TWI616020B - Particle synthesis apparatus and methods - Google Patents

Particle synthesis apparatus and methods Download PDF

Info

Publication number
TWI616020B
TWI616020B TW101129214A TW101129214A TWI616020B TW I616020 B TWI616020 B TW I616020B TW 101129214 A TW101129214 A TW 101129214A TW 101129214 A TW101129214 A TW 101129214A TW I616020 B TWI616020 B TW I616020B
Authority
TW
Taiwan
Prior art keywords
linear
coupled
droplet generator
particles
battery active
Prior art date
Application number
TW101129214A
Other languages
Chinese (zh)
Other versions
TW201318256A (en
Inventor
楊彔
胡喬瑟夫湯瑪士
王苗君
曾冬利
貝奇拉奇羅柏特Z
柏藍迪佛曼
羅巴廷舍傑D
Original Assignee
應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/572,047 external-priority patent/US9070944B2/en
Application filed by 應用材料股份有限公司 filed Critical 應用材料股份有限公司
Publication of TW201318256A publication Critical patent/TW201318256A/en
Application granted granted Critical
Publication of TWI616020B publication Critical patent/TWI616020B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本發明描述形成電池活性材料之裝置及方法。裝置包括:第一處理區段,該第一處理區段將前驅物材料之溫度增加至反應臨限溫度;第二處理區段,該第二處理區段將該前驅物材料轉化成電池活性材料;以及第三處理區段,該第三處理區段冷卻所得電池活性材料。該等處理區段中之每一處理區段可為連續流動管狀組件。第一處理區段及第三處理區段可為金屬的,且第二處理區段可為用於高溫工作之耐火材料。使用固體收集器來收集電池活性材料。 The present invention describes apparatus and methods for forming battery active materials. The apparatus includes a first processing section that increases a temperature of a precursor material to a reaction threshold temperature, and a second processing section that converts the precursor material into a battery active material And a third processing section that cools the resulting battery active material. Each of the processing sections can be a continuous flow tubular component. The first treatment section and the third treatment section may be metallic, and the second treatment section may be a refractory material for high temperature operation. A solid collector is used to collect the battery active material.

Description

微粒合成之裝置及方法 Device and method for particle synthesis

本發明之實施例大體而言係關於高能量電池,且更特定言之關於用於製造此等電池之方法及裝置。 Embodiments of the present invention generally relate to high energy batteries, and more particularly to methods and apparatus for making such batteries.

快速充電、高容量能量儲存設備(諸如,超級電容器及鋰(Li)離子電池)用於愈來愈多的應用中,該等愈來愈多的應用包括可攜式電子設備、醫療設備、運輸、併網型大型能量儲存器、再生能量儲存器及不斷電電源供應器(uninterruptible power supplies;UPS)。在現代可充電能量儲存設備中,集電器由電導體製成。用於正電流集電器(陰極)的材料之實例包括鋁、不銹鋼及鎳。用於負電流集電器(陽極)的材料之實例包括銅(Cu)及鎳(Ni)。此等集電器可呈箔、膜或薄板之形式,該箔、膜或薄板的厚度範圍大體為自約6 μm至約50 μm。 Fast-charging, high-capacity energy storage devices such as supercapacitors and lithium (Li) ion batteries are used in an increasing number of applications, including portable electronic devices, medical devices, and transportation. Grid-connected large energy storage, regenerative energy storage and uninterruptible power supplies (UPS). In modern rechargeable energy storage devices, the current collector is made of an electrical conductor. Examples of materials for the positive current collector (cathode) include aluminum, stainless steel, and nickel. Examples of materials for the negative current collector (anode) include copper (Cu) and nickel (Ni). Such current collectors may be in the form of a foil, film or sheet having a thickness ranging from about 6 μm to about 50 μm.

Li離子電池之正極的活性電極材料通常選自鋰過渡金屬氧化物(諸如,LiMn2O4、LiCoO2、LiNiO2或Ni、Li、Mn及Co的氧化物之組合)且包括導電微粒(諸如,碳或石墨)及黏合劑材料。此正極材料視為鋰插層化合物,在該鋰插層化合物中導電材料的數量通常處於自0.1重量%至15重量%的範圍內。 The active electrode material of the positive electrode of the Li ion battery is typically selected from lithium transition metal oxides (such as LiMn 2 O 4 , LiCoO 2 , LiNiO 2 or a combination of Ni, Li, Mn, and Co oxides) and includes conductive particles (such as , carbon or graphite) and binder materials. This positive electrode material is regarded as a lithium intercalation compound in which the amount of the conductive material is usually in the range of from 0.1% by weight to 15% by weight.

石墨通常用作負極之活性電極材料,且石墨可呈鋰插 層內消旋碳微珠(meso-carbon micro beads;MCMB)粉末之形式,該鋰插層MCMB粉末由直徑為近似10 μm的MCMB組成。鋰插層MCMB粉末分散於聚合物黏合劑基質中。用於黏合劑基質的聚合物由熱塑性聚合物製成,該等熱塑性聚合物包括具有橡膠彈性的聚合物。聚合物黏合劑用來將MCMB粉末黏合在一起,以控制集電器之表面上MCMB粉末之裂縫形成及崩解。聚合物黏合劑的數量通常處於0.5重量%至30重量%的範圍內。 Graphite is usually used as the active electrode material for the negative electrode, and graphite can be lithium plugged In the form of a layer of meso-carbon micro beads (MCMB) powder, the lithium intercalated MCMB powder consists of MCMB having a diameter of approximately 10 μm. The lithium intercalated MCMB powder is dispersed in a polymer binder matrix. The polymer used for the binder matrix is made of a thermoplastic polymer comprising a polymer having rubber elasticity. A polymer binder is used to bond the MCMB powder together to control crack formation and disintegration of the MCMB powder on the surface of the current collector. The amount of polymeric binder is typically in the range of from 0.5% to 30% by weight.

Li離子電池之隔板通常由多微孔聚烯烴聚合物(諸如,聚乙烯泡沫)製成,且Li離子電池之隔板應用於單獨的製造步驟中。 The separator of the Li-ion battery is typically made of a microporous polyolefin polymer, such as a polyethylene foam, and the separator of the Li-ion battery is used in a separate manufacturing step.

因為Li離子電池對於電力應用而言變得更加重要,故需要成本有效的、高容量製造方法。常見使用溶膠凝膠製程製成Li離子電池之電極,在該溶膠凝膠製程中,將電池活性材料之膏體塗敷於基板上作為薄膜且隨後將該膏體乾燥以產生最終組分。亦習知CVD製程及PVD製程用以形成用於薄膜電池之電池活性層。然而,此等製程具有受限的產量且對於高容量製造而言不是成本有效的。此等製程亦可形成具有較寬粒度分佈、微粒形狀及可變電極密度的材料。能量電池通常具有較高電極密度,以能夠儲存大量能量,而功率電池通常具有較低電極密度,以能夠迅速地自電池裝卸能量。 Because Li-ion batteries are becoming more important for power applications, cost effective, high volume manufacturing methods are needed. It is common to use an sol-gel process to form an electrode of a Li-ion battery in which a paste of a battery active material is applied to a substrate as a film and then the paste is dried to produce a final component. It is also known that CVD processes and PVD processes are used to form battery active layers for thin film batteries. However, such processes have limited throughput and are not cost effective for high volume manufacturing. These processes can also form materials having a broader particle size distribution, particle shape, and variable electrode density. Energy cells typically have a higher electrode density to be able to store large amounts of energy, while power cells typically have lower electrode densities to enable rapid loading and unloading of energy from the battery.

因此,在此項技術中,需要用於製造具有可控制能量及功率密度的電池之成本有效、高容量方法及適合於此 等方法之新材料。 Therefore, there is a need in the art for a cost effective, high volume method for manufacturing batteries having controllable energy and power density and suitable for this New materials such as methods.

描述用於形成電池活性材料之裝置及方法。一種用於形成電池活性材料之裝置具有:電池活性前驅物源,該電池活性前驅物源耦接至線性乾燥器,該線性乾燥器具有第一複數個獨立受控的加熱區域;線性轉化器,該線性轉化器耦接至線性乾燥器,該線性轉化器具有第二複數個獨立受控的加熱區域;以及微粒收集器,該微粒收集器耦接至線性轉化器。線性乾燥器及線性轉化器可由獨立受控的加熱元件圍繞。電池活性前驅物源可藉由液滴產生器耦接至線性乾燥器。 Apparatuses and methods for forming battery active materials are described. An apparatus for forming a battery active material has a battery active precursor source coupled to a linear dryer having a first plurality of independently controlled heating zones, a linear converter, The linear converter is coupled to a linear dryer having a second plurality of independently controlled heating zones; and a particulate collector coupled to the linear converter. Linear dryers and linear converters can be surrounded by independently controlled heating elements. The battery active precursor source can be coupled to the linear dryer by a droplet generator.

形成電池活性材料之方法包括以下步驟:形成前驅物混合物,該前驅物混合物具有分散於極性溶劑中之金屬離子;使前驅物混合物流經複數個加熱區域,該複數個加熱區域乾燥前驅物混合物,以形成含有金屬離子的中間材料;使中間材料在排出氣流中流經複數個反應區域,該複數個反應區域將金屬離子轉化成電池活性奈米及/或微米微粒;使排出氣流中之電池活性微粒流經冷卻器;向排出氣流添加乾燥氣體,以控制濕度;以及收集電池活性微粒。可在冷卻之前或在冷卻之後使微粒退火及/或塗覆微粒。當混合物自一個加熱區域進展至下一個加熱區域時,該複數個加熱區域穩定地增加前驅物混合 物之溫度,從而在複數個反應區域中之第一個附近達到反應溫度。前驅物中之金屬離子在反應區域中與氧氣或含氧陰離子反應,以形成電池活性材料。 The method of forming a battery active material includes the steps of: forming a precursor mixture having metal ions dispersed in a polar solvent; flowing the precursor mixture through a plurality of heating zones, the plurality of heating zones drying the precursor mixture, Forming an intermediate material containing metal ions; flowing the intermediate material through a plurality of reaction zones in the exhaust gas stream, the plurality of reaction zones converting metal ions into battery active nanoparticles and/or microparticles; and discharging battery active particles in the exhaust gas stream Flow through the cooler; add dry gas to the exhaust stream to control humidity; and collect battery active particles. The particles may be annealed and/or coated with particles prior to or after cooling. The plurality of heating zones steadily increase precursor mixing as the mixture progresses from one heating zone to the next. The temperature of the object, thereby reaching the reaction temperature in the vicinity of the first of the plurality of reaction zones. The metal ions in the precursor react with oxygen or an oxyanion in the reaction zone to form a battery active material.

第1A圖為根據一個實施例之裝置100之示意性側視圖。裝置100為用於自前驅物形成電池活性材料之反應系統。裝置100可為燃燒合成裝置或噴霧合成裝置,且裝置100亦可用以形成除電池活性材料之外的固體材料。前驅物源102藉由分散部件104耦接至第一處理區段106。第一處理區段106藉由第一聯結器110耦接至第二處理區段112。第二處理區段112藉由第二聯結器116耦接至第三處理區段118。第三處理區段118藉由第三聯結器120耦接至收集器122。處理區段106、112及118形成線性反應器,該線性反應器將前驅物材料轉化成由收集器122收集的電池活性粉末。 FIG. 1A is a schematic side view of device 100 in accordance with one embodiment. Device 100 is a reaction system for forming a battery active material from a precursor. The device 100 can be a combustion synthesis device or a spray synthesis device, and the device 100 can also be used to form a solid material other than the battery active material. The precursor source 102 is coupled to the first processing section 106 by a dispersion component 104. The first processing section 106 is coupled to the second processing section 112 by the first coupler 110. The second processing section 112 is coupled to the third processing section 118 by the second coupler 116 . The third processing section 118 is coupled to the collector 122 by the third coupler 120. The processing sections 106, 112, and 118 form a linear reactor that converts the precursor material into a battery active powder collected by the collector 122.

前驅物源102大體具有分散於流體中之金屬離子,該流體通常但並非始終為液體,該液體可為溶劑,諸如,極性溶劑或非極性溶劑。在一個態樣中,金屬離子來源於金屬鹽,且該等金屬離子溶解於極性溶劑中,該極性溶劑諸如,水、醇、酮、醛、羧酸、胺及類似物或上述之混合物。前驅物源102可為裝盛前驅物混合物之容器,諸如,槽、瓶或安瓿,或前驅物源102可為具有待 混合組分之複數個此等容器。在一個實施例中,第一容器可裝盛金屬鹽溶液,諸如,金屬硝酸鹽在水中之溶液,而第二容器裝盛反應助劑,例如,含氮的有機材料(諸如,尿素),該反應助劑可充當燃料,以向反應提供能量。將前驅物自前驅物之容器抽出至分散部件104。 The precursor source 102 generally has metal ions dispersed in a fluid, which is typically, but not always, liquid, which may be a solvent such as a polar solvent or a non-polar solvent. In one aspect, the metal ion is derived from a metal salt and the metal ion is dissolved in a polar solvent such as water, an alcohol, a ketone, an aldehyde, a carboxylic acid, an amine, and the like or a mixture thereof. The precursor source 102 can be a container containing a precursor mixture, such as a tank, bottle or ampoule, or the precursor source 102 can be A plurality of such containers of mixed components. In one embodiment, the first container may hold a metal salt solution, such as a solution of metal nitrate in water, and the second container contains a reaction aid, such as a nitrogen-containing organic material such as urea. The reaction aid can act as a fuel to provide energy to the reaction. The precursor is withdrawn from the container of the precursor to the dispersion member 104.

可用以使用本文描述之裝置及方法製造電池活性材料的前驅物大體包含金屬離子,諸如,鋰離子、鎳離子、鈷離子、鐵離子、錳離子、釩離子及鎂離子。在一個示例性實施例中,使用鋰、鎳、錳、鈷及鐵。將金屬離子作為鹽添加,其中陰離子可在適當條件下分解以產生反應性物種。此等陰離子包括無機陰離子,諸如,硝酸鹽、亞硝酸鹽、磷酸鹽、亞磷酸鹽、膦酸鹽、硫酸鹽、亞硫酸鹽、磺酸鹽、碳酸鹽、碳酸氫鹽、硼酸鹽及上述之混合物或上述之組合。亦可代替無機陰離子或與無機陰離子組合使用有機離子,諸如,醋酸鹽、草酸鹽、檸檬酸鹽、酒石酸鹽、馬來酸鹽、乙酸鹽、丁-酸鹽、丙烯酸鹽、苯甲酸鹽及其他相似陰離子或上述之混合物或上述之組合。 Precursors that can be used to fabricate battery active materials using the devices and methods described herein generally comprise metal ions such as lithium ions, nickel ions, cobalt ions, iron ions, manganese ions, vanadium ions, and magnesium ions. In an exemplary embodiment, lithium, nickel, manganese, cobalt, and iron are used. A metal ion is added as a salt, wherein the anion can be decomposed under appropriate conditions to produce a reactive species. Such anions include inorganic anions such as nitrates, nitrites, phosphates, phosphites, phosphonates, sulfates, sulfites, sulfonates, carbonates, bicarbonates, borates, and the like Mixture or combination of the above. It is also possible to use an organic anion instead of or in combination with an inorganic anion such as acetate, oxalate, citrate, tartrate, maleate, acetate, butyrate, acrylate, benzoate And other similar anions or mixtures thereof or combinations thereof.

大體用液體載體摻合金屬鹽,若液體載體為極性溶劑,則該液體載體可將金屬鹽溶解至溶液中。若液體載體不溶解金屬鹽,則可製備金屬鹽在液體載體中的懸浮液或分散液。可使用的極性溶劑之實例包括(但不限於)水、醇、酮、醛、羧酸、酸酐、胺、醯胺、酯、醚或上述之組合。除水之外,可使用的示例性溶劑之非詳盡清 單包括甲醇、乙醇、異丙醇、乙二醇、丙二醇、丙酮、甲基乙基酮、甲醛、乙醛、乙酸、馬來酸、馬來酐、苯甲酸、乙酸乙酯、醋酸乙烯酯、二甲基甲醯胺及二甲亞碸。可使用的非極性液體或非溶解液體大體包括烴類流體,諸如,苯、甲苯及輕石蠟,該等烴類流體在一些情況下可代替極性溶劑使用或為極性溶劑的補充。 The metal salt is generally admixed with a liquid carrier, and if the liquid carrier is a polar solvent, the liquid carrier can dissolve the metal salt into the solution. If the liquid carrier does not dissolve the metal salt, a suspension or dispersion of the metal salt in the liquid carrier can be prepared. Examples of polar solvents that may be used include, but are not limited to, water, alcohols, ketones, aldehydes, carboxylic acids, anhydrides, amines, guanamines, esters, ethers, or combinations thereof. In addition to water, the exemplary solvents that can be used are not detailed Single, including methanol, ethanol, isopropanol, ethylene glycol, propylene glycol, acetone, methyl ethyl ketone, formaldehyde, acetaldehyde, acetic acid, maleic acid, maleic anhydride, benzoic acid, ethyl acetate, vinyl acetate, Dimethylmethaneamine and dimethyl hydrazine. Non-polar liquids or non-dissolving liquids which may be used generally include hydrocarbon fluids such as benzene, toluene and light paraffin, which may in some cases be used in place of or in addition to polar solvents.

在一些實施例中含碳組分是有利的,因為該等含碳組分將碳添加至由使用本文描述之裝置及方法產生的電池活性材料。在將金屬離子轉化成電池活性材料的反應期間,若氧反應性物種過量,則可形成無定形碳微粒。無定形碳微粒可聚結在電池活性材料微粒周圍且最終與電池活性微粒一起沉積,從而在一些情況下提供經沉積介質之改良的電導率以及密度及多孔性優點。上文描述之含碳化合物可以此方式起作用。可尤其向極性溶劑系統添加的額外含碳物種包括糖、聚乙烯醇、聚醋酸乙烯酯、聚乙二醇、聚氧化乙烯、醇乙氧基化物及類似物。此等化合物亦可用作黏度改質劑及/或表面活性劑。可使用其他表面活性劑,諸如,脂肪酸酯。 Carbonaceous components are advantageous in some embodiments because the carbonaceous components add carbon to the battery active material produced by the apparatus and methods described herein. During the reaction of converting metal ions into a battery active material, if there are an excess of oxygen-reactive species, amorphous carbon particles can be formed. The amorphous carbon particles can coalesce around the battery active material particles and ultimately with the battery active particles, thereby providing improved conductivity and density and porosity advantages of the deposited medium in some cases. The carbon-containing compounds described above can function in this manner. Additional carbonaceous species that may be added, inter alia, to polar solvent systems include sugars, polyvinyl alcohols, polyvinyl acetates, polyethylene glycols, polyethylene oxides, alcohol ethoxylates, and the like. These compounds can also be used as viscosity modifiers and/or surfactants. Other surfactants such as fatty acid esters can be used.

可向前驅物混合物添加含氮化合物,以促進自液滴形成均勻的核,以便獲取電池活性材料之固體球狀微粒。在一些情況下此等化合物亦可提供能量,以促進金屬鹽轉化成電池活性產物。尿素及甘胺酸為可用的添加劑之實例,該等添加劑促進較小微粒形成且添加能量。氨氣亦可用以促進均勻成核。 A nitrogen-containing compound can be added to the precursor mixture to promote the formation of a uniform core from the droplets in order to obtain solid spherical particles of the battery active material. In some cases these compounds may also provide energy to facilitate the conversion of the metal salt to the battery active product. Urea and glycine are examples of useful additives that promote the formation of smaller particles and add energy. Ammonia can also be used to promote uniform nucleation.

前驅物混合物大體由金屬離子在液體載體中的標準溶液或分散液形成。對於包含鋰、鎳、錳及鈷的示例性實施例而言,可製備且以較好的精度摻合硝酸鋰、硝酸鎳、硝酸錳及硝酸鈷之標準莫耳溶液,以決定所得電池活性介質之金屬組合物。將不同金屬在最終產物中摻合至所要濃度影響所得電池之電氣性質,諸如,電壓、電流、功率、充電效能、壽命、穩定性及類似性質。在一個實施例中,用在化學計量上過量約10%的硝酸鋰摻合以上鹽之3M溶液的混合物,以形成前驅物溶液。可將尿素添加至介於約5%與約20%之間的質量濃度。必要時可添加上文描述之其他添加劑。 The precursor mixture is formed generally from a standard solution or dispersion of metal ions in a liquid carrier. For an exemplary embodiment comprising lithium, nickel, manganese and cobalt, a standard molar solution of lithium nitrate, nickel nitrate, manganese nitrate and cobalt nitrate can be prepared and blended with good precision to determine the resulting battery active medium. Metal composition. The incorporation of different metals in the final product to the desired concentration affects the electrical properties of the resulting battery, such as voltage, current, power, charging performance, lifetime, stability, and the like. In one embodiment, a mixture of 3M solutions of the above salts is blended with a stoichiometric excess of about 10% lithium nitrate to form a precursor solution. Urea may be added to a mass concentration of between about 5% and about 20%. Other additives as described above may be added as necessary.

分散部件104產生分散至第一處理區段106中的液滴之分散液。分散部件104可為可操作以產生具有所要尺寸及尺寸分佈的較小液滴之霧化器、噴霧器或單分散液滴產生器或半單分散液滴產生器。適合於與裝置100一起使用的單分散液滴產生器可產生直徑為約500 μm或更小的液滴,該直徑諸如介於約1 μm與約200 μm之間,例如,約150 μm或更小。在一些實施例中,單分散液滴產生器可產生直徑為約50 μm或更小的液滴,該直徑例如介於約1 μm與約30 μm之間(諸如,約15 μm或更小),例如介於約2 μm與約15 μm之間(例如,約10 μm或更小)。來自適合的單分散產生器的液滴之直徑通常自平均值變化小於約50%。使用單分散產生器之一些實例,實現標準偏差為5%或更小的直徑為20.0 μm之液 滴。單分散液滴產生器可為壓電液滴產生器、瑞利(Rayleigh)噴嘴、離心氣溶膠產生器、振動孔口氣溶膠產生器、超聲波液滴產生器、靜電液滴產生器、電噴霧設備、旋轉霧化器、液滴隨選產生器或振動篩孔霧化器。半單分散液滴產生器將產生尺寸變化大於單分散液滴產生器但小於霧化器或其他非精密分散部件的液滴。 The dispersion member 104 produces a dispersion of droplets dispersed into the first treatment zone 106. Dispersing component 104 can be an atomizer, nebulizer or monodisperse droplet generator or semi-monodisperse droplet generator operable to produce smaller droplets having a desired size and size distribution. A monodisperse droplet generator suitable for use with device 100 can produce droplets having a diameter of about 500 μm or less, such as between about 1 μm and about 200 μm, for example, about 150 μm or more. small. In some embodiments, a monodisperse droplet generator can produce droplets having a diameter of about 50 μm or less, such as between about 1 μm and about 30 μm (such as about 15 μm or less). , for example, between about 2 μm and about 15 μm (eg, about 10 μm or less). The diameter of the droplets from a suitable monodisperse generator typically varies by less than about 50% from the average. Using a few examples of a monodisperse generator to achieve a standard deviation of 5% or less with a diameter of 20.0 μm drop. The monodisperse droplet generator can be a piezoelectric droplet generator, a Rayleigh nozzle, a centrifugal aerosol generator, a vibrating orifice aerosol generator, an ultrasonic droplet generator, an electrostatic droplet generator, an electrospray device. , rotary atomizer, droplet optional generator or vibrating mesh atomizer. A semi-monodisperse droplet generator will produce droplets that vary in size greater than a monodisperse droplet generator but smaller than a nebulizer or other non-precision dispersing component.

第1B圖為具有單分散液滴產生器136(用虛線圖示)的示例性分散部件104之詳細視圖,該示例性分散部件104可用作第1A圖中之分散部件104。產生器136形成出現在第一處理區段106中的液滴。對於大多數單分散液滴產生器而言,所形成的液滴之噴流具有特徵散度,該特徵散度取決於表面張力、壓降、黏滯力及在一些情況下取決於靜電力。分散部件104具有外半徑168及用虛線圖示之內半徑170。內半徑170及產生器136之外半徑172合作地形成環形通道138,該環形通道138具有圍繞產生器136的環形開口150。環形通道138及環形開口150將氣源142流體地耦接至第一處理區段106中。 1B is a detailed view of an exemplary dispersion component 104 having a monodisperse droplet generator 136 (shown in phantom) that can be used as the dispersion component 104 in FIG. Generator 136 forms droplets that appear in first processing section 106. For most monodisperse droplet generators, the resulting jet of droplets has a characteristic divergence that depends on surface tension, pressure drop, viscous forces, and in some cases on electrostatic forces. Dispersing member 104 has an outer radius 168 and an inner radius 170, shown in phantom. The inner radius 170 and the outer radius 172 of the generator 136 cooperatively form an annular passage 138 having an annular opening 150 that surrounds the generator 136. The annular passage 138 and the annular opening 150 fluidly couple the gas source 142 into the first processing section 106.

為防止液滴與第一處理區段106之壁碰撞,可穿過圍繞產生器136之環形通道138應用限制氣體,限制氣體經由圍繞產生器136之環形開口150離開。氣源142經由導管144耦接至環形配氣室140,且氣體流動至與第一處理區段106之壁相鄰的環形區域146中,如箭頭166所示。限制氣體可為惰性氣體(諸如,氮氣或氬氣)、還 原氣體(諸如,氫氣)或反應性氣體(諸如,氧氣或空氣、燃料或上述之混合物,例如,可燃混合物)。在一些情況下將可燃混合物用作限制氣體可能是有利的,因為可燃混合物可有助於在第二處理區段112中實現目標溫度。限制氣體亦可為乾燥及/或加熱氣體(諸如,熱空氣或熱氮氣),該乾燥及/或加熱氣體可自冷卻製程進一步在下游再循環。 To prevent droplets from colliding with the walls of the first treatment section 106, a restriction gas may be applied through the annular passage 138 surrounding the generator 136, restricting gas from exiting through the annular opening 150 surrounding the generator 136. Gas source 142 is coupled to annular plenum 140 via conduit 144 and gas flows into annular region 146 adjacent the wall of first processing section 106, as indicated by arrow 166. The limiting gas may be an inert gas such as nitrogen or argon, Raw gas (such as hydrogen) or reactive gas (such as oxygen or air, fuel or a mixture of the above, for example, a combustible mixture). It may be advantageous in some cases to use a combustible mixture as a limiting gas, as the combustible mixture may facilitate achieving a target temperature in the second processing section 112. The limiting gas may also be a dry and/or heated gas (such as hot air or hot nitrogen) which may be further recycled downstream from the cooling process.

限制氣體產生禁區148,禁區148防止液滴接近第一處理區段106之壁。自產生器136形成的具有向著壁之發散軌跡的液滴藉由限制氣體彎曲進入軸向軌跡中。為增強限制氣體之效果,限制氣體之出口壓力可比自產生器136形成的液滴場之出口壓力更高。限制氣體之輕微的過壓導致限制氣體膨脹至液滴場中,從而加強限制氣體之對準效果。在此實施例中,環形開口150經尺寸調整且氣源142之壓力經選擇以用實質上類似於液滴場離開產生器136的軸向速度之速度將限制氣體輸送至環形區域146。此舉最大化第一處理區段106中層流之機率,進而最大化液滴場中個別液滴之分隔距離。在希望均勻粒度分佈的一些情況下,維持個別液滴之分隔可能是有用的。 The restricted gas creates a restricted zone 148 that prevents droplets from approaching the wall of the first processing section 106. The droplets formed by the generator 136 having a diverging trajectory towards the wall are deflected into the axial trajectory by limiting the gas. To enhance the effect of limiting the gas, the outlet pressure of the restricted gas may be higher than the outlet pressure of the droplet field formed by the generator 136. Limiting the slight overpressure of the gas causes the gas to expand into the droplet field, thereby enhancing the alignment effect of the confinement gas. In this embodiment, the annular opening 150 is sized and the pressure of the gas source 142 is selected to deliver a confinement gas to the annular region 146 at a rate substantially similar to the axial velocity of the droplet field exiting the generator 136. This maximizes the probability of laminar flow in the first processing section 106, thereby maximizing the separation distance of individual droplets in the droplet field. In some cases where a uniform particle size distribution is desired, it may be useful to maintain the separation of individual droplets.

如以上所述,可藉由將靜電荷賦予液滴,來幫助分隔自單分散液滴產生器136形成的液滴。此外,分隔氣體可與上文描述之限制氣體相同,可經由擠出液滴的開口之間的單分散液滴產生器之出口表面中的開口提供分隔 氣體。具有與液滴線速度相似的線速度之分隔氣流可提供層流至第一處理區段106中且最大化液滴之軸向軌跡。以比界定液滴場之分隔氣體略高的壓力輸送限制氣體向著恰好在單分散液滴產生器外部的第一處理區段106之中心軸產生徑向、壓力平衡氣流,該徑向、壓力平衡氣流抵消液滴向著第一處理區段106之壁發散的任何趨勢,從而降低液滴會沉積於壁上的可能性。液滴場被壓縮成層狀軸流,該層狀軸流位於第一處理區段106之中心軸周圍,該層狀軸流由實質上無液滴的環形區域146圍繞。 As described above, the droplets formed from the monodisperse droplet generator 136 can be assisted by imparting electrostatic charges to the droplets. Furthermore, the separating gas may be the same as the limiting gas described above, and may be separated by an opening in the outlet surface of the monodisperse droplet generator between the openings of the extruded droplets. gas. A separate gas flow having a linear velocity similar to the droplet linear velocity can provide laminar flow into the first processing section 106 and maximize the axial trajectory of the droplet. A radial, pressure balanced gas flow is generated at a pressure transfer restriction gas that is slightly higher than the separation gas defining the droplet field to a central axis of the first treatment section 106 just outside the monodisperse droplet generator, the radial, pressure balanced The gas flow counteracts any tendency for the droplets to diverge toward the walls of the first treatment section 106, thereby reducing the likelihood that droplets will deposit on the walls. The droplet field is compressed into a laminar axial flow that is located around the central axis of the first processing section 106, which is surrounded by a substantially droplet-free annular region 146.

不同流動狀態可用於不同製程。例如,雷諾數小於約2,000的層流態可較佳地用於希望液滴分隔之實施例中。然而,對於一些實施例而言,層流可抑制熱量轉移。在此等實施例中,雷諾數(Reynolds number)為約2,000至約4,000的半擾流或雷諾數高於約4,000的擾流可能較佳。 Different flow states can be used for different processes. For example, a laminar flow regime with a Reynolds number of less than about 2,000 may be preferred for use in embodiments where droplet separation is desired. However, for some embodiments, laminar flow can inhibit heat transfer. In such embodiments, a Reynolds number of about 2,000 to about 4,000 may be preferred for a half turbulence or a Reynolds number greater than about 4,000.

諸如第1B圖中所示實施例之單分散液滴產生器可用以產生尺寸十分均勻的較小液滴。產生尺寸均勻的較小液滴取決於流動狀態中黏度及表面張力之組合效應。舉例而言,在一個實施例中,壓電單分散設備有效地使用黏度為10-15cp且表面張力為35達因/cm的流體操作。在相當條件下,水的黏度為1cp,且水的表面張力為70達因/cm。為實現所要黏度及/或表面張力,可將組分摻合至前驅物混合物中,以按需要增加或減小黏度及/或表 面張力。舉例而言,上文描述之組分中的一些組分(諸如,糖及水溶性聚合物)可用以增加金屬鹽的水基溶液之黏度及表面張力,同時將碳添加至混合物。 A monodisperse droplet generator such as the embodiment shown in Figure 1B can be used to produce smaller droplets of very uniform size. Producing smaller droplets of uniform size depends on the combined effect of viscosity and surface tension in the flow state. For example, in one embodiment, the piezoelectric monodisperse device effectively operates with a fluid having a viscosity of 10-15 cp and a surface tension of 35 dynes/cm. Under comparable conditions, the viscosity of water is 1 cp and the surface tension of water is 70 dynes/cm. To achieve the desired viscosity and/or surface tension, the components can be blended into the precursor mixture to increase or decrease the viscosity and/or table as needed. Face tension. For example, some of the components described above, such as sugars and water soluble polymers, can be used to increase the viscosity and surface tension of the aqueous solution of the metal salt while adding carbon to the mixture.

再次參閱第1A圖,第一處理區段106為可為管狀的線性加熱器,該線性加熱器由接觸第一處理區段106外壁的加熱元件108圍繞。第一處理區段106的長度與直徑之比率可至少為2(例如,至少5),且第一處理區段106可被縮放至任何合理尺寸。第一處理區段106可為導熱材料,諸如,金屬,例如,不銹鋼。加熱元件108可為整體的、單個加熱元件,或加熱元件108可包含複數個加熱元件,諸如,加熱夾套或加熱帶。加熱元件108大體提供熱能,以增加穿過第一處理區段106行進的經分散前驅物混合物之溫度。加熱元件108可為電阻式壁加熱器或蒸氣夾套或熱空氣夾套。來自加熱元件108的熱能藉由接觸傳導至第一處理區段106之壁,且來自加熱元件108的熱能自該壁輻射及傳導至前驅物混合物中。在一個實施例中,第一處理區段106為長約1.5 m且直徑10 cm的不銹鋼管,該不銹鋼管具有四個電阻式加熱帶作為夾套。或者,加熱元件108可為第一處理區段106內部的載運熱流體的管子,例如,熱交換器。 Referring again to FIG. 1A, the first processing section 106 is a tubular, linear heater surrounded by a heating element 108 that contacts the outer wall of the first processing section 106. The ratio of the length to the diameter of the first processing section 106 can be at least 2 (eg, at least 5), and the first processing section 106 can be scaled to any reasonable size. The first processing section 106 can be a thermally conductive material such as a metal, such as stainless steel. Heating element 108 can be a unitary, single heating element, or heating element 108 can include a plurality of heating elements, such as a heating jacket or heating belt. Heating element 108 generally provides thermal energy to increase the temperature of the dispersed precursor mixture traveling through first processing section 106. Heating element 108 can be a resistive wall heater or a vapor jacket or a hot air jacket. Thermal energy from the heating element 108 is conducted to the wall of the first processing section 106 by contact, and thermal energy from the heating element 108 is radiated from the wall and conducted into the precursor mixture. In one embodiment, the first treatment section 106 is a stainless steel tube having a length of about 1.5 m and a diameter of 10 cm, the stainless steel tube having four resistive heating strips as a jacket. Alternatively, the heating element 108 can be a tube carrying a thermal fluid inside the first processing section 106, such as a heat exchanger.

在一些實施例中,第一處理區段106為乾燥器,該乾燥器自液滴蒸發一些或全部液體,從而將液滴及形成的所得微粒之溫度自第一處理區段106入口端處的近環境溫度增加至第一處理區段106出口端處的近反應溫度 500℃或更低。離開第一處理區段106的材料為中間材料。中間材料在近反應溫度下流出第一處理區段106,該反應溫度為液滴、微粒及/或氣體之組分開始分解及反應之溫度。取決於中間材料之組合物,反應溫度通常小於約500℃,例如,小於約400℃。當材料自前驅物材料變換至中間材料時,第一處理區段106可實質上線性地增加該材料之溫度。 In some embodiments, the first processing section 106 is a dryer that evaporates some or all of the liquid from the droplets to thereby bring the temperature of the droplets and the resulting particles from the inlet end of the first processing section 106 The near ambient temperature increases to the near reaction temperature at the outlet end of the first treatment section 106 500 ° C or lower. The material leaving the first processing section 106 is an intermediate material. The intermediate material exits the first treatment zone 106 at a near reaction temperature which is the temperature at which the components of the droplets, particulates and/or gases begin to decompose and react. Depending on the composition of the intermediate material, the reaction temperature is typically less than about 500 ° C, for example, less than about 400 ° C. The first processing section 106 can substantially linearly increase the temperature of the material as it transitions from the precursor material to the intermediate material.

第一處理區段106藉由第一聯結器110耦接至第二處理區段112。第二處理區段112可為線性反應器或轉化器,且第二處理區段112可為管狀。第二處理區段112的長度與直徑之比率通常至少為2,且該比率可介於約2與約50之間,例如,約25。在一個實施例中,第二處理區段112長約2.5 m且直徑為約10 cm。在另一實施例中,第二處理區段112長25 m,直徑為1 m。 The first processing section 106 is coupled to the second processing section 112 by the first coupler 110. The second treatment section 112 can be a linear reactor or a converter, and the second treatment section 112 can be tubular. The ratio of length to diameter of the second treatment section 112 is typically at least 2, and the ratio can be between about 2 and about 50, for example, about 25. In one embodiment, the second treatment section 112 is about 2.5 m long and about 10 cm in diameter. In another embodiment, the second treatment section 112 is 25 m long and 1 m in diameter.

第二處理區段112通常由耐受高溫的材料製成,因為金屬離子轉化成電池活性材料的反應,在一些情況下在反應溫度高達2,000℃下執行,其中典型的最高溫度約1,200℃。諸如陶瓷(亦即,氧化鋁)、藍寶石、耐火金屬及類似物之材料適合於第二處理區段112之大多數實施例。在一個實施例中,第二處理區段112為陶瓷圓柱形部件,該陶瓷圓柱形部件的長度與直徑之比率至少為2。第二處理區段112之壁厚度通常經選擇以允許控制反應混合物之熱含量。在陶瓷管實施例中,壁厚度可為約5 mm。 The second treatment section 112 is typically made of a material that is resistant to high temperatures because the reaction of converting metal ions into a battery active material is performed in some cases at reaction temperatures up to 2,000 °C, with a typical maximum temperature of about 1,200 °C. Materials such as ceramic (i.e., alumina), sapphire, refractory metal, and the like are suitable for most embodiments of the second processing section 112. In one embodiment, the second treatment section 112 is a ceramic cylindrical component having a length to diameter ratio of at least two. The wall thickness of the second treatment zone 112 is typically selected to allow control of the heat content of the reaction mixture. In the ceramic tube embodiment, the wall thickness can be about 5 mm.

取決於在第一處理區段106中執行的乾燥的程度,離開第一處理區段106且進入第二處理區段112的中間材料可為挾帶於氣流中的微粒之乾燥粉末、挾帶於氣流中的微粒之潮濕粉末、挾帶於氣流中的液滴及微粒之集合或挾帶於氣流中的液滴之集合。微粒可為奈米尺寸的微粒或微米尺寸的微粒或上述之混合物。微粒可為自液體前驅物材料沉澱的金屬鹽之微粒、表示金屬離子部分轉化成電池活性材料的混合金屬離子及氧氣之微粒,及完全轉化成主要包含金屬離子及氧氣的電池活性材料之微粒。 Depending on the extent of drying performed in the first processing section 106, the intermediate material exiting the first processing section 106 and entering the second processing section 112 may be a dry powder of particles that are entrained in the gas stream, A moist powder of particles in a gas stream, a collection of droplets and particles entrained in a gas stream, or a collection of droplets entrained in a gas stream. The microparticles can be nanometer sized microparticles or micron sized microparticles or a mixture of the foregoing. The microparticles may be microparticles of a metal salt precipitated from a liquid precursor material, microparticles of mixed metal ions and oxygen representing partial conversion of metal ions into a battery active material, and microparticles of a battery active material which is completely converted into a metal ion and oxygen.

當反應混合物進入第一處理區段106時,通常向反應混合物添加氧氣或空氣,但在需要時可經由第二處理區段112之壁中的開口162直接向第二處理區段112添加額外氧氣或空氣,該第二處理區段112之壁中的開口162藉由導管160耦接至氣源158。對於諸如LiFePO4之對氧氣敏感的材料而言,諸如氮氣之惰性氣體或諸如氫氣之還原氣體或上述之混合物可用作載氣。多個氣源可在需要時耦接至導管160,以輸送各種氣體。可經由開口162添加諸如烴氣(例如,丙烷、乙炔或天然氣)之燃料,以增強推進反應的能量的釋放。如前所述,過量的氧氣反應性物種可允許無定形碳微粒在反應期間形成。亦可在需要時注入冷卻氣體,以控制第二處理區段112中微粒之溫度、壓力及滯留時間。 When the reaction mixture enters the first treatment zone 106, oxygen or air is typically added to the reaction mixture, but additional oxygen may be added directly to the second treatment zone 112 via the opening 162 in the wall of the second treatment section 112 as needed. Or air, the opening 162 in the wall of the second processing section 112 is coupled to the gas source 158 by a conduit 160. For materials sensitive to oxygen such as LiFePO 4 , an inert gas such as nitrogen or a reducing gas such as hydrogen or a mixture of the above may be used as the carrier gas. A plurality of gas sources can be coupled to the conduit 160 as needed to deliver various gases. A fuel such as a hydrocarbon gas (eg, propane, acetylene, or natural gas) may be added via opening 162 to enhance the release of energy from the propulsion reaction. As previously mentioned, an excess of oxygen reactive species may allow amorphous carbon particles to form during the reaction. Cooling gas may also be injected as needed to control the temperature, pressure, and residence time of the particles in the second processing section 112.

可取決於正在執行的反應而選擇開口162之數目及間 隔。對於一些製程而言,供應至第二處理區段112之入口的前驅物混合物或氣體中的較高可燃物含量可在沿著第二處理區段112之長度的較短距離上產生峰值溫度。可能需要冷卻氣體來控制峰值溫度。可藉由包括複數個注入埠,來將燃料、冷卻氣體及塗覆材料之添加分隔成不同注入位置。對於一些實施例而言,可在第二處理區段112入口附近添加加速劑,且可在第二處理區段112出口附近添加冷卻氣體以控制第三處理區段118之熱分佈,該第三處理區段118之熱分佈可能具有最高溫度要求。 The number and spacing of openings 162 may be selected depending on the reaction being performed Separate. For some processes, the higher combustible content of the precursor mixture or gas supplied to the inlet of the second processing section 112 may produce a peak temperature over a shorter distance along the length of the second processing section 112. Cooling gas may be required to control the peak temperature. The addition of fuel, cooling gas, and coating material can be separated into different injection locations by including a plurality of injection enthalpies. For some embodiments, an accelerator may be added near the inlet of the second treatment section 112, and a cooling gas may be added near the outlet of the second treatment section 112 to control the heat distribution of the third treatment section 118, the third The heat distribution of the processing section 118 may have the highest temperature requirements.

亦可在需要時使用開口162注入塗覆劑。在一些實施例中,塗覆劑可用以在電池活性材料之微粒周圍提供保護殼,以避免在充電及放電期間的副反應。塗層通常為高強度材料,諸如,陶瓷,例如,氧化鋁,且可藉由將鋁前驅物化合物作為氣體經由開口162流動至第二處理區段112中來形成塗層。烷基鋁(諸如,三甲基鋁、三乙基鋁、上述之變體、衍生物及上述之混合物)為適合的塗覆劑。此等塗覆劑在第二處理區段112中與氧氣或含氧陰離子反應,以在微粒周圍形成氧化鋁殼。自然地,亦可應用諸如硝酸鋁、三氟化鋁、磷酸鋁及氫氧化鋁之其他材料。 The coating agent can also be injected using the opening 162 as needed. In some embodiments, a coating agent can be used to provide a protective shell around the particles of the battery active material to avoid side reactions during charging and discharging. The coating is typically a high strength material, such as a ceramic, such as alumina, and the coating can be formed by flowing an aluminum precursor compound as a gas through opening 162 into second processing section 112. Alkyl aluminums such as trimethylaluminum, triethylaluminum, variants, derivatives and mixtures thereof are suitable coating agents. These coating agents react with oxygen or oxyanions in the second treatment zone 112 to form an alumina shell around the particles. Naturally, other materials such as aluminum nitrate, aluminum trifluoride, aluminum phosphate, and aluminum hydroxide can also be applied.

儘管開口162在第二處理區段112之壁中圖示為單一孔隙,但應注意,可在該壁周圍提供氣室(未圖示),以將氣流均勻地分佈於圓周周圍,以維持反應混合物中微 粒及液滴之軸向流動。取決於所要流動分佈,氣室可使氣體以相對於第二處理區段112之壁成任何角度流動。或者,管子可自開口162延伸至第二處理區段112之中心線,以沿著第二處理區段112之中心軸釋放具有流動軌跡的經添加氣體。當溫度沿著第二處理區段112之長度升高時,中間材料與氧氣反應。歸因於形成微粒之較小尺寸,氧氣及熱量較容易地穿透該等形成微粒,此狀況改良自第二處理區段112形成的電池活性材料之最終微粒之均勻性。 Although the opening 162 is illustrated as a single aperture in the wall of the second treatment section 112, it should be noted that a plenum (not shown) may be provided around the wall to evenly distribute the gas flow around the circumference to maintain the reaction. Mixture micro Axial flow of particles and droplets. Depending on the desired flow profile, the plenum can cause the gas to flow at any angle relative to the wall of the second treatment section 112. Alternatively, the tube may extend from the opening 162 to the centerline of the second processing section 112 to release the added gas having a flow trajectory along the central axis of the second processing section 112. The intermediate material reacts with oxygen as the temperature increases along the length of the second treatment zone 112. Due to the smaller size of the formed particles, oxygen and heat relatively easily penetrate the forming particles, which improves the uniformity of the final particles of the battery active material formed from the second processing section 112.

可使用設置於第二處理區段112之壁中的一或更多個溫度感測器128來監控第二處理區段112中之溫度。可藉由調整前驅物混合物中反應性的、能量釋放組分之數量或藉由向第二處理區段112中的反應混合物直接添加燃料及/或加速劑,來控制反應溫度。例如,燃料流可經調整以維持穿過第二處理區段112之所要溫度分佈。可在沿著第二處理區段112之長度的一或更多個選定點處添加可燃混合物,以調整沿著該長度的所要點處之升溫率。 The temperature in the second processing section 112 can be monitored using one or more temperature sensors 128 disposed in the wall of the second processing section 112. The reaction temperature can be controlled by adjusting the amount of reactive, energy-releasing component in the precursor mixture or by directly adding fuel and/or accelerator to the reaction mixture in the second treatment zone 112. For example, the fuel flow can be adjusted to maintain a desired temperature profile across the second processing section 112. The combustible mixture can be added at one or more selected points along the length of the second treatment section 112 to adjust the rate of temperature rise at the point along the length.

可藉由加熱元件114沿著第二處理區段112提供額外熱控制,該等加熱元件114圍繞第二處理區段112且與第二處理區段112之外壁接觸。加熱元件可為電阻式加熱夾套或電阻式加熱帶,或熱流體加熱夾套(例如,蒸氣夾套或熱油夾套)。加熱元件114通常包含複數個獨立受控的加熱元件,但在一些實施例中可提供單一加熱元 件。加熱元件114可與可燃物注入一起或代替可燃物注入經調整以維持所要溫度分佈。對於放熱反應而言,可提供加熱元件114,以將混合物升高至反應溫度而開始能量釋放且防止沿著第二處理區段112的溫度的較大波動。加熱元件114亦減少穿過第二處理區段112之壁的熱損失。對於吸熱反應而言,加熱元件114將提供能量。在一個實施例中,提供三個可獨立控制的電阻式加熱夾套與第二處理區段112之外壁圍繞接觸。可以任何便利組合採用上述化學的、物理的及/或電氣加熱手段之任何組合。 Additional thermal control may be provided along the second processing section 112 by the heating element 114 that surrounds the second processing section 112 and is in contact with the outer wall of the second processing section 112. The heating element can be a resistive heating jacket or a resistive heating belt, or a hot fluid heating jacket (eg, a steam jacket or a hot oil jacket). Heating element 114 typically includes a plurality of independently controlled heating elements, but in some embodiments a single heating element may be provided Pieces. The heating element 114 can be adjusted with or in lieu of combustible injection to maintain the desired temperature profile. For an exothermic reaction, a heating element 114 can be provided to raise the mixture to the reaction temperature to initiate energy release and prevent large fluctuations in temperature along the second treatment zone 112. The heating element 114 also reduces heat loss through the walls of the second processing section 112. For the endothermic reaction, the heating element 114 will provide energy. In one embodiment, three independently controllable resistive heating jackets are provided in in-situ contact with the outer wall of the second processing section 112. Any combination of the above chemical, physical and/or electrical heating means can be employed in any convenient combination.

控制可為手動的或自動的且可為開環或閉環的。在一些實施例中,快速溫度控制器監控裝置100之各個位置處的溫度,且快速溫度控制器迅速地調整藉由加熱元件114及/或加熱元件108輸入的熱量、藉由燃料及/或加速劑自前驅物源102或者穿過開口162的側流流動至第二處理區段112輸入的熱量,或快速溫度控制器藉由將具有前驅物的冷卻氣體或載氣在入口處輸入至第一處理區段106或藉由穿過開口162的側流來冷卻。在一些情況下,進入第二區段的液滴之密度或熱含量之擾動可在一個溫度感測器處引起瞬時溫度偏差。快速控制器可經配置以藉由以補償液滴之額外熱負荷的方式增加熱量來迅速地調整。 Control can be manual or automatic and can be open or closed. In some embodiments, the rapid temperature controller monitors the temperature at various locations of the device 100, and the rapid temperature controller quickly adjusts the heat input by the heating element 114 and/or the heating element 108, by fuel and/or acceleration. The agent flows from the precursor source 102 or the side stream passing through the opening 162 to the heat input by the second processing section 112, or the rapid temperature controller inputs the cooling gas or carrier gas having the precursor to the first at the inlet The treatment section 106 is cooled by a side stream that passes through the opening 162. In some cases, the disturbance of the density or heat content of the droplets entering the second section can cause an instantaneous temperature deviation at a temperature sensor. The fast controller can be configured to quickly adjust by adding heat in a manner that compensates for the additional thermal load of the droplets.

第二處理區段112可具有內表面164,該內表面164經處理以最小化在內表面164上收集的微粒及/或液 滴。第二處理區段112之內表面164可塗覆有光滑材料,該光滑材料能夠耐受第二處理區段112中普遍的高溫,或可使該內表面變光滑或變粗糙至所要表面粗糙度。在一些實施例中,經高度研磨之整潔並耐化學腐蝕的金屬(諸如,鈦)可塗覆內表面164。在其他實施例中,光滑的結晶材料(諸如,藍寶石)可用以塗覆陶瓷部件之內表面164。第二處理區段112之主體與內表面164上任何塗層之間的熱膨脹係數可匹配至減少材料之間介面處移動的任何所要程度。通常,由於溫度過冷可能導致微粒轉化不充分,故平均表面粗糙度Ra<200 μm促進均勻處理而無實質熱變化。 The second treatment section 112 can have an inner surface 164 that is treated to minimize particulates and/or droplets collected on the inner surface 164. The inner surface 164 of the second treatment section 112 may be coated with a smooth material that is capable of withstanding the high temperatures prevailing in the second treatment section 112 or that may smooth or roughen the inner surface to the desired surface roughness . In some embodiments, the highly polished, clean and chemically resistant metal, such as titanium, may coat the inner surface 164. In other embodiments, a smooth crystalline material, such as sapphire, can be used to coat the inner surface 164 of the ceramic component. The coefficient of thermal expansion between the body of the second treatment section 112 and any coating on the inner surface 164 can be matched to any desired degree of reduction in movement between the interfaces between the materials. Typically, the temperature may cause supercooling conversion particles insufficiently, so that the average surface roughness R a <200 μm promoting substantial thermal change uniform treatment.

如上所述,反應通常在第二處理區段112之出口端附近達到介於約800℃與約1,500℃之間(諸如,介於約900℃與約1,200℃之間,例如,約1,000℃)的溫度,其中流動混合物主要包含電池活性材料之微粒、廢氣及惰性氣體。熱混合物進入第三處理區段118,第三處理區段118藉由第二聯結器116耦接至第二處理區段112。可為線性部件的第三處理區段118冷卻混合物。第三處理區段118可為管狀,且可由導熱材料形成,該導熱材料耐受自第二處理區段112形成的混合物之高溫。可使用耐熱金屬,諸如,耐火金屬鎢、鉬、鈦、鉻、鎳、鈷及上述之混合物及合金。亦可使用耐熱氧化物,諸如,氧化鋁。碳(如四面體碳或石墨碳)亦可用作耐火材料且可與在混合物或合金中之其他耐火材料組合。可使用 的其他有用高溫金屬合金包括(但不限於)合格的各種赫史特合金(Hastelloy)、科伐合金(Kovar)、英高鎳合金(Inconel)及莫內爾合金(Monel)。 As noted above, the reaction typically reaches between about 800 ° C and about 1,500 ° C near the exit end of the second treatment zone 112 (such as between about 900 ° C and about 1,200 ° C, for example, about 1,000 ° C). The temperature in which the flowing mixture mainly contains particles of the battery active material, exhaust gas, and inert gas. The hot mixture enters a third processing section 118 that is coupled to the second processing section 112 by a second coupler 116. The mixture can be cooled for the third processing section 118 of the linear component. The third treatment section 118 can be tubular and can be formed from a thermally conductive material that is resistant to the high temperatures of the mixture formed from the second treatment section 112. Heat resistant metals such as refractory metal tungsten, molybdenum, titanium, chromium, nickel, cobalt, and mixtures and alloys thereof may be used. A refractory oxide such as alumina can also be used. Carbon (such as tetrahedral carbon or graphitic carbon) can also be used as a refractory material and can be combined with other refractory materials in a mixture or alloy. be usable Other useful high temperature metal alloys include, but are not limited to, a variety of qualified Hastelloys, Kovars, Inconels, and Monel.

將冷卻介質應用於第三處理區段118之外表面,以移除藉由第三處理區段118之壁傳導的熱量。冷卻介質可為流經外表面的氣體,或可應用具有冷卻流體之冷卻夾套。或者,冷卻介質可流經設置於第三處理區段118內部的一或更多管子,以使得熱氣及電池活性微粒流經冷卻管子,且當冷卻介質流經冷卻管子時,冷卻介質吸收熱量。在一個態樣中,第三處理區段118可用以藉由在環境溫度下使前驅物混合物流經設置於第三處理區段118周圍的冷卻夾套,來在該前驅物混合物流動至第一處理區段106中之前預加熱該前驅物混合物。以此方式,裝置100可為熱整合式的。或者,可使用於第三處理區段118中之任何其他冷卻介質(例如)經由熱量整合線180流動至第一處理區段之加熱元件108,以加熱前驅物材料。 A cooling medium is applied to the outer surface of the third processing section 118 to remove heat conducted by the walls of the third processing section 118. The cooling medium can be a gas flowing through the outer surface, or a cooling jacket with a cooling fluid can be applied. Alternatively, the cooling medium can flow through one or more tubes disposed within the third processing section 118 such that hot gases and battery active particles flow through the cooling tubes, and the cooling medium absorbs heat as the cooling medium flows through the cooling tubes. In one aspect, the third processing section 118 can be used to flow the precursor mixture to the first by flowing the precursor mixture through a cooling jacket disposed about the third processing section 118 at ambient temperature. The precursor mixture is preheated prior to treatment section 106. In this manner, device 100 can be thermally integrated. Alternatively, any other cooling medium used in the third processing section 118 can be flowed, for example, via the heat integration line 180 to the heating element 108 of the first processing section to heat the precursor material.

乾燥氣源126可流體地耦接至第三處理區段118中,以在混合物冷卻時控制混合物之濕度。水可在反應中形成或可自前驅物混合物保留。冷凝水可導致電池活性微粒聚結,因此可在第三處理區段118中添加乾燥氣體,以控制濕度且避免接近露點。可提供濕度感測器134,以監控濕度。其他氣源可在需要時類似地耦接至第三處理區段118,以將塗覆劑供應至第三處理區段118。 Dry gas source 126 can be fluidly coupled into third processing section 118 to control the humidity of the mixture as it cools. Water may be formed in the reaction or may be retained from the precursor mixture. The condensed water can cause the battery active particles to coalesce, so a dry gas can be added to the third treatment section 118 to control the humidity and avoid approaching the dew point. A humidity sensor 134 can be provided to monitor the humidity. Other gas sources may be similarly coupled to the third processing section 118 as needed to supply the coating agent to the third processing section 118.

控制閥132可設置於第三處理區段118中,以控制系統上的背壓。控制背壓幫助維持穿過各個處理區段的流動特性,以使得所要質量及能量傳輸性質得以維持。可使用壓力感測器130在沿著裝置100的一或更多個點處監控壓力。亦可藉由調整在任何位置處(諸如,第一處理區段106之入口處)或經由開口162中之任何開口162流動至系統中的載氣之壓力來控制壓力。調整系統中的壓力影響液滴及微粒之滯留時間,此影響接著又影響前驅物轉化成最終產物。 A control valve 132 can be disposed in the third processing section 118 to control back pressure on the system. Controlling the back pressure helps maintain flow characteristics across the various treatment sections such that the desired mass and energy transfer properties are maintained. Pressure sensor 130 can be used to monitor pressure at one or more points along device 100. The pressure can also be controlled by adjusting the pressure of the carrier gas flowing into the system at any location, such as at the inlet of the first processing section 106 or via any opening 162 in the opening 162. Adjusting the pressure in the system affects the residence time of the droplets and particles, which in turn affects the conversion of the precursor to the final product.

第1C圖為可用於聯結器110、116及120的聯結器實施例之詳細視圖。第1C圖中所示聯結器實施例係針對第一聯結器110。兩個區段之間,在此實施例中為第一處理區段106與第二處理區段112之間的接合處156由第一聯結器110覆蓋。第一聯結器110具有密封墊154及夾具152。夾具152通常為金屬且可為任何類型之可調夾具。密封墊154可針對不同聯結器而為不同材料。對相對低溫工作(諸如,第一聯結器110及第三聯結器120),柔性材料(諸如,橡膠或塑膠)可用作密封墊154。對高溫工作(諸如,第二聯結器116),使用耐熱材料(諸如,高溫金屬合金或玻璃纖維)。金屬合金可選定為在操作溫度下軟化至一定程度,以改良高溫密封墊154之密封功能。 FIG. 1C is a detailed view of a coupler embodiment that can be used with the couplers 110, 116, and 120. The coupler embodiment shown in Figure 1C is directed to the first coupler 110. Between the two sections, the joint 156 between the first processing section 106 and the second processing section 112 in this embodiment is covered by the first coupler 110. The first coupler 110 has a gasket 154 and a clamp 152. Clamp 152 is typically metal and can be any type of adjustable clamp. The gasket 154 can be a different material for different couplers. For relatively low temperature operation, such as first coupler 110 and third coupler 120, a flexible material such as rubber or plastic can be used as the gasket 154. For high temperature operation (such as the second coupler 116), a heat resistant material such as a high temperature metal alloy or fiberglass is used. The metal alloy can be selected to soften to a certain extent at the operating temperature to improve the sealing function of the high temperature gasket 154.

再次參閱第1A圖,在收集器122中收集經冷卻電池活性微粒。收集器122可為任何微粒收集器,諸如,旋 風分離器或其他離心收集器、靜電收集器或過濾型收集器。可自收集器移除經冷卻電池活性粉末,以傳輸至分散設備用於封裝基板或塗敷於基板。或者,可藉由重力或螺旋式進給機將電池活性粉末直接自收集器饋送至分散設備。在一些實施例中,分散設備可為噴霧器,且分散設備可將黏合劑材料與粉末組合,以牢靠塗敷於基板。 Referring again to Figure 1A, the cooled battery active particles are collected in a collector 122. Collector 122 can be any particulate collector, such as, Air separator or other centrifugal collector, electrostatic collector or filter type collector. The cooled battery active powder can be removed from the collector for transport to a dispersing device for packaging the substrate or for coating onto the substrate. Alternatively, the battery active powder can be fed directly from the collector to the dispersing device by gravity or a screw feeder. In some embodiments, the dispersing device can be a nebulizer, and the dispersing device can combine the binder material with the powder to securely apply to the substrate.

視需要的第四處理區段174可包括在第二處理區段112與第三處理區段118之間,以使電池活性微粒退火或煅燒電池活性微粒。在一些情況下,使電池活性微粒退火可藉由完全轉化成最有用的化學成份、移除微粒中剩餘的任何雜質及藉由自微粒之晶格移除缺陷,來改良微粒之電氣性質。退火亦促進均勻粒度及形態分佈,該均勻粒度及形態分佈提升微粒之封裝密度及由微粒製成的電池材料之能量密度。 An optional fourth processing section 174 can be included between the second processing section 112 and the third processing section 118 to anneal or calcine the battery active particles. In some cases, annealing the battery active particles can improve the electrical properties of the particles by completely converting to the most useful chemical composition, removing any impurities remaining in the particles, and removing defects from the crystal lattice of the particles. Annealing also promotes uniform particle size and morphology distribution, which increases the packing density of the particles and the energy density of the cell material made from the particles.

第四處理區段174可為流體化床緩冷器,在該流體化床緩冷器中,使氣體在約800℃與約1,200℃之間的溫度下流經粉末。熱量可由壁加熱或內部熱交換器或熱源施加,或氣體可為熱氣。或者,第四處理區段可為流入式緩冷器,在該流入式緩冷器中,微粒在流經第四處理區段174時在約800℃與約1,200℃之間的溫度下經歷滯留時間。 The fourth treatment section 174 can be a fluidized bed chiller in which the gas is passed through the powder at a temperature between about 800 ° C and about 1,200 ° C. The heat may be applied by wall heating or an internal heat exchanger or heat source, or the gas may be hot gas. Alternatively, the fourth treatment section may be an inflow chiller in which the particles undergo a residence at a temperature between about 800 ° C and about 1,200 ° C as they flow through the fourth treatment section 174 time.

可使用控制器124控制裝置100,控制器124可包括電腦系統。控制器124可自上文描述之各種感測器獲取輸入資料,且控制器124可調整第一處理區段106及第 二處理區段112之加熱元件108及114的加熱,以控制反應。在一些情況下,可能希望相對緩慢地乾燥前驅物材料來形成中間材料,以在第二處理區段112中形成較高敲緊密度材料。在相對低溫下在第一處理區段106中促進均勻的成核亦可促進在第二處理區段112中形成固體球狀微粒。因此,沿著第一處理區段106及第二處理區段112控制溫度及滯留時間允許相對精確地控制粒度、組成及形態,此精確控制通常有益於最終電池活性產物。 The device 100 can be controlled using a controller 124, which can include a computer system. The controller 124 can obtain input data from various sensors described above, and the controller 124 can adjust the first processing section 106 and the The heating of the heating elements 108 and 114 of the two processing sections 112 controls the reaction. In some cases, it may be desirable to dry the precursor material relatively slowly to form an intermediate material to form a higher knock tightness material in the second processing section 112. Promoting uniform nucleation in the first treatment zone 106 at relatively low temperatures may also facilitate the formation of solid spherical particles in the second treatment zone 112. Thus, controlling temperature and residence time along first processing section 106 and second processing section 112 allows for relatively precise control of particle size, composition, and morphology, which is generally beneficial to the final battery active product.

第1A圖至第1C圖中所示實施例的特徵在於用於產生微粒之單列裝置,但其他實施例可具有變化。舉例而言,可自單一前驅物源系統平行饋送多個此等列。第二處理區段112中之多個第二處理區段112可平行操作、可藉由單一第一處理區段106或多個第一處理區段106饋送且可饋送一或更多個第三處理區段118。 The embodiment shown in Figures 1A through 1C is characterized by a single row of means for generating particles, although other embodiments may have variations. For example, a plurality of such columns can be fed in parallel from a single precursor source system. The plurality of second processing sections 112 of the second processing section 112 can operate in parallel, can be fed by a single first processing section 106 or a plurality of first processing sections 106, and can feed one or more third Processing section 118.

多個收集器122亦可用以改良收集效率。舉例而言,可串聯操作若干旋風分離器,以改良非常小的微粒之收集。此外,來自收集器122的廢氣可藉由燃燒、洗滌、過濾、催化轉化或上述之任何組合來矯正,以在釋放該廢氣之前移除不良的氣體物種(諸如,氮氧化物、一氧化碳乃至二氧化碳(在需要時))及來自該廢氣的固體。 Multiple collectors 122 can also be used to improve collection efficiency. For example, several cyclones can be operated in series to improve the collection of very small particles. Additionally, the exhaust from the collector 122 can be corrected by combustion, washing, filtration, catalytic conversion, or any combination of the above to remove undesirable gaseous species (such as nitrogen oxides, carbon monoxide or even carbon dioxide) prior to releasing the exhaust. When needed)) and solids from the exhaust gas.

可將系統縮放至任何合理尺寸。各個處理區段106、112及118在第1A圖中圖示為具有不同直徑,但該等直徑可相同。此外,設想直徑高達100 cm(1 m)且長度高 達50 m之第二處理區段112。此外,系統可水平地、垂直地或以水平與垂直之間的任何定向來定向。 The system can be scaled to any reasonable size. Each of the processing sections 106, 112, and 118 is illustrated in Figure 1A as having a different diameter, but the diameters may be the same. In addition, it is assumed that the diameter is up to 100 cm (1 m) and the length is high. A second processing section 112 of up to 50 m. Moreover, the system can be oriented horizontally, vertically, or in any orientation between horizontal and vertical.

第2圖為概述根據至少一個實施例之方法200的流程圖。方法200可用於形成電池活性材料,且方法200可用上文結合第1A圖至第1C圖描述之裝置100的實施例來實踐。 FIG. 2 is a flow chart summarizing a method 200 in accordance with at least one embodiment. Method 200 can be used to form a battery active material, and method 200 can be practiced with the embodiment of apparatus 100 described above in connection with Figures 1A-1C.

在202處,如前所述,形成經分散金屬離子之前驅物混合物。金屬鹽通常在個別容器中分散或溶解於液體載體中且隨後(例如)藉由經由質量流量計流動至攪拌器而以特定量摻合,以形成前驅物混合物。亦可添加前述添加劑中之任何添加劑。混合可藉由主動混合(諸如,在槽中攪拌)、藉由用混合泵抽出或藉由靜態連線攪拌器執行。 At 202, a dispersed metal ion precursor mixture is formed as previously described. The metal salt is typically dispersed or dissolved in a liquid carrier in a separate container and subsequently blended in a specific amount, for example, by flowing through a mass flow meter to a stirrer to form a precursor mixture. Any of the foregoing additives may also be added. Mixing can be performed by active mixing (such as stirring in a tank), by extraction with a mixing pump, or by a static line agitator.

在212處,前驅物混合物分散至液滴之氣溶膠中。分散可藉由上文結合以上第1A圖至第1C圖描述之分散部件中之任何分散部件執行,其中液滴尺寸及尺寸分佈隨同上述給出。分散部件將前驅物混合物分割成液滴,可將該等液滴與其他反應物及能量緊密接觸,以形成均勻成份的電池活性微粒。為實現均勻的液滴尺寸,可使用前述之單分散液滴產生器。液滴的直徑通常小於約500 μm。在一些實施例中,單分散液滴產生器產生直徑介於約100 μm與約200 μm之間(例如,約150 μm)的液滴。在其他實施例中,單分散液滴產生器產生直徑介於約10 μm與約100 μm之間(例如,約30 μm)的液滴。在又 其他實施例中,單分散液滴產生器產生直徑介於約5 μm與約15 μm之間(例如,約10 μm)的液滴。液滴尺寸之標準偏差通常小於約50%,諸如,約5%。 At 212, the precursor mixture is dispersed into the aerosol of the droplets. Dispersion can be performed by any of the discrete components described above in connection with Figures 1A through 1C above, wherein the droplet size and size distribution are given as described above. The dispersing member divides the precursor mixture into droplets which can be brought into intimate contact with other reactants and energy to form a uniform composition of battery active particles. To achieve a uniform droplet size, the aforementioned monodisperse droplet generator can be used. The diameter of the droplets is typically less than about 500 μm. In some embodiments, the monodisperse droplet generator produces droplets having a diameter between about 100 μιη and about 200 μιη (eg, about 150 μιη). In other embodiments, the monodisperse droplet generator produces droplets having a diameter between about 10 [mu]m and about 100 [mu]m (eg, about 30 [mu]m). In again In other embodiments, the monodisperse droplet generator produces droplets having a diameter between about 5 [mu]m and about 15 [mu]m (e.g., about 10 [mu]m). The standard deviation of droplet size is typically less than about 50%, such as about 5%.

在204處,使前驅物混合物流經複數個加熱區域,以形成中間材料。加熱區域蒸發來自前驅物混合物的液體且使來自前驅物混合物的微粒成核,以形成中間材料。中間材料可為乾燥粉末、潮濕粉末或微粒在液體中之懸浮液。微粒可為經沉澱的金屬鹽,或可藉由併入除金屬鹽中的氧之外或代替金屬鹽中的氧的氧氣,來將微粒部分地轉化成電池活性材料。在一些情況下,金屬鹽可在加熱區域中部分地分解,以開始轉化反應。流經加熱區域的材料之溫度自環境溫度或高溫(若材料用於冷卻以提升熱量集中)增加至反應臨限溫度,該反應臨限溫度通常小於約500℃,諸如,介於約300℃與約450℃之間,例如,介於約350℃與約400℃之間。在需要時可藉由獨立受控熱源來為加熱區域供給能量,以用於溫度分佈之改良控制。 At 204, the precursor mixture is passed through a plurality of heated zones to form an intermediate material. The heated zone evaporates the liquid from the precursor mixture and nucleates the particles from the precursor mixture to form an intermediate material. The intermediate material can be a dry powder, a moist powder or a suspension of particles in a liquid. The microparticles may be precipitated metal salts, or may be partially converted into a battery active material by incorporating oxygen in addition to or in place of oxygen in the metal salt. In some cases, the metal salt may be partially decomposed in the heated zone to initiate the conversion reaction. The temperature of the material flowing through the heated zone is increased from ambient temperature or elevated temperature (if the material is used for cooling to increase heat concentration) to the reaction threshold temperature, which is typically less than about 500 ° C, such as between about 300 ° C and Between about 450 ° C, for example, between about 350 ° C and about 400 ° C. The heated zone can be energized by an independently controlled heat source as needed for improved control of the temperature profile.

在206處,使中間材料流經複數個反應區域,以形成電池活性微粒。中間材料之溫度自反應臨限溫度增加至反應溫度,該反應溫度介於約800℃與約2,000℃之間,諸如,介於約900℃與約1,600℃之間,諸如,介於約1,000℃與約1,200℃之間,例如,約1,100℃。金屬鹽之陰離子分解,從而釋放活性氧物種、氮物種及類似物。氣相的氧可與金屬離子及含碳物種反應,從而釋放維持 反應之能量。可使用諸如電阻式夾套之加熱元件或熱空氣向反應區域增加熱量。或者或此外,諸如尿素、甘胺酸及/或烴類的燃料之燃燒可用以維持反應溫度。此外諸如尿素、甘胺酸及氨氣之化合物與金屬離子配位,以促進形成電池活性金屬氧基質。 At 206, the intermediate material is passed through a plurality of reaction zones to form battery active particles. The temperature of the intermediate material increases from the reaction threshold temperature to a reaction temperature between about 800 ° C and about 2,000 ° C, such as between about 900 ° C and about 1,600 ° C, such as between about 1,000 ° C. Between about 1,200 ° C, for example, about 1,100 ° C. The anion of the metal salt decomposes, releasing active oxygen species, nitrogen species, and the like. Gas in the gas phase reacts with metal ions and carbon-containing species to release The energy of the reaction. Heat can be added to the reaction zone using a heating element such as a resistive jacket or hot air. Alternatively or additionally, combustion of a fuel such as urea, glycine and/or hydrocarbons may be used to maintain the reaction temperature. In addition, compounds such as urea, glycine, and ammonia coordinate with metal ions to promote the formation of a battery active metal oxyloster.

氧氣用以將中間材料轉化成電池活性材料。氧可與前驅物混合物之液滴一起添加,以幫助維持液滴之分隔,如上文結合第1B圖所述。可將氧氣與惰性氣體混合或與諸如烴類燃料之反應性氣體混合。反應性氣體可向將中間材料轉化成電池活性材料的反應提供額外能量,且反應性氣體可向混合物提供過量的碳。亦可使氣體在液滴周邊周圍流動,以防止任何液滴與壁或製程裝備碰撞。 Oxygen is used to convert the intermediate material into a battery active material. Oxygen can be added with the droplets of the precursor mixture to help maintain the separation of the droplets as described above in connection with Figure 1B. Oxygen may be mixed with an inert gas or with a reactive gas such as a hydrocarbon fuel. The reactive gas can provide additional energy to the reaction of converting the intermediate material into a battery active material, and the reactive gas can provide excess carbon to the mixture. It is also possible to have a gas flow around the periphery of the droplet to prevent any droplets from colliding with the wall or process equipment.

可藉由將外部熱源(諸如,電阻式電氣加熱器)應用於反應區域、藉由向反應遞增添加能量釋放化合物(諸如,燃料)或藉由向反應混合物添加冷卻氣體,來控制反應溫度。 The reaction temperature can be controlled by applying an external heat source such as a resistive electric heater to the reaction zone, by adding an energy releasing compound such as a fuel to the reaction, or by adding a cooling gas to the reaction mixture.

在210處使微粒流動至冷卻器中。冷卻器吸收熱量及將熱量輻射掉。可藉由傳導性製程,諸如,應用冷卻夾套或使冷卻介質流動,例如,藉由吹入空氣或使冷卻流體流經冷卻器,來促進冷卻。如上文描述,水可能以離開反應區域的氣相存在,因此在冷卻製程期間可能需要濕度控制,以防止微粒聚結。 The particles are flowed into the cooler at 210. The cooler absorbs heat and radiates heat. Cooling may be facilitated by a conductive process, such as applying a cooling jacket or flowing a cooling medium, for example, by blowing air or flowing a cooling fluid through the cooler. As described above, water may be present in the gas phase leaving the reaction zone, so humidity control may be required during the cooling process to prevent particle coalescence.

可視需要藉由在冷卻之前或者在冷卻之後將微粒保持在介於約800℃與約1,500℃之間(諸如,介於約900℃ 與約1,150℃之間,例如,約1,000℃、1,050℃或1,100℃)的中間溫度下達滯留時間2分鐘至120分鐘,來使微粒退火或煅燒。在一個實施例中,可藉由使熱氣流經流體化床設備中的微粒來完成退火。微粒亦可在需要時塗覆有陶瓷塗層,以改良效能。 It may be desirable to maintain the particles between about 800 ° C and about 1,500 ° C (such as between about 900 ° C) before or after cooling. The residence time is 2 minutes to 120 minutes at an intermediate temperature of between about 1,150 ° C, for example, about 1,000 ° C, 1,050 ° C, or 1,100 ° C to anneal or calcine the particles. In one embodiment, the annealing can be accomplished by passing a stream of hot gas through the particles in the fluidized bed apparatus. The particles can also be coated with a ceramic coating as needed to improve performance.

在212處,收集電池活性微粒。收集可藉由任何便利的手段,諸如,靜電手段或密度手段,例如,藉由離心收集器或旋風分離器。或者,可藉由噴霧、擠壓或展布將電池活性微粒直接塗敷於基板,在一些情況下,該等電池活性微粒與黏合劑材料(諸如,橡膠或其他聚合物)摻合。使用本文描述之裝置及方法製造的微粒具有可適合於改良電池電極之壓縮密度的形態及尺寸及形態及尺寸的分佈,改良電池電極之壓縮密度可為電池提供經改良能量密度。 At 212, battery active particles are collected. Collection can be by any convenient means such as electrostatic means or density means, for example by means of a centrifugal collector or cyclone. Alternatively, the battery active particles can be applied directly to the substrate by spraying, extruding or spreading, and in some cases, the battery active particles are blended with a binder material such as rubber or other polymer. The microparticles produced using the apparatus and methods described herein have a distribution that is suitable for improving the compression density of the battery electrode and the size and morphology and size. Improving the compression density of the battery electrode provides an improved energy density for the cell.

可根據本文描述之方法及裝置製造的材料包括金屬氧化物(包括鋰)、其他金屬及氧氣。稱為NMC材料的材料通常具有元素式LiwNixMnyCozO2,其中w為自1至1.5的數值(諸如,介於1與1.2之間),且x、y及z為可相同或不同的介於0與1之間的每一數值。材料被製成粉末,該粉末包括具有選定尺寸分佈及形態分佈的微粒,該尺寸分佈及該形態分佈中之每一者可按需要為寬的或窄的。由尺寸類似且實質上無聚結的微粒製成的粉末可藉由使由上文描述的燃燒合成反應形成的微粒退火來製造,且該粉末描述為單一形態粉末。微粒的平均直 徑通常小於約50 μm,諸如,介於約0.1 μm與約20 μm之間,例如,約5 μm。此等材料在電池應用中具有優點,因為與其他粉末相比,該等材料可封裝得更緊密。 Materials that can be made according to the methods and apparatus described herein include metal oxides (including lithium), other metals, and oxygen. A material referred to as an NMC material typically has the elemental formula Li w Ni x Mn y Co z O 2 , where w is a value from 1 to 1.5 (such as between 1 and 1.2), and x, y, and z are The same or different values between 0 and 1. The material is formed into a powder comprising particles having a selected size distribution and morphological distribution, each of which may be broad or narrow as desired. A powder made of particles of similar size and substantially free of coalescence can be produced by annealing the particles formed by the combustion synthesis reaction described above, and the powder is described as a single form powder. The average diameter of the microparticles is typically less than about 50 μm, such as between about 0.1 μm and about 20 μm, for example, about 5 μm. These materials have advantages in battery applications because they can be packaged more tightly than other powders.

第3圖為圖示根據第2圖中描述的方法製造的材料之x射線繞射資料的曲線圖300。第1A圖至第1C圖之裝置可用以製造此材料。302處的曲線為藉由習知製程製造的鋰鎳錳鈷氧化物材料的資料,且304處的曲線為根據本文描述之方法及裝置製造的NMC333材料(LiNi0.33Mn0.33Co0.33O2)的資料。NMC333材料有時亦稱為NMC111。第3圖之資料指示習知地製造的NMC333與根據本文描述之製程及裝置製造的NMC333之間的類似晶體結構。 Figure 3 is a graph 300 illustrating x-ray diffraction data for a material fabricated in accordance with the method described in Figure 2. Devices of Figures 1A through 1C can be used to make this material. The curve at 302 is the material of the lithium nickel manganese cobalt oxide material produced by the conventional process, and the curve at 304 is the NMC333 material (LiNi 0.33 Mn 0.33 Co 0.33 O 2 ) manufactured according to the method and apparatus described herein. data. The NMC333 material is sometimes referred to as the NMC111. The data in Figure 3 indicates a similar crystal structure between a conventionally fabricated NMC 333 and NMC 333 fabricated in accordance with the processes and devices described herein.

第4圖為圖示根據第2圖之方法製造的材料之第一循環充電/放電分佈的曲線圖400。第1A圖至第1C圖之裝置可用以製造此材料。曲線406表示習知地製造的NMC333材料之充電及放電,且曲線408表示根據本文描述之方法及裝置製造的NMC333材料之充電及放電分佈。軸402為電壓,且軸404為以mAh/g計的比容量。對於91.0%之循環效率而言,NMC333材料的比充電容量為177.6 mAh/g且比放電容量為161.6 mAh/g,而對於88.4%之循環效率而言,習知地製造的NMC333的比充電容量為174.6 mAh/g且比放電容量為154.3 mAh/g。因此,與習知地製造的NMC333材料相比,根據本文描述之方法及裝置製造的NMC333材料具有更高比充電容量 及比放電容量及更佳循環效率。 Figure 4 is a graph 400 illustrating a first cyclic charge/discharge profile of a material fabricated according to the method of Figure 2. Devices of Figures 1A through 1C can be used to make this material. Curve 406 represents the charging and discharging of a conventionally fabricated NMC 333 material, and curve 408 represents the charge and discharge distribution of the NMC 333 material fabricated in accordance with the methods and apparatus described herein. The shaft 402 is a voltage and the shaft 404 is a specific capacity in mAh/g. For a cycle efficiency of 91.0%, the specific charge capacity of the NMC333 material is 177.6 mAh/g and the specific discharge capacity is 161.6 mAh/g, while for a cycle efficiency of 88.4%, the specific charge capacity of the conventionally manufactured NMC333 It is 174.6 mAh/g and has a specific discharge capacity of 154.3 mAh/g. Thus, the NMC333 material fabricated according to the methods and apparatus described herein has a higher specific charge capacity than the conventionally fabricated NMC333 material. And specific discharge capacity and better cycle efficiency.

第5圖為圖示根據第2圖之方法製造的材料之功率效能的曲線圖500。第1A圖至第1C圖之裝置可用以製造此材料。曲線506圖示習知地製造的NMC333材料之比放電容量隨著循環速率(c-rate)增加的下降。軸502為以mAh/g計的比放電容量,且軸504為對數刻度上的循環速率。曲線508圖示根據本文描述之方法及裝置製造的NMC333材料之比放電容量之下降。與習知地製造的NMC333材料相比,NMC333維持所測試的所有循環速率下的更高比放電容量且顯示較高循環速率下的實質上更佳效能。 Figure 5 is a graph 500 illustrating the power performance of a material made according to the method of Figure 2. Devices of Figures 1A through 1C can be used to make this material. Curve 506 illustrates the decrease in specific discharge capacity of a conventionally fabricated NMC 333 material as a function of cycle rate (c-rate). Axis 502 is the specific discharge capacity in mAh/g, and axis 504 is the cycle rate on a logarithmic scale. Curve 508 illustrates the decrease in specific discharge capacity of the NMC 333 material fabricated in accordance with the methods and apparatus described herein. NMC333 maintains a higher specific discharge capacity at all of the cycle rates tested and exhibits substantially better performance at higher cycle rates than conventionally fabricated NMC333 materials.

第6圖為圖示曲線圖600上習知地製造的NMC333材料及曲線圖650上根據本文描述之方法及裝置製造的NMC333材料之比較效能的比較曲線圖。對於每一曲線圖而言,軸602為電壓,且軸604為以mAh/g計的比容量。由每一充電/放電曲線封閉的區域表示在充電/放電循環期間損失的能量。曲線圖600上的曲線608圖示在50次循環之後習知地製造的NMC333材料之充電/放電分佈。曲線圖650上的可比較曲線(即曲線652)圖示在50次充電循環之後NMC333材料之充電/放電循環。比較兩個曲線顯示,與習知地製造的NMC333材料相比,在充電/放電循環期間NMC333材料損失更少能量。曲線圖600上的曲線606圖示循環2處習知地製造的NMC333材料之充電/放電分佈。NMC333材料之可比較 曲線654又圖示在循環期間較少能量損失。第6圖之曲線圖600及曲線圖650表明,與習知地製造的NMC333材料相比,根據本文描述之方法及裝置製造的NMC333材料具有更佳能量效率。 Figure 6 is a graph comparing the comparative performance of a conventionally fabricated NMC333 material on graph 600 and a NMC333 material fabricated on a graph 650 in accordance with the methods and apparatus described herein. For each graph, axis 602 is the voltage and shaft 604 is the specific capacity in mAh/g. The area enclosed by each charge/discharge curve represents the energy lost during the charge/discharge cycle. Curve 608 on graph 600 illustrates the charge/discharge profile of a conventionally fabricated NMC333 material after 50 cycles. The comparable curve on curve 650 (ie, curve 652) illustrates the charge/discharge cycle of the NMC 333 material after 50 charge cycles. Comparing the two curves shows that the NMC333 material loses less energy during the charge/discharge cycle than the conventionally fabricated NMC333 material. Curve 606 on graph 600 illustrates the charge/discharge profile of a conventionally fabricated NMC 333 material at cycle 2. Comparable NMC333 materials Curve 654 again illustrates less energy loss during the cycle. Graph 600 and graph 650 of Figure 6 demonstrate that NMC333 materials made according to the methods and apparatus described herein have better energy efficiency than conventionally fabricated NMC333 materials.

第7A圖為圖示根據本文描述之方法及裝置製造的NCA材料(LiNi0.8Co0.15Al0.05O2)之x射線繞射資料的曲線圖700。第7B圖為圖示第7A圖之材料之充電/放電分佈的曲線圖750。軸752為電壓,且軸754為以mAh/g計的比容量。結晶度及充電效能為特性。對於87%之庫侖效率而言,曲線圖750中NCA材料之充電容量為199 mAh/g,且放電容量為173 mAh/g。 Figure 7A is a graph 700 illustrating x-ray diffraction data for an NCA material (LiNi 0.8 Co 0.15 Al 0.05 O 2 ) fabricated in accordance with the methods and apparatus described herein. Figure 7B is a graph 750 illustrating the charge/discharge profile of the material of Figure 7A. Shaft 752 is a voltage and shaft 754 is a specific capacity in mAh/g. Crystallinity and charging performance are characteristics. For 87% coulombic efficiency, the NCA material in plot 750 has a charge capacity of 199 mAh/g and a discharge capacity of 173 mAh/g.

除上文NMC333材料之外,已由發明者使用本文描述之方法及裝置製造的其他材料包括xLiMnO3.(1-x)NMC333、NCA、NMC442、NMC532、NMC992、NMC550(無鈷)及LiNi0.5Mn1.5O2(高電壓尖晶石)。 In addition to the above NMC333 material, using methods described by the inventors herein and the apparatus for manufacturing of other materials include xLiMnO 3. (1-x) NMC333, NCA, NMC442, NMC532, NMC992, NMC550 (cobalt free) and LiNi 0.5 Mn 1.5 O 2 (high voltage spinel).

儘管上文係針對本發明之實施例,但在不脫離本發明之基本範疇的情況下可設計本發明之其他及另外的實施例。 While the above is directed to embodiments of the present invention, other and additional embodiments of the invention can be devised without departing from the basic scope of the invention.

100‧‧‧裝置 100‧‧‧ device

104‧‧‧分散部件 104‧‧‧Distributed parts

106‧‧‧第一處理區段 106‧‧‧First Processing Section

108‧‧‧加熱元件 108‧‧‧heating elements

110‧‧‧第一聯結器 110‧‧‧First coupling

112‧‧‧第二處理區段 112‧‧‧Second treatment section

114‧‧‧加熱元件 114‧‧‧heating elements

116‧‧‧第二聯結器 116‧‧‧Second coupling

118‧‧‧第三處理區段 118‧‧‧ Third treatment section

120‧‧‧第三聯結器 120‧‧‧3rd coupler

122‧‧‧收集器 122‧‧‧ Collector

124‧‧‧控制器 124‧‧‧ Controller

126‧‧‧乾燥氣源 126‧‧‧dry gas source

128‧‧‧溫度感測器 128‧‧‧temperature sensor

130‧‧‧壓力感測器 130‧‧‧pressure sensor

132‧‧‧控制閥 132‧‧‧Control valve

134‧‧‧濕度感測器 134‧‧‧Humidity sensor

136‧‧‧單分散液滴產生器 136‧‧‧Single Dispersed Droplet Generator

138‧‧‧環形通道 138‧‧‧Circular channel

140‧‧‧環形配氣室 140‧‧‧Ring air distribution room

142‧‧‧氣源 142‧‧‧ gas source

144‧‧‧導管 144‧‧‧ catheter

146‧‧‧環形區域 146‧‧‧ring area

150‧‧‧環形開口 150‧‧‧Circular opening

152‧‧‧夾具 152‧‧‧ fixture

154‧‧‧密封墊 154‧‧‧ Seal

156‧‧‧接合處 156‧‧‧ joints

158‧‧‧氣源 158‧‧‧ gas source

160‧‧‧導管 160‧‧‧ catheter

162‧‧‧開口 162‧‧‧ openings

164‧‧‧內表面 164‧‧‧ inner surface

166‧‧‧箭頭 166‧‧‧ arrow

200‧‧‧方法 200‧‧‧ method

202‧‧‧步驟 202‧‧‧Steps

204‧‧‧步驟 204‧‧‧Steps

206‧‧‧步驟 206‧‧‧Steps

208‧‧‧步驟 208‧‧‧Steps

210‧‧‧步驟 210‧‧‧Steps

212‧‧‧步驟 212‧‧‧Steps

102‧‧‧前驅物源 102‧‧‧Precursor source

148‧‧‧禁區 148‧‧ ‧ restricted area

300‧‧‧曲線圖 300‧‧‧Curve

302‧‧‧曲線 302‧‧‧ Curve

304‧‧‧曲線 304‧‧‧ Curve

400‧‧‧曲線圖 400‧‧‧Chart

402‧‧‧軸 402‧‧‧Axis

404‧‧‧軸 404‧‧‧Axis

406‧‧‧曲線 406‧‧‧ Curve

408‧‧‧曲線 408‧‧‧ Curve

500‧‧‧曲線圖 500‧‧‧Curve

502‧‧‧軸 502‧‧‧Axis

504‧‧‧軸 504‧‧‧Axis

506‧‧‧曲線 506‧‧‧ Curve

508‧‧‧曲線 508‧‧‧ Curve

600‧‧‧曲線 600‧‧‧ curve

602‧‧‧軸 602‧‧‧Axis

604‧‧‧軸 604‧‧‧Axis

606‧‧‧曲線圖 606‧‧‧Graph

608‧‧‧曲線 608‧‧‧ Curve

650‧‧‧曲線圖 650‧‧‧Curve

652‧‧‧曲線 652‧‧‧ Curve

654‧‧‧曲線 654‧‧‧ Curve

700‧‧‧曲線圖 700‧‧‧Curve

750‧‧‧曲線圖 750‧‧‧Curve

752‧‧‧軸 752‧‧‧Axis

754‧‧‧軸 754‧‧‧Axis

因此,可詳細理解本發明之上述特徵結構之方式,即上文簡要概述之本發明之更特定描述可參照實施例進 行,一些實施例圖示於附加圖式中。然而,應注意,該等附加圖式僅圖示本發明之典型實施例,且因此不欲視為本發明之範疇之限制,因為本發明可允許其他同等有效之實施例。 Therefore, the above-described features of the present invention can be understood in detail, that is, a more specific description of the present invention briefly summarized above may be referred to the embodiments. In the drawings, some embodiments are illustrated in the additional figures. It is to be noted, however, that the appended drawings are only illustrative of exemplary embodiments of the invention, and are not intended to

第1A圖為根據一個實施例之裝置之示意性側視圖。 Figure 1A is a schematic side view of a device in accordance with one embodiment.

第1B圖為可與第1A圖之裝置一起使用的聯結器之詳細視圖。 Figure 1B is a detailed view of the coupler that can be used with the apparatus of Figure 1A.

第1C圖為可與第1A圖之裝置一起使用的另一聯結器之詳細視圖。 Figure 1C is a detailed view of another coupler that can be used with the apparatus of Figure 1A.

第2圖為概述根據至少一個實施例之方法的流程圖。 Figure 2 is a flow chart summarizing a method in accordance with at least one embodiment.

第3圖為圖示使用第2圖之方法製造的材料之x射線繞射資料的曲線圖。 Fig. 3 is a graph showing x-ray diffraction data of a material produced by the method of Fig. 2.

第4圖為圖示根據第2圖之方法製造的材料之第一循環充電/放電分佈的曲線圖。 Figure 4 is a graph illustrating the first cycle charge/discharge profile of a material fabricated according to the method of Figure 2.

第5圖為圖示根據第2圖之方法製造的材料之比容量相對循環速率的曲線圖。 Figure 5 is a graph illustrating the specific capacity versus cycle rate of materials made according to the method of Figure 2.

第6圖為圖示根據第2圖之方法製造的材料之能量效率的曲線圖。 Figure 6 is a graph illustrating the energy efficiency of a material produced according to the method of Figure 2.

第7A圖為圖示根據第2圖之方法製造的另一材料之x射線繞射資料的曲線圖。 Figure 7A is a graph illustrating x-ray diffraction data for another material made according to the method of Figure 2.

第7B圖為圖示第7A圖之材料之第一循環充電/放電分佈的曲線圖。 Figure 7B is a graph illustrating the first cycle charge/discharge profile of the material of Figure 7A.

為了促進理解,在可能情況下已使用相同元件符號以指定為諸圖所共有之相同元件。預期在一個實施例中所 揭示的元件可有利地用於其他實施例中,而無需特定敘述。 To promote understanding, the same element symbols have been used wherever possible to designate the same elements that are common to the figures. Expected in one embodiment The disclosed elements can be advantageously utilized in other embodiments without specific recitation.

100‧‧‧裝置 100‧‧‧ device

104‧‧‧分散部件 104‧‧‧Distributed parts

106‧‧‧第一處理區段 106‧‧‧First Processing Section

108‧‧‧加熱元件 108‧‧‧heating elements

110‧‧‧第一聯結器 110‧‧‧First coupling

112‧‧‧第二處理區段 112‧‧‧Second treatment section

114‧‧‧加熱元件 114‧‧‧heating elements

116‧‧‧第二聯結器 116‧‧‧Second coupling

118‧‧‧第三處理區段 118‧‧‧ Third treatment section

120‧‧‧第三聯結器 120‧‧‧3rd coupler

122‧‧‧收集器 122‧‧‧ Collector

124‧‧‧控制器 124‧‧‧ Controller

126‧‧‧乾燥氣源 126‧‧‧dry gas source

128‧‧‧溫度感測器 128‧‧‧temperature sensor

130‧‧‧壓力感測器 130‧‧‧pressure sensor

132‧‧‧控制閥 132‧‧‧Control valve

134‧‧‧濕度感測器 134‧‧‧Humidity sensor

142‧‧‧氣源 142‧‧‧ gas source

144‧‧‧導管 144‧‧‧ catheter

158‧‧‧氣源 158‧‧‧ gas source

160‧‧‧導管 160‧‧‧ catheter

162‧‧‧開口 162‧‧‧ openings

164‧‧‧內表面 164‧‧‧ inner surface

Claims (20)

一種用於形成一電池活性材料之裝置,該裝置包含:一前驅物入口;一線性加熱器,該線性加熱器耦接至該前驅物入口,該線性加熱器具有一第一複數個獨立受控的加熱區域;一線性轉化器,該線性轉化器耦接至該線性加熱器,該線性轉化器具有一第二複數個獨立受控的加熱區域;一微粒收集器,該微粒收集器耦接至該線性轉化器;一緩冷器,該緩冷器耦接至該線性轉化器;以及一熱量再循環管線,該熱量再循環管線耦接至該線性加熱器。 An apparatus for forming a battery active material, the apparatus comprising: a precursor inlet; a linear heater coupled to the precursor inlet, the linear heater having a first plurality of independently controlled a heating zone; a linear converter coupled to the linear heater, the linear converter having a second plurality of independently controlled heating zones; a particulate collector coupled to the linear a converter; a retarder coupled to the linear converter; and a heat recycling line coupled to the linear heater. 如請求項1所述之裝置,其中該線性轉化器由數個加熱元件圍繞。 The device of claim 1 wherein the linear converter is surrounded by a plurality of heating elements. 如請求項1所述之裝置,其中該前驅物入口藉由一液滴產生器耦接至該線性加熱器。 The device of claim 1, wherein the precursor inlet is coupled to the linear heater by a drop generator. 如請求項1所述之裝置,其中該線性加熱器及該線性轉化器由數個加熱元件圍繞。 The device of claim 1, wherein the linear heater and the linear converter are surrounded by a plurality of heating elements. 如請求項2所述之裝置,該裝置進一步包含耦接至該等加熱元件的一控制器。 The device of claim 2, the device further comprising a controller coupled to the heating elements. 如請求項3所述之裝置,其中該液滴產生器為單分散液滴產生器或半單分散液滴產生器。 The device of claim 3, wherein the droplet generator is a monodisperse droplet generator or a semi-monodisperse droplet generator. 如請求項4所述之裝置,其中該等加熱元件中之每一加熱元件為一電阻式加熱夾套。 The device of claim 4, wherein each of the heating elements is a resistive heating jacket. 如請求項1所述之裝置,其中該線性轉化器為一陶瓷圓柱形部件,其中該圓柱形部件之一長度與該圓柱形部件之一直徑的一比率至少為2。 The apparatus of claim 1, wherein the linear converter is a ceramic cylindrical member, wherein a ratio of a length of one of the cylindrical members to a diameter of one of the cylindrical members is at least two. 如請求項3所述之裝置,其中該液滴產生器為一壓電液滴產生器。 The device of claim 3, wherein the droplet generator is a piezoelectric droplet generator. 如請求項3所述之裝置,該裝置進一步包含一電池活性前驅物源,該電池活性前驅物源耦接至該液滴產生器。 The device of claim 3, further comprising a battery active precursor source coupled to the droplet generator. 如請求項1所述之裝置,其中該線性轉化器為一連續流動管狀反應器,該連續流動管狀反應器的長度與直徑之一比率至少為2。 The apparatus of claim 1 wherein the linear converter is a continuous flow tubular reactor having a ratio of length to diameter of at least two. 一種燃燒合成裝置,該燃燒合成裝置包含:一液滴產生器;一線性加熱器,該線性加熱器耦接至該液滴產生器;一線性反應器,該線性反應器耦接至該線性加熱器,該線性反應器具有設置於該線性反應器周圍的複數個加熱元件;一線性冷卻器,該線性冷卻器耦接至該線性反應器;以及一熱量再循環管線,該熱量再循環管線自該線性冷卻器至該線性加熱器。 A combustion synthesis device comprising: a droplet generator; a linear heater coupled to the droplet generator; a linear reactor coupled to the linear heater The linear reactor has a plurality of heating elements disposed around the linear reactor; a linear cooler coupled to the linear reactor; and a heat recycling line from the heat recycling line The linear cooler is to the linear heater. 如請求項12所述之燃燒合成裝置,該燃燒合成裝置進一步包含一液體前驅物源,該液體前驅物源耦接至該液滴產生器,其中該液滴產生器為單分散液滴產生器或半單分散液滴產生器。 The combustion synthesis device of claim 12, further comprising a liquid precursor source coupled to the droplet generator, wherein the droplet generator is a monodisperse droplet generator Or semi-monodispersed droplet generator. 如請求項12所述之燃燒合成裝置,該燃燒合成裝置進一步包含一控制器,該控制器獨立地耦接至該等加熱元件中之每一加熱元件。 The combustion synthesis device of claim 12, the combustion synthesis device further comprising a controller independently coupled to each of the heating elements. 如請求項12所述之燃燒合成裝置,其中該液滴產生器為一壓電液滴產生器。 The combustion synthesis device of claim 12, wherein the droplet generator is a piezoelectric droplet generator. 如請求項12所述之燃燒合成裝置,該燃燒合成裝置進一步包含一冷卻氣源,該冷卻氣源耦接至該線性冷卻器。 The combustion synthesis device of claim 12, further comprising a cooling gas source coupled to the linear cooler. 如請求項12所述之燃燒合成裝置,該燃燒合成裝置進一步包含一濕度感測器,該濕度感測器耦接至該線性冷卻器。 The combustion synthesis device of claim 12, the combustion synthesis device further comprising a humidity sensor coupled to the linear cooler. 一種用於形成一電池活性材料之裝置,該裝置包含:一前驅物入口;一線性乾燥器,該線性乾燥器的長度與直徑之一比率至少為約2;一單分散液滴產生器,該單分散液滴產生器耦接至該前驅物入口及該線性乾燥器;複數個加熱元件,該複數個加熱元件與該線性乾燥器圍繞接觸;一陶瓷線性反應器,該陶瓷線性反應器耦接至該線性乾燥器,該陶瓷線性反應器具有複數個加熱元件,該複數個加熱元件與該陶瓷線性反應器之一外壁圍繞接觸,該陶瓷線性反應器的長度與直徑之一比率至少為約2;一線性冷卻器,該線性冷卻器耦接至該陶瓷線性反應器;以及 一微粒收集器,該微粒收集器耦接至該線性冷卻器。 A device for forming a battery active material, the device comprising: a precursor inlet; a linear dryer having a ratio of length to diameter of at least about 2; a monodisperse droplet generator, a monodisperse droplet generator coupled to the precursor inlet and the linear dryer; a plurality of heating elements, the plurality of heating elements are in contact with the linear dryer; a ceramic linear reactor coupled to the ceramic linear reactor To the linear dryer, the ceramic linear reactor has a plurality of heating elements, the plurality of heating elements being in contact with an outer wall of one of the ceramic linear reactors, the ratio of the length to the diameter of the ceramic linear reactor being at least about 2 a linear cooler coupled to the ceramic linear reactor; A particulate collector coupled to the linear cooler. 一種形成一電池活性材料之方法,該方法包含以下步驟:向一液滴產生器提供包含鋰的金屬離子之一溶液;自該溶液產生液滴,該液滴尺寸偏離一平均值不多於約50%;藉由施加熱量來固化該等液滴,以形成前驅物微粒;使該等前驅物微粒與含氧陰離子反應以形成電池活性微粒;以及藉由使該等微粒退火,來調整該等電池活性微粒之該尺寸分佈及該形態分佈。 A method of forming a battery active material, the method comprising the steps of: providing a droplet generator with a solution of one of metal ions comprising lithium; generating droplets from the solution, the droplet size deviating from an average of no more than about 50%; curing the droplets by applying heat to form precursor particles; reacting the precursor particles with oxyanions to form battery active particles; and adjusting the particles by annealing the particles This size distribution of the battery active particles and the distribution of the morphology. 一種組合物,該組合物包含:具有元素式LiwNixMnyCozO2的微粒,其中w為介於1與1.5之間的一數值,且x、y及z為介於0與1之間的各自獨立的數值,其中該等微粒為實質上無聚結的。 A composition comprising: particles having the elemental formula Li w Ni x Mn y Co z O 2 , wherein w is a value between 1 and 1.5, and x, y, and z are between 0 and Separate values between 1 wherein the particles are substantially non-agglomerated.
TW101129214A 2011-08-12 2012-08-13 Particle synthesis apparatus and methods TWI616020B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161522920P 2011-08-12 2011-08-12
US61/522,920 2011-08-12
US13/572,047 2012-08-10
US13/572,047 US9070944B2 (en) 2011-08-12 2012-08-10 Particle synthesis apparatus and methods

Publications (2)

Publication Number Publication Date
TW201318256A TW201318256A (en) 2013-05-01
TWI616020B true TWI616020B (en) 2018-02-21

Family

ID=48872089

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101129214A TWI616020B (en) 2011-08-12 2012-08-13 Particle synthesis apparatus and methods

Country Status (1)

Country Link
TW (1) TWI616020B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3800740A (en) * 1972-12-14 1974-04-02 Int Nickel Co Apparatus for decomposition of metal carbonyls
US4749557A (en) * 1984-12-04 1988-06-07 General Motors Corporation Graphite fiber growth employing nuclei derived from iron pentacarbonyl
US4994107A (en) * 1986-07-09 1991-02-19 California Institute Of Technology Aerosol reactor production of uniform submicron powders
US5429657A (en) * 1994-01-05 1995-07-04 E. I. Du Pont De Nemours And Company Method for making silver-palladium alloy powders by aerosol decomposition
CN102142556A (en) * 2010-01-29 2011-08-03 比亚迪股份有限公司 Anode active material and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3800740A (en) * 1972-12-14 1974-04-02 Int Nickel Co Apparatus for decomposition of metal carbonyls
US4749557A (en) * 1984-12-04 1988-06-07 General Motors Corporation Graphite fiber growth employing nuclei derived from iron pentacarbonyl
US4994107A (en) * 1986-07-09 1991-02-19 California Institute Of Technology Aerosol reactor production of uniform submicron powders
US5429657A (en) * 1994-01-05 1995-07-04 E. I. Du Pont De Nemours And Company Method for making silver-palladium alloy powders by aerosol decomposition
CN102142556A (en) * 2010-01-29 2011-08-03 比亚迪股份有限公司 Anode active material and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
I. Taniguchi, C.K. Lim, D. Song, M. Wakihara, "Particle morphology and electrochemical performances of spinel LiMn2O4 powders synthesized using ultrasonic spray pyrolysis method", Solid State Ionics, Vol.146, Issues 3–4, 2002年2月, P.239–247 *

Also Published As

Publication number Publication date
TW201318256A (en) 2013-05-01

Similar Documents

Publication Publication Date Title
KR101948177B1 (en) Particle synthesis apparatus and methods
US11484856B2 (en) Method of preparing a material of a battery cell
KR20210075032A (en) Particle Systems and Methods
JP2024038079A (en) Method for producing particulate materials for battery cells from liquid mixtures
TWI616020B (en) Particle synthesis apparatus and methods
US20200208265A1 (en) Coating apparatus and coating method
US20140205750A1 (en) Cathode active material coating
WO2014159118A1 (en) Apparatus and methods for synthesis of battery-active materials
TW201523982A (en) Material fabricating apparatus
WO2020078444A1 (en) Method and device for producing nano-scale clad material
JP7417299B2 (en) Assist gas flow inside the reaction chamber of the processing system
Taniguchi et al. Preparation of LiMn2O4 powders via spray pyrolysis and fluidized bed hybrid system
JP2023518588A (en) Production of carbon-containing particles
WO2012026952A1 (en) In-situ synthesis and deposition of battery active lithium materials by spraying