TWI621585B - Hybrid nanostructures and manufacturing method thereof - Google Patents

Hybrid nanostructures and manufacturing method thereof Download PDF

Info

Publication number
TWI621585B
TWI621585B TW105137900A TW105137900A TWI621585B TW I621585 B TWI621585 B TW I621585B TW 105137900 A TW105137900 A TW 105137900A TW 105137900 A TW105137900 A TW 105137900A TW I621585 B TWI621585 B TW I621585B
Authority
TW
Taiwan
Prior art keywords
metal
substrate
composite nanostructure
array
particle layer
Prior art date
Application number
TW105137900A
Other languages
Chinese (zh)
Other versions
TW201819284A (en
Inventor
江海邦
廖駿偉
房孟漢
黃昱翔
Original Assignee
國立臺灣海洋大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣海洋大學 filed Critical 國立臺灣海洋大學
Priority to TW105137900A priority Critical patent/TWI621585B/en
Application granted granted Critical
Publication of TWI621585B publication Critical patent/TWI621585B/en
Publication of TW201819284A publication Critical patent/TW201819284A/en

Links

Abstract

本發明為一種複合型奈米結構及其製作方法。該方法包含下列步驟:提供一基板;於該基板的一基板表面上形成一金屬尖錐陣列,該金屬尖錐陣列具有多個以週期性方式排列的金屬尖錐,且於該些金屬尖錐之間的該基板表面係呈現為一空隙;以及於該空隙與每一該金屬尖錐之表面上形成一金屬顆粒層,該金屬顆粒層具有多個金屬顆粒。其中,該金屬尖錐陣列為一次微米等級,該些金屬顆粒為一奈米等級,且該些金屬尖錐與該些金屬顆粒係符合一表面電漿子共振性質與一電漿子頻帶性質。 The invention is a composite nanostructure and a preparation method thereof. The method comprises the steps of: providing a substrate; forming a metal tip array on a surface of a substrate of the substrate, the metal tip array having a plurality of metal tips arranged in a periodic manner, and the metal tapers The surface of the substrate is present as a void; and a metal particle layer is formed on the surface of the void and each of the metal tip cones, the metal particle layer having a plurality of metal particles. Wherein, the metal cone array is of a micron order, the metal particles are of a nanometer scale, and the metal tapers and the metal particles conform to a surface plasmon resonance property and a plasmonic subband property.

Description

複合型奈米結構及其製作方法 Composite nano structure and manufacturing method thereof

本發明是有關於一種複合型奈米結構及其製作方法,尤其是有關於一種在多元尺度(multi-scale)上結合不同結構而能增加整體元件的表現效能的複合型結構與製作方法。 The invention relates to a composite nanostructure and a manufacturing method thereof, in particular to a composite structure and a manufacturing method capable of increasing the performance performance of an overall component by combining different structures on a multi-scale.

隨著現代工業與科技的進步,於各種材料或元件結構上之設計製造已朝向極精密且尺度達到了奈米(nanometer)等級的技術來發展。以奈米為等級所形成的元件,除了可再進一步於產品應用上達到尺寸縮小的特徵外,還能具有高表面(體積)比、高密度堆積、高結構組合彈性和高強度等特徵。而所謂的奈米技術便是藉由將原子或分子以建構、堆積的方式,加以製作或組合出具有上述特徵的新材料或新元件。 With the advancement of modern industry and technology, the design and manufacture of various materials or component structures has been developed towards technologies that are extremely sophisticated and have a nanometer rating. The components formed on the nanometer scale can be characterized by high surface (volume) ratio, high density stacking, high structural combination elasticity and high strength in addition to the size reduction characteristics of the product application. The so-called nanotechnology is to make or combine new materials or new elements with the above characteristics by constructing or stacking atoms or molecules.

另一方面,隨著生活品質的提升,人們希望電子裝置具有更多元化的功能,也因此對於應用在電子裝置上的光學元件表現有更多的訴求。此外,光譜檢測技術的應用也愈益廣泛,諸如生物醫學、食品安全、化工材料或環保等領域,都需要藉由檢測設備的投射光源與感應元件來對受測物進行照射並分析從其上所反射之光束的光譜內容,進而瞭解其成份。 On the other hand, with the improvement of the quality of life, people hope that the electronic device has more diversified functions, and thus there are more demands for the optical components applied to the electronic device. In addition, the application of spectroscopic detection technology is becoming more and more extensive. For example, in the fields of biomedicine, food safety, chemical materials or environmental protection, it is necessary to irradiate and analyze the object under test by the projection light source and the sensing element of the detecting device. Reflect the spectral content of the beam to understand its composition.

舉例來說,拉曼光譜(Raman Spectroscopy)技術能在分子等級上檢測受測物的成份,其並具有直接、快速且無損受測物等優點。目前一般的拉曼光譜檢測設備所採用的雷射光源的範圍有可見光、近紅外光與近紫外光等,由此所獲得的拉曼光譜結 果能分析其受測物內的分子結構與組成。 For example, Raman spectroscopy can detect the composition of a test object at the molecular level, and it has the advantages of direct, rapid and non-destructive measurement. At present, the range of laser light sources used in general Raman spectroscopy detection equipment is visible light, near-infrared light and near-ultraviolet light, etc., and the obtained Raman spectral junction It is possible to analyze the molecular structure and composition of the analyte.

然而,不同的檢測設備具有不同的檢測方法,且其檢測的效果、元件的靈敏度或穩定度、檢測程序的時間耗費、甚或是檢測設備的購置成本等等,往往成為消費者在使用與否上的考量因素。 However, different detection devices have different detection methods, and the detection effect, the sensitivity or stability of the components, the time consumption of the detection program, and even the purchase cost of the detection device, etc., often become consumers' use or not. Considerations.

另一方面,由於光學上的檢測常會因訊號的微弱而影響分析的結果,所以於其表面增強拉曼散射(Surface Enhanced Raman Scattering,簡稱SERS)的效應也是相當重要的技術。而目前利用奈米球微影(Nanoshpere Lithography,簡稱NSL)來製作滿足SERS效應的奈米金屬結構或金屬陣列也已相當普遍,其並具有製程簡單、低成本且省時等優點。 On the other hand, since the optical detection often affects the analysis result due to the weak signal, the effect of Surface Enhanced Raman Scattering (SERS) is also an important technology. At present, it is quite common to use Nanoshpere Lithography (NSL) to fabricate nano metal structures or metal arrays satisfying the SERS effect, which has the advantages of simple process, low cost and time saving.

因此,無論是主動式的發光元件或被動式的感應元件,如何在有效的奈米等級控制技術與拉曼光譜檢測技術下,開發出靈敏度更高且表現能力更佳的光學元件,已成為此一技術產業的重要發展議題。 Therefore, whether it is an active light-emitting element or a passive-type sensing element, how to develop an optical component with higher sensitivity and better performance under effective nano-level control technology and Raman spectroscopy detection technology has become this one. Important development issues in the technology industry.

本發明之目的在於提出一種複合型奈米結構及其製作方法。該複合型結構與製作方法之主要特徵在於透過不同結構在多元尺度(multi-scale)上的結合,使得整體元件的表現效能可以有效地增加。 The object of the present invention is to provide a composite nanostructure and a method of fabricating the same. The main feature of the composite structure and fabrication method is that the combination of different structures on a multi-scale makes the performance of the overall component effectively increase.

本發明為一種複合型奈米結構製作方法,該方法包含下列步驟:提供一基板;於該基板的一基板表面上形成一金屬尖錐陣列,該金屬尖錐陣列具有多個以週期性方式排列的金屬尖錐,且於該些金屬尖錐之間的該基板表面係呈現為一空隙;以及於該空隙與每一該金屬尖錐之表面上形成一金屬顆粒層,該金屬顆粒層具有多個金屬顆粒。其中,該金屬尖錐陣列為一次微米等級,該些金屬顆粒為一奈米等級,且該些金屬尖錐與該些金屬顆粒係符合一表面電漿子共振(SPR)性質與一電漿子頻帶性質。 The present invention is a composite nanostructure fabrication method, the method comprising the steps of: providing a substrate; forming a metal tip array on a substrate surface of the substrate, the metal pyramid array having a plurality of periodic arrangements a metal tip cone, and the surface of the substrate between the metal tip cones presents a void; and a metal particle layer is formed on the surface of the gap and each of the metal tip cones, the metal particle layer having a plurality of layers Metal particles. Wherein, the metal cone array is of a micron order, the metal particles are of a nanometer scale, and the metal tips and the metal particles conform to a surface plasmon resonance (SPR) property and a plasmonic Band nature.

本發明另一方面為一種複合型奈米結構,包含有一基板、一金屬尖錐陣列及一金屬顆粒層。該基板具有一基板表面;該金屬尖錐陣列形成於該基板表面上,並具有多個以週期性方式排列的金屬尖錐,且於該些金屬尖錐之間的該基板表面係呈現為一空隙;該金屬顆粒層形成於該空隙與每一該金屬尖錐之表面上,並具有多個金屬顆粒。其中,該金屬尖錐陣列為一次微米等級,該些金屬顆粒為一奈米等級,且該些金屬尖錐與該些金屬顆粒係符合一表面電漿子共振(SPR)性質與一電漿子頻帶性質。 Another aspect of the invention is a composite nanostructure comprising a substrate, a metal tip array, and a layer of metal particles. The substrate has a substrate surface; the metal tip array is formed on the surface of the substrate, and has a plurality of metal pyramids arranged in a periodic manner, and the substrate surface between the metal cones is presented as a a void; the metal particle layer is formed on the surface of the void and each of the metal tips and has a plurality of metal particles. Wherein, the metal cone array is of a micron order, the metal particles are of a nanometer scale, and the metal tips and the metal particles conform to a surface plasmon resonance (SPR) property and a plasmonic Band nature.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式,作詳細說明如下: In order to provide a better understanding of the above and other aspects of the present invention, the following detailed description of the embodiments and the accompanying drawings

100‧‧‧複合型奈米結構 100‧‧‧Composite nanostructure

1‧‧‧基板 1‧‧‧Substrate

10‧‧‧基板表面 10‧‧‧Substrate surface

11‧‧‧槽井 11‧‧‧Slot

12‧‧‧空隙 12‧‧‧ gap

20‧‧‧奈米球 20‧‧Nere ball

30‧‧‧金屬尖錐陣列 30‧‧‧Metal Cone Array

31‧‧‧金屬尖錐 31‧‧‧Metal cone

40‧‧‧金屬顆粒層 40‧‧‧ metal particle layer

41‧‧‧金屬顆粒 41‧‧‧ metal particles

L1、L2、L3‧‧‧曲線 L1, L2, L3‧‧‧ curves

S1~S3‧‧‧步驟 S1~S3‧‧‧ steps

第1A圖至第1G圖,為本發明之複合型奈米結構的製作流程示意圖。 1A to 1G are schematic views showing a manufacturing process of the composite nanostructure of the present invention.

第2A圖,為對應第1F圖之俯視示意圖。 Fig. 2A is a schematic plan view corresponding to Fig. 1F.

第2B圖,為對應第1F圖之立體放大示意圖。 Fig. 2B is a perspective enlarged view corresponding to Fig. 1F.

第3A圖,為對應第1G圖之俯視示意圖。 Fig. 3A is a schematic plan view corresponding to Fig. 1G.

第3B圖,為對應第1G圖之立體放大示意圖。 Fig. 3B is a perspective enlarged view corresponding to Fig. 1G.

第4圖,為三種不同結構以光譜儀進行實際吸收率量測之示意圖。 Fig. 4 is a schematic diagram showing the actual absorption rate measurement by a spectrometer for three different structures.

第5圖,為依本發明之概念所進行的實施流程圖。 Figure 5 is a flow chart of the implementation in accordance with the concepts of the present invention.

以下係提出實施例進行詳細說明,實施例僅用以作為範例說明,並不會限縮本發明欲保護之範圍。此外,實施例中之圖式係省略不必要或以通常技術即可完成之元件,以清楚顯示本發明之技術特點。 The following is a detailed description of the embodiments, which are intended to be illustrative only and not to limit the scope of the invention. In addition, the drawings in the embodiments are omitted to omit unnecessary or conventional elements to clearly show the technical features of the present invention.

現以一較佳實施例進行本發明所提出之複合型奈米結構及其製作方法的實施說明。請參閱第1A圖至第1G圖,為本 發明之複合型奈米結構的製作流程示意圖。如第1A圖所示,首先,提供一基板1;在此實施例中,該基板1是一種玻璃基板,其尺寸可為22公厘(mm)×22公厘(mm)且厚度不需太大(視後續之蝕刻製程而定),但該基板1所具有的一基板表面10需呈現高度平整。由於在該基板表面10上所可能存在的污染物會影響後續製程的良率與產品的品質,因此所準備的該基板1亦需經過相關之清洗程序。 A description will now be given of a preferred embodiment of the composite nanostructure of the present invention and a method for fabricating the same. Please refer to Figures 1A to 1G for Schematic diagram of the production process of the composite nanostructure of the invention. As shown in FIG. 1A, first, a substrate 1 is provided; in this embodiment, the substrate 1 is a glass substrate having a size of 22 mm (mm) × 22 mm (mm) and a thickness not too large. Large (depending on the subsequent etching process), but a substrate surface 10 of the substrate 1 needs to be highly flat. Since the contaminants that may be present on the substrate surface 10 affect the yield of subsequent processes and the quality of the product, the prepared substrate 1 also undergoes a related cleaning procedure.

其次,如第1B圖所示,將多個奈米球20塗佈於該基板表面10上,而目前技術對於如何塗佈其直徑約400奈米等級的奈米球之方式已有相當的改善。詳細來說,在此實施例中,每一顆奈米球20之材料為聚苯乙烯且直徑約為400奈米的球體,而本案對於塗佈該些奈米球20的方式是在二維平面的該基板表面10上進行單層排列鋪設,並採用對流性自組裝(Convective Self-Assembly)之儀器進行塗佈。需注意的是其塗佈應避免排列不均勻或錯位而造成有過大的孔洞出現。 Next, as shown in Fig. 1B, a plurality of nanospheres 20 are coated on the substrate surface 10, and the prior art has considerably improved how to coat nanospheres having a diameter of about 400 nm. . In detail, in this embodiment, each of the nanospheres 20 is made of polystyrene and has a diameter of about 400 nm, and the method for coating the nanospheres 20 is in two dimensions. The planar substrate surface 10 is laid in a single layer and coated by a Convective Self-Assembly instrument. It should be noted that the coating should avoid uneven or misaligned alignment and cause excessive pores.

承上所述,在各個奈米球20之尺寸均相同的條件下,其在二維平面上的分佈情形將會趨於蜂巢狀的規則陣列,而呈現出如第1C圖所示的結果。換句話說,排列在該基板表面10上的該些奈米球20會呈現出單層六方密集堆積結構(Monolayer Hexagonal Close-Packaged Structure)的週期性樣式。再者,由於其球狀之外形,使得各個奈米球20在作相互緊密接觸之排列時,會在每三個相鄰奈米球20與該基板表面10之間形成出一近似於三角錐體(Pyramid)之空間。因此,在各奈米球20作整齊排列下,在該基板表面10上會形成出多個錐狀空間。 As described above, under the condition that the sizes of the respective nanospheres 20 are the same, the distribution on the two-dimensional plane will tend to be a regular array of honeycombs, and the results as shown in Fig. 1C will be exhibited. In other words, the nanospheres 20 arranged on the substrate surface 10 exhibit a periodic pattern of Monolayer Hexagonal Close-Packaged Structure. Moreover, due to its spherical shape, each of the nanospheres 20 forms an approximate triangular pyramid between each of the three adjacent nanospheres 20 and the substrate surface 10 when arranged in close contact with each other. Space of the (Pyramid). Therefore, a plurality of tapered spaces are formed on the substrate surface 10 when the respective nanospheres 20 are aligned.

在第1C圖中是以立體的示意圖作呈現。根據第1C圖之示意可知,從排列整齊的該些奈米球20的上方來看,於各奈米球20之間所夾成的錐狀空間上將相應地露出下方部份的該基板表面10,使得該些奈米球20能成為後續蝕刻過程中的一種 遮罩(mask),也就是該些奈米球20在該基板表面10上的排列樣式能形成一種遮罩圖案。 In Fig. 1C, a schematic diagram is shown in a three-dimensional manner. According to the schematic diagram of FIG. 1C, from the top of the aligned nanospheres 20, the tapered surface sandwiched between the nanospheres 20 will correspondingly expose the lower portion of the substrate surface. 10, making the nanospheres 20 a kind of subsequent etching process A mask, that is, an arrangement pattern of the nanospheres 20 on the substrate surface 10, can form a mask pattern.

接著,如第1D圖所示,根據該遮罩圖案對該基板1進行蝕刻,以於該基板1中形成相應的多個槽井11。詳細來說,在此實施例中,所述之蝕刻是採用氣體的四氟化碳(CF4)以每分鐘40立方公分之流量進行10秒鐘的蝕刻,從而垂直地於該基板表面10向下蝕刻約5奈米深而形成該些槽井11。如上所述,在該些奈米球20的遮蔽下,該些槽井11便是形成在所述之該些錐狀空間之下方。根據目前技術,從第1B圖至第1D圖的階段可稱為一奈米球微影(NSL)與一反應離子蝕刻(Reactive Ion Etching)之製程。 Next, as shown in FIG. 1D, the substrate 1 is etched according to the mask pattern to form a corresponding plurality of wells 11 in the substrate 1. In detail, in this embodiment, the etching is performed by using a gas of carbon tetrafluoride (CF 4 ) at a flow rate of 40 cubic centimeters per minute for 10 seconds to be perpendicular to the substrate surface 10 The trenches 11 are formed by etching down about 5 nm deep. As described above, under the shielding of the nanospheres 20, the wells 11 are formed below the tapered spaces. According to the current technology, the stages from FIG. 1B to FIG. 1D can be referred to as a process of nanosphere lithography (NSL) and reactive ion etching (Reactive Ion Etching).

接著,如第1E圖所示,繼續將該些奈米球20作為遮罩而根據該遮罩圖案並以一第一材料對該些槽井11進行熱蒸鍍,而於該些槽井11中相應地形成一尖錐陣列。在此實施例中,所使用的該第一材料為銀(Ag),且所使用的蒸鍍方式係為熱蒸鍍(Thermal Evaporation)。是以,在金屬材料銀(Ag)之熱蒸鍍下,該尖錐陣列為一金屬尖錐陣列30,且該金屬尖錐陣列30具有多個以週期性方式排列的金屬尖錐31。詳細來說,其方式是垂直於該些槽井11進行蒸鍍並進一步填充其所在位置的所述錐狀空間,而向上構成一尖錐。 Next, as shown in FIG. 1E, the nanospheres 20 are further used as a mask, and the wells 11 are thermally evaporated according to the mask pattern and a first material, and the wells 11 are A corresponding array of tapers is formed accordingly. In this embodiment, the first material used is silver (Ag), and the evaporation method used is Thermal Evaporation. Therefore, under the thermal evaporation of the metallic material silver (Ag), the tapered array is a metal tapered array 30, and the metal tapered array 30 has a plurality of metal sharps 31 arranged in a periodic manner. In detail, the method is to perform vapor deposition perpendicular to the wells 11 and further fill the tapered space at the position thereof, and form a pointed cone upward.

此外,由於此實施例所採用的該些奈米球20之直徑為400奈米,使得所形成的該些金屬尖錐31之高度約150奈米,也就是約不超過各奈米球20直徑的一半。也正因為該些槽井11具有一定的深度,使得該些金屬尖錐31之結構能穩固地形成,不至於因為其他後續程序而發生變形或脫落。需注意的是,此一熱蒸鍍過程必須使熱蒸鍍機的真空腔溫度不超過30度,以避免高溫讓奈米球20熔化或變形而影響後續製程。在進行蒸鍍前,真空腔之氣壓可為5×10-2托爾(Torr)之真空度;而在準備蒸鍍時, 真空腔之氣壓可達5×10-6托爾(Torr)之高真空狀態。 In addition, since the diameter of the nanospheres 20 used in this embodiment is 400 nm, the height of the metal tip cones 31 formed is about 150 nm, that is, the diameter of each nanosphere 20 is not more than about 20 nm. Half of it. It is also because the wells 11 have a certain depth that the structures of the metal tips 31 can be stably formed without being deformed or peeled off due to other subsequent procedures. It should be noted that this thermal evaporation process must make the vacuum chamber temperature of the thermal evaporation machine not exceed 30 degrees to avoid the high temperature, so that the nanosphere 20 melts or deforms and affects the subsequent process. Before the vapor deposition, the pressure in the vacuum chamber may be a vacuum of 5 × 10 -2 Torr; and in preparation for evaporation, the pressure in the vacuum chamber may be 5 × 10 -6 Torr. High vacuum condition.

接著,如第1F圖所示,進行一舉離(Lift-off)之處理而將該些奈米球20自該基板表面10上加以移除。在此實施例中,所使用的舉離方式是採用二氯甲烷(CH2Cl2)之有機溶劑進行清洗以移除該些奈米球20且不破壞該些金屬尖錐31之結構。是以,移除該些奈米球20後的該基板表面10上會呈現以一蜂巢狀陣列或一六角形陣列之週期性排列的該些金屬尖錐31。同時,於該些金屬尖錐31之間的該基板表面10係呈現為一空隙12,也就是將原本的奈米球20所分佈的範圍加以露出。 Next, as shown in FIG. 1F, a lift-off process is performed to remove the nanospheres 20 from the substrate surface 10. In this embodiment, the lift mode used is a washing with an organic solvent of dichloromethane (CH 2 Cl 2 ) to remove the nanospheres 20 without damaging the structure of the metal tips 31. Therefore, the metal tip cones 31 are arranged on the surface 10 of the substrate after the removal of the nanospheres 20 in a honeycomb array or a hexagonal array. At the same time, the substrate surface 10 between the metal taps 31 appears as a gap 12, that is, the range in which the original nanospheres 20 are distributed is exposed.

請先同時參見第2A圖和第2B圖。其中第2A圖為對應第1F圖的該金屬尖錐陣列30之俯視示意圖;第2B圖為對應第1F圖的各金屬尖錐31之立體放大示意圖。需注意的是,第2A圖是以整體結構的部份範圍之呈現作示意。如第2A圖所示,可知在該金屬尖錐陣列30之週期性、規則性下是以每六個相鄰的金屬尖錐31圍成一六角形的方式重複地形成在該基板表面10上,其所圍成的範圍即約一顆奈米球20的尺寸。此外,該空隙12的分佈亦不止原本奈米球20所在的區域,還包括兩兩相鄰的金屬尖錐31之間的區域。 Please refer to both Figures 2A and 2B. 2A is a schematic plan view of the metal pyramid array 30 corresponding to the 1Fth diagram, and FIG. 2B is a perspective enlarged view of the metal pyramid 31 corresponding to the 1Fth diagram. It should be noted that Figure 2A is a representation of a partial range of the overall structure. As shown in FIG. 2A, it can be seen that the periodicity and regularity of the metal cone array 30 are repeatedly formed on the substrate surface 10 in such a manner that every six adjacent metal pyramids 31 are hexagonal. The range enclosed by it is about the size of a nanosphere 20 . In addition, the gap 12 is distributed not only in the region where the original nanosphere 20 is located, but also in the region between two adjacent metal pyramids 31.

承上所述,如第2B圖所示,所形成的每一金屬尖錐31係類似於一三角尖錐,也就是對應於原先的錐狀空間之形狀。而在原先的錐狀空間呈現向上露出之情形下,所形成的每一金屬尖錐31之頂部可接近呈現為平面狀。另外,由於原先每三個相鄰的奈米球20是彼此緊密接觸,使得所形成的每一金屬尖錐31之側面實際上可接近呈現為弧面狀。 As described above, as shown in Fig. 2B, each metal tip 31 formed is similar to a triangular tip, that is, corresponding to the shape of the original tapered space. In the case where the original tapered space is exposed upward, the top of each metal tip 31 formed can be brought into a planar shape. In addition, since each of the three adjacent nanospheres 20 is originally in close contact with each other, the sides of each of the formed metal tapers 31 are substantially accessible in a curved shape.

最後,如第1G圖所示,以一第二材料對該空隙12與每一該金屬尖錐31之表面進行熱蒸鍍,而於該空隙12與每一該金屬尖錐31之表面上形成一顆粒層。在此實施例中,所使用的該第二材料亦為銀(Ag),且亦為熱蒸鍍(Thermal Evaporation)。 是以,在金屬材料銀(Ag)之蒸鍍下,該顆粒層為具有多個金屬顆粒41的一金屬顆粒層40。詳細來說,其熱蒸鍍方式還包括對該基板1進行加熱,例如加熱至100度,以利銀顆粒能在不破壞該金屬尖錐31之結構下有效地附著於其上。 Finally, as shown in FIG. 1G, the surface of the gap 12 and each of the metal taps 31 is thermally evaporated by a second material, and formed on the surface of the gap 12 and each of the metal taps 31. a layer of particles. In this embodiment, the second material used is also silver (Ag) and is also a thermal evaporation (Thermal Evaporation). Therefore, under the vapor deposition of metallic material silver (Ag), the granular layer is a metal particle layer 40 having a plurality of metal particles 41. In detail, the thermal evaporation method further includes heating the substrate 1, for example, to 100 degrees, so that the silver particles can be effectively attached thereto without damaging the metal tip 31.

承上所述,本案的其一特徵在於,相對於該金屬尖錐陣列30或該些金屬尖錐31形成方式的週期性、規則性,該些金屬顆粒41卻是以隨機方式或不規則排列方式形成於該空隙12與每一該金屬尖錐31之表面上。進一步來說,本案的該金屬尖錐陣列30或該些金屬尖錐31為一次微米(submicron)等級,例如各金屬尖錐31之高度可為150奈米,而六角形的該金屬尖錐陣列30所佔據的範圍寬度可為400奈米,所以是一種可利於器械作週期性控制的次微米等級。 According to the above, one of the features of the present invention is that the metal particles 41 are arranged in a random manner or irregularly with respect to the periodicity and regularity of the formation manner of the metal cone array 30 or the metal tip cones 31. A pattern is formed on the surface of the gap 12 and each of the metal tips 31. Further, the metal tip array 30 or the metal taps 31 of the present invention are of a submicron grade, for example, the height of each metal tip 31 can be 150 nm, and the hexagonal metal pyramid array The 30-occupied range can be 400 nm wide, so it is a sub-micron rating that facilitates periodic control of the device.

然而,在此實施例中,所採用的該些金屬顆粒41係以直徑為15奈米作說明,也就是該些金屬顆粒41的尺度達到了小於次微米等級的奈米(nano)等級。是以,目前技術雖然較無法有效地對形成該些金屬顆粒41的分佈方式的規則性作控制,但在該金屬尖錐陣列30或該些金屬尖錐31之次微米等級的規則性下,可以彌補或克服該些奈米等級之金屬顆粒41的隨機性缺陷。 However, in this embodiment, the metal particles 41 used are described with a diameter of 15 nm, that is, the dimensions of the metal particles 41 are up to a sub-micron level of nano. Therefore, although the current technology is less effective in controlling the regularity of the distribution pattern of the metal particles 41, under the regularity of the sub-micron level of the metal pyramid array 30 or the metal cones 31, The random defects of the nano-grade metal particles 41 can be compensated for or overcome.

請同時參見第3A圖和第3B圖,其中第3A圖為對應第1G圖的形成該金屬顆粒層40之俯視示意圖;第3B圖為對應第1G圖的形成該些金屬顆粒41之立體放大示意圖。同樣地,第3A圖是以整體結構的部份範圍之呈現作示意。需注意的是,第1G圖、第3A圖和第3B圖中的金屬顆粒41與金屬尖錐31之間的尺寸比例關係以及金屬顆粒41的分佈數量係僅為一種範例示意說明而已。如第1G圖、第3A圖與第3B圖所示,並比較第1F圖、第2A圖和第2B圖之前後差異,可知該些金屬顆粒41是隨機、不規則地分佈於該空隙12與每一該金屬尖錐31之表面 上,且由於熱蒸鍍的關係,使得形成在該金屬尖錐31之表面上的金屬顆粒41能產生類似鑲嵌的效果而穩固地附著。此外,形成於該空隙12上的金屬顆粒41亦不至於脫落。 Please refer to FIG. 3A and FIG. 3B simultaneously, wherein FIG. 3A is a schematic plan view showing the formation of the metal particle layer 40 corresponding to the 1Gth image; FIG. 3B is a perspective enlarged view showing the formation of the metal particles 41 corresponding to the 1Gth image. . Similarly, Figure 3A is a representation of a partial range of the overall structure. It should be noted that the dimensional relationship between the metal particles 41 and the metal tip 31 in the 1G, 3A, and 3B and the number of distribution of the metal particles 41 are merely illustrative. As shown in FIG. 1G, FIG. 3A and FIG. 3B, and comparing the difference between the first F, the second A and the second B, it can be seen that the metal particles 41 are randomly and irregularly distributed in the gap 12 and The surface of each of the metal tips 31 Above, and due to the thermal evaporation relationship, the metal particles 41 formed on the surface of the metal tip 31 can be stably attached by producing a mosaic-like effect. Further, the metal particles 41 formed on the void 12 are not peeled off.

是以,第1G圖與第3A圖所示的最後結構樣式,便為利用本發明所提出之複合型奈米結構製作方法所完成的複合型奈米結構100。如圖所示可知,該複合型奈米結構100包含有:基板1、金屬尖錐陣列30及金屬顆粒層40。其中,該金屬尖錐陣列30形成於該基板表面10上,該金屬尖錐陣列30具有多個以週期性方式排列的金屬尖錐31,且於該些金屬尖錐31之間的該基板表面10係呈現為一空隙12;該金屬顆粒層40形成於該空隙12與每一該金屬尖錐31之表面上,且該金屬顆粒層40具有多個金屬顆粒41。 Therefore, the final structural pattern shown in Fig. 1G and Fig. 3A is a composite nanostructure 100 completed by the composite nanostructure fabrication method proposed by the present invention. As shown in the figure, the composite nanostructure 100 includes a substrate 1, a metal pyramid array 30, and a metal particle layer 40. The metal pyramid array 30 is formed on the substrate surface 10, and the metal pyramid array 30 has a plurality of metal pyramids 31 arranged in a periodic manner, and the substrate surface between the metal pyramids 31. The 10 series is presented as a void 12; the metal particle layer 40 is formed on the surface of the void 12 and each of the metal tips 31, and the metal particle layer 40 has a plurality of metal particles 41.

承上所述,在此實施例中的該些金屬尖錐31與該些金屬顆粒41所使用的材料皆為銀(Ag),而銀(Ag)是一種具有充足之自由電子的導體材料,故而能符合一表面電漿子共振(Surface Plasmon Resonance,簡稱SPR)性質與一電漿子頻帶(Plasmon Band)性質,從而能在指定的光波波長範圍內產生近場效應之作用,也就是使其自由電子與光子產生交互作用。 As described above, the metal tip 31 and the materials used in the metal particles 41 in this embodiment are all silver (Ag), and the silver (Ag) is a conductor material having sufficient free electrons. Therefore, it can conform to the properties of Surface Plasmon Resonance (SPR) and a plasmon band, so that it can produce the effect of near-field effect in the specified wavelength range of light waves, that is, Free electrons interact with photons.

而因應不同的產品應用需求,本發明所提出之複合型奈米結構可以應用在諸如生物醫學或食品安全之檢查設備的被動式的感測器上,或是電子裝置的主動式的發光元件上。因此,此實施例中的該複合型奈米結構100的光波波長應用範圍可在300奈米至4微米之間,也就是針對使用的是從紫外光至近紅外光範圍的光波波長的裝置,都可以有效運作。 In view of different product application requirements, the composite nanostructure proposed by the present invention can be applied to a passive sensor such as a biomedical or food safety inspection device, or an active light-emitting element of an electronic device. Therefore, the wavelength of the light wave of the composite nanostructure 100 in this embodiment can be applied between 300 nm and 4 μm, that is, for the device using the wavelength of the light wave from the ultraviolet light to the near-infrared light range. Can work effectively.

再者,依此實施例所製備的複合型奈米結構100還可以進一步採用相關檢驗方法或裝置來瞭解其表現效能,例如:掃描式電子顯微鏡(Scanning Electron Microscope,簡稱SEM)、表面增強拉曼光譜(Surface Enhanced Raman Spectroscopy,簡稱 SERS)、光激發光(Photo Luminescence,簡稱PL)頻譜以及時間解析光激發光(Time-Resolved Photo Luminescence,簡稱TRPL)頻譜等方式。 Furthermore, the composite nanostructure 100 prepared according to this embodiment can further be tested for performance performance by using a related inspection method or device, for example, Scanning Electron Microscope (SEM), surface enhanced Raman Surface Enhanced Raman Spectroscopy (abbreviation) SERS), Photo Luminescence (PL) spectrum, and Time-Resolved Photo Luminescence (TRPL) spectrum.

根據實際試驗的結果可知,透過不同結構在多元尺度(multi-scale)上的結合,例如次微米等級結合奈米等級之結構,且當所分佈、覆蓋的金屬顆粒之數量達到一特定程度時,將能有效地增加整體元件的表現效能,例如可使其表面增強拉曼散射(SERS)的效應,或是使其表面增強螢光(Surface Enhanced Fluorescence,簡稱SEF)的效果。 According to the results of actual experiments, it is known that the combination of different structures on a multi-scale, such as a sub-micron level combined with a nano-scale structure, and when the number of distributed and covered metal particles reaches a certain level, It will effectively increase the performance of the overall component, such as its surface-enhanced Raman scattering (SERS) effect or the effect of Surface Enhanced Fluorescence (SEF).

請參見第4圖,為三種不同結構以光譜儀進行實際吸收率量測之示意圖。如第4圖所示,其中曲線L1代表根據上述較佳實施例的量測結果,即在該金屬尖錐31上形成該金屬顆粒41之結構;曲線L2代表僅有該金屬尖錐31之結構(其上未形成金屬顆粒41)的量測結果;曲線L3代表在該基板表面10上形成該金屬顆粒41之結構(不包括該金屬尖錐31)的量測結果。在第4圖中的座標的橫軸代表波長(單位:奈米),縱軸代表吸收率(單位:百分比(%))。 See Figure 4 for a schematic representation of the actual absorption rate measurements for the spectrometer for three different configurations. As shown in Fig. 4, wherein the curve L1 represents the measurement result according to the above preferred embodiment, that is, the structure of the metal particles 41 is formed on the metal tip 31; the curve L2 represents the structure of only the metal tip 31. The measurement result of (the metal particles 41 are not formed thereon); the curve L3 represents the measurement result of the structure in which the metal particles 41 are formed on the substrate surface 10 (excluding the metal tip 31). The horizontal axis of the coordinates in Fig. 4 represents the wavelength (unit: nanometer), and the vertical axis represents the absorption rate (unit: percentage (%)).

由第4圖之示意可知,曲線L1在不同波段上的吸收率皆超過曲線L2、L3。其次,若其結構僅是將金屬顆粒41形成在基板表面10上(曲線L3),其吸收率還遠不及沒有金屬顆粒41作修飾的金屬尖錐31(曲線L2),也就是僅將金屬顆粒41形成在所述的空隙12上的效能增進是較低的。而將金屬顆粒41形成在金屬尖錐31上(曲線L1)的效能增進結果卻是遠大於僅有金屬尖錐31(曲線L2)或是僅將金屬顆粒41形成在基板表面10上(曲線L3)之結果,代表本發明所提出的複合型奈米結構的概念係確實能對所應用的元件有顯著地改善。 As can be seen from the diagram of Fig. 4, the absorption rate of the curve L1 on different wavelength bands exceeds the curves L2 and L3. Secondly, if the structure is only to form the metal particles 41 on the substrate surface 10 (curve L3), the absorption rate is far less than that of the metal tip 31 (curve L2) without the metal particles 41 being modified, that is, only the metal particles. The increase in potency of 41 formed on said voids 12 is relatively low. The performance improvement result of forming the metal particles 41 on the metal tip 31 (curve L1) is much larger than only the metal tip 31 (curve L2) or only the metal particles 41 on the substrate surface 10 (curve L3) As a result, the concept of the composite nanostructure proposed by the present invention does provide a significant improvement in the components applied.

在上述的實施例中,是以銀(Ag)作為該第一材料與該第二材料,而分別形成該金屬尖錐31與該金屬顆粒41,但本 發明並不限於此。於其他的實施方式中,亦可採用其他同樣具有充足自由電子的金屬導體材料來製備,例如金(Au)或鋁(Al);其中,鋁(Al)特別是在短波的應用上有較佳的表現。另一方面,分別形成該金屬尖錐31與該金屬顆粒41的該第一材料與該第二材料除了如上述的可為相同外,也可作不同材料的設計,例如金(Au)與銀(Ag)的搭配,或銀(Ag)與鋁(Al)的搭配。 In the above embodiment, silver (Ag) is used as the first material and the second material, and the metal tip 31 and the metal particles 41 are respectively formed, but The invention is not limited to this. In other embodiments, other metal conductor materials having sufficient free electrons, such as gold (Au) or aluminum (Al), may be used. Among them, aluminum (Al) is particularly suitable for short-wave applications. Performance. On the other hand, the first material and the second material respectively forming the metal tip 31 and the metal particles 41 can be made of different materials, such as gold (Au) and silver, in addition to being the same as described above. A combination of (Ag) or a combination of silver (Ag) and aluminum (Al).

再一方面,於其他的實施方式中,金屬尖錐31的形成亦可設計成其他尺寸。如前所述,金屬尖錐31的尺寸與所使用的奈米球20的大小有關,也就是其高度大約不超過奈米球20的半徑。上述實施例所使用的奈米球20的直徑為400奈米。一般來說,所形成的金屬尖錐的尺寸不宜太小,以避免無法將金屬顆粒附著於其上;但若製程技術支援,則也可使用諸如直徑為200奈米的奈米球。所以大致而言,本發明所提出的複合型奈米結構中的金屬尖錐的尺寸可在100奈米至1000奈米之間,也就是次微米的等級。 In still another aspect, in other embodiments, the metal tip 31 can be formed in other sizes. As previously mentioned, the size of the metal tip 31 is related to the size of the nanosphere 20 used, that is, its height does not exceed the radius of the nanosphere 20. The diameter of the nanosphere 20 used in the above embodiment was 400 nm. In general, the size of the metal tip formed should not be too small to avoid the inability to attach metal particles to it; however, if the process technology supports it, a nanosphere such as a diameter of 200 nm can also be used. Therefore, in general, the size of the metal tip in the composite nanostructure proposed by the present invention may range from 100 nanometers to 1000 nanometers, that is, a submicron scale.

承上所述,於其他的實施方式中,金屬顆粒41的形成亦可設計成其他尺寸。詳細來說,雖然在上述實施例中的金屬顆粒41係以直徑為15奈米作說明,但由於金屬顆粒41在熱蒸鍍時是以隨機、不規則的位置形成在該空隙12與各金屬尖錐31之表面上,所以實際形成的金屬顆粒的尺寸可為相同或不同。重要的是,因為所形成的金屬顆粒必須是奈米等級以達成多元尺度結構的條件,因此,本發明所提出的複合型奈米結構中的金屬顆粒的尺寸可在5奈米至100奈米之間。 As described above, in other embodiments, the formation of the metal particles 41 can also be designed in other sizes. In detail, although the metal particles 41 in the above embodiment are described by having a diameter of 15 nm, the metal particles 41 are formed in the voids 12 and the respective metals at random and irregular positions during thermal evaporation. The surface of the tapered cone 31 is such that the size of the actually formed metal particles may be the same or different. Importantly, since the formed metal particles must be in a nanometer order to achieve a multi-scale structure, the size of the metal particles in the composite nanostructure proposed by the present invention can range from 5 nm to 100 nm. between.

又一方面,在上述實施例中的該金屬尖錐陣列30的形成是以奈米球微影、反應離子蝕刻及熱蒸鍍等製程來完成,因其特點在於低成本、製程容易且適合量產。但本發明的概念並不限於此,也就是還能以其他實施方式形成該金屬尖錐陣列30。舉例來說,可採用一奈米壓印微影(Nano-Imprint Lithography)製 程,也就是利用電子束(electron beam)製作一個表面有週期性結構的模板,並用壓印的方式在材質較軟的基板上壓印出相對於該模板的結構。 In another aspect, the formation of the metal cone array 30 in the above embodiment is performed by a process such as nanosphere lithography, reactive ion etching, and thermal evaporation, because it is characterized by low cost, easy process, and suitable amount. Production. However, the concept of the present invention is not limited thereto, that is, the metal tip array 30 can be formed in other embodiments. For example, a nano-Imprint Lithography system can be used. The process, that is, using an electron beam to form a template having a periodic structure, and embossing the structure relative to the template on a softer substrate.

是以,將其應用在本案可包含下列步驟:進行一奈米壓印微影製程,而將一週期性凹凸圖案轉印至該基板上,以於該基板中形成相應的多個槽井;以及根據一週期性孔洞圖案(對應於該週期性凹凸圖案)並以一第一材料對該些槽井進行熱蒸鍍,而於該些槽井中相應地形成該些金屬尖錐。 Therefore, the application in the present invention may include the following steps: performing a nano-imprint lithography process, and transferring a periodic concave-convex pattern onto the substrate to form a corresponding plurality of wells in the substrate; And forming the metal tip cones in the wells according to a periodic hole pattern (corresponding to the periodic relief pattern) and thermally evaporating the wells with a first material.

又一方面,在上述實施例中的該金屬顆粒層40的形成是以熱蒸鍍方式來完成,因其特點在於分佈可較趨平均且其顆粒能不至於脫落。但本發明的概念並不限於此,也就是還能以其他實施方式形成該金屬顆粒層40。舉例來說,可採用一旋轉塗佈的技術。是以,將其應用在本案可包含下列步驟:對該基板進行旋轉;以及以一第二材料對該空隙與每一該金屬尖錐之表面進行塗佈,而形成該金屬顆粒層。 In still another aspect, the formation of the metal particle layer 40 in the above embodiment is performed by thermal evaporation because it is characterized in that the distribution is more uniform and the particles are not peeled off. However, the concept of the present invention is not limited thereto, that is, the metal particle layer 40 can be formed in other embodiments. For example, a spin coating technique can be employed. Therefore, the application to the present invention may include the steps of: rotating the substrate; and coating the void and the surface of each of the metal tips with a second material to form the metal particle layer.

此外,為了避免該些金屬顆粒41自該些金屬尖錐31之表面上脫落,還可採用其他相關的化學方式或物理方式,例如添加化學液或使其結構之間彼此相嵌,以加強該些金屬顆粒41與該些金屬尖錐31之間的結合力。 In addition, in order to prevent the metal particles 41 from falling off the surface of the metal tip 31, other related chemical or physical means may be employed, such as adding chemical liquid or embedding the structures with each other to strengthen the metal particles 41. The bonding force between the metal particles 41 and the metal tip cones 31.

請參見第5圖,為依本發明之概念所進行的實施流程圖。首先,提供一基板(步驟S1);其次,於該基板的一基板表面上形成一金屬尖錐陣列,該金屬尖錐陣列具有多個以週期性方式排列的金屬尖錐,且於該些金屬尖錐之間的該基板表面係呈現為一空隙(步驟S2);接著,於該空隙與每一該金屬尖錐之表面上形成一金屬顆粒層,該金屬顆粒層具有多個金屬顆粒(步驟S3)。 Please refer to Fig. 5 for an implementation flow chart in accordance with the concepts of the present invention. First, a substrate is provided (step S1); secondly, a metal tip array is formed on a surface of a substrate of the substrate, the metal tip array has a plurality of metal tips arranged in a periodic manner, and the metal is The surface of the substrate between the tapered cones appears as a void (step S2); then, a metal particle layer is formed on the surface of the void and each of the metal tip cones, the metal particle layer having a plurality of metal particles (step S3).

綜上所述,本發明所提出之複合型奈米結構及其製作方法針對無論是主動式的發光元件或被動式的感應元件,都能有效地開發出效能更佳的光學元件,其主要特徵在於透過不同結 構在多元尺度(multi-scale)上的結合,例如次微米等級結合奈米等級之結構,將能有效地增加整體元件的表現效能。其次,本發明的較佳實施例還具有低成本、製程容易且適合量產等特點,而所完成的產品還能呈現有較大且均勻的可量測範圍,並具有利於產品製造的再現性與穩定性。 In summary, the composite nanostructure proposed by the present invention and the manufacturing method thereof can effectively develop optical components with better performance regardless of active light-emitting elements or passive sensing elements, and the main feature is that the main feature is Through different knots The combination of multi-scale construction, such as the sub-micron level combined with the nano-scale structure, will effectively increase the performance of the overall component. Secondly, the preferred embodiment of the present invention has the characteristics of low cost, easy process and suitable mass production, and the finished product can also exhibit a large and uniform measurable range, and has reproducibility for product manufacturing. And stability.

是故,本發明能有效解決先前技術中所提出之相關問題,而能成功地達到本案發展之主要目的。 Therefore, the present invention can effectively solve the related problems raised in the prior art, and can successfully achieve the main purpose of the development of the present case.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed above by way of example, it is not intended to limit the invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

Claims (18)

一種複合型奈米結構製作方法,該方法包含下列步驟:提供一基板;於該基板的一基板表面上形成一金屬尖錐陣列,該金屬尖錐陣列具有多個以週期性方式排列的金屬尖錐,且於該些金屬尖錐之間的該基板表面係呈現為一空隙;以及於該空隙與每一該金屬尖錐之表面上形成一金屬顆粒層,該金屬顆粒層具有多個金屬顆粒;其中,該金屬尖錐陣列為一次微米等級,該些金屬顆粒為一奈米等級,且該些金屬尖錐與該些金屬顆粒係符合一表面電漿子共振(SPR)性質與一電漿子頻帶性質;其中,該些金屬顆粒係以隨機方式或不規則排列方式形成於該空隙與每一該金屬尖錐之表面上。 A composite nanostructure manufacturing method, the method comprising the steps of: providing a substrate; forming a metal tip array on a surface of a substrate of the substrate, the metal tip array having a plurality of metal tips arranged in a periodic manner a cone, and the surface of the substrate between the metal taps appears as a void; and a metal particle layer is formed on the surface of the void and each of the metal taps, the metal particle layer having a plurality of metal particles Wherein the metal pyramid array is of a micron order, the metal particles are of a nanometer scale, and the metal tips and the metal particles conform to a surface plasmon resonance (SPR) property and a plasma Sub-band properties; wherein the metal particles are formed on the surface of the void and each of the metal tips in a random or irregular arrangement. 如申請專利範圍第1項所述之複合型奈米結構製作方法,其中該金屬尖錐陣列的形成係包含下列步驟:將多個奈米球塗佈於該基板表面上並形成的一遮罩圖案;根據該遮罩圖案對該基板進行蝕刻,以於該基板中形成相應的多個槽井;根據該遮罩圖案並以一第一材料對該些槽井進行熱蒸鍍,而於該些槽井中相應地形成該些金屬尖錐;以及移除該些奈米球。 The method for fabricating a composite nanostructure according to claim 1, wherein the forming of the metal pyramid array comprises the steps of: coating a plurality of nanospheres on the surface of the substrate and forming a mask. a pattern; etching the substrate according to the mask pattern to form a corresponding plurality of wells in the substrate; and thermally vaporizing the wells according to the mask pattern and using a first material The metal tips are formed correspondingly in the wells; and the nanospheres are removed. 如申請專利範圍第1項所述之複合型奈米結構製作方法,其中該金屬尖錐陣列的形成係包含下列步驟:進行一奈米壓印微影製程,而將一週期性凹凸圖案轉印至該基板上,以於該基板中形成相應的多個槽井;以及根據一週期性孔洞圖案並以一第一材料對該些槽井進 行熱蒸鍍,而於該些槽井中相應地形成該些金屬尖錐。 The method for fabricating a composite nanostructure according to claim 1, wherein the forming of the metal pyramid array comprises the steps of: performing a nanoimprint lithography process and transferring a periodic relief pattern Forming a plurality of wells in the substrate to form a corresponding plurality of wells; and patterning the wells with a first material according to a periodic hole pattern The thermal evaporation is performed, and the metal tips are formed correspondingly in the wells. 如申請專利範圍第1項所述之複合型奈米結構製作方法,其中該金屬顆粒層的形成係包含下列步驟:對該基板進行加熱;以及以一第二材料對該空隙與每一該金屬尖錐之表面進行熱蒸鍍,而形成該金屬顆粒層。 The method for fabricating a composite nanostructure according to claim 1, wherein the forming of the metal particle layer comprises the steps of: heating the substrate; and using a second material to the void and each of the metal The surface of the tapered cone is subjected to thermal evaporation to form the metal particle layer. 如申請專利範圍第1項所述之複合型奈米結構製作方法,其中該金屬顆粒層的形成係包含下列步驟:對該基板進行旋轉;以及以一第二材料對該空隙與每一該金屬尖錐之表面進行塗佈,而形成該金屬顆粒層。 The method for fabricating a composite nanostructure according to claim 1, wherein the forming of the metal particle layer comprises the steps of: rotating the substrate; and using a second material to the void and each of the metal The surface of the tip is coated to form the metal particle layer. 如申請專利範圍第1項所述之複合型奈米結構製作方法,其中該些金屬尖錐係為一第一材料,該些金屬顆粒係為一第二材料,該第一材料或該第二材料係為金、銀或鋁,且該第一材料與該第二材料可為相同或不同。 The method for fabricating a composite nanostructure according to claim 1, wherein the metal taper is a first material, and the metal particles are a second material, the first material or the second The material is gold, silver or aluminum, and the first material and the second material may be the same or different. 如申請專利範圍第1項所述之複合型奈米結構製作方法,其中該些金屬尖錐的週期性排列方式係為一蜂巢狀陣列或一六角形陣列。 The method for fabricating a composite nanostructure according to claim 1, wherein the periodic arrangement of the metal tapers is a honeycomb array or a hexagonal array. 如申請專利範圍第1項所述之複合型奈米結構製作方法,其中以該方法所製備的一複合型奈米結構的光波波長應用範圍係在300奈米至4微米之間。 The method for fabricating a composite nanostructure according to the first aspect of the invention, wherein the light wave wavelength application range of a composite nanostructure prepared by the method is between 300 nm and 4 μm. 如申請專利範圍第1項所述之複合型奈米結構製作方法,其中該些金屬尖錐之尺寸係在100奈米至1000奈米之間, 而該些金屬顆粒之尺寸係在5奈米至100奈米之間。 The method for fabricating a composite nanostructure according to claim 1, wherein the metal taper is between 100 nm and 1000 nm. The metal particles are between 5 nm and 100 nm in size. 一種複合型奈米結構,包含有:一基板,具有一基板表面;一金屬尖錐陣列,形成於該基板表面上,該金屬尖錐陣列具有多個以週期性方式排列的金屬尖錐,且於該些金屬尖錐之間的該基板表面係呈現為一空隙;以及一金屬顆粒層,形成於該空隙與每一該金屬尖錐之表面上,且該金屬顆粒層具有多個金屬顆粒;其中,該金屬尖錐陣列為一次微米等級,該些金屬顆粒為一奈米等級,且該些金屬尖錐與該些金屬顆粒係符合一表面電漿子共振(SPR)性質與一電漿子頻帶性質;其中,該些金屬顆粒係以隨機方式或不規則排列方式形成於該空隙與每一該金屬尖錐之表面上。 A composite nanostructure comprising: a substrate having a substrate surface; and a metal tip cone array formed on the surface of the substrate, the metal tip array having a plurality of metal tip cones arranged in a periodic manner, and The surface of the substrate between the metal tips is a void; and a metal particle layer is formed on the surface of the gap and each of the metal tips, and the metal particle layer has a plurality of metal particles; Wherein, the metal cone array is of a micron order, the metal particles are of a nanometer scale, and the metal tips and the metal particles conform to a surface plasmon resonance (SPR) property and a plasmonic Band properties; wherein the metal particles are formed on the surface of the void and each of the metal tips in a random or irregular arrangement. 如申請專利範圍第10項所述之複合型奈米結構,其中該金屬尖錐陣列的形成係為採用一奈米球微影製程、一反應離子蝕刻製程及一熱蒸鍍製程而加以完成。 The composite nanostructure of claim 10, wherein the formation of the metal pyramid array is performed by a nanosphere lithography process, a reactive ion etching process, and a thermal evaporation process. 如申請專利範圍第10項所述之複合型奈米結構,其中該金屬尖錐陣列的形成係為採用一奈米壓印微影製程及一熱蒸鍍製程而加以完成。 The composite nanostructure of claim 10, wherein the formation of the metal pyramid array is performed by using a nanoimprint lithography process and a thermal evaporation process. 如申請專利範圍第10項所述之複合型奈米結構,其中該金屬顆粒層的形成係為對該基板進行加熱並對該空隙與每一該金屬尖錐之表面進行熱蒸鍍而加以完成。 The composite nanostructure of claim 10, wherein the metal particle layer is formed by heating the substrate and thermally evaporating the void and the surface of each metal tip. . 如申請專利範圍第10項所述之複合型奈米結構,其中該金屬顆粒層的形成係為對該基板進行旋轉並對該空隙與每一該 金屬尖錐之表面進行塗佈而加以完成。 The composite nanostructure of claim 10, wherein the metal particle layer is formed by rotating the substrate and the void and each of the The surface of the metal tip is coated and completed. 如申請專利範圍第10項所述之複合型奈米結構,其中該些金屬尖錐係為一第一材料,該些金屬顆粒係為一第二材料,該第一材料或該第二材料係為金、銀或鋁,且該第一材料與該第二材料可為相同或不同。 The composite nanostructure of claim 10, wherein the metal taper is a first material, and the metal particles are a second material, the first material or the second material It is gold, silver or aluminum, and the first material and the second material may be the same or different. 如申請專利範圍第10項所述之複合型奈米結構,其中該些金屬尖錐的週期性排列方式係為一蜂巢狀陣列或一六角形陣列。 The composite nanostructure of claim 10, wherein the periodic arrangement of the metal tapers is a honeycomb array or a hexagonal array. 如申請專利範圍第10項所述之複合型奈米結構,其中該複合型奈米結構的光波波長應用範圍係在300奈米至4微米之間。 The composite nanostructure of claim 10, wherein the composite nanostructure has a wavelength range of light wavelengths between 300 nm and 4 microns. 如申請專利範圍第10項所述之複合型奈米結構,其中該些金屬尖錐之尺寸係在100奈米至1000奈米之間,而該些金屬顆粒之尺寸係在5奈米至100奈米之間。 The composite nanostructure of claim 10, wherein the metal tapers are between 100 nm and 1000 nm, and the metal particles are between 5 nm and 100 nm. Between the rice.
TW105137900A 2016-11-18 2016-11-18 Hybrid nanostructures and manufacturing method thereof TWI621585B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105137900A TWI621585B (en) 2016-11-18 2016-11-18 Hybrid nanostructures and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105137900A TWI621585B (en) 2016-11-18 2016-11-18 Hybrid nanostructures and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI621585B true TWI621585B (en) 2018-04-21
TW201819284A TW201819284A (en) 2018-06-01

Family

ID=62639970

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105137900A TWI621585B (en) 2016-11-18 2016-11-18 Hybrid nanostructures and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI621585B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111474161A (en) * 2019-01-23 2020-07-31 曾繁根 Optical substrate and method for manufacturing the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Dai, Han, et al. "Effective light trapping enhancement by plasmonic Ag nanoparticles on silicon pyramid surface." Optics express 20.104 (2012): A502-A509. 2012/07/02 *
林宗志,奈米銀顆粒陣列之製作並應用於太陽能電池上抗反射層之研究,國立臺灣海洋大學,2011/09/22 *
林宗志,奈米銀顆粒陣列之製作並應用於太陽能電池上抗反射層之研究,國立臺灣海洋大學,2011/09/22。

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111474161A (en) * 2019-01-23 2020-07-31 曾繁根 Optical substrate and method for manufacturing the same

Also Published As

Publication number Publication date
TW201819284A (en) 2018-06-01

Similar Documents

Publication Publication Date Title
US9080981B2 (en) Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto
Ahn et al. An optimal substrate design for SERS: dual-scale diamond-shaped gold nano-structures fabricated via interference lithography
US20130003058A1 (en) Methods and Systems for Surface Enhanced Optical Detection
Dunbar et al. Light-trapping plasmonic nanovoid arrays
Horrer et al. Parallel fabrication of plasmonic nanocone sensing arrays
JP2012508881A (en) Surface enhanced Raman scattering (SERS) substrate
Hu et al. Fabrication of a Au–polystyrene sphere substrate with three-dimensional nanofeatures for surface-enhanced Raman spectroscopy
Jin et al. Large-area nanogap plasmon resonator arrays for plasmonics applications
Cinel et al. E-Beam lithography designed substrates for surface enhanced Raman spectroscopy
Zuo et al. Multiple plasmon couplings in 3D hybrid Au-nanoparticles-decorated Ag nanocone arrays boosting highly sensitive surface enhanced Raman scattering
CN107966429B (en) Gold nanoring stacked array substrate with surface enhanced Raman scattering and preparation method thereof
Fulmes et al. Self-aligned placement and detection of quantum dots on the tips of individual conical plasmonic nanostructures
Bianco et al. Supported Faceted Gold Nanoparticles with Tunable Surface Plasmon Resonance for NIR‐SERS
Wang et al. Plasmonically enhanced photoluminescence of monolayer MoS2 via nanosphere lithography-templated gold metasurfaces
KR20160038209A (en) plasmonic absorber and fabricating method for the same
Zhu et al. Reusable three-dimensional nanostructured substrates for surface-enhanced Raman scattering
Yang et al. SERS substrates based on self-organized dimple nanostructures on polyethylene naphthalate films produced via oxygen ion beam sputtering
Chien et al. Effects of the rotation angle on surface plasmon coupling of nanoprisms
TWI621585B (en) Hybrid nanostructures and manufacturing method thereof
Zuo et al. Quadrupolar plasmon resonance in arrays composed of small-sized Ag nanoparticles prepared by a dewetting method
Nair et al. Tuning the chiro-plasmonic response using high refractive index-dielectric templates
Sun et al. Increasing local field by interfacial coupling in nanobowl arrays
JP7247493B2 (en) Substrate for surface-enhanced Raman analysis
Jiang et al. Internal Structure Tailoring in 3D Nanoplasmonic Metasurface for Surface‐Enhanced Raman Spectroscopy
JP2019128281A (en) Analysis substrate and manufacturing method thereof