序,以產生一組轉換量化後殘差資料;(e)針對每一組轉換量化後殘差資料,計算其中之非零元素的絕對值總和以及該等非零元素相對於一參考點的座標值總和;(f)針對每一種框內預測/移動補償模式,根據其相對應轉換量化後殘差資料之該絕對值總和與該座標值總和,產生一資料量估計值;以及(g)根據該複數個資料量估計值,自該複數種框內預測/移動補償模 式中選擇一最佳模式。 A dynamic image encoding method includes: (a) finding a plurality of reference blocks for a block of image to be encoded by using a plurality of in-frame prediction/motion compensation modes; (b) determining the image block to be encoded and the complex number according to the block; The reference block generates corresponding complex array residual data; (c) performs a discrete cosine transform procedure for each set of residual data to generate a transformed matrix; (d) performs a quantization for each transformed matrix a program to generate a set of transformed quantized residual data; (e) converting the quantized residual data for each set, calculating a sum of absolute values of non-zero elements therein and coordinates of the non-zero elements relative to a reference point (f) for each of the in-frame prediction/motion compensation modes, generating a data amount estimate based on the sum of the absolute values of the corresponding residual quantized data and the coordinate value; and (g) The plurality of data amount estimates from the plurality of in-frame prediction/moving compensation modes Select an optimal mode from the formula. 如申請專利範圍第7項所述之動態影像編碼方法,其中步驟(f)包含針對每一組轉換量化後殘差資料:分別賦予該絕對值總和與該座標值總和一特定權重,以產生一加權後絕對值總和與一加權後座標值總和;以及根據該加權後絕對值總和與該加權後座標值總和產生該資料量估計值。 The dynamic image encoding method of claim 7, wherein the step (f) comprises converting the quantized residual data for each group: respectively assigning the sum of the absolute values and the coordinate value to a specific weight to generate a The sum of the weighted absolute value sum and a weighted post coordinate value; and the data quantity estimation value is generated according to the sum of the weighted absolute value sum and the weighted post coordinate value. 如申請專利範圍第7項所述之動態影像編碼方法,其中:針對每一組轉換量化後殘差資料,步驟(e)包含計算其中的非零元素之一縱向座標值總和與一橫向座標值總和;步驟(f)包含分別賦予該絕對值總和、該縱向座標值總和與該橫向座標值總和一特定權重,以產生一加權後絕對值總和、一加權後縱向座標值總和與一加權後橫向座標值總和;以及步驟(f)包含根據該加權後絕對值總和、該加權後縱向座標值總和與該加權後橫向座標值總和產生該資料量估計值。 The dynamic image encoding method of claim 7, wherein: converting the quantized residual data for each group, step (e) comprises calculating a sum of a longitudinal coordinate value and a lateral coordinate value of one of the non-zero elements therein. a sum; the step (f) includes respectively assigning the sum of the absolute values, the sum of the longitudinal coordinate values and the sum of the lateral coordinate values to a specific weight, to generate a weighted sum of absolute values, a weighted sum of the longitudinal coordinate values and a weighted horizontal The sum of the coordinate values; and the step (f) includes generating the data amount estimate based on the sum of the weighted absolute values, the sum of the weighted longitudinal coordinate values, and the weighted lateral coordinate values. 如申請專利範圍第7項所述之動態影像編碼方法,進一步包含:針對每一種框內預測/移動補償模式,計算相對應的中介資料之一旁路資料數量與一非旁路資料數量,並據此產生一中介資料量估計值;其中步驟(f)於為每一種框內預測/移動補償模式產生其資料量估計值時,亦將其中介資料量估計值納入考量。 The method for encoding a dynamic image according to claim 7 , further comprising: calculating, for each of the in-frame prediction/motion compensation modes, a quantity of bypass data and a quantity of non-bypass data, and according to This produces an estimate of the median data; where step (f) is to generate an estimate of the amount of data for each of the in-frame prediction/motion compensation modes, the median estimate is also taken into account. 如申請專利範圍第7項所述之動態影像編碼方法,進一步包含:針對每一組轉換量化後殘差資料進行一反量化程序,以產生一反量化結果;以及針對每一種框內預測/移動補償模式,計算該反量化結果與該轉換後矩陣之差異,做為一失真量估計值;其中步驟(g)在選擇該最佳模式時,亦將各個框內預測/移動補償模式的失真量估計值納入考量。 The method for encoding a dynamic image according to claim 7 , further comprising: performing an inverse quantization process for each set of converted quantized residual data to generate an inverse quantization result; and for each intra-frame prediction/moving a compensation mode, calculating a difference between the inverse quantization result and the converted matrix as a distortion amount estimation value; wherein the step (g), when selecting the optimal mode, also the distortion amount of each intra prediction/motion compensation mode Estimates are taken into account. 如申請專利範圍第11項所述之動態影像編碼方法,其中為一組轉換量化後殘差資料產生其失真量估計值包含計算該轉換後矩陣與其反量化結果之一較高位元差異、忽略一較低位元差異。 The dynamic image encoding method according to claim 11, wherein generating a distortion amount estimation value for a set of converted quantized residual data comprises calculating a higher bit difference between the converted matrix and the inverse quantization result thereof, and ignoring one Lower bit difference. 一種動態影像編碼方法,包含:(a)針對一影像資料進行一離散餘弦轉換程序,以產生一轉換後矩陣;(b)針對該轉換後矩陣進行一量化程序,以產生一轉換量化後資料;(c)針對該轉換量化後資料進行一反量化程序,以產生一反量化結果;以及(d)根據該轉換後矩陣與該反量化結果的差異,決定一失真量估計值。 A dynamic image coding method includes: (a) performing a discrete cosine transform process for an image data to generate a transformed matrix; (b) performing a quantization process on the converted matrix to generate a converted quantized data; (c) performing an inverse quantization process on the converted quantized data to generate an inverse quantization result; and (d) determining a distortion amount estimation value based on the difference between the converted matrix and the inverse quantization result. 如申請專利範圍第13項所述之動態影像編碼方法,其中步驟(d)包含計算該轉換後矩陣與該反量化結果之一較高位元差異、忽略一較低位元差異。 The dynamic image encoding method of claim 13, wherein the step (d) comprises calculating a higher bit difference between the converted matrix and the inverse quantization result, ignoring a lower bit difference.
TW106100619A 2017-01-09 2017-01-09 Dynamic image encoding apparatus and dynamic image encoding method TWI635742B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW106100619A TWI635742B (en) 2017-01-09 2017-01-09 Dynamic image encoding apparatus and dynamic image encoding method
US15/794,253 US20180199031A1 (en) 2017-01-09 2017-10-26 Video encoding apparatus and video data amount encoding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106100619A TWI635742B (en) 2017-01-09 2017-01-09 Dynamic image encoding apparatus and dynamic image encoding method

Publications (2)

Publication Number Publication Date
TW201826788A TW201826788A (en) 2018-07-16
TWI635742B true TWI635742B (en) 2018-09-11

Family

ID=62783859

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106100619A TWI635742B (en) 2017-01-09 2017-01-09 Dynamic image encoding apparatus and dynamic image encoding method

Country Status (2)

Country Link
US (1) US20180199031A1 (en)
TW (1) TWI635742B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3044507A1 (en) * 2015-11-30 2017-06-02 Orange IMAGE ENCODING AND DECODING METHOD, IMAGE ENCODING AND DECODING DEVICE AND CORRESPONDING COMPUTER PROGRAMS

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070140345A1 (en) * 2005-12-16 2007-06-21 Akira Osamoto Motion estimation with motion vector penalty
TW201336317A (en) * 2012-01-13 2013-09-01 Qualcomm Inc Determining contexts for coding transform coefficient data in video coding

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8045614B2 (en) * 2005-05-11 2011-10-25 Dolby Laboratories Licensing Corporation Quantization control for variable bit depth
KR100772391B1 (en) * 2006-01-23 2007-11-01 삼성전자주식회사 Method for video encoding or decoding based on orthogonal transform and vector quantization, and apparatus thereof
US9883187B2 (en) * 2015-03-06 2018-01-30 Qualcomm Incorporated Fast video encoding method with block partitioning
US11146788B2 (en) * 2015-06-12 2021-10-12 Qualcomm Incorporated Grouping palette bypass bins for video coding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070140345A1 (en) * 2005-12-16 2007-06-21 Akira Osamoto Motion estimation with motion vector penalty
TW201336317A (en) * 2012-01-13 2013-09-01 Qualcomm Inc Determining contexts for coding transform coefficient data in video coding

Also Published As

Publication number Publication date
US20180199031A1 (en) 2018-07-12
TW201826788A (en) 2018-07-16

Similar Documents

Publication Publication Date Title
JP6928041B2 (en) Methods and equipment for processing video
US8670488B2 (en) Adaptive intra mode selection
CN106961603B (en) Intracoded frame code rate allocation method and device
CN101584215B (en) Integrated spatial-temporal prediction
KR20110106423A (en) Video encoding using previously calculated motion information
CN103096055A (en) Image signal intra-frame prediction and decoding method and device
KR20130018413A (en) An image compression method with random access capability
JP2007529175A5 (en)
TWI551124B (en) Encoding, decoding method and encoding, decoding apparatus for video system
WO2021129007A1 (en) Method and device for determining video bitrate, computer apparatus, and storage medium
CN102857752B (en) A kind of pixel prediction method and apparatus
KR20120049881A (en) Vector embedded graphics coding
US20040146103A1 (en) Bit rate control method and apparatus for MPEG-4 video coding
WO2022095871A1 (en) Video processing method, video processing apparatus, smart device, and storage medium
TWI635742B (en) Dynamic image encoding apparatus and dynamic image encoding method
US11303916B2 (en) Motion compensation techniques for video
JPH09327019A (en) Object area encoding device
Yang et al. Sur-driven video coding rate control for jointly optimizing perceptual quality and buffer control
JP2013506379A (en) Combined scalar embedded graphics coding for color images
CN115442617A (en) Video processing method and device based on video coding
US6141449A (en) Coding mode determination system
CN108347603B (en) Moving image encoding device and moving image encoding method
Jubran et al. Sequence-level reference frames in video coding
KR100911098B1 (en) Apparatus and method for prediction of distortion in H.263 video coding
US11985341B2 (en) Assigning bit budgets to parallel encoded video data

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees
MM4A Annulment or lapse of patent due to non-payment of fees