TWI617067B - Magnesium-rich solid salt conductive ion material and manufacturing method thereof - Google Patents

Magnesium-rich solid salt conductive ion material and manufacturing method thereof Download PDF

Info

Publication number
TWI617067B
TWI617067B TW106114134A TW106114134A TWI617067B TW I617067 B TWI617067 B TW I617067B TW 106114134 A TW106114134 A TW 106114134A TW 106114134 A TW106114134 A TW 106114134A TW I617067 B TWI617067 B TW I617067B
Authority
TW
Taiwan
Prior art keywords
magnesium
rich
low
solid
manufacturing
Prior art date
Application number
TW106114134A
Other languages
Chinese (zh)
Other versions
TW201840051A (en
Inventor
洪飛義
呂傳盛
Original Assignee
康那香企業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 康那香企業股份有限公司 filed Critical 康那香企業股份有限公司
Priority to TW106114134A priority Critical patent/TWI617067B/en
Application granted granted Critical
Publication of TWI617067B publication Critical patent/TWI617067B/en
Publication of TW201840051A publication Critical patent/TW201840051A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本發明係有關於一種固態富鎂型鹽質導電離子材料與製造方法,所述方法包括準備一金屬鎂,係選自純鎂、氧化鎂或鎂合金,以及將金屬鎂混合於一酸類溶液中,並於溫度25℃-65℃作用1-12小時,以形成固態富鎂型鹽質導電離子材料;藉此,本發明之固態離子材料具有較佳的導電特性,此固態離子材料可取代電解液,經正極與負極貼覆後形成正極/固態離子材料(本發明)/負極,進而形成全固態二次電池,不僅可有效提升電池效能與壽命,亦可解決電解液外漏安全問題。 The present invention relates to a solid magnesium-rich salty conductive ionic material and a method for producing the same, the method comprising preparing a magnesium metal selected from the group consisting of pure magnesium, magnesium oxide or magnesium alloy, and mixing the magnesium metal in an acid solution And operating at a temperature of 25 ° C -65 ° C for 1-12 hours to form a solid magnesium-rich salty conductive ionic material; thereby, the solid ionic material of the present invention has better conductive properties, the solid ionic material can replace electrolysis The liquid is pasted on the positive electrode and the negative electrode to form a positive electrode/solid ion material (present invention)/negative electrode, thereby forming an all-solid secondary battery, which not only can effectively improve the battery efficiency and life, but also solve the safety problem of electrolyte leakage.

Description

固態富鎂型鹽質導電離子材料與製造方法 Solid magnesium-rich salty conductive ion material and manufacturing method thereof

本發明係有關於一種固態富鎂型鹽質導電離子材料與製造方法,尤其指一種利用酸類溶液形成具有固態富鎂型鹽質的導電離子材料之方法,藉此可提升導電離子材料的導電特性。 The invention relates to a solid magnesium-rich salty conductive ion material and a manufacturing method thereof, in particular to a method for forming a conductive ion material having a solid magnesium-rich salt state by using an acid solution, thereby improving the conductive property of the conductive ion material. .

目前可充電式二次電池之應用已越來越廣泛,尤其在於電動汽機車及可攜式電子產品之領域。常見二次電池的電極分為粉體電極及薄膜電極,為了使二次電池能夠具備快速充放電、壽命長、電容量高、安全性高等優點,與製造二次電池有關之技術及材料應用皆為該領域發展之重點。 At present, the application of rechargeable secondary batteries has become more and more extensive, especially in the fields of electric motorcycles and portable electronic products. The electrodes of common secondary batteries are divided into powder electrodes and thin film electrodes. In order to enable the secondary battery to have the advantages of rapid charge and discharge, long life, high capacitance, high safety, etc., the technologies and materials used in manufacturing secondary batteries are applied. The focus of development in this area.

習知的薄膜電極製備技術中,由於電極具有介金屬界面層與分佈均勻的活性薄膜材料層,而使充放電較穩定,電容量亦較粉體電極高,例如申請人先前提出之中華民國專利公告號TW I459617 B「鎂電極組成物」,其係利用鎂基粉末與熱蒸鍍製程,形成一鎂薄膜電極,電容量可達約1500mAh/g;雖然熱蒸鍍製程相較於粉體電極所使用的燒結程序,工序上簡易具有極高競爭力,但由於一般蒸鍍爐體容量不大而無法進行大量生產,因此需耗費較多時間製作薄膜電極。 In the conventional thin film electrode preparation technology, since the electrode has a metal interfacial layer and a uniformly distributed active film material layer, the charge and discharge are relatively stable, and the capacitance is higher than that of the powder electrode. For example, the applicant previously proposed the Republic of China patent. Bulletin No. TW I459617 B "Magnesium Electrode Composition" which utilizes a magnesium-based powder and a thermal evaporation process to form a magnesium film electrode having a capacitance of up to about 1500 mAh/g; although the thermal evaporation process is compared to a powder electrode The sintering procedure used is extremely simple in terms of process, but since the general vapor deposition furnace has a small capacity and cannot be mass-produced, it takes a lot of time to produce a thin film electrode.

為解決上述問題,申請人提供一種如中華民國專利申請號第 105102727號之「具有包晶與柱狀晶結構之二次電池電極製造方法」,其主要揭示一種製備具有熱致薄膜層之二次電池電極的方法,藉由燒結重熔(remelt)程序使粉體材料與低熔點包覆材料之混合材料形成一具有熱致薄膜層之正極或負極,以同時具備薄膜電極及粉體電極的優點,提升電容量及充放電效率,且由於其中之熱致薄膜層係具有包晶(peritectic)結構與柱狀晶組織(columnar),因此能提升電池的安全性。 In order to solve the above problems, the applicant provides a patent application number such as the Republic of China. 105102727 "Method for producing a secondary battery electrode having a peritectic and columnar crystal structure", which mainly discloses a method for preparing a secondary battery electrode having a thermally induced thin film layer, which is powdered by a sintering remelting process The mixed material of the bulk material and the low-melting-point cladding material forms a positive electrode or a negative electrode having a thermal film layer to simultaneously have the advantages of the film electrode and the powder electrode, thereby improving the capacitance and the charge and discharge efficiency, and the heat-induced film The layer system has a peritectic structure and a columnar structure, thereby improving the safety of the battery.

另,中華民國專利公告號TW I557976 B揭示一種「過渡金屬焦磷酸鹽陽極活性材料、彼之製備方法及包括該陽極活性材料之鋰二次電池或混合式電容器」,根據其具體實施例,陽極活性材料由於包括過渡金屬焦磷酸鹽而具有穩定性且極佳轉化反應性,亦可改良電容特性,另,在過渡金屬焦磷酸鹽上又可進一步包括具有極佳導電性之碳塗層;藉此不僅能達到有降低電極電阻之目的,且在電池之充、放電期間,可降低由於電解質溶液的溶液和電解質鹽之間的分解反應而形成固態電解質界面(solid electrolyte interface)效應。 In addition, the Republic of China Patent Publication No. TW I557976 B discloses a "transition metal pyrophosphate anode active material, a preparation method thereof, and a lithium secondary battery or a hybrid capacitor including the anode active material", according to a specific embodiment thereof, an anode The active material has stability and excellent conversion reactivity due to the transition metal pyrophosphate, and can also improve the capacitance characteristics. Further, the transition metal pyrophosphate can further include a carbon coating having excellent conductivity; This not only achieves the purpose of reducing the electrode resistance, but also reduces the solid electrolyte interface effect due to the decomposition reaction between the solution of the electrolyte solution and the electrolyte salt during charging and discharging of the battery.

由於目前市場對於二次電池的需求量極大,如何開發出各種不同的導電離子材料,以作為二次電池並提升其電容量與充放電效率,仍是相關領域發明人思及之方向。 Due to the huge demand for secondary batteries in the market, how to develop various conductive ion materials to serve as secondary batteries and improve their capacitance and charge and discharge efficiency is still the direction of the inventors in related fields.

今,發明人即是鑑於上述現有用於製備二次電池之導電離子材料於實際實施使用時仍具有多處缺失,於是乃一本孜孜不倦之精神,並藉由其豐富專業知識及多年之實務經驗所輔佐,而加以改善,並據此研創出本發明。 Nowadays, the inventor is in view of the fact that the above-mentioned conventional conductive ion materials for preparing secondary batteries still have multiple defects in practical use, so that it is a tireless spirit, and with its rich professional knowledge and years of practical experience. The invention was assisted and improved, and the present invention was developed based on this.

本發明主要目的為提供一種利用酸類溶液形成具有固態富鎂型鹽質的導電離子材料之製造方法,藉此可提升導電離子材料的 導電性。此固態離子材料可取代電解液,經正極與負極貼覆後形成正極/固態離子材料(本發明)/負極,進而形成全固態二次電池,不僅可有效提升電池效能與壽命,亦可解決電解液外漏安全問題。 The main object of the present invention is to provide a method for producing a conductive ion material having a solid magnesium-rich salt using an acid solution, thereby improving the conductive ion material. Electrical conductivity. The solid ionic material can replace the electrolyte, and after the positive electrode and the negative electrode are pasted, the positive electrode/solid ionic material (present invention)/negative electrode is formed, thereby forming an all-solid secondary battery, which can not only effectively improve the battery efficiency and life, but also solve the electrolysis. Liquid leakage safety issues.

為了達到上述實施目的,本發明一種固態富鎂型鹽質導電離子材料與製造方法,其包括(a)準備一金屬鎂,其中金屬鎂係選自純鎂、氧化鎂或鎂合金;以及(b)將金屬鎂混合於一酸類溶液中,利用溫度25℃-65℃處理1-12小時,以形成固態富鎂型鹽質導電離子材料。 In order to achieve the above-mentioned objects, a solid magnesium-rich salty conductive ion material and a method of manufacturing the same, comprising: (a) preparing a metal magnesium, wherein the magnesium metal is selected from the group consisting of pure magnesium, magnesium oxide or magnesium alloy; and (b) The magnesium metal is mixed in an acid solution and treated at a temperature of 25 ° C to 65 ° C for 1 to 12 hours to form a solid magnesium-rich salty conductive ion material.

於本發明之一實施例中,金屬鎂可為粉末、薄膜或塊材型態。 In one embodiment of the invention, the metallic magnesium may be in the form of a powder, film or block.

於本發明之一實施例中,鎂合金可例如選自鎂鈉(Mg-Na)、鎂鐵(Mg-Fe)、鎂錳(Mg-Mn)、鎂鎳(Mg-Ni)、鎂銅(Mg-Cu)、鎂鋁(Mg-Al)、鎂矽(Mg-Si)、鎂鈦(Mg-Ti)、鎂鋰(Mg-Li)、鎂錫(Mg-Sn)、鎂鋅(Mg-Zn)、鎂鋯(Mg-Zr)、鎂鈣(Mg-Ca)、鎂釔(Mg-Y)、鎂釓(Mg-Gd)、鎂碳(Mg-C)、鎂鈷(Mg-Co)或鎂稀土(Mg-RE)。 In an embodiment of the present invention, the magnesium alloy may be selected, for example, from magnesium sodium (Mg-Na), magnesium iron (Mg-Fe), magnesium manganese (Mg-Mn), magnesium nickel (Mg-Ni), magnesium copper ( Mg-Cu), Mg-Al, Mg-Si, Mg-Ti, Mg-Li, Mg-Sn, Mg-M Zn), Mg-Zr, Mg-Ca, Mg-Y, Mg-Gd, Mg-C, Mg-Co Or magnesium rare earth (Mg-RE).

於本發明之一實施例中,酸類溶液為低濃度之具磷酸根、具硫酸根、具硝酸根或具碳酸根溶液,係分別形成固態富鎂型鹽質導電離子材料為富磷酸鎂鹽材料(MgX)3(PO4)2、富硫酸鎂鹽材料(MgXSO4)、富硝酸鎂鹽材料(MgX(NO3)2)或富碳酸鎂鹽材料(MgXCO3);較佳而言,酸類溶液之濃度為1-20%,X為鈉(Na)、鐵(Fe)、錳(Mn)、鎳(Ni)、銅(Cu)、鋁(Al)、矽(Si)、鈦(Ti)、鋰(Li)、錫(Sn)、鋅(Zn)、鋯(Zr)、鈣(Ca)、釔(Y)、釓(Gd)、碳(C)、鈷(Co)或稀土(RE)。 In one embodiment of the present invention, the acid solution is a low concentration of phosphate, sulfated, nitrated or carbonated solution, respectively forming a solid magnesium-rich salty conductive ion material as a magnesium phosphate rich material. (MgX) 3 (PO 4 ) 2 , magnesium sulfate-rich material (MgXSO 4 ), magnesium nitrate-rich material (MgX(NO 3 ) 2 ) or magnesium carbonate-rich material (MgXCO 3 ); preferably, acid The concentration of the solution is 1-20%, and X is sodium (Na), iron (Fe), manganese (Mn), nickel (Ni), copper (Cu), aluminum (Al), bismuth (Si), titanium (Ti). , lithium (Li), tin (Sn), zinc (Zn), zirconium (Zr), calcium (Ca), yttrium (Y), yttrium (Gd), carbon (C), cobalt (Co) or rare earth (RE) .

於本發明之一實施例中,富磷酸鎂鹽材料(MgX)3(PO4)2係進一步利用鹼液水熱法於溫度90℃-180℃處理1-48小時,以獲得一低摻雜鎂基鹽,摻雜元素為Na、Fe、Mn或Ni係分別獲得低摻雜鎂基鹽為(MgXNa)2PO4、MgXFe(PO4)、MgXMn(PO4)3或 (MgXNi)3(PO4)2In one embodiment of the present invention, the magnesium phosphate-rich material (MgX) 3 (PO 4 ) 2 is further treated with a lye hydrothermal method at a temperature of from 90 ° C to 180 ° C for from 1 to 48 hours to obtain a low doping. The magnesium-based salt, the doping element is Na, Fe, Mn or Ni, respectively, and the low-doped magnesium-based salt is (MgXNa) 2 PO 4 , MgXFe(PO 4 ), MgXMn(PO 4 ) 3 or (MgXNi) 3 ( PO 4 ) 2 .

於本發明之一實施例中,富硫酸鎂鹽材料(MgXSO4)係進一步利用鹼液水熱法於溫度90℃-180℃處理1-48小時,以獲得一低摻雜鎂基鹽,摻雜元素為Na、Fe、Mn或Ni係分別獲得低摻雜鎂基鹽為(MgXNa)2SO4、(MgXFe)2(SO4)3、MgXMn(SO4)或MgXNi(SO4)。 In one embodiment of the present invention, the magnesium sulfate-rich salt material (MgXSO 4 ) is further treated with a lye hydrothermal method at a temperature of from 90 ° C to 180 ° C for from 1 to 48 hours to obtain a low-doped magnesium-based salt. The low-doped magnesium-based salt of the Na, Fe, Mn or Ni system is (MgXNa) 2 SO 4 , (MgXFe) 2 (SO 4 ) 3 , MgXMn (SO 4 ) or MgXNi (SO 4 ), respectively.

於本發明之一實施例中,富硝酸鎂鹽材料(MgX(NO3)2)係進一步利用鹼液水熱法於溫度90℃-180℃處理1-48小時,以獲得一低摻雜鎂基鹽,摻雜元素為Na、Fe、Mn或Ni係分別獲得低摻雜鎂基鹽為MgXNaNO3、MgXFe(NO3)3、MgXMn(NO3)2或MgXNi(NO3)。 In one embodiment of the present invention, the magnesium nitrate-rich material (MgX(NO 3 ) 2 ) is further treated with a lye hydrothermal method at a temperature of from 90 ° C to 180 ° C for from 1 to 48 hours to obtain a low-doped magnesium. The base salt, the doping element is Na, Fe, Mn or Ni, respectively, and the low-doped magnesium-based salt is MgXNaNO 3 , MgXFe(NO 3 ) 3 , MgXMn(NO 3 ) 2 or MgXNi(NO 3 ).

於本發明之一實施例中,富碳酸鎂鹽材料(MgXCO3)係進一步利用鹼液水熱法於溫度90℃-180℃處理1-48小時,以獲得一低摻雜鎂基鹽,摻雜元素為Na、Fe、Mn或Ni係分別獲得低摻雜鎂基鹽為(MgXNa)2CO3、MgXFe(CO3)、MgXMn(CO3)或MgXNi(CO3)。 In one embodiment of the present invention, the magnesium carbonate-rich material (MgXCO 3 ) is further treated with a lye hydrothermal method at a temperature of from 90 ° C to 180 ° C for from 1 to 48 hours to obtain a low-doped magnesium-based salt. The low-doped magnesium-based salt of the Na, Fe, Mn or Ni system is (MgXNa) 2 CO 3 , MgXFe (CO 3 ), MgXMn (CO 3 ) or MgXNi (CO 3 ), respectively.

另,本發明亦揭示一種固態富鎂型鹽質導電離子材料,係藉由上述製造方法製備而得。 In addition, the present invention also discloses a solid magnesium-rich salty conductive ion material obtained by the above production method.

藉此,由於利用磷酸根、硫酸根、硝酸根或碳酸根等酸類溶液與金屬鎂混合之後,可獲得富磷酸鎂鹽材料(MgX)3(PO4)2、富硫酸鎂鹽材料(MgXSO4)、富硝酸鎂鹽材料(MgX(NO3)2)或富碳酸鎂鹽材料(MgXCO3),將可大幅提升具有固態富鎂型鹽質的導電離子材料整體的導電性。 Thereby, since the acid solution such as phosphate, sulfate, nitrate or carbonate is mixed with the metallic magnesium, the magnesium phosphate-rich material (MgX) 3 (PO 4 ) 2 and the magnesium sulfate-rich salt material (MgXSO 4 ) can be obtained. ), a magnesium nitrate-rich material (MgX(NO 3 ) 2 ) or a magnesium carbonate-rich material (MgXCO 3 ), which can greatly enhance the electrical conductivity of the conductive ion material having a solid magnesium-rich salt.

第一圖:本發明其一具體實施例將固態富鎂型鹽質導電離子材料塗覆於銅箔上之示意圖。 First Figure: A schematic view of a solid magnesium-rich salty conductive ionic material applied to a copper foil in accordance with one embodiment of the present invention.

第二圖:本發明其二具體實施例將固態富鎂型鹽質導電離子 材料塗覆於銅箔上之示意圖。 Second: The second embodiment of the present invention will be a solid magnesium-rich salty conductive ion A schematic representation of the material being applied to a copper foil.

第三圖:本發明其三具體實施例將固態富鎂型鹽質導電離子材料塗覆於銅箔上之示意圖。 Third: A schematic diagram of a solid magnesium-rich salty conductive ion material coated on a copper foil according to three specific embodiments of the present invention.

本發明之目的及其結構功能上的優點,將依據以下圖面所示之結構,配合具體實施例予以說明,俾使審查委員能對本發明有更深入且具體之瞭解。 The object of the present invention and its structural and functional advantages will be explained in conjunction with the specific embodiments according to the structure shown in the following drawings, so that the reviewing committee can have a more in-depth and specific understanding of the present invention.

本發明一種固態富鎂型鹽質導電離子材料與製造方法,其步驟包括:(a)準備一金屬鎂,可例如為粉末、薄膜或塊材型態之金屬鎂,其中金屬鎂係選自純鎂、氧化鎂或鎂合金,較佳而言,鎂合金可例如選自鎂鈉(Mg-Na)、鎂鐵(Mg-Fe)、鎂錳(Mg-Mn)、鎂鎳(Mg-Ni)、鎂銅(Mg-Cu)、鎂鋁(Mg-Al)、鎂矽(Mg-Si)、鎂鈦(Mg-Ti)、鎂鋰(Mg-Li)、鎂錫(Mg-Sn)、鎂鋅(Mg-Zn)、鎂鋯(Mg-Zr)、鎂鈣(Mg-Ca)、鎂釔(Mg-Y)、鎂釓(Mg-Gd)、鎂碳(Mg-C)、鎂鈷(Mg-Co)或鎂稀土(Mg-RE);以及(b)將金屬鎂混合於一酸類溶液中,利用溫度25℃-65℃處理1-12小時,以形成固態富鎂型鹽質導電離子材料;較佳而言,酸類溶液可例如為低濃度(1-20%)之具磷酸根、具硫酸根、具硝酸根或具碳酸根溶液,以分別形成固態富鎂型鹽質導電離子材料為富磷酸鎂鹽材料(MgX)3(PO4)2、富硫酸鎂鹽材料(MgXSO4)、富硝酸鎂鹽材料(MgX(NO3)2)或富碳酸鎂鹽材料(MgXCO3),其中X為Na、Fe、Mn、Ni、Cu、Al、Si、Ti、Li、Sn、Zn、Zr、Ca、Y、Gd、C、Co或RE;另,上述富磷酸鎂鹽材料(MgX)3(PO4)2、富硫酸鎂鹽材料(MgXSO4)、富硝酸鎂鹽材料(MgX(NO3)2)與富碳酸鎂鹽材料(MgXCO3)又可進一步利用鹼液水熱法於溫度90℃-180℃處理1-48 小時,以獲得一低摻雜鎂基鹽,舉例而言,若摻雜元素為Na,水熱處理後可分別獲得低摻雜鎂基鹽為(MgXNa)2PO4、(MgXNa)2SO4、MgXNaNO3與(MgXNa)2CO3;若摻雜元素為Fe,水熱處理後可分別獲得低摻雜鎂基鹽為MgXFe(PO4)、(MgXFe)2(SO4)3、MgXFe(NO3)3與MgXFe(CO3);若摻雜元素為Mn,水熱處理後可分別獲得低摻雜鎂基鹽為MgXMn(PO4)3、MgXMn(SO4)、MgXMn(NO3)2與MgXMn(CO3);若摻雜元素為Ni,水熱處理後可分別獲得低摻雜鎂基鹽為(MgXNi)3(PO4)2、或MgXNi(SO4)、MgXNi(NO3)與MgXNi(CO3)。 The invention relates to a solid magnesium-rich salty conductive ion material and a manufacturing method thereof, the steps comprising: (a) preparing a metal magnesium, which can be, for example, a magnesium powder of a powder, a film or a bulk type, wherein the magnesium metal is selected from pure Magnesium, magnesia or magnesium alloy, preferably, the magnesium alloy may, for example, be selected from the group consisting of magnesium sodium (Mg-Na), magnesium iron (Mg-Fe), magnesium manganese (Mg-Mn), magnesium nickel (Mg-Ni). , magnesium copper (Mg-Cu), magnesium aluminum (Mg-Al), magnesium strontium (Mg-Si), magnesium titanium (Mg-Ti), magnesium lithium (Mg-Li), magnesium tin (Mg-Sn), magnesium Zinc (Mg-Zn), magnesium zirconium (Mg-Zr), magnesium calcium (Mg-Ca), magnesium strontium (Mg-Y), magnesium strontium (Mg-Gd), magnesium carbon (Mg-C), magnesium cobalt ( Mg-Co) or magnesium rare earth (Mg-RE); and (b) mixing magnesium metal in an acid solution, and treating at a temperature of 25 ° C - 65 ° C for 1-12 hours to form a solid magnesium-rich salty conductive ion Preferably, the acid solution may be, for example, a low concentration (1-20%) having a phosphate, a sulfate, a nitrate or a carbonate solution to form a solid magnesium-rich salty conductive ion material, respectively. It is rich in magnesium phosphate material (MgX) 3 (PO4) 2 , magnesium sulfate-rich material (MgXSO 4 ), magnesium nitrate-rich material (MgX(NO 3 ) 2 ) or carbon-rich a magnesium salt material (MgXCO 3 ), wherein X is Na, Fe, Mn, Ni, Cu, Al, Si, Ti, Li, Sn, Zn, Zr, Ca, Y, Gd, C, Co or RE; The above magnesium phosphate-rich material (MgX) 3 (PO4) 2 , magnesium sulfate-rich material (MgXSO 4 ), magnesium nitrate-rich material (MgX(NO 3 ) 2 ) and magnesium carbonate-rich material (MgXCO 3 ) Further, the alkali hydrothermal method is used to treat the temperature at 90 ° C - 180 ° C for 1-48 hours to obtain a low-doped magnesium-based salt. For example, if the doping element is Na, low doping can be obtained after hydrothermal treatment, respectively. The magnesium base salt is (MgXNa) 2 PO 4 , (MgXNa) 2 SO 4 , MgXNaNO 3 and (MgXNa) 2 CO 3 ; if the doping element is Fe, the low-doped magnesium-based salt can be obtained as MgXFe after hydrothermal treatment, respectively. PO 4 ), (MgXFe) 2 (SO 4 ) 3 , MgXFe(NO 3 ) 3 and MgXFe(CO 3 ); if the doping element is Mn, a low-doped magnesium-based salt can be obtained as MgXMn (PO) after hydrothermal treatment, respectively. 4 ) 3 , MgXMn(SO 4 ), MgXMn(NO 3 ) 2 and MgXMn(CO 3 ); if the doping element is Ni, the low-doped magnesium-based salt can be obtained as (MgXNi) 3 (PO 4 ) after hydrothermal treatment, respectively. 2 or MgXNi(SO 4 ), MgXNi(NO 3 ) and MgXNi(CO 3 ).

本發明亦提供一種固態富鎂型鹽質導電離子材料,係藉由上述製造方法製備而得,其整體而言具有較高的導電特性。 The present invention also provides a solid magnesium-rich salty conductive ion material obtained by the above-mentioned manufacturing method, which has high electrical conductivity as a whole.

此外,藉由下述具體實施例,可進一步證明本發明可實際應用之範圍,但不意欲以任何形式限制本發明之範圍。 In addition, the scope of the invention may be further exemplified by the following specific examples, which are not intended to limit the scope of the invention.

實施例一 Embodiment 1

將鎂合金Mg-X分別混合於具磷酸根溶液中,於溫度25℃-65℃作用1-12小時,以形成富磷酸鎂鹽材料(MgX)3(PO4)2;接著,再利用鹼液水熱法製程於溫度90℃-180℃處理1-48小時,水熱後依摻雜元素不同(如摻雜Na、Fe、Mn或Ni)分別獲得低摻雜鎂基鹽為(MgXNa)2PO4、MgXFe(PO4)、MgXMn(PO4)3與(MgXNi)3(PO4)2,X為Na、Fe、Mn、Ni、Cu、Al、Si、Ti、Li、Sn、Zn、Zr、Ca、Y、Gd、C、Co或RE;上述四種低摻雜鎂基鹽之結晶度、導電係數、與電子遷移率測試結果如表一,其中符號代表●:優◎:普通○:差,其標準分別如下,結晶度:優>95,普通95-80,差<80;導電係數:優>104,普通104-103,差<103;電子遷移率:優0.5,普通0.5-0.1,差<0.1。 The magnesium alloy Mg-X is separately mixed in a phosphate solution and operated at a temperature of 25 ° C to 65 ° C for 1 to 12 hours to form a magnesium phosphate-rich material (MgX) 3 (PO 4 ) 2 ; The liquid-water thermal process is treated at a temperature of 90 ° C to 180 ° C for 1 to 48 hours. After hydrothermal treatment, the doping element is different (such as doping Na, Fe, Mn or Ni) to obtain a low-doped magnesium-based salt (MgXNa). 2 PO 4 , MgXFe(PO 4 ), MgXMn(PO 4 ) 3 and (MgXNi) 3 (PO 4 ) 2 , X is Na, Fe, Mn, Ni, Cu, Al, Si, Ti, Li, Sn, Zn , Zr, Ca, Y, Gd, C, Co or RE; the crystallinity, conductivity, and electron mobility test results of the above four low-doped magnesium-based salts are shown in Table 1, wherein the symbols represent ●: excellent ◎: ordinary ○: Poor, the standards are as follows, crystallinity: excellent > 95, ordinary 95-80, difference <80; conductivity: excellent > 104, ordinary 104-103, difference <103; electron mobility: excellent 0.5, ordinary 0.5 -0.1, difference <0.1.

實施例二 Embodiment 2

將鎂合金Mg-X分別混合於具硫酸根溶液中,於溫度25℃-65℃作用1-12小時,以形成富硫酸鎂鹽材料MgXSO4;接著,再利用鹼液水熱法製程於溫度90℃-180℃處理1-48小時,水熱後依摻雜元素不同(如摻雜Na、Fe、Mn或Ni)分別獲得低摻雜鎂基鹽為(MgXNa)2SO4、(MgXFe)2(SO4)3、MgXMn(SO4)與MgXNi(SO4),X為Na、Fe、Mn、Ni、Cu、Al、Si、Ti、Li、Sn、Zn、Zr、Ca、Y、Gd、C、Co或RE;上述四種低摻雜鎂基鹽之結晶度、導電係數、與電子遷移率測試結果如表二,其中符號代表●:優◎:普通○:差,其標準分別如下,結晶度:優>95,普通95-80,差<80;導電係數:優>104,普通104-103,差<103;電子遷移率:優0.5,普通0.5-0.1,差<0.1。 The magnesium alloy Mg-X is separately mixed in a sulfuric acid solution and operated at a temperature of 25 ° C to 65 ° C for 1 to 12 hours to form a magnesium sulfate-rich salt material MgXSO 4 ; then, using a lye hydrothermal process at a temperature Treatment at 90 ° C -180 ° C for 1-48 hours, after hydrothermal, depending on the doping element (such as doping Na, Fe, Mn or Ni) to obtain low-doped magnesium-based salts (MgXNa) 2 SO 4 , (MgXFe) 2 (SO 4 ) 3 , MgXMn(SO 4 ) and MgXNi(SO 4 ), X is Na, Fe, Mn, Ni, Cu, Al, Si, Ti, Li, Sn, Zn, Zr, Ca, Y, Gd , C, Co or RE; the crystallinity, conductivity, and electron mobility test results of the above four low-doped magnesium-based salts are shown in Table 2, wherein the symbols represent ●: excellent ◎: ordinary ○: poor, the standards are as follows , crystallinity: excellent > 95, ordinary 95-80, difference <80; conductivity: excellent > 10 4 , ordinary 10 4 -10 3 , difference <10 3 ; electron mobility: excellent 0.5, ordinary 0.5-0.1, poor <0.1.

實施例三Embodiment 3

將鎂合金Mg-X分別混合於具硝酸根溶液中,於溫度25℃-65℃作用1-12小時,以形成富硝酸鎂鹽材料MgX(NO3)2;接著,再利用鹼液水熱法製程於溫度90℃-180℃處理1-48小時,水熱後依摻雜元素不同(如摻雜Na、Fe、Mn或Ni)分別獲得低摻雜鎂基鹽為MgXNaNO3、MgXFe(NO3)3、MgXMn(NO3)2與MgXNi(NO3),X為Na、Fe、Mn、Ni、Cu、Al、Si、Ti、Li、Sn、Zn、Zr、Ca、Y、Gd、C、Co或RE;上述四種低摻雜鎂基鹽之結晶度、導電係數、與電子遷移率測試結果如表三,其中符號代表●:優◎:普通○:差,其標準分別如下,結晶度:優>95,普通95-80,差<80;導電係數:優>104,普通104-103,差<103;電子遷移率:優0.5,普通0.5-0.1,差<0.1。 The magnesium alloy Mg-X is separately mixed in a nitrate solution and operated at a temperature of 25 ° C to 65 ° C for 1 to 12 hours to form a magnesium nitrate-rich material MgX(NO 3 ) 2 ; The process is processed at a temperature of 90 ° C - 180 ° C for 1-48 hours. After hydrothermal, different doping elements (such as doping Na, Fe, Mn or Ni) respectively obtain low-doped magnesium-based salts as MgXNaNO 3 and MgXFe (NO). 3 ) 3 , MgXMn(NO 3 ) 2 and MgXNi(NO 3 ), X is Na, Fe, Mn, Ni, Cu, Al, Si, Ti, Li, Sn, Zn, Zr, Ca, Y, Gd, C , Co or RE; the crystallinity, conductivity, and electron mobility test results of the above four low-doped magnesium-based salts are shown in Table 3, wherein the symbols represent ●: excellent ◎: ordinary ○: poor, the standards are as follows, crystallization Degree: excellent > 95, ordinary 95-80, difference <80; conductivity: excellent > 10 4 , ordinary 10 4 -10 3 , difference <10 3 ; electron mobility: excellent 0.5, ordinary 0.5-0.1, poor <0.1 .

實施例四Embodiment 4

將鎂合金Mg-X分別混合於具碳酸根溶液中,於溫度25℃-65℃作用1-12小時,以形成富碳酸鎂鹽材料MgXCO3;接著,再利用鹼液水熱法製程於溫度90℃-180℃處理1-48小時,水熱後依摻雜元素不同(如摻雜Na、Fe、Mn或Ni)分別獲得低摻雜鎂基鹽為(MgXNa)2CO3、MgXFe(CO3)、MgXMn(CO3)與MgXNi(CO3),X為Na、Fe、Mn、Ni、Cu、Al、Si、Ti、Li、Sn、Zn、Zr、Ca、Y、Gd、C、Co或RE;上述四種低摻雜鎂基鹽之結晶度、導電係數、與電子遷移率測試結果如表四,其中符號代表●:優◎:普通○:差,其標準分別如下,結晶度:優>95,普通95-80,差<80;導電係數:優>104,普通104-103,差<103;電子遷移率:優0.5,普通0.5-0.1,差<0.1。 The magnesium alloy Mg-X is separately mixed in a carbonate solution and operated at a temperature of 25 ° C to 65 ° C for 1 to 12 hours to form a magnesium carbonate-rich material MgXCO 3 ; followed by a lye hydrothermal process at a temperature Treated at 90 °C-180 °C for 1-48 hours. After hydrothermal, different doping elements (such as doping Na, Fe, Mn or Ni) respectively obtain low-doped magnesium-based salts (MgXNa) 2 CO 3 and MgXFe (CO). 3 ), MgXMn(CO 3 ) and MgXNi(CO 3 ), X is Na, Fe, Mn, Ni, Cu, Al, Si, Ti, Li, Sn, Zn, Zr, Ca, Y, Gd, C, Co Or RE; the crystallinity, conductivity, and electron mobility test results of the above four low-doped magnesium-based salts are shown in Table 4, wherein the symbols represent ●: excellent ◎: ordinary ○: poor, the standards are as follows, crystallinity: Excellent >95, ordinary 95-80, difference <80; conductivity: excellent >10 4 , ordinary 10 4 -10 3 , difference <10 3 ; electron mobility: excellent 0.5, ordinary 0.5-0.1, poor <0.1.

實施例五Embodiment 5

<固態富磷酸鎂型鹽質導電離子材料塗覆> <Solid-rich magnesium phosphate-type salty conductive ion material coating>

進一步將富磷酸鎂鹽材料以不同製程塗覆於銅箔上,請參閱第一圖至第三圖,第一圖為利用粉末製程將固態富磷酸鎂型鹽質導電離子材料直接塗在銅箔上;第二圖為利用蒸鍍製程將固態富磷酸鎂型鹽質導電離子材料塗在銅箔上,由於先藉由蒸鍍鎂在銅箔上,之後再磷酸化,因此塗覆效果佳且具美觀;第三圖為利用膠體製程將固態富磷酸鎂型鹽質導電離子材料塗在銅箔上,其係先用膠體拌攪磷酸鎂粉末,之後再以旋轉塗覆法塗於銅箔上,因此其厚度較第一圖的厚度薄。 Further, the magnesium phosphate-rich material is coated on the copper foil in different processes. Please refer to the first to third figures. The first figure shows that the solid magnesium phosphate-rich salty conductive ion material is directly coated on the copper foil by a powder process. The second figure shows that the solid magnesium-rich magnesium salt-type conductive ion material is coated on the copper foil by an evaporation process, and the coating effect is good because the magnesium is first evaporated on the copper foil and then phosphorylated. The third figure shows that the solid magnesium phosphate-rich salty conductive ionic material is coated on the copper foil by a gel process, which is firstly mixed with the magnesium phosphate powder by colloid, and then coated on the copper foil by spin coating. Therefore, its thickness is thinner than the thickness of the first figure.

由上述之實施說明可知,本發明與現有技術相較之下,本發明具有以下優點: It can be seen from the above description that the present invention has the following advantages compared with the prior art:

1.本發明製造而得之固態富鎂型鹽質導電離子材料,具有結晶度佳與導電係數提升之優點。 1. The solid magnesium-rich salty conductive ionic material produced by the invention has the advantages of good crystallinity and improved conductivity.

2.本發明製成之固態富鎂型鹽質導電離子材料,由於具有較佳的導電特性,可做為二次電池的固態電解質。 2. The solid magnesium-rich salty conductive ion material produced by the invention can be used as a solid electrolyte of a secondary battery because of its better electrical conductivity.

綜上所述,本發明之固態富鎂型鹽質導電離子材料與製造方法,的確能藉由上述所揭露之實施例,達到所預期之使用功效,且本發明亦未曾公開於申請前,誠已完全符合專利法之規定與要求。 爰依法提出發明專利之申請,懇請惠予審查,並賜准專利,則實感德便。 In summary, the solid magnesium-rich salty conductive ion material and the manufacturing method of the present invention can achieve the intended use efficiency by the above-disclosed embodiments, and the present invention has not been disclosed before the application. It has fully complied with the requirements and requirements of the Patent Law. 爰Issuing an application for a patent for invention in accordance with the law, and asking for a review, and granting a patent, is truly sensible.

惟,上述所揭之圖示及說明,僅為本發明之較佳實施例,非為限定本發明之保護範圍;大凡熟悉該項技藝之人士,其所依本發明之特徵範疇,所作之其它等效變化或修飾,皆應視為不脫離本發明之設計範疇。 The illustrations and descriptions of the present invention are merely preferred embodiments of the present invention, and are not intended to limit the scope of the present invention; those skilled in the art, which are characterized by the scope of the present invention, Equivalent variations or modifications are considered to be within the scope of the design of the invention.

Claims (8)

一種固態富鎂型鹽質導電離子材料的製造方法,其步驟包括:(a)準備一金屬鎂,其中該金屬鎂係選自純鎂、氧化鎂或鎂合金,該鎂合金係選自鎂鈉(Mg-Na)、鎂鐵(Mg-Fe)、鎂錳(Mg-Mn)、鎂鎳(Mg-Ni)、鎂銅(Mg-Cu)、鎂鋁(Mg-Al)、鎂矽(Mg-Si)、鎂鈦(Mg-Ti)、鎂鋰(Mg-Li)、鎂錫(Mg-Sn)、鎂鋅(Mg-Zn)、鎂鋯(Mg-Zr)、鎂鈣(Mg-Ca)、鎂釔(Mg-Y)、鎂釓(Mg-Gd)、鎂碳(Mg-C)、鎂鈷(Mg-Co)或鎂稀土(Mg-RE);以及(b)將該金屬鎂混合於一酸類溶液中,利用溫度25℃-65℃處理1-12小時,以形成固態富鎂型鹽質導電離子材料。A method for producing a solid magnesium-rich salty conductive ion material, comprising the steps of: (a) preparing a metal magnesium, wherein the metal magnesium is selected from the group consisting of pure magnesium, magnesium oxide or magnesium alloy, the magnesium alloy being selected from the group consisting of magnesium sodium. (Mg-Na), magnesium iron (Mg-Fe), magnesium manganese (Mg-Mn), magnesium nickel (Mg-Ni), magnesium copper (Mg-Cu), magnesium aluminum (Mg-Al), magnesium strontium (Mg -Si), magnesium-titanium (Mg-Ti), magnesium lithium (Mg-Li), magnesium tin (Mg-Sn), magnesium zinc (Mg-Zn), magnesium zirconium (Mg-Zr), magnesium calcium (Mg-Ca) ), magnesium strontium (Mg-Y), magnesium strontium (Mg-Gd), magnesium carbon (Mg-C), magnesium cobalt (Mg-Co) or magnesium rare earth (Mg-RE); and (b) the magnesium metal The mixture is mixed in an acid solution and treated at a temperature of 25 ° C to 65 ° C for 1 to 12 hours to form a solid magnesium-rich salty conductive ion material. 如申請專利範圍第1項所述製造方法,其中該金屬鎂為粉末、薄膜或塊材型態。The manufacturing method of claim 1, wherein the metallic magnesium is in the form of a powder, a film or a block. 如申請專利範圍第1項所述製造方法,其中該酸類溶液為低濃度之具磷酸根、具硫酸根、具硝酸根或具碳酸根溶液,係分別形成該固態富鎂型鹽質導電離子材料為富磷酸鎂鹽材料(MgX)3(PO4)2、富硫酸鎂鹽材料(MgXSO4)、富硝酸鎂鹽材料(MgX(NO3)2)或富碳酸鎂鹽材料(MgXCO3),其中X為Na、Fe、Mn、Ni、Cu、Al、Si、Ti、Li、Sn、Zn、Zr、Ca、Y、Gd、C、Co或RE。The manufacturing method according to claim 1, wherein the acid solution is a low concentration of phosphate, sulfate, nitrate or carbonate solution, respectively forming the solid magnesium-rich salty conductive ion material. It is a magnesium phosphate rich material (MgX) 3 (PO 4 ) 2 , a magnesium sulfate rich material (MgXSO 4 ), a magnesium nitrate rich material (MgX(NO 3 ) 2 ) or a magnesium carbonate rich material (MgXCO 3 ), Wherein X is Na, Fe, Mn, Ni, Cu, Al, Si, Ti, Li, Sn, Zn, Zr, Ca, Y, Gd, C, Co or RE. 如申請專利範圍第3項所述製造方法,其中該酸類溶液之濃度為1-20%。The manufacturing method according to claim 3, wherein the acid solution has a concentration of 1 to 20%. 如申請專利範圍第3項所述製造方法,其中該富磷酸鎂鹽材料(MgX)3(PO4)2係進一步利用鹼液水熱法於溫度90℃-180℃處理1-48小時,以獲得一低摻雜鎂基鹽,摻雜元素為Na、Fe、Mn或Ni係分別獲得該低摻雜鎂基鹽為(MgXNa)2PO4、MgXFe(PO4)、MgXMn(PO4)3或(MgXNi)3(PO4)2The manufacturing method according to claim 3, wherein the magnesium phosphate-rich material (MgX) 3 (PO 4 ) 2 is further treated with a lye hydrothermal method at a temperature of from 90 ° C to 180 ° C for from 1 to 48 hours. Obtaining a low-doped magnesium-based salt, the doping element is Na, Fe, Mn or Ni, respectively, and obtaining the low-doped magnesium-based salt is (MgXNa) 2 PO 4 , MgXFe(PO 4 ), MgXMn(PO 4 ) 3 Or (MgXNi) 3 (PO 4 ) 2 . 如申請專利範圍第3項所述製造方法,其中該富硫酸鎂鹽材料(MgXSO4)係進一步利用鹼液水熱法於溫度90℃-180℃處理1-48小時,以獲得一低摻雜鎂基鹽,摻雜元素為Na、Fe、Mn或Ni係分別獲得該低摻雜鎂基鹽為(MgXNa)2SO4、(MgXFe)2(SO4)3、MgXMn(SO4)或MgXNi(SO4)。The manufacturing method according to claim 3, wherein the magnesium sulfate-rich salt material (MgXSO 4 ) is further treated with a lye hydrothermal method at a temperature of from 90 ° C to 180 ° C for from 1 to 48 hours to obtain a low doping. The magnesium-based salt, the doping element is Na, Fe, Mn or Ni, respectively, and the low-doped magnesium-based salt is (MgXNa) 2 SO 4 , (MgXFe) 2 (SO 4 ) 3 , MgXMn (SO 4 ) or MgXNi. (SO 4 ). 如申請專利範圍第3項所述製造方法,其中該富硝酸鎂鹽材料(MgX(NO3)2)係進一步利用鹼液水熱法於溫度90℃-180℃處理1-48小時,以獲得一低摻雜鎂基鹽,摻雜元素為Na、Fe、Mn或Ni係分別獲得該低摻雜鎂基鹽為MgXNaNO3、MgXFe(NO3)3、MgXMn(NO3)2或MgXNi(NO3)。The manufacturing method according to claim 3, wherein the magnesium nitrate-rich material (MgX(NO 3 ) 2 ) is further treated with a lye hydrothermal method at a temperature of from 90 ° C to 180 ° C for from 1 to 48 hours to obtain a low-doped magnesium-based salt having a doping element of Na, Fe, Mn or Ni, respectively, is obtained as MgXNaNO 3 , MgXFe(NO 3 ) 3 , MgXMn(NO 3 ) 2 or MgXNi (NO) 3 ). 如申請專利範圍第3項所述製造方法,其中該富碳酸鎂鹽材料(MgXCO3)係進一步利用鹼液水熱法於溫度90℃-180℃處理1-48小時,以獲得一低摻雜鎂基鹽,摻雜元素為Na、Fe、Mn或Ni係分別獲得該低摻雜鎂基鹽為(MgXNa)2CO3、MgXFe(CO3)、MgXMn(CO3)或MgXNi(CO3)。The manufacturing method according to claim 3, wherein the magnesium carbonate-rich material (MgXCO 3 ) is further treated with a lye hydrothermal method at a temperature of from 90 ° C to 180 ° C for from 1 to 48 hours to obtain a low doping. The magnesium-based salt, the doping element is Na, Fe, Mn or Ni, respectively, and the low-doped magnesium-based salt is (MgXNa) 2 CO 3 , MgXFe(CO 3 ), MgXMn(CO 3 ) or MgXNi(CO 3 ) .
TW106114134A 2017-04-27 2017-04-27 Magnesium-rich solid salt conductive ion material and manufacturing method thereof TWI617067B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106114134A TWI617067B (en) 2017-04-27 2017-04-27 Magnesium-rich solid salt conductive ion material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106114134A TWI617067B (en) 2017-04-27 2017-04-27 Magnesium-rich solid salt conductive ion material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI617067B true TWI617067B (en) 2018-03-01
TW201840051A TW201840051A (en) 2018-11-01

Family

ID=62188998

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106114134A TWI617067B (en) 2017-04-27 2017-04-27 Magnesium-rich solid salt conductive ion material and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI617067B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3723168A1 (en) 2019-04-12 2020-10-14 Kang Na Hsiung Enterprise Co., Ltd. Secondary battery structure having windable flexible polymer matrix solid electrolyte and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201707270A (en) * 2015-04-03 2017-02-16 雁 葉 Solid state battery cells and methods for making and using same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201707270A (en) * 2015-04-03 2017-02-16 雁 葉 Solid state battery cells and methods for making and using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3723168A1 (en) 2019-04-12 2020-10-14 Kang Na Hsiung Enterprise Co., Ltd. Secondary battery structure having windable flexible polymer matrix solid electrolyte and manufacturing method thereof
US11876175B2 (en) 2019-04-12 2024-01-16 Kang Na Hsiung Enterprise Co., Ltd. Secondary battery structure having windable flexible polymer matrix solid electrolyte and manufacturing method thereof

Also Published As

Publication number Publication date
TW201840051A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
WO2017000741A1 (en) Lithium manganese phosphate-coated lithium nickel cobalt manganese oxide cathode material and preparation method thereof
US20160351950A1 (en) All-solid-state lithium-ion secondary battery including a solid electrolyte and an intermediate layer
WO2010107084A1 (en) All-solid-state lithium battery
JP6362371B2 (en) Oxide-based solid electrolyte and its use
TW200818569A (en) Lithium-containing transition metal oxide target, process for producing the same and lithium ion thin-film secondary battery
CN110534796A (en) A kind of solid lithium battery and preparation method thereof
CN111799457A (en) Pre-lithiation-treated lithium ion positive electrode material and preparation method and application thereof
CN107665974A (en) A kind of lithium-sulfur cell negative pole and its preparation and application
CN103413927B (en) Lithium titanate/iron sesquioxide composite lithium ion battery cathode material and preparation method thereof
CN104681808A (en) Method for preparing strontium salt doped lithium nickel manganese oxide cathode material of lithium ion battery
CN115425200A (en) Sodium ion positive electrode material and preparation method thereof
WO2023016269A1 (en) Quaternary positive electrode material and preparation method therefor and application thereof
TWI617067B (en) Magnesium-rich solid salt conductive ion material and manufacturing method thereof
Xie et al. Stabilization of LiV3O8 Rod‐like Structure by Protective Mg3 (PO4) 2Layer for Advanced Lithium Storage Cathodes
Cruz et al. Spray pyrolysis as a method for preparing PbO coatings amenable to use in lead-acid batteries
WO2024066809A1 (en) Positive electrode material, preparation method therefor, positive electrode sheet, secondary battery, and electronic device
JP2019096612A (en) Cathode active material for lithium secondary battery
CN111785959A (en) Spinel type lithium ion battery positive electrode active material and preparation method thereof
CN116722136A (en) Sodium ion battery positive electrode material and preparation method thereof
CN110828756A (en) Lithium ion solid electrolyte diaphragm and preparation and use methods thereof
CN114188521B (en) Light coating layer on surface of graphite anode material of double-ion battery and preparation method
CN109659526A (en) A kind of method and its product and application preparing cladded type nickle cobalt lithium manganate with sol-gel method
CN113113588B (en) Method for preparing lithium fast ion conductor material coated high-nickel ternary layered oxide by using covalent interface engineering strategy
CN114614012A (en) Ternary composite material for all-solid-state battery, and preparation method and application thereof
CN110085917B (en) All-solid-state lithium ion battery, preparation method thereof and power utilization equipment