TWI629310B - Electrothermal material composition and electrothermal textiles - Google Patents

Electrothermal material composition and electrothermal textiles Download PDF

Info

Publication number
TWI629310B
TWI629310B TW105143832A TW105143832A TWI629310B TW I629310 B TWI629310 B TW I629310B TW 105143832 A TW105143832 A TW 105143832A TW 105143832 A TW105143832 A TW 105143832A TW I629310 B TWI629310 B TW I629310B
Authority
TW
Taiwan
Prior art keywords
electrothermal
silver
coated
gold
metal
Prior art date
Application number
TW105143832A
Other languages
Chinese (zh)
Other versions
TW201823357A (en
Inventor
孫文賢
陳志龍
唐靜雯
劉瑞玲
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW105143832A priority Critical patent/TWI629310B/en
Publication of TW201823357A publication Critical patent/TW201823357A/en
Application granted granted Critical
Publication of TWI629310B publication Critical patent/TWI629310B/en

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Laminated Bodies (AREA)

Abstract

本發明提供電熱材料組合物及電熱紡織品。電熱材料組合物包含聚氨酯(polyurethane)與多個金屬材料。聚氨酯具有如式(I)之重複單元:,其中R1,R2,R3,R4,R5係C1-4之烷撐基,R6係C2-6烷撐基,R7係C2-6烷撐基;R8係C1-4烷撐基;X係,R9係C2-6烷撐基;a係1至100,b係0至100,且ab,聚氨酯於25℃的絕對黏度係1000cP至5000cP。多個金屬材料分散於聚氨酯中,其中以電熱材料組合物為100重量份計,金屬材料係30重量份至60重量份。 The present invention provides electrothermal material compositions and electrothermal textiles. The electrothermal material composition comprises polyurethane and a plurality of metal materials. The polyurethane has a repeating unit of the formula (I): , where R 1 is , R 2 series , R 3 series or , R 4 series or , R 5 is a C 1-4 alkylene group, R 6 is a C 2-6 alkylene group, R 7 is a C 2-6 alkylene group; R 8 is a C 1-4 alkylene group; or , R 9 is a C 2-6 alkylene group; a is 1 to 100, b is 0 to 100, and a b. The absolute viscosity of the polyurethane at 25 ° C is 1000 cP to 5000 cP. A plurality of metal materials are dispersed in the polyurethane, wherein the metal material is 30 parts by weight to 60 parts by weight based on 100 parts by weight of the electrothermal material composition.

Description

電熱材料組合物及電熱紡織品 Electrothermal material composition and electrothermal textile

本發明係關於電熱材料組合物及電熱紡織品。 The present invention relates to electrothermal material compositions and electrothermal textiles.

大部分的電熱紡織品以紡織材料為開發主軸,使紡織材料本身具有加熱保溫的功能,此類產品多以碳素纖維、電熱絲等為主體,有其應用上的缺點。 Most of the electrothermal textiles use textile materials as the main axis of development, so that the textile materials themselves have the function of heating and heat preservation. Most of these products are mainly composed of carbon fiber and electric heating wire, and have their application disadvantages.

為因應多樣化的需求,對於提升電熱紡織品的耐水洗特性,以及開發可圖案化的電熱紡織品,已成為當前時勢所趨。 In response to the diversified needs, it has become the current trend to improve the washability of electrothermal textiles and to develop patterned electro-thermal textiles.

本發明一實施例提供之電熱材料組合物,包含:聚氨酯,具有如式(I)之重複單元:,其中R1,R2,R3,R4,R5係C1-4之烷撐基,R6係C2-6烷撐基,R7係C2-6烷撐基;R8係C1-4烷撐基;X係,R9係C2-6烷撐基;a係1至100,b係0至100,且ab,其中聚氨酯於25℃的絕對黏度係1000cP至5000cP;以及多個金屬材料分散於聚氨酯中,其中以電熱材料組合物為100重量份計,金屬材料係30重量份至60重量份。 An electrothermal material composition according to an embodiment of the present invention comprises: a polyurethane having a repeating unit of the formula (I): , where R 1 is , R 2 series , R 3 series or , R 4 series or , R 5 is a C 1-4 alkylene group, R 6 is a C 2-6 alkylene group, R 7 is a C 2-6 alkylene group; R 8 is a C 1-4 alkylene group; or , R 9 is a C 2-6 alkylene group; a is 1 to 100, b is 0 to 100, and a b, wherein the polyurethane has an absolute viscosity of from 1000 cP to 5000 cP at 25 ° C; and a plurality of metal materials are dispersed in the polyurethane, wherein the metal material is from 30 parts by weight to 60 parts by weight based on 100 parts by weight of the electrothermal material composition.

本發明一實施例提供之電熱紡織品,包含:紡織物基材;以及電熱材料組合物,形成於紡織物基材之表面上,電熱材料組合物包含:聚氨酯(polyurethane),具有如式(I)之重複單元:(I)之重複單元:, 其中R1,R2,R3,R4,R5係C1-4之烷撐基,R6係C2-6烷撐基,R7係C2-6烷撐基;R8係C1-4烷撐基;X係,R9係C2-6烷撐基;a係1至100,b係0至100,且ab,其中聚氨酯於25℃的絕對黏度係1000cP至5000cP;以及多個金屬材料,分散於聚氨酯中,其中以電熱材料組合物為100重量份計,金屬材料係30重量份至60重量份。 An electrothermal textile according to an embodiment of the present invention comprises: a textile substrate; and an electrothermal material composition formed on a surface of the textile substrate, the electrothermal material composition comprising: polyurethane having the formula (I) Repeat unit: repeat unit of (I): , where R 1 is , R 2 series , R 3 series or , R 4 series or , R 5 is a C 1-4 alkylene group, R 6 is a C 2-6 alkylene group, R 7 is a C 2-6 alkylene group; R 8 is a C 1-4 alkylene group; or , R 9 is a C 2-6 alkylene group; a is 1 to 100, b is 0 to 100, and a b, wherein the polyurethane has an absolute viscosity of 1000 cP to 5000 cP at 25 ° C; and a plurality of metal materials dispersed in the polyurethane, wherein the metal material is 30 parts by weight to 60 parts by weight based on 100 parts by weight of the electrothermal material composition.

第1圖顯示可圖案化之電熱材料組合物的不同態樣。 Figure 1 shows different aspects of a patternable electrothermal material composition.

本發明一實施例提供之電熱材料組合物,其中包含聚氨酯(polyurethane),具有如式(I)之重複單元:,其中R1,R2,R3,R4,R5係C1-4之烷撐基,R6係C2-6烷撐基,R7係C2-6烷撐基;R8係C1-4烷撐基;X係,R9係C2-6烷撐基;a係1至100,b係0至100,且ab,其中聚氨酯於25℃的絕對黏度係1000cP至5000cP;以及多個金屬材料,分散於聚氨酯中,其中以電熱材料組合物為100重量份計,金屬材料約為30重量份至60重量份。在一實施例中,金屬材料約為35重量份至55重量份。在一實施例中,金屬材料約為40重量份至50重量份。 An electrothermal material composition according to an embodiment of the present invention, comprising polyurethane, having a repeating unit of formula (I): , where R 1 is , R 2 series , R 3 series or , R 4 series or , R 5 is a C 1-4 alkylene group, R 6 is a C 2-6 alkylene group, R 7 is a C 2-6 alkylene group; R 8 is a C 1-4 alkylene group; or , R 9 is a C 2-6 alkylene group; a is 1 to 100, b is 0 to 100, and a b, wherein the polyurethane has an absolute viscosity of from 1000 cP to 5000 cP at 25 ° C; and a plurality of metal materials dispersed in the polyurethane, wherein the metal material is from about 30 parts by weight to 60 parts by weight based on 100 parts by weight of the electrothermal material composition. In one embodiment, the metallic material is from about 35 parts by weight to about 55 parts by weight. In one embodiment, the metallic material is from about 40 parts by weight to about 50 parts by weight.

上述金屬材料如過少,則不易形成導通的網路結構。而若金屬材料過多,則可能導致黏度上升而不利於塗佈。 If the above metal material is too small, it is difficult to form a conductive network structure. If there is too much metal material, it may cause the viscosity to rise and it is not conducive to coating.

在一實施例中,以電熱材料組合物為100重量份計,聚氨酯約為40重量份至50重量份。若聚氨酯過少,則易造成粉體分散不均。若聚氨酯過多,則可能導致配方導電度下降。 In one embodiment, the polyurethane is from about 40 parts by weight to about 50 parts by weight based on 100 parts by weight of the electrocaloric material composition. If the polyurethane is too small, it tends to cause uneven dispersion of the powder. If the polyurethane is too much, it may cause the conductivity of the formulation to decrease.

在一實施例中,上述聚氨酯係由1,4-丁二醇與第二聚氨酯反應而成,上述第二聚氨酯係由2,2-二羥甲基丙酸與預 聚體反應而成,而預聚體係由4,4-二環己基甲烷二異氰酸酯與聚己二酸丁二醇酯反應而成。 In one embodiment, the polyurethane is formed by reacting 1,4-butanediol with a second polyurethane, and the second polyurethane is derived from 2,2-dimethylolpropionic acid and The polymer is reacted, and the prepolymerization system is formed by reacting 4,4-dicyclohexylmethane diisocyanate with polybutylene adipate.

在一實施例中,電熱材料組合物可進一步包含多個碳材,分散於聚氨酯中,例如以電熱材料組合物為100重量份計,碳材約為1重量份至10重量份。在本發明之一實施例中,若碳材過少,則易造成發熱溫度較低。若碳材過多,則可能導致表面電阻上升。 In one embodiment, the electrocaloric composition may further comprise a plurality of carbon materials dispersed in the polyurethane, for example, from about 1 part by weight to 10 parts by weight based on 100 parts by weight of the electrocaloric material composition. In an embodiment of the present invention, if the amount of carbon material is too small, the heat generation temperature is liable to be low. If there is too much carbon, it may cause the surface resistance to rise.

在一實施例中,碳材可以是奈米碳球、奈米碳管、石墨片或前述之組合。其中,奈米碳球的尺寸約為10nm至80nm,奈米碳管的尺寸約為10nm至60nm,而石墨片的尺寸約為1μm至10μm。 In an embodiment, the carbon material may be a nanocarbon sphere, a carbon nanotube, a graphite sheet, or a combination thereof. Among them, the size of the nanocarbon sphere is about 10 nm to 80 nm, the size of the carbon nanotube is about 10 nm to 60 nm, and the size of the graphite sheet is about 1 μm to 10 μm.

在一實施例中,若碳材的尺寸過小,則易造成導熱效果不明顯,而產生發熱溫度較低的情形。若碳材的尺寸過大,則可能阻絕金屬材料的導通路徑,而導致表面電阻上升。 In an embodiment, if the size of the carbon material is too small, the heat conduction effect is not so obvious, and the heat generation temperature is low. If the size of the carbon material is too large, the conduction path of the metal material may be blocked, resulting in an increase in surface resistance.

在一實施例中,金屬材料可以是奈米金屬線材、金屬片材、金屬粒子或前述之組合。其中,奈米金屬線材可以為金、銀、銅、銦、鈀、鋁、鐵、鈷、鎳、前述之合金、前述之氧化物、或前述之混合物。或者,奈米金屬線材也可以是金包覆銀奈米線材、銀包覆金奈米線材、金包覆銅奈米線材、銅包覆金奈米線材、銀包覆銅奈米線材、銅包覆銀奈米線材、或前述之組合。 In an embodiment, the metallic material may be a nanowire, a metal sheet, a metal particle, or a combination of the foregoing. The nanowire may be gold, silver, copper, indium, palladium, aluminum, iron, cobalt, nickel, the foregoing alloy, the foregoing oxide, or a mixture thereof. Alternatively, the nano metal wire may be a gold-coated silver nanowire, a silver-coated gold nanowire, a gold-coated copper nanowire, a copper-coated gold nanowire, a silver-coated copper nanowire, or copper. The silver nanowire is coated, or a combination of the foregoing.

在一實施例中,金屬片材可以為金、銀、銅、銦、鈀、鋁、鐵、鈷、鎳、前述之合金、前述之氧化物、或前述之混合物。或者,金屬片材也可以是金包覆銀片材、銀包覆金片 材、金包覆銅片材、銅包覆金片材、銀包覆銅片材、銅包覆銀片材、或前述之組合。 In one embodiment, the metal sheet may be gold, silver, copper, indium, palladium, aluminum, iron, cobalt, nickel, the foregoing alloys, the foregoing oxides, or a mixture of the foregoing. Alternatively, the metal sheet may also be a gold-coated silver sheet or a silver-coated gold sheet. A material, a gold-coated copper sheet, a copper-coated gold sheet, a silver-coated copper sheet, a copper-coated silver sheet, or a combination thereof.

在一實施例中,金屬粒子可以為金、銀、銅、銦、鈀、鋁、鐵、鈷、鎳、前述之合金、前述之氧化物、或前述之混合物。或者,金屬粒子也可以是金包覆銀粒子、銀包覆金粒子、金包覆銅粒子、銅包覆金粒子、銀包覆銅粒子、銅包覆銀粒子、或前述之組合。 In one embodiment, the metal particles may be gold, silver, copper, indium, palladium, aluminum, iron, cobalt, nickel, the foregoing alloys, the foregoing oxides, or a mixture of the foregoing. Alternatively, the metal particles may be gold-coated silver particles, silver-coated gold particles, gold-coated copper particles, copper-coated gold particles, silver-coated copper particles, copper-coated silver particles, or a combination thereof.

在一實施例中,以奈米金屬線材而言,奈米金屬線材的長度約為15μm至20μm,若奈米金屬線材的長度過短,則需提高奈米金屬線材的添加量才能形成導通的網路結構,而若奈米金屬線材的長度過長,則可能產生團聚的現象。在一實施例中,奈米金屬線材的直徑約為50nm至100nm。 In one embodiment, in the case of a nano metal wire, the length of the nano metal wire is about 15 μm to 20 μm. If the length of the metal wire is too short, the amount of the nano metal wire needs to be increased to form a conductive mesh. The road structure, and if the length of the metal wire is too long, agglomeration may occur. In one embodiment, the nanowires have a diameter of from about 50 nm to about 100 nm.

在一實施例中,奈米金屬線材的長徑比(Aspect Ratio,AR)約為250至400,若奈米金屬線材的長徑比過低,則需提高奈米金屬線材的添加量才能形成導通的網路結構,若奈米金屬線材的長徑比過高,則可能產生團聚的現象。 In one embodiment, the aspect ratio (AR) of the nanowire is about 250 to 400. If the aspect ratio of the nanowire is too low, the amount of the nanowire is increased to form a conduction. The network structure, if the aspect ratio of the metal wire is too high, may cause agglomeration.

在一實施例中,以金屬片材而言,金屬片材的尺寸約為1μm至30μm,若金屬片材的尺寸過小,則需提高金屬片材的添加量才能形成導通的網路結構,然若金屬片材的尺寸太大,則可能產生團聚的現象。在一實施例中,金屬片材的尺寸約為5μm至15μm。 In one embodiment, in the case of a metal sheet, the size of the metal sheet is about 1 μm to 30 μm. If the size of the metal sheet is too small, it is necessary to increase the amount of the metal sheet to form a conductive network structure. If the size of the metal sheet is too large, agglomeration may occur. In one embodiment, the metal sheet has a size of from about 5 [mu]m to 15 [mu]m.

在一實施例中,以金屬粒子而言,金屬粒子的粒徑約為1μm至10μm,若金屬粒子的粒徑過小,則需提高金屬粒子的添加量才能形成導通的網路結構,然若金屬粒子的粒徑 過大,則可能產生團聚的現象。在一實施例中,金屬粒子的粒徑約為2μm至5μm。 In one embodiment, in the case of metal particles, the particle diameter of the metal particles is about 1 μm to 10 μm. If the particle size of the metal particles is too small, the amount of metal particles added needs to be increased to form a conductive network structure. Particle size If it is too large, it may cause agglomeration. In one embodiment, the metal particles have a particle size of from about 2 [mu]m to about 5 [mu]m.

在一實施例中,金屬材料可以是奈米金屬線材與金屬片材之組合。其中奈米金屬線材與金屬片材之重量比約為0.01:1至1:1,或約為0.04:1至0.6:1。 In an embodiment, the metal material may be a combination of a nano metal wire and a metal sheet. The weight ratio of the nano metal wire to the metal sheet is about 0.01 to 1:1, or about 0.04:1 to 0.6:1.

在一實施例中,聚氨酯於25℃之絕對黏度約為1000cP至5000cP(厘泊,Centipoise(s))。假使聚氨酯之黏度過低,則可能導致紡織物基材上的塗層太薄,而影響電性的表現。而如聚氨酯之黏度太高,則易衍生無法塗佈的情形。 In one embodiment, the polyurethane has an absolute viscosity at 25 ° C of from about 1000 cP to about 5,000 cP (centipoise, Centipoise (s)). If the viscosity of the polyurethane is too low, the coating on the textile substrate may be too thin to affect the electrical performance. However, if the viscosity of the polyurethane is too high, it is easy to derive a situation in which it cannot be coated.

在一實施例中,其電熱材料組合物之態樣可不侷限為單一區塊面積,而可圖案化(patterning),如圖式第1圖所示。其中,此圖案僅需是可形成導電迴路之連續圖案,並可依實際需求而進一步設計適當的態樣。 In one embodiment, the aspect of the electrothermal material composition may be not limited to a single block area, but may be patterned, as shown in FIG. Wherein, the pattern only needs to be a continuous pattern capable of forming a conductive loop, and the appropriate aspect can be further designed according to actual needs.

在一實施例中,電熱紡織品包含紡織物基材,且在紡織物基材之表面上形成有電熱材料組合物,在一實施例中,將電熱材料組合物形成於紡織物基材之表面上的方式為後處理方式,例如以塗佈方式,其中電熱材料組合物的厚度可視需求調整(例如約20μm至100μm),紡織物基材厚度可視需求調整(例如碼重約100g/Y至600g/Y)。而此電熱組合物包含聚氨酯(polyurethane),具有如式(I)之重複單元: ,其中R1,R2,R3,R4,R5係C1-4之烷撐基,R6係C2-6烷撐基,R7係C2-6烷撐基;R8係C1-4烷撐基;X係,R9係C2-6烷撐基;a係1至100,b係0至100,且ab,其中聚氨酯於25℃的絕對黏度係1000cP至5000cP;以及多個金屬材料,分散於聚氨酯中,其中以電熱材料組合物為100重量份計,金屬材料約為30重量份至60重量份。在一實施例中,金屬材料約為35重量份至55重量份。在一實施例中,金屬材料約為40重量份至50重量份。 In one embodiment, the electrothermal textile comprises a textile substrate, and an electrocaloric composition is formed on the surface of the textile substrate. In one embodiment, the electrocaloric composition is formed on the surface of the textile substrate. The method is post-treatment, for example, in a coating manner, wherein the thickness of the electrothermal material composition can be adjusted according to requirements (for example, about 20 μm to 100 μm), and the thickness of the textile substrate can be adjusted according to requirements (for example, the code weight is about 100 g/Y to 600 g/ Y). And the electrothermal composition comprises polyurethane having a repeating unit of formula (I): , where R 1 is , R 2 series , R 3 series or , R 4 series or , R 5 is a C 1-4 alkylene group, R 6 is a C 2-6 alkylene group, R 7 is a C 2-6 alkylene group; R 8 is a C 1-4 alkylene group; or , R 9 is a C 2-6 alkylene group; a is 1 to 100, b is 0 to 100, and a b, wherein the polyurethane has an absolute viscosity of from 1000 cP to 5000 cP at 25 ° C; and a plurality of metal materials dispersed in the polyurethane, wherein the metal material is from about 30 parts by weight to 60 parts by weight based on 100 parts by weight of the electrothermal material composition. In one embodiment, the metallic material is from about 35 parts by weight to about 55 parts by weight. In one embodiment, the metallic material is from about 40 parts by weight to about 50 parts by weight.

上述金屬材料若過少,則不易形成導通的網路結構。然若金屬材料過多,則可能導致黏度上升而不利於塗佈。 If the amount of the above metal material is too small, it is difficult to form a conductive network structure. However, if there is too much metal material, it may cause the viscosity to rise and it is not favorable for coating.

在一實施例中,將電熱材料組合物塗佈於紡織物基材表面,形成電熱紡織品。 In one embodiment, the electrothermal material composition is applied to the surface of a textile substrate to form an electrothermal textile.

在一實施例中,上述電熱材料組合物更包含多個碳材,分散於聚氨酯中,其中以電熱材料組合物為100重量份計,碳材係1重量份至10重量份。若碳材過少,則易造成發熱 溫度較低。若碳材過多,則可能導致表面電阻上升。 In one embodiment, the electrothermal material composition further comprises a plurality of carbon materials dispersed in the polyurethane, wherein the carbon material is from 1 part by weight to 10 parts by weight based on 100 parts by weight of the electrocaloric material composition. If the carbon material is too small, it is easy to cause fever. The temperature is lower. If there is too much carbon, it may cause the surface resistance to rise.

在一實施例中,電熱紡織品之紡織物基材可以包含纖維布,而纖維布可為棉纖維布(Cotton)、麻纖維布(Linen)、毛纖維布(Wool)、絲纖維布(Silk)、縲縈纖維布(Rayon)、尼龍纖維布(Nylon)、聚乙烯纖維布(Polyethylene)、聚丙烯纖維布(Polypropylene)、聚醯胺纖維布(Polyamide)、聚酯纖維布(Polyester)、醋酸纖維布(Acetate)、彈性纖維(Spandex)、或前述之組合。 In an embodiment, the textile substrate of the electrothermal textile may comprise a fiber cloth, and the fiber cloth may be Cotton, Linen, Wool, Silk. , Rayon, Nylon, Polyethylene, Polypropylene, Polyamide, Polyester, Acetic Acid Acetate, spandex, or a combination of the foregoing.

在一實施例中,碳材可為奈米碳球、奈米碳管、石墨片、或前述之組合。其中,奈米碳球的尺寸約為10nm至80nm,奈米碳管的尺寸約為10nm至60nm,而石墨片的尺寸約為1μm至10μm。倘若碳材的尺寸過小,則易造成導熱效果不明顯,而產生發熱溫度較低的情形。然若碳材的尺寸過大,則可能阻絕金屬材料的導通路徑,而導致表面電阻上升。 In an embodiment, the carbon material may be a nanocarbon sphere, a carbon nanotube, a graphite sheet, or a combination thereof. Among them, the size of the nanocarbon sphere is about 10 nm to 80 nm, the size of the carbon nanotube is about 10 nm to 60 nm, and the size of the graphite sheet is about 1 μm to 10 μm. If the size of the carbon material is too small, the heat conduction effect is not obvious, and the heat generation temperature is low. However, if the size of the carbon material is too large, the conduction path of the metal material may be blocked, resulting in an increase in surface resistance.

在一實施例中,金屬材料可以是奈米金屬線材、金屬片材、金屬粒子或前述之組合。其中,奈米金屬線材可為金、銀、銅、銦、鈀、鋁、鐵、鈷、鎳、前述之合金、前述之氧化物、或前述之混合物。或者,奈米金屬線材也可為金包覆銀奈米線材、銀包覆金奈米線材、金包覆銅奈米線材、銅包覆金奈米線材、銀包覆銅奈米線材、銅包覆銀奈米線材、或前述之組合。 In an embodiment, the metallic material may be a nanowire, a metal sheet, a metal particle, or a combination of the foregoing. The nanowire may be gold, silver, copper, indium, palladium, aluminum, iron, cobalt, nickel, the foregoing alloy, the foregoing oxide, or a mixture thereof. Alternatively, the nanowire can also be a gold-coated silver nanowire, a silver-coated gold nanowire, a gold-coated copper nanowire, a copper-coated gold nanowire, a silver-coated copper nanowire, or copper. The silver nanowire is coated, or a combination of the foregoing.

在另一實施例中,金屬片材可以是金、銀、銅、銦、鈀、鋁、鐵、鈷、鎳、前述之合金、前述之氧化物、或前述之混合物。或者,金屬片材也可以是金包覆銀片材、銀包覆 金片材、金包覆銅片材、銅包覆金片材、銀包覆銅片材、銅包覆銀片材、或前述之組合。 In another embodiment, the metal sheet may be gold, silver, copper, indium, palladium, aluminum, iron, cobalt, nickel, the foregoing alloys, the foregoing oxides, or a mixture of the foregoing. Alternatively, the metal sheet may also be a gold coated silver sheet or a silver coated sheet. A gold sheet, a gold-coated copper sheet, a copper-coated gold sheet, a silver-coated copper sheet, a copper-coated silver sheet, or a combination thereof.

在又一實施例中,金屬粒子可以為金、銀、銅、銦、鈀、鋁、鐵、鈷、鎳、前述之合金、前述之氧化物、或前述之混合物。或者,金屬粒子也可以是金包覆銀粒子、銀包覆金粒子、金包覆銅粒子、銅包覆金粒子、銀包覆銅粒子、銅包覆銀粒子、或前述之組合。 In yet another embodiment, the metal particles can be gold, silver, copper, indium, palladium, aluminum, iron, cobalt, nickel, the foregoing alloys, the foregoing oxides, or a mixture of the foregoing. Alternatively, the metal particles may be gold-coated silver particles, silver-coated gold particles, gold-coated copper particles, copper-coated gold particles, silver-coated copper particles, copper-coated silver particles, or a combination thereof.

在一實施例中,以奈米金屬線材而言,奈米金屬線材的長度約為15μm至20μm,若奈米金屬線材的長度過短,則需提高奈米金屬線材的添加量才能形成導通的網路結構,然若奈米金屬線材的長度過長,則可能產生團聚的現象。在一實施例中,奈米金屬線材的直徑約為50nm至100nm。 In one embodiment, in the case of a nano metal wire, the length of the nano metal wire is about 15 μm to 20 μm. If the length of the metal wire is too short, the amount of the nano metal wire needs to be increased to form a conductive mesh. The road structure, if the length of the metal wire is too long, may cause agglomeration. In one embodiment, the nanowires have a diameter of from about 50 nm to about 100 nm.

在一實施例中,奈米金屬線材的長徑比(Aspect Ratio,AR)約為250至400,若奈米金屬線材的長徑比過低,則需提高奈米金屬線材的添加量才能形成導通的網路結構,若奈米金屬線材的長徑比過高,則可能產生團聚的現象。 In one embodiment, the aspect ratio (AR) of the nanowire is about 250 to 400. If the aspect ratio of the nanowire is too low, the amount of the nanowire is increased to form a conduction. The network structure, if the aspect ratio of the metal wire is too high, may cause agglomeration.

在另一實施例中,以金屬片材而言,金屬片材的尺寸約為1μm至30μm,若金屬片材的尺寸過小,則需提高金屬片材的添加量才能形成導通的網路結構,然若金屬片材的尺寸太大,則可能產生團聚的現象。在一實施例中,金屬片材的尺寸約為5μm至15μm。 In another embodiment, in the case of a metal sheet, the size of the metal sheet is about 1 μm to 30 μm. If the size of the metal sheet is too small, it is necessary to increase the amount of the metal sheet to form a conductive network structure. However, if the size of the metal sheet is too large, agglomeration may occur. In one embodiment, the metal sheet has a size of from about 5 [mu]m to 15 [mu]m.

在又一實施例中,以金屬粒子而言,金屬粒子的粒徑約為1μm至10μm,若金屬粒子的粒徑過小,則需提高金屬粒子的添加量才能形成導通的網路結構,然若金屬粒子的粒 徑過大,則可能產生團聚的現象。在一實施例中,金屬粒子的粒徑約為2μm至5μm。 In another embodiment, in the case of metal particles, the particle diameter of the metal particles is about 1 μm to 10 μm. If the particle size of the metal particles is too small, it is necessary to increase the amount of metal particles added to form a conductive network structure. Grain of metal particles If the path is too large, agglomeration may occur. In one embodiment, the metal particles have a particle size of from about 2 [mu]m to about 5 [mu]m.

又,在一實施例中,聚氨酯於25℃的絕對黏度約為1000cP至5000cP。假使聚氨酯之黏度過低,則可能導致紡織物基材上的塗層太薄,而影響電性的表現。而如聚氨酯之黏度太高,則易衍生無法塗佈的情形。 Further, in one embodiment, the polyurethane has an absolute viscosity at 25 ° C of from about 1000 cP to about 5000 cP. If the viscosity of the polyurethane is too low, the coating on the textile substrate may be too thin to affect the electrical performance. However, if the viscosity of the polyurethane is too high, it is easy to derive a situation in which it cannot be coated.

在一實施例中,電熱材料組合物之態樣可不侷限為單一區塊面積,而可圖案化(patterning),如圖式第1圖所示。其中,此圖案僅需是可形成導電迴路之連續圖案,並可依實際需求而進一步設計適當的態樣。 In an embodiment, the aspect of the electrothermal material composition may be not limited to a single block area, but may be patterned, as shown in FIG. Wherein, the pattern only needs to be a continuous pattern capable of forming a conductive loop, and the appropriate aspect can be further designed according to actual needs.

為讓本發明之上述及其他目的、特徵、與優點能更明顯易懂,下文特舉出較佳實施例以進行詳細說明: The above and other objects, features, and advantages of the present invention will become more apparent and understood.

實施例Example

實施例1:電熱材料組合物Example 1: Electrothermal material composition

製備聚氨酯 Preparation of polyurethane

取0.4mole之4,4-二環己基甲烷二異氰酸酯(4,4'-Methylene dicyclohexyl diisocyanate)與0.2mole之聚己二酸丁二醇酯(Poky(1,4-butylene adipate)),PBA,Mn1000)加入至反應器中,於氮氣系統中50~90oC下進行反應以形成預聚體。接著使預聚體先與0.1mole之2,2-二羥甲基丙酸(Dimethyloipropionic acid,DMPA)進行反應,再與0.1mole之1,4-丁二醇(1,4-butanediol,BDO)進行反應以生成聚氨酯A。反應流程如下: Take 0.4 mole of 4,4'-Methylene dicyclohexyl diisocyanate and 0.2 mole of polybutylene adipate (Poky (1,4-butylene adipate)), PBA, Mn 1000) was added to the reactor and reacted at 50 to 90 ° C in a nitrogen system to form a prepolymer. The prepolymer is then first reacted with 0.1 mole of 2,2-dimethylolpropionic acid (DMPA) and then with 0.1 mole of 1,4-butanediol (BDO). The reaction was carried out to produce polyurethane A. The reaction process is as follows:

上述反應之過程中,反應溶液的固含量約為20~30%,可依需求加入溶劑(例如是丙酮溶劑)。 In the above reaction, the solid content of the reaction solution is about 20 to 30%, and a solvent (for example, an acetone solvent) may be added as needed.

將上述5克的聚氨酯、0.5克的水與4.5克的銀片(尺寸約為10μm),一起混合形成電熱材料組合物(總銀含量約45%)。 The above 5 g of polyurethane, 0.5 g of water and 4.5 g of silver flakes (having a size of about 10 μm) were mixed together to form an electrothermal material composition (total silver content of about 45%).

實施例2:電熱紡織品製備與電性測試Example 2: Preparation and electrical testing of electrothermal textiles

取實施例1之電熱材料組合物,塗佈於紡織物基材表面(購自竹利威的聚酯纖維布),形成電熱紡織品,其中電熱材料組合物的厚度約50μm,紡織物基材碼重約260g/Y。其表面電阻值(Ω/□)量測結果如表一所示。 Taking the electrocaloric material composition of Example 1 and coating it on the surface of a textile substrate (polyester fiber cloth purchased from Zhu Liwei) to form an electrothermal textile, wherein the thickness of the electrothermal material composition is about 50 μm, and the textile substrate code Weighs about 260g/Y. The surface resistance value (Ω/□) measurement results are shown in Table 1.

比較例1至3:電熱紡織品之電性測試Comparative Examples 1 to 3: Electrical testing of electrothermal textiles

比較例1至3之電熱紡織品分別購自豪紳、X-Static、及隆揚公司,比較例1至3之電熱紡織品皆是先形成鍍銀纖維後再紡織成布。 The electrothermal textiles of Comparative Examples 1 to 3 were separately purchased from Proud, X-Static, and Longyang, and the electrothermal textiles of Comparative Examples 1 to 3 were first formed into silver-plated fibers and then woven into cloth.

各電熱紡織品均於水洗前分別量測其表面電阻值(Ω/□),經水洗20次後再次量測其表面電阻值,並分別計算表面電阻值之變異率,如下表一所示。 Each electrothermal textile was measured for surface resistance (Ω/□) before washing, and after 20 times of washing, the surface resistance was measured again, and the variation rate of surface resistance was calculated separately, as shown in Table 1 below.

電性測試比較結果顯示,市售電熱紡織品的電阻會隨水洗次數增加而明顯上升,如比較例1至3所示,三者經水洗20次後的表面電阻值(Ω/□)會由10-1Ω/□增加至102Ω/□以上,而本揭露所提供之電熱紡織品的表面電阻值經水洗20次後仍維持僅0.51%之低變異度。 The electrical test comparison results show that the electrical resistance of commercially available electrothermal textiles increases significantly with the number of washings. As shown in Comparative Examples 1 to 3, the surface resistance (Ω/□) of the three after washing 20 times will be 10 -1 Ω/□ is increased to above 10 2 Ω/□, and the surface resistance value of the electrothermal textile provided by the present disclosure maintains a low variability of only 0.51% after being washed 20 times.

此外,將實施例2電熱紡織品進行水洗色牢度(指織物經過洗滌液洗滌後色澤變化的程度,共分為5個等級,5級最好,1級最差)以及耐汗漬色牢度(指染色織物沾浸汗液後的掉色程度,同樣分為5個等級,5級最好,1級最差)之測試。其中,如以美國染色家和化學家協會(AATCC)所制定的標準為主,經AATCC-61-2A量測ITRI電熱紡織品之水洗色牢度約為4~5級,而經AATCC 15-2009量測實施例2電熱紡織品之耐汗漬色牢度約為4~5級,顯示實施例2電熱紡織品不僅耐水洗,且經洗滌或沾浸汗液後仍保有良好之色澤。 In addition, the color fastness of the electrothermal textile of Example 2 was washed (the degree of color change of the fabric after washing with washing liquid, which was divided into 5 grades, 5 grades best, 1 grade worst) and perspiration fastness ( Refers to the degree of color loss after dyeing the fabric with sweat, which is also divided into 5 grades, 5 grades best, and 1 grade worst. Among them, according to the standards set by the American Association of Dyers and Chemists (AATCC), the color fastness of ITRI electrothermal textiles measured by AATCC-61-2A is about 4~5, and AATCC 15-2009 The color fastness to the perspiration of the electrothermal textile of Example 2 was about 4 to 5, indicating that the electrothermal textile of Example 2 was not only water-resistant, but also retained good color after washing or sweating.

實施例3:電熱紡織品之電性測試Example 3: Electrical test of electrothermal textiles

與實施例2相似,差異僅在將聚氨酯A替換為聚醚型聚氨酯(型號WU-3020)。分別測試實施例3水洗前及水洗20次後對於電熱紡織品之表面電阻值的影響,測量結果如下表二所示。 Similar to Example 2, the difference was only in the replacement of polyurethane A with polyether polyurethane (model WU-3020). The effects of the surface resistance values of the electrothermal textiles before and after the water washing of Example 3 were respectively tested. The measurement results are shown in Table 2 below.

比較例4至6:電熱紡織品之電性測試Comparative Examples 4 to 6: Electrical Testing of Electrothermal Textiles

比較例4至6與實施例2相似,差異僅在將聚氨酯A替換為不同種類的高分子。比較例4至6採用的高分子依序為聚甲基丙烯酸甲酯(poly(methyl methacrylate);PMMA,型號TDM4009)、環氧樹脂(型號1106-85)、以及乙烯對苯二甲酸酯(polyethylene terephthalate;PET,型號PET 9100)。 Comparative Examples 4 to 6 are similar to Example 2 except that the polyurethane A is replaced with a different type of polymer. The polymer used in Comparative Examples 4 to 6 was poly(methyl methacrylate; PMMA, model TDM4009), epoxy resin (model 1106-85), and ethylene terephthalate ( Polyethylene terephthalate; PET, model PET 9100).

測試上述比較例4至6之不同高分子對於電熱紡織品之表面電阻值的影響。分別測量其水洗前及水洗20次後之表面電阻值,測量結果如下表二所示。 The effects of the different polymers of Comparative Examples 4 to 6 above on the surface resistance value of the electrothermal textile were tested. The surface resistance values of the water before washing and after washing 20 times were measured, and the measurement results are shown in Table 2 below.

表二 Table II

電性測試比較結果顯示,比較例4至6使用一般常用於導電配方製備之高分子,經水洗20次後已不具導電功能,而本揭露所提供之電熱紡織品的表面電阻值經水洗20次後並無顯著變化,仍能保有良好的表面電阻值,顯示本揭露之電熱紡織品具備耐水洗之特性。 The electrical test comparison results show that the comparative examples 4 to 6 use the polymer which is generally used for the preparation of the conductive formulation, and after the water washing for 20 times, it has no conductive function, and the surface resistance value of the electrothermal textile provided by the present disclosure is washed 20 times. There is no significant change, and good surface resistance values can still be maintained, indicating that the electrothermal textiles disclosed herein are water-resistant.

實施例4至9:電熱紡織品製備與電性測試Examples 4 to 9: Preparation and electrical testing of electrothermal textiles

實施例4至9與實施例2相似,差異僅在於添加不同比例的奈米銀線、不同比例的聚氨酯A以及不同比例的銀片(silver flake,AgF),奈米銀線與銀片的比例如表三所示。 Examples 4 to 9 are similar to Example 2 except that different proportions of nano silver wire, different proportions of polyurethane A, and different proportions of silver flake (AgF), ratio of nano silver wire to silver plate are added. As shown in Table 3.

測試不同比例之奈米銀線(silver nanowires,AgNW)對於電熱紡織品之表面電阻值的影響,如表三所示。以不同比例之奈米銀線(AgNW)與銀片(silver flake,AgF,尺寸約10μm)共同調配銀的含量,在總銀含量相同(皆為50%或45%)的情況下,隨著奈米銀線比例的增加(例如由2.5%增加至17.5%,或由7.5%增加至12.5%),表面電阻值則隨之下降;以及,當奈米銀線的比例添加至10%時,可使總銀含量降低至45%。 The effects of different proportions of silver nanowires (AgNW) on the surface resistance of electrothermal textiles are shown in Table 3. The silver content is co-ordinated with different proportions of nano silver wire (AgNW) and silver flake (AgF, size about 10 μm), with the same total silver content (both 50% or 45%), The increase in the proportion of nano silver wire (for example, from 2.5% to 17.5%, or from 7.5% to 12.5%), the surface resistance value decreases; and, when the proportion of nano silver wire is added to 10%, The total silver content can be reduced to 45%.

進一步,以上述實施例6及實施例9之電熱紡織品進行耐水洗測試,測試結果如下表四所示。無論是實施例6(45%聚氨酯A及50%總銀含量)或實施例9(50%聚氨酯A及45%總銀含量)之電熱紡織品,其表面電阻值經水洗20次後並不會產生顯著變化,仍能保有良好的表面電阻值,顯示本揭露之具特定比例聚氨酯及金屬材料(如組合奈米銀線與銀片)的電熱紡織品確實具備耐水洗的特性。 Further, the electrothermal textiles of the above-described Example 6 and Example 9 were subjected to a water-washing test, and the test results are shown in Table 4 below. Regardless of the electrothermal textile of Example 6 (45% polyurethane A and 50% total silver content) or Example 9 (50% polyurethane A and 45% total silver content), the surface resistance value of the electrothermal textile after washing for 20 times does not occur. Significant changes, still able to maintain a good surface resistance value, showing that the disclosed thermo-textile textiles with a specific proportion of polyurethane and metal materials (such as combined nano silver and silver) are indeed washable.

實施例10至13:電熱紡織品製備與電性測試Examples 10 to 13: Preparation and electrical testing of electrothermal textiles

實施例10至13與實施例9相似,差異僅在於聚氨酯 A的比例不同以及添加不同比例的奈米碳球,如表五所示。 Examples 10 to 13 are similar to Example 9, except that the polyurethane is only The ratio of A is different and different proportions of nanocarbon spheres are added, as shown in Table 5.

測試不同比例之奈米碳球(carbon nanocapsules)對於電熱紡織品之表面電阻值及升溫效果是否造成影響。如下表五所示,在總銀含量相同(皆為45%)的情況下,隨著奈米碳球含量的增加,所測得之表面電阻值雖差異不大,然升溫效果有隨之提升的趨勢;且當奈米碳球的比例達到3.4%時,其升溫效果(△T)可達到30℃。 Testing of different proportions of carbon nanocapsules has an effect on the surface resistance and heating effect of electrothermal textiles. As shown in Table 5 below, in the case of the same total silver content (both 45%), as the nanocarbon content increases, the measured surface resistance value is not much different, but the heating effect is improved. The trend; and when the proportion of nanocarbon spheres reaches 3.4%, the heating effect (ΔT) can reach 30 °C.

進一步,以上述實施例12之電熱紡織品進行耐水洗測試,測試結果如下表六所示。實施例12所提供之電熱紡織品的表面電阻值經水洗20次後依然保有良好的表面電阻值,且水洗20次後的升溫效果(△T)仍可達到28℃,顯示本揭露之由特定比例聚氨酯、金屬材料、以及奈米碳球所組成的電熱紡織品的確具有耐水洗的特性。 Further, the electrothermal textile of the above Example 12 was subjected to a water-washing test, and the test results are shown in Table 6 below. The surface resistance value of the electrothermal textile provided in Example 12 still maintained a good surface resistance value after being washed 20 times, and the temperature rising effect (ΔT) after washing 20 times still reached 28 ° C, indicating a specific ratio of the disclosure. Electrothermal textiles composed of polyurethane, metal materials, and nanocarbon spheres do have water-washing properties.

實施例14至17:電熱紡織品製備與電性測試Examples 14 to 17: Preparation and electrical testing of electrothermal textiles

實施例14至17與實施例9相似,差異僅在於聚氨酯A的比例不同以及將添加不同比例的石墨片,如表七所示 Examples 14 to 17 are similar to Example 9, except that the ratio of polyurethane A is different and different proportions of graphite sheets will be added, as shown in Table 7.

測試不同比例之石墨片(graphite sheet)對於電熱紡織品之表面電阻值及升溫效果是否造成影響。如下表七所示,在總銀含量相同(皆為45%)的情況下,隨著石墨片含量的增加,所測得之表面電阻值有些微下降的趨勢;且當石墨片的比例達到4.5%時,其升溫效果可達到32℃。 Test whether different ratios of graphite sheets affect the surface resistance and heating effect of electrothermal textiles. As shown in Table 7 below, in the case of the same total silver content (all 45%), as the graphite sheet content increases, the measured surface resistance value slightly decreases; and when the proportion of graphite sheets reaches 4.5 When it is %, its heating effect can reach 32 °C.

進一步,以上述實施例16之電熱紡織品進行耐水洗測試,測試結果如下表八所示。實施例16所提供之電熱紡織品的表面電阻值經水洗20次後幾乎沒有變化,且水洗20次後的升溫效果(△T)仍可達到31℃,顯示本揭露之由特定比例聚氨酯、金屬材料、以及石墨片所組成的電熱紡織品確實具有耐水洗的特性。 Further, the electrothermal textile of the above Example 16 was subjected to a water-washing test, and the test results are shown in Table 8 below. The surface resistance value of the electrothermal textile provided in Example 16 hardly changed after washing 20 times, and the temperature rising effect (ΔT) after washing 20 times still reached 31 ° C, which showed that the specific ratio of polyurethane and metal materials was disclosed. And electrothermal textiles composed of graphite sheets do have water-washing properties.

表八 Table eight

雖然本揭露已以數個實施例揭露如上,然其並非用以限定本揭露,任何本技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作任意之更動與潤飾,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。 The present disclosure has been disclosed in the above several embodiments, but it is not intended to limit the disclosure, and any one skilled in the art can make any changes and refinements without departing from the spirit and scope of the disclosure. Therefore, the scope of protection of this disclosure is subject to the definition of the scope of the patent application.

Claims (16)

一種電熱材料組合物,其包含:聚氨酯,具有如式(I)之重複單元:,其中R1,R2,R3,R4,R5係C1-4之烷撐基,R6係C2-6烷撐基,R7係C2-6烷撐基;R8係C1-4烷撐基;X係,R9係C2-6烷撐基;a係1至100,b係0至100,且ab,其中聚氨酯於25℃的絕對黏度係1000cP至5000cP;以及多個金屬材料,分散於該聚氨酯中,其中以該電熱材料組合物為100重量份計,該些金屬材料係30重量份至60重量份,且該聚氨酯係40重量份至50重量份, 其中該些金屬材料為奈米金屬線材、金屬片材、金屬粒子或前述之組合,其中奈米金屬線材的長度為15μm至20μm,且奈米金屬線材的直徑約為50nm至100nm;其中金屬片材的尺寸為1μm至30μm;其中金屬粒子的尺寸為1μm至10μm。 An electrothermal material composition comprising: a polyurethane having a repeating unit of formula (I): , where R 1 is , R 2 series , R 3 series or , R 4 series or , R 5 is a C 1-4 alkylene group, R 6 is a C 2-6 alkylene group, R 7 is a C 2-6 alkylene group; R 8 is a C 1-4 alkylene group; or , R 9 is a C 2-6 alkylene group; a is 1 to 100, b is 0 to 100, and ab, wherein the polyurethane has an absolute viscosity of 1000 cP to 5000 cP at 25 ° C; and a plurality of metal materials dispersed in the polyurethane Wherein the metal material is 30 parts by weight to 60 parts by weight, and the polyurethane is 40 parts by weight to 50 parts by weight, wherein the metal materials are nano metal wires, based on 100 parts by weight of the electrothermal material composition. a metal sheet, a metal particle or a combination thereof, wherein the nano metal wire has a length of 15 μm to 20 μm, and the nano metal wire has a diameter of about 50 nm to 100 nm; wherein the metal sheet has a size of 1 μm to 30 μm; wherein the metal The size of the particles is from 1 μm to 10 μm. 如申請專利範圍第1項所述之電熱材料組合物,更包括:多個碳材,分散於該聚氨酯中,其中以該電熱材料組合物為100重量份計,該些碳材係1重量份至10重量份。 The electrothermal material composition according to claim 1, further comprising: a plurality of carbon materials dispersed in the polyurethane, wherein the carbon materials are 1 part by weight based on 100 parts by weight of the electrothermal material composition. Up to 10 parts by weight. 如申請專利範圍第2項所述之電熱材料組合物,其中該些碳材為奈米碳球、奈米碳管、石墨片或前述之組合。 The electrothermal material composition according to claim 2, wherein the carbon materials are nano carbon spheres, carbon nanotubes, graphite sheets or a combination thereof. 如申請專利範圍第1項所述之電熱材料組合物,其中該奈米金屬線材為金、銀、銅、銦、鈀、鋁、鐵、鈷、鎳或前述金屬之混合物、合金或氧化物。 The electrothermal material composition according to claim 1, wherein the nano metal wire is gold, silver, copper, indium, palladium, aluminum, iron, cobalt, nickel or a mixture, alloy or oxide of the foregoing metals. 如申請專利範圍第1項所述之電熱材料組合物,其中該奈米金屬線材為金包覆銀奈米線材、銀包覆金奈米線材、金包覆銅奈米線材、銅包覆金奈米線材、銀包覆銅奈米線材、銅包覆銀奈米線材或前述之組合。 The electrothermal material composition according to claim 1, wherein the nano metal wire is a gold-coated silver nanowire, a silver-coated gold nanowire, a gold-coated copper nanowire, and a copper-coated gold. Nanowire, silver coated copper nanowire, copper coated silver nanowire or a combination of the foregoing. 如申請專利範圍第1項所述之電熱材料組合物,其中該金屬片材為金、銀、銅、銦、鈀、鋁、鐵、鈷、鎳或前述金屬之混合物、合金或氧化物。 The electrothermal material composition according to claim 1, wherein the metal sheet is gold, silver, copper, indium, palladium, aluminum, iron, cobalt, nickel or a mixture, alloy or oxide of the foregoing metals. 如申請專利範圍第1項所述之電熱材料組合物,其中該 金屬片材為金包覆銀片材、銀包覆金片材、金包覆銅片材、銅包覆金片材、銀包覆銅片材、銅包覆銀片材或前述之組合。 The electrothermal material composition of claim 1, wherein the electrothermal material composition The metal sheet is a gold-coated silver sheet, a silver-coated gold sheet, a gold-coated copper sheet, a copper-coated gold sheet, a silver-coated copper sheet, a copper-coated silver sheet, or a combination thereof. 一種電熱紡織品,包含:紡織物基材;以及電熱材料組合物,形成於該紡織物基材之表面上,該電熱材料組合物包含:聚氨酯(polyurethane),具有如式(I)之重複單元: ,其中R1,R2,R3,R4,R5係C1-4之烷撐基,R6係C2-6烷撐基,R7係C2-6烷撐基;R8係C1-4烷撐基;X係,R9係C2-6烷撐基;a係1至100,b係0至100,且ab,其中聚 氨酯於25℃的絕對黏度係1000cP至5000cP;以及多個金屬材料,分散於該聚氨酯中,其中以該電熱材料組合物為100重量份計,該些金屬材料係30重量份至60重量份,且該聚氨酯係40重量份至50重量份,其中該些金屬材料為奈米金屬線材、金屬片材、金屬粒子或前述之組合,其中奈米金屬線材的長度為15μm至20μm,且奈米金屬線材的直徑約為50nm至100nm;其中金屬片材的尺寸為1μm至30μm;其中金屬粒子的尺寸為1μm至10μm。 An electrothermal textile comprising: a textile substrate; and an electrothermal material composition formed on a surface of the textile substrate, the electrocaloric composition comprising: polyurethane having a repeating unit of formula (I): , where R 1 is , R 2 series , R 3 series or , R 4 series or , R 5 is a C 1-4 alkylene group, R 6 is a C 2-6 alkylene group, R 7 is a C 2-6 alkylene group; R 8 is a C 1-4 alkylene group; or , R 9 is a C 2-6 alkylene group; a is 1 to 100, b is 0 to 100, and a b, wherein the polyurethane has an absolute viscosity of 1000 cP to 5000 cP at 25 ° C; and a plurality of metal materials dispersed in the polyurethane, wherein the metal materials are 30 parts by weight to 60 parts by weight of the electrothermal material composition. And the polyurethane is 40 parts by weight to 50 parts by weight, wherein the metal materials are nano metal wires, metal sheets, metal particles or a combination thereof, wherein the length of the nano metal wires is 15 μm to 20 μm, and The nanowires have a diameter of about 50 nm to 100 nm; wherein the metal sheets have a size of from 1 μm to 30 μm; wherein the metal particles have a size of from 1 μm to 10 μm. 如申請專利範圍第8項所述之電熱紡織品,其中該電熱材料組合物更包含複數個碳材分散於該聚氨酯中,其中以該電熱材料組合物為100重量份計,該些碳材係1重量份至10重量份。 The electrothermal textile according to claim 8, wherein the electrothermal material composition further comprises a plurality of carbon materials dispersed in the polyurethane, wherein the carbon material is 1 based on 100 parts by weight of the electrocalor material composition. Parts by weight to 10 parts by weight. 如申請專利範圍第9項所述之電熱紡織品,其中該些碳材為奈米碳球、奈米碳管、石墨片或上述之組合。 The electrothermal textile according to claim 9, wherein the carbon materials are nano carbon spheres, carbon nanotubes, graphite sheets or a combination thereof. 如申請專利範圍第8項所述之電熱紡織品,其中該紡織物基材係包含纖維布。 The electrothermal textile of claim 8, wherein the textile substrate comprises a fiber cloth. 如申請專利範圍第11項所述之電熱紡織品,其中該纖維布為棉纖維布(Cotton)、麻纖維布(Linen)、毛纖維布(Wool)、絲纖維布(Silk)、縲縈纖維布(Rayon)、聚乙烯纖維布(Polyethylene)、聚丙烯纖維布(Polypropylene)、聚醯胺纖維布(Polyamide)、聚酯纖維布(Polyester)、醋酸纖維布(Acetate)、 彈性纖維(Spandex)、或前述之組合。 The electrothermal textile according to claim 11, wherein the fiber cloth is Cotton cloth, Linen, Wool, Silk cloth, and silk cloth. (Rayon), Polyethylene, Polypropylene, Polyamide, Polyester, Acetate, An elastic fiber (Spandex), or a combination of the foregoing. 如申請專利範圍第8項所述之電熱紡織品,其中該奈米金屬線材為金、銀、銅、銦、鈀、鋁、鐵、鈷、鎳或前述金屬之混合物、合金或氧化物。 The electrothermal textile according to claim 8, wherein the nanowire is gold, silver, copper, indium, palladium, aluminum, iron, cobalt, nickel or a mixture, alloy or oxide of the foregoing metals. 如申請專利範圍第8項所述之電熱紡織品,其中該奈米金屬線材為金包覆銀奈米線材、銀包覆金奈米線材、金包覆銅奈米線材、銅包覆金奈米線材、銀包覆銅奈米線材、銅包覆銀奈米線材或前述之組合。 The electrothermal textile according to claim 8, wherein the nano metal wire is a gold-coated silver nanowire, a silver-coated gold nanowire, a gold-coated copper nanowire, and a copper-coated gold nanowire. Wire, silver coated copper nanowire, copper coated silver nanowire or a combination of the foregoing. 如申請專利範圍第8項所述之電熱紡織品,其中該金屬片材為金、銀、銅、銦、鈀、鋁、鐵、鈷、鎳或前述金屬之混合物、合金或氧化物。 The electrothermal textile according to claim 8, wherein the metal sheet is gold, silver, copper, indium, palladium, aluminum, iron, cobalt, nickel or a mixture, alloy or oxide of the foregoing metals. 如申請專利範圍第8項所述之電熱紡織品,其中該金屬片材為金包覆銀片材、銀包覆金片材、金包覆銅片材、銅包覆金片材、銀包覆銅片材、銅包覆銀片材或前述之組合。 The electrothermal textile according to claim 8, wherein the metal sheet is a gold-coated silver sheet, a silver-coated gold sheet, a gold-coated copper sheet, a copper-coated gold sheet, and a silver coating. Copper sheet, copper coated silver sheet or a combination of the foregoing.
TW105143832A 2016-12-29 2016-12-29 Electrothermal material composition and electrothermal textiles TWI629310B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105143832A TWI629310B (en) 2016-12-29 2016-12-29 Electrothermal material composition and electrothermal textiles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105143832A TWI629310B (en) 2016-12-29 2016-12-29 Electrothermal material composition and electrothermal textiles

Publications (2)

Publication Number Publication Date
TW201823357A TW201823357A (en) 2018-07-01
TWI629310B true TWI629310B (en) 2018-07-11

Family

ID=63639706

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105143832A TWI629310B (en) 2016-12-29 2016-12-29 Electrothermal material composition and electrothermal textiles

Country Status (1)

Country Link
TW (1) TWI629310B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200815545A (en) * 2006-08-03 2008-04-01 Basf Ag Dispersion for application of a metal layer
CN105821519A (en) * 2016-05-18 2016-08-03 四川大学 Multi-purpose gelatin fiber preparing method based on closed type waterborne polyurethane in-situ cross linking
TWM533085U (en) * 2016-03-18 2016-12-01 Asiatic Fiber Corp Elastic conductive fabric

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200815545A (en) * 2006-08-03 2008-04-01 Basf Ag Dispersion for application of a metal layer
TWM533085U (en) * 2016-03-18 2016-12-01 Asiatic Fiber Corp Elastic conductive fabric
CN105821519A (en) * 2016-05-18 2016-08-03 四川大学 Multi-purpose gelatin fiber preparing method based on closed type waterborne polyurethane in-situ cross linking

Also Published As

Publication number Publication date
TW201823357A (en) 2018-07-01

Similar Documents

Publication Publication Date Title
JP6624328B2 (en) Method for manufacturing elastic electrode sheet, method for manufacturing elastic composite electrode sheet, method for manufacturing biological information measurement interface
Ghahremani Honarvar et al. Overview of wearable electronics and smart textiles
Xu et al. Washable and flexible screen printed graphene electrode on textiles for wearable healthcare monitoring
Atwa et al. Silver nanowire coated threads for electrically conductive textiles
Cui et al. Highly stretchable, electrically conductive textiles fabricated from silver nanowires and cupro fabrics using a simple dipping-drying method
Zou et al. The optimization of nanocomposite coating with polyaniline coated carbon nanotubes on fabrics for exceptional electromagnetic interference shielding
Ali et al. Comparative performance of copper and silver coated stretchable fabrics
CN105002735A (en) Electric conduction textile fibers preparation method
CN105063804A (en) Preparation technology of metal nanometer fiber
CN110318118A (en) Flexible highly conductive wool top fiber of one kind and preparation method thereof
CN106883586A (en) A kind of adjustable type strain sensing macromolecule with hybridized nanometer conductive material
CN108797098A (en) A method of based on cellulosic fabric surface printing conducting wire
CN110318119A (en) A kind of highly conductive wool top fiber and preparation method thereof
TWI629310B (en) Electrothermal material composition and electrothermal textiles
CN103526329A (en) Preparation method for radiation-proof fibers
CN110318108A (en) A kind of conductive monofilament fiber and preparation method thereof
US20180187024A1 (en) Electrothermal material composition and electrothermal textile
TWI609638B (en) Physiology detecting garment, physiology detecting monitoring system and manufaturcing method of textile antenna
CN108602119A (en) Nano wire and its manufacturing method, nanowire dispersion and transparent conductive film
CN105155040A (en) Preparation process for sensing electrode used for intelligent clothes
CN106205862A (en) A kind of preparation method of high-temperature electric conduction glass fabric
He et al. Electromagnetic functionalized micro-ribbons and ropes for strain sensors via UV-assisted solvent-free electrospinning
TWI729922B (en) High-heating stable stretchable composite electric heating material, manufacturing method thereof, and high-heating stable stretchable electric heating element
Tong et al. Conductive twisted polyimide composite nanofiber ropes with improved tensile strength, thermal stability and high flexibility
TWI803745B (en) Conductive textile and method for fabricating the same