TWI612369B - EUV reticle inorganic protective film assembly manufacturing method - Google Patents

EUV reticle inorganic protective film assembly manufacturing method Download PDF

Info

Publication number
TWI612369B
TWI612369B TW105143459A TW105143459A TWI612369B TW I612369 B TWI612369 B TW I612369B TW 105143459 A TW105143459 A TW 105143459A TW 105143459 A TW105143459 A TW 105143459A TW I612369 B TWI612369 B TW I612369B
Authority
TW
Taiwan
Prior art keywords
layer
protective film
tantalum nitride
inorganic protective
carbon nanotube
Prior art date
Application number
TW105143459A
Other languages
Chinese (zh)
Other versions
TW201823833A (en
Inventor
Ching-Bore Wang
Original Assignee
Micro Lithography Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro Lithography Inc filed Critical Micro Lithography Inc
Priority to TW105143459A priority Critical patent/TWI612369B/en
Application granted granted Critical
Publication of TWI612369B publication Critical patent/TWI612369B/en
Publication of TW201823833A publication Critical patent/TW201823833A/en

Links

Description

EUV光罩無機保護薄膜組件製造方法 EUV reticle inorganic protective film assembly manufacturing method

本發明是有關一種EUV光罩無機保護薄膜組件製造方法,特別是一種能夠沉積形成出兩個氮化矽層來夾持住該奈米碳管層,用以能夠保護該奈米碳管層、並增加該奈米碳管層的結構強度。 The invention relates to a method for manufacturing an EUV reticle inorganic protective film module, in particular to a method for depositing two tantalum nitride layers to hold the carbon nanotube layer for protecting the carbon nanotube layer, And increase the structural strength of the carbon nanotube layer.

半導體元件的電路圖案是通過使用光罩及曝光技術的微影製程將電路圖案轉印至矽晶圓的表面。光罩的缺陷會造成矽晶圓表面的電路圖案扭曲或變形,已知造成光罩缺陷的原因之一在於光罩的表面受到污染微粒(contamination particles)的污染,使得矽晶圓表面的電路圖案在有污染微粒之處產生了扭曲或變形;為了維持光罩在使用期間的品質,已知的一種方法是在光罩的表面設置一種光罩保護薄膜組件(pellicle),用以防止污染微粒沈積直接接觸到光罩表面;光罩保護薄膜組件的構造基本上包含透明的一保護薄膜(film)和一框架,保護薄膜提供阻隔外界污染的實體屏障,用於防止來自環境、氣體逸出(outgassing)或其他原因而產生的污染微粒污染光罩的表面。 The circuit pattern of the semiconductor element is a transfer of the circuit pattern to the surface of the germanium wafer by a lithography process using a photomask and an exposure technique. The defect of the mask may cause distortion or deformation of the circuit pattern on the surface of the wafer. One of the reasons for the known defect of the mask is that the surface of the mask is contaminated by contamination particles, so that the circuit pattern on the surface of the wafer is Distortion or distortion occurs in the presence of contaminating particles; in order to maintain the quality of the reticle during use, a known method is to provide a reticle protective film module on the surface of the reticle to prevent deposition of contaminating particles. Direct contact with the reticle surface; the construction of the reticle protective film assembly basically comprises a transparent protective film and a frame, and the protective film provides a physical barrier against external pollution for preventing escape from the environment and gas (outgassing) ) or other contaminant particles that contaminate the surface of the reticle.

依據電路圖案的寬度,曝光技術使用的光源的波長也有不同,針對不同波長的曝光光源,保護薄膜必需具有足夠的穿透率(Transmission)以確保微影製程的良率,保護薄膜的穿透率取決於保護薄膜的厚度、抗反射塗佈的 類型、保護薄膜的材質對光的吸收度及晶圓曝光機或步進機所使用的光源的波長,硝化纖維素(nitrocellulose)是最初被採用的薄膜材質,而且這類保護薄膜是使用於g-line(436nm)或i-line(365nm),另外氟化高分子用於KrF(248nm)或ArF(193nm)的晶圓曝光機或寬頻投射晶圓步進機。隨著電路圖案的細微化,使用波長只有13.5奈米(nanometer,nm)的極紫外光(EUV)作為曝光光源的微影製程開始受到重視並積極地發展相關的技術,然而前述用於製造保護薄膜的硝化纖維素材質會吸收波長小於350nm的光源,而氟化高分子會吸收波長小於190nm,因此不能使用在光源波長低於350nm或190nm的微影製程。 Depending on the width of the circuit pattern, the wavelength of the light source used in the exposure technique is also different. For different wavelengths of exposure light, the protective film must have sufficient transmission to ensure the yield of the lithography process and protect the transmittance of the film. Depending on the thickness of the protective film, anti-reflective coating Type, the absorption of light by the material of the protective film, and the wavelength of the light source used in the wafer exposure machine or the stepper. Nitrocellulose is the film material originally used, and this kind of protective film is used for g. -line (436 nm) or i-line (365 nm), additionally fluorinated polymer for KrF (248 nm) or ArF (193 nm) wafer exposure machine or broadband projection wafer stepper. With the miniaturization of circuit patterns, the lithography process using ultra-ultraviolet light (EUV) with a wavelength of only 13.5 nanometers (nm) as an exposure light source has begun to receive attention and actively develop related technologies, but the aforementioned for manufacturing protection The nitrocellulose material of the film absorbs a light source having a wavelength of less than 350 nm, and the fluorinated polymer absorbs a wavelength of less than 190 nm, so that a lithography process in which the wavelength of the light source is lower than 350 nm or 190 nm cannot be used.

因為矽結晶膜是用於EUV的光,故光吸收係數相對比較低,特別是多結晶矽膜,跟非晶質矽膜或單結晶矽膜比較起來吸收係數更低,故能輕易滿足EUV用防護薄膜所需要的透光率;特別是上述採用矽結晶膜製作用於EUV的防護薄膜,在矽結晶膜成形的技術上仍存在著矽結晶膜成形不易的問題,在已公告的美國專利6,623,893,其中提出了一種以矽材質製作的保護薄膜,該保護薄膜係可採用化學汽相沉積(chemical vapor deposition,CVD)技術形成於同樣用矽材質(如二氧化矽)製成的一屏柵層(barrier layer),再利用刻蝕(etching)製程移除屏柵層的方式而令保護薄膜的中央部份顯露出來,但是這種製程較為複雜。 Since the ruthenium crystal film is light for EUV, the light absorption coefficient is relatively low, especially the polycrystalline ruthenium film, which has a lower absorption coefficient than the amorphous ruthenium film or the single crystal ruthenium film, so that it can easily satisfy the EUV. The light transmittance required for the protective film; in particular, the above-mentioned protective film for EUV using a ruthenium crystal film, there is still a problem that the ruthenium crystal film is not easily formed in the technique of ruthenium crystal film formation, and the published US Patent 6,623,893 A protective film made of tantalum material is proposed, which is formed by a chemical vapor deposition (CVD) technique on a gate layer made of a tantalum material such as hafnium oxide. The barrier layer is formed by removing the screen layer by an etching process, but the central portion of the protective film is exposed, but the process is complicated.

另外在已公開的中國專利CN 101414118 A揭露了一種由單結晶矽膜製作而成光罩保護薄膜及其製造方法,該方法係透過將SOI基板薄膜化而製成,具體而言是在薄膜化的SOI基板的一主要表面形成單結晶矽的保護膜,再於後續的製程中同樣地以刻蝕的技術移除SOI基板而令單結晶矽的中央部份顯露成為保護膜。 Further, in the disclosed Chinese patent CN 101414118 A, a reticle protective film made of a single crystal ruthenium film and a method for producing the same are disclosed, which are produced by thinning an SOI substrate, specifically, thinning. A main surface of the SOI substrate forms a protective film of a single crystal germanium, and in the subsequent process, the SOI substrate is removed by an etching technique to expose the central portion of the single crystal germanium as a protective film.

在已公開的台灣專利「EUV用防塵薄膜組件」(公開號201415157),其中提出了一種能夠減輕入射EUV光的減少,同時具有高強度的EUV用防塵薄膜組件。其中透過一種具有用網格形狀(例如蜂窩結構)的輔助結構加固的EUV透過膜(為一種矽晶膜)的EUV用防塵薄膜組件,但是該輔助結構與矽晶膜如果沒有牢固地貼緊,在曝光的過程中會造成輔助結構與矽晶膜的分離,進而造成矽晶膜的破損。 In the disclosed Taiwan patent "Pneumatic film assembly for EUV" (Publication No. 201415157), a dust-proof film assembly for EUV which can reduce the reduction of incident EUV light and has high strength is proposed. Wherein the EUV pellicle is assembled through an EUV permeable film (which is a twin film) reinforced with an auxiliary structure of a mesh shape (for example, a honeycomb structure), but the auxiliary structure and the twin film are not firmly adhered thereto. During the exposure process, the separation of the auxiliary structure from the twin film is caused, which causes damage to the twin film.

不論使用於何種曝光光源的光罩保護薄膜組件,其中保護薄膜的材質必須具備適當的均勻度、機械強度、穿透度、及潔淨度來承受不斷將光罩圖案曝光至晶圓上的微影製程,以及克服儲存和運送過程污染或是損壞光罩保護薄膜的問題;另外在已核准公告的台灣發明專利TW I398723「防護薄膜組件及其製造方法」,提出了一種以矽單結晶膜作為防護薄膜的防護薄膜組件,其中包含在防護薄膜的至少一面形成一無機保護膜,但由於該無機保護膜容易會因為移動時產生破裂,因此如何避免此一情況發生,將是本發明之重點。 Regardless of the exposure of the illuminant protection film assembly, the material of the protective film must have appropriate uniformity, mechanical strength, penetration, and cleanliness to withstand the continual exposure of the reticle pattern to the wafer. Shadow processing, and overcoming the problem of contamination during storage and transportation or damage to the reticle protective film; in addition, the approved invention patent TW I398723 "Protective film assembly and its manufacturing method" has proposed a single crystal film. The pellicle film of the pellicle film comprises an inorganic protective film formed on at least one side of the pellicle film, but since the inorganic protective film is liable to be broken due to movement, how to avoid this situation will be the focus of the present invention.

因此,若能夠於一保護膜(奈米碳管層)兩個表面皆分別沉積形成出有一氮化矽層,該氮化矽層能夠用以夾持該奈米碳管層,而該氮化矽層能夠用以保護該奈米碳管層、以增加該奈米碳管層的結構強度,因此能夠避免移動時該奈米碳管層產生破裂,故本發明應為一最佳解決方案。 Therefore, if a tantalum nitride layer can be separately deposited on both surfaces of a protective film (nanocarbon nanotube layer), the tantalum nitride layer can be used to sandwich the carbon nanotube layer, and the nitriding The ruthenium layer can be used to protect the carbon nanotube layer to increase the structural strength of the carbon nanotube layer, thereby avoiding cracking of the carbon nanotube layer during movement, so the present invention should be an optimal solution.

本發明係關於一種EUV光罩無機保護薄膜組件製造方法,係能夠於一奈米碳管層兩個表面分別沉積形成出有一氮化矽層,該氮化矽層能夠用以夾持該奈米碳管層,而該氮化矽層能夠用以保護該奈米碳管層、以增加該奈米 碳管層的結構強度。 The invention relates to a method for manufacturing an EUV mask inorganic protective film module, which is capable of depositing a tantalum nitride layer on two surfaces of a carbon nanotube layer, and the tantalum nitride layer can be used for clamping the nanometer. a carbon tube layer, and the tantalum nitride layer can be used to protect the carbon nanotube layer to increase the nanometer layer The structural strength of the carbon tube layer.

一種EUV光罩無機保護薄膜組件製造方法,其方法為:(1)藉由超音波噴塗於一有機膜的表面上均勻形成一奈米碳管層,再於該奈米碳管層表面經由一化學氣相沉積法沉積出一第一氮化矽層;(2)於該第一氮化矽層表面經由一無機膠體黏著一主框體;(3)再使用一洗劑將該有機膜溶洗,以使該有機膜受到移除;以及(4)最後,於該奈米碳管層的另一表面上,再經由化學氣相沉積法沉積出一第二氮化矽層,以形成為一EUV光罩無機保護薄膜組件。 The invention relates to a method for manufacturing an EUV mask inorganic protective film assembly, which comprises the following steps: (1) uniformly forming a carbon nanotube layer on the surface of an organic film by ultrasonic spraying, and then passing a surface on the surface of the carbon nanotube layer; Depositing a first tantalum nitride layer by chemical vapor deposition; (2) adhering a main frame to the surface of the first tantalum nitride layer via an inorganic colloid; (3) dissolving the organic film by using a lotion Washing to remove the organic film; and (4) finally, on the other surface of the carbon nanotube layer, a second layer of tantalum nitride is deposited by chemical vapor deposition to form An EUV reticle inorganic protective film assembly.

更具體的說,所述第一氮化矽層用以支撐該奈米碳管層,避免該奈米碳管層因移動時而產生破裂。 More specifically, the first tantalum nitride layer is used to support the carbon nanotube layer to prevent cracking of the carbon nanotube layer due to movement.

更具體的說,其中該有機膜係為全氟聚合物、硝酸纖維素或是由全氟聚合物層及硝酸纖維素層所形成二層或是三層結構。 More specifically, the organic film is a perfluoropolymer, nitrocellulose or a two-layer or three-layer structure formed of a perfluoropolymer layer and a nitrocellulose layer.

更具體的說,所述有機膜係為全氟聚合物時,必須透過一全氟溶劑將該全氟聚合物形成的有機膜移除,其中該全氟溶劑係選自全氟化合物、三全氟丁烷氨或三全氟丙烷氨其中之一。 More specifically, when the organic film is a perfluoropolymer, the organic film formed by the perfluoropolymer must be removed through a perfluoro solvent selected from the group consisting of perfluorochemicals and tricycles. One of fluorobutane ammonia or triperfluoropropane ammonia.

更具體的說,所述有機膜係為硝酸纖維素時,必須透過一洗劑將該硝酸纖維素形成的有機膜移除,其中該洗劑係選自丙酮、乙酸乙酯其中之一。 More specifically, when the organic film is nitrocellulose, the organic film formed of nitrocellulose must be removed through a lotion, wherein the lotion is selected from one of acetone and ethyl acetate.

更具體的說,該全氟溶劑是由全氟聚合物層及硝酸纖維素層所形成二層或是三層結構時,係藉由一全氟溶劑將全氟聚合物層移除,並透過一洗劑將該硝酸纖維素移除,其中該全氟溶劑係選自全氟化合物、三全氟丁烷氨、三全氟丙烷氨其中之一;該洗劑係選自丙酮、乙酸乙酯其中之一。 More specifically, when the perfluoro solvent is formed of a perfluoropolymer layer and a nitrocellulose layer in a two-layer or three-layer structure, the perfluoropolymer layer is removed and permeated through a perfluoro solvent. The nitrocellulose is removed by a lotion, wherein the perfluoro solvent is selected from one of a perfluoro compound, a triperfluorobutane ammonia, and a triperfluoropropane ammonia; the lotion is selected from the group consisting of acetone and ethyl acetate. one of them.

更具體的說,所述第一氮化矽層及該第二氮化矽層夾持該奈米碳 管層,用以保護奈米碳管層,並同時增加該奈米碳管層的結構強度。 More specifically, the first tantalum nitride layer and the second tantalum nitride layer sandwich the nanocarbon The tube layer protects the carbon nanotube layer and simultaneously increases the structural strength of the carbon nanotube layer.

更具體的說,所述EUV光罩無機保護薄膜組件在使用波長13.5nm的極紫外光照射下,在該奈米碳管層的厚度為20~50nm,該第一氮化矽層之厚度為5~20nm,該第二氮化矽層之厚度為5~20nm的條件下,其光穿透率為70%。 More specifically, the EUV photomask inorganic protective film assembly has a thickness of 20 to 50 nm in the carbon nanotube layer when irradiated with extreme ultraviolet light having a wavelength of 13.5 nm, and the thickness of the first tantalum nitride layer is 5 to 20 nm, the thickness of the second tantalum nitride layer is 5 to 20 nm, and the light transmittance is 70%.

更具體的說,所述第一氮化矽層及第二氮化矽層能夠取代為第一釕金屬層及第二釕金屬層或是第一鉬金屬層及第二鉬金屬層。 More specifically, the first tantalum nitride layer and the second tantalum nitride layer can be replaced by the first tantalum metal layer and the second tantalum metal layer or the first molybdenum metal layer and the second molybdenum metal layer.

更具體的說,所述第一釕金屬層及第二釕金屬層的厚度為5~20nm。 More specifically, the first base metal layer and the second base metal layer have a thickness of 5 to 20 nm.

更具體的說,所述第一鉬金屬層及第二鉬金屬層的厚度5~20為nm。 More specifically, the first molybdenum metal layer and the second molybdenum metal layer have a thickness of 5 to 20 nm.

更具體的說,所述無機膠體係為水玻璃。 More specifically, the inorganic gum system is water glass.

1‧‧‧有機膜 1‧‧‧Organic film

2‧‧‧超音波噴塗設備 2‧‧‧Ultrasonic spraying equipment

3‧‧‧奈米碳管層 3‧‧‧Nano carbon tube layer

4‧‧‧第一氮化矽層 4‧‧‧First tantalum layer

41‧‧‧無機膠體 41‧‧‧Inorganic colloid

5‧‧‧主框體 5‧‧‧Main frame

6‧‧‧第二氮化矽層 6‧‧‧Second tantalum layer

[第1圖]係本發明EUV光罩無機保護薄膜組件製造方法之流程示意圖。 [Fig. 1] is a schematic flow chart showing a method of manufacturing an EUV photomask inorganic protective film module of the present invention.

[第2A圖]係本發明EUV光罩無機保護薄膜組件製造方法之製備結構形成示意圖。 [Fig. 2A] is a schematic view showing the preparation structure of the method for producing an EUV photomask inorganic protective film module of the present invention.

[第2B圖]係本發明EUV光罩無機保護薄膜組件製造方法之製備結構形成示意圖。 [Fig. 2B] Fig. 2 is a schematic view showing the structure of the preparation of the method for producing an EUV photomask inorganic protective film module of the present invention.

[第2C圖]係本發明EUV光罩無機保護薄膜組件製造方法之製備結構形成示意圖。 [Fig. 2C] is a schematic view showing the formation of a structure for producing a method for producing an EUV photomask inorganic protective film module of the present invention.

[第2D圖]係本發明EUV光罩無機保護薄膜組件製造方法之製備結構形成示 意圖。 [Fig. 2D] shows the structure of the preparation of the method for producing the EUV photomask inorganic protective film module of the present invention intention.

[第2E圖]係本發明EUV光罩無機保護薄膜組件製造方法之製備結構形成示意圖。 [Fig. 2E] Fig. 2 is a schematic view showing the preparation structure of the method for producing an EUV photomask inorganic protective film module of the present invention.

有關於本發明其他技術內容、特點與功效,在以下配合參考圖式之較佳實施例的詳細說明中,將可清楚的呈現。 Other details, features, and advantages of the present invention will be apparent from the following description of the preferred embodiments.

請參閱第1圖,為本發明EUV光罩無機保護薄膜組件製造方法之流程示意圖,由圖中可知,其方法為:(1)藉由超音波噴塗於一有機膜的表面上均勻形成一奈米碳管層,再於該奈米碳管層表面經由一化學氣相沉積法沉積出一第一氮化矽層101;(2)於該第一氮化矽層表面經由一無機膠體黏著一主框體102;(3)再使用一洗劑將該有機膜溶洗,以使該有機膜受到移除103;以及(4)最後,於該奈米碳管層的另一表面上,再經由化學氣相沉積法沉積出一第二氮化矽層,以形成為一光罩無機保護薄膜組件104。 Please refer to FIG. 1 , which is a schematic flow chart of a method for manufacturing an EUV photomask inorganic protective film module according to the present invention. The method is as follows: (1) uniformly forming a neat on the surface of an organic film by ultrasonic spraying. a carbon nanotube layer, and a first tantalum nitride layer 101 is deposited on the surface of the carbon nanotube layer by a chemical vapor deposition method; (2) a surface of the first tantalum nitride layer is adhered via an inorganic colloid Main frame body 102; (3) further washing the organic film with a lotion to remove the organic film 103; and (4) finally, on the other surface of the carbon nanotube layer, A second tantalum nitride layer is deposited by chemical vapor deposition to form a photomask inorganic protective film assembly 104.

於製備前必須先準備一有機膜1,其中該有機膜1係能夠為全氟聚合物、硝酸纖維素或全氟聚合物及硝酸纖維素混合所形成,之後如第2A圖所示,再透過一超音波噴塗設備2利用超音波震盪技術將奈米碳管塗料高度細化,再透過霧化顆粒均勻堆積在該有機膜1表面上形成該奈米碳管層3;之後,如第2B圖所示,於奈米碳管層3另一表面上經由化學氣相沉積法(CVD)沉積出第一氮化矽層4,再如第2C圖所示,於該第一氮化矽層4表面上經由一無機膠體41黏著一主框體5,其中該無機膠體41的種類為水玻璃; 再依據該有機膜1的種類,如第2D圖所示,使用不同的洗劑將該有機膜1溶洗,以使該有機膜1受到移除,而不同的洗劑為:(1)其中該有機膜1為全氟聚合物所形成時,必須透過一全氟溶劑將該全氟聚合物形成的有機膜1移除,其中該全氟溶劑係為全氟化合物、三全氟丁烷氨或三全氟丙烷氨;(2)其中該有機膜1為硝酸纖維素時,必須透過一洗劑將該硝酸纖維素形成的有機膜1移除,其中該洗劑係為丙酮、乙酸乙酯;(3)其中該有機膜1係為全氟聚合物及硝酸纖維素混合時,必須透過一洗劑將該全氟聚合物及硝酸纖維素混合形成的有機膜1移除其中該洗劑係為全氟化合物、三全氟丁烷氨、三全氟丙烷氨、丙酮、乙酸乙酯。 An organic film 1 must be prepared prior to preparation, wherein the organic film 1 can be formed by mixing a perfluoropolymer, a nitrocellulose or a perfluoropolymer and a nitrocellulose, and then re-permeating as shown in FIG. 2A. An ultrasonic spraying device 2 uses a ultrasonic wave oscillating technique to highly refine the carbon nanotube coating, and then uniformly deposits the atomized particles on the surface of the organic film 1 to form the carbon nanotube layer 3; thereafter, as shown in FIG. 2B As shown, the first tantalum nitride layer 4 is deposited on the other surface of the carbon nanotube layer 3 by chemical vapor deposition (CVD), and as shown in FIG. 2C, the first tantalum nitride layer 4 is formed. a main frame 5 is adhered to the surface via an inorganic colloid 41, wherein the type of the inorganic colloid 41 is water glass; Further, depending on the kind of the organic film 1, as shown in Fig. 2D, the organic film 1 is washed with a different lotion to remove the organic film 1, and the different lotions are: (1) When the organic film 1 is formed of a perfluoropolymer, the organic film 1 formed of the perfluoropolymer must be removed through a perfluoro solvent, wherein the perfluoro solvent is a perfluoro compound, triperfluorobutane ammonia. Or triperfluoropropane ammonia; (2) wherein the organic film 1 is nitrocellulose, the organic film 1 formed of nitrocellulose must be removed through a lotion, wherein the lotion is acetone or ethyl acetate (3) When the organic film 1 is a mixture of a perfluoropolymer and a nitrocellulose, the organic film 1 formed by mixing the perfluoropolymer and the nitrocellulose must be removed by a lotion, wherein the lotion is removed. It is a perfluoro compound, triperfluorobutane ammonia, triperfluoropropane ammonia, acetone, and ethyl acetate.

最後,如第2E圖所示,於該奈米碳管層3的另一表面上,再經由化學氣相沉積法沉積出一第二氮化矽層6,其中該第一氮化矽層4及該第二氮化矽層6係能夠夾持住該奈米碳管層3,用以進行保護該奈米碳管層3,並同時增加該奈米碳管層3的結構強度。 Finally, as shown in FIG. 2E, on the other surface of the carbon nanotube layer 3, a second tantalum nitride layer 6 is deposited by chemical vapor deposition, wherein the first tantalum nitride layer 4 And the second tantalum nitride layer 6 is capable of holding the carbon nanotube layer 3 for protecting the carbon nanotube layer 3 while increasing the structural strength of the carbon nanotube layer 3.

而透過上述製造步驟後所形成之EUV光罩無機保護薄膜組件在使用波長13.5nm的極紫外光照射下,在該奈米碳管層的厚度為20~50nm,該第一氮化矽層之厚度為5~20nm,該第二氮化矽層之厚度為5~20nm的條件下,其光穿透率為70%。 The EUV mask inorganic protective film module formed by the above manufacturing step is irradiated with extreme ultraviolet light having a wavelength of 13.5 nm, and the thickness of the carbon nanotube layer is 20 to 50 nm, and the first tantalum nitride layer is The thickness is 5 to 20 nm, and the thickness of the second tantalum nitride layer is 5 to 20 nm, and the light transmittance is 70%.

另外,該第一氮化矽層4及第二氮化矽層6能夠取代為釕金屬(Ru)材料層(第一釕金屬層及第二釕金屬層,其中該第一釕金屬層及第二釕金屬層的厚度為5~20nm),其光穿透率為60~70%。 In addition, the first tantalum nitride layer 4 and the second tantalum nitride layer 6 can be replaced by a base metal (Ru) material layer (a first base metal layer and a second base metal layer, wherein the first base metal layer and the first The thickness of the bismuth metal layer is 5 to 20 nm, and the light transmittance is 60 to 70%.

另外,該第一氮化矽層4及第二氮化矽層6能夠取代為鉬金屬(Mo) 材料層(第一鉬金屬層及第二鉬金屬層,其中該第一鉬金屬層及第二鉬金屬層的厚度為5~20nm),其光穿透率為60~70%。 In addition, the first tantalum nitride layer 4 and the second tantalum nitride layer 6 can be replaced by molybdenum metal (Mo). The material layer (the first molybdenum metal layer and the second molybdenum metal layer, wherein the first molybdenum metal layer and the second molybdenum metal layer have a thickness of 5 to 20 nm) has a light transmittance of 60 to 70%.

本發明所提供之EUV光罩無機保護薄膜組件製造方法,與其他習用技術相互比較時,其優點如下:本發明能夠於一無機保護膜(奈米碳管層)兩個表面分別沉積形成出有一氮化矽層,該氮化矽層能夠用以夾持該奈米碳管層,而該氮化矽層能夠用以保護該奈米碳管層、以增加該奈米碳管層的結構強度,因此能夠避免移動時該奈米碳管層產生破裂。 The method for manufacturing the EUV reticle inorganic protective film module provided by the present invention has the following advantages when compared with other conventional techniques: the present invention can be deposited on both surfaces of an inorganic protective film (nanocarbon tube layer). a tantalum nitride layer, the tantalum nitride layer can be used to sandwich the carbon nanotube layer, and the tantalum nitride layer can be used to protect the carbon nanotube layer to increase the structural strength of the carbon nanotube layer Therefore, it is possible to avoid cracking of the carbon nanotube layer when moving.

本發明已透過上述之實施例揭露如上,然其並非用以限定本發明,任何熟悉此一技術領域具有通常知識者,在瞭解本發明前述的技術特徵及實施例,並在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之專利保護範圍須視本說明書所附之請求項所界定者為準。 The present invention has been disclosed in the above embodiments, and is not intended to limit the present invention. Any of those skilled in the art can understand the foregoing technical features and embodiments of the present invention without departing from the invention. In the spirit and scope, the scope of patent protection of the present invention is subject to the definition of the claims attached to the present specification.

Claims (10)

一種EUV光罩無機保護薄膜組件製造方法,其方法為:藉由超音波噴塗於一有機膜的表面上均勻形成一奈米碳管層,再於該奈米碳管層表面經由一化學氣相沉積法沉積出一第一氮化矽層;於該第一氮化矽層表面經由一無機膠體黏著一主框體;再使用一洗劑將該有機膜溶洗,以使該有機膜受到移除;以及最後,於該奈米碳管層的另一表面上,再經由化學氣相沉積法沉積出一第二氮化矽層,以形成為一EUV光罩無機保護薄膜組件。 The invention discloses a method for manufacturing an EUV mask inorganic protective film module, which comprises: uniformly forming a carbon nanotube layer on the surface of an organic film by ultrasonic spraying, and then passing a chemical vapor phase on the surface of the carbon nanotube layer; Depositing a first tantalum nitride layer; adhering a main frame to the surface of the first tantalum nitride layer via an inorganic colloid; and washing the organic film with a lotion to remove the organic film And finally, on the other surface of the carbon nanotube layer, a second tantalum nitride layer is deposited by chemical vapor deposition to form an EUV photomask inorganic protective film assembly. 如請求項1所述之EUV光罩無機保護薄膜組件製造方法,其中該第一氮化矽層用以支撐該奈米碳管層,避免該奈米碳管層因移動時而產生破裂。 The method for manufacturing an EUV mask inorganic protective film assembly according to claim 1, wherein the first tantalum nitride layer is used to support the carbon nanotube layer to prevent cracking of the carbon nanotube layer due to movement. 如請求項1所述之EUV光罩無機保護薄膜組件製造方法,其中該有機膜係為全氟聚合物、硝酸纖維素或是由全氟聚合物層及硝酸纖維素層所形成二層或是三層結構。 The method for producing an EUV mask inorganic protective film module according to claim 1, wherein the organic film is a perfluoropolymer, a nitrocellulose or a layer formed of a perfluoropolymer layer and a nitrocellulose layer or Three-tier structure. 如請求項3所述之EUV光罩無機保護薄膜組件製造方法,其中該有機膜係為全氟聚合物時,必須透過一全氟溶劑將該全氟聚合物形成的有機膜移除,其中該全氟溶劑係選自全氟化合物、三全氟丁烷氨或三全氟丙烷氨其中之一。 The method for producing an EUV reticle inorganic protective film module according to claim 3, wherein when the organic film is a perfluoropolymer, the organic film formed of the perfluoropolymer must be removed through a perfluoro solvent, wherein The perfluoro solvent is selected from one of a perfluoro compound, triperfluorobutane ammonia or triperfluoropropane ammonia. 如請求項3所述之EUV光罩無機保護薄膜組件製造方法,其中該有機膜係為硝酸纖維素時,必須透過一洗劑將該硝酸纖維素形成的有機膜移除,其中該洗劑係選自為丙酮、乙酸乙酯其中之一。 The method for producing an EUV mask inorganic protective film module according to claim 3, wherein when the organic film is nitrocellulose, the organic film formed of nitrocellulose must be removed through a lotion, wherein the lotion is It is selected from one of acetone and ethyl acetate. 如請求項3所述之EUV光罩無機保護薄膜組件製造方法,其中該 有機膜是由全氟聚合物層及硝酸纖維素層所形成二層或是三層結構時,係藉由一全氟溶劑將全氟聚合物層移除,並透過一洗劑將該硝酸纖維素移除,其中該全氟溶劑係選自全氟化合物、三全氟丁烷氨、三全氟丙烷氨其中之一;該洗劑係選自丙酮、乙酸乙酯其中之一。 The method for manufacturing an EUV mask inorganic protective film assembly according to claim 3, wherein the method When the organic film is formed of a perfluoropolymer layer and a nitrocellulose layer in a two-layer or three-layer structure, the perfluoropolymer layer is removed by a perfluoro solvent, and the nitrocellulose is removed through a lotion. The removal is carried out, wherein the perfluoro solvent is selected from one of a perfluoro compound, triperfluorobutane ammonia, and triperfluoropropane ammonia; the lotion is selected from one of acetone and ethyl acetate. 如請求項1所述之EUV光罩無機保護薄膜組件製造方法,其中該第一氮化矽層及該第二氮化矽層夾持該奈米碳管層,用以保護奈米碳管層,並同時增加該奈米碳管層的結構強度。 The method for manufacturing an EUV mask inorganic protective film module according to claim 1, wherein the first tantalum nitride layer and the second tantalum nitride layer sandwich the carbon nanotube layer for protecting the carbon nanotube layer And at the same time increase the structural strength of the carbon nanotube layer. 如請求項1所述之EUV光罩無機保護薄膜組件製造方法,其中該EUV光罩無機保護薄膜組件在使用波長13.5nm的極紫外光照射下,在該奈米碳管層的厚度為20~50nm,該第一氮化矽層之厚度為5~20nm,該第二氮化矽層之厚度為5~20nm的條件下,其光穿透率為70%。 The method for manufacturing an EUV mask inorganic protective film module according to claim 1, wherein the EUV mask inorganic protective film assembly has a thickness of 20 nm in the carbon nanotube layer when irradiated with extreme ultraviolet light having a wavelength of 13.5 nm. 50 nm, the first tantalum nitride layer has a thickness of 5 to 20 nm, and the second tantalum nitride layer has a thickness of 5 to 20 nm, and the light transmittance is 70%. 如請求項1所述之EUV光罩無機保護薄膜組件製造方法,其中該第一氮化矽層及第二氮化矽層能夠以厚度為5~20nm,光穿透率為60~70%的第一釕金屬層及第二釕金屬層取代,或是厚度為5~20nm,光穿透率為60~70%的第一鉬金屬層及第二鉬金屬層取代。 The method for manufacturing an EUV mask inorganic protective film assembly according to claim 1, wherein the first tantalum nitride layer and the second tantalum nitride layer have a thickness of 5 to 20 nm and a light transmittance of 60 to 70%. The first tantalum metal layer and the second tantalum metal layer are replaced, or the first molybdenum metal layer and the second molybdenum metal layer are replaced by a thickness of 5 to 20 nm and a light transmittance of 60 to 70%. 如請求項1所述之EUV光罩無機保護薄膜組件製造方法,其中該無機膠體係為水玻璃。 The method for producing an EUV photomask inorganic protective film module according to claim 1, wherein the inorganic gum system is water glass.
TW105143459A 2016-12-28 2016-12-28 EUV reticle inorganic protective film assembly manufacturing method TWI612369B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105143459A TWI612369B (en) 2016-12-28 2016-12-28 EUV reticle inorganic protective film assembly manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105143459A TWI612369B (en) 2016-12-28 2016-12-28 EUV reticle inorganic protective film assembly manufacturing method

Publications (2)

Publication Number Publication Date
TWI612369B true TWI612369B (en) 2018-01-21
TW201823833A TW201823833A (en) 2018-07-01

Family

ID=61728320

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105143459A TWI612369B (en) 2016-12-28 2016-12-28 EUV reticle inorganic protective film assembly manufacturing method

Country Status (1)

Country Link
TW (1) TWI612369B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI688635B (en) * 2018-03-13 2020-03-21 美商微相科技股份有限公司 DUV photomask protective film aluminum frame adhesive treatment method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003062922A2 (en) * 2002-01-24 2003-07-31 Dupont Photomasks, Inc. Photomask and method for manufacturing the same
TWI398723B (en) * 2008-05-02 2013-06-11 Shinetsu Chemical Co Pellicle and method of manufacturing pellicle
CN103676469A (en) * 2012-09-26 2014-03-26 中芯国际集成电路制造(上海)有限公司 Method for cleaning photomask and method for disassembling photomask protection film component
TW201631199A (en) * 2015-02-24 2016-09-01 Mitsui Chemicals Inc Pellicle film, pellicle frame, and pellicle and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003062922A2 (en) * 2002-01-24 2003-07-31 Dupont Photomasks, Inc. Photomask and method for manufacturing the same
TWI398723B (en) * 2008-05-02 2013-06-11 Shinetsu Chemical Co Pellicle and method of manufacturing pellicle
CN103676469A (en) * 2012-09-26 2014-03-26 中芯国际集成电路制造(上海)有限公司 Method for cleaning photomask and method for disassembling photomask protection film component
TW201631199A (en) * 2015-02-24 2016-09-01 Mitsui Chemicals Inc Pellicle film, pellicle frame, and pellicle and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI688635B (en) * 2018-03-13 2020-03-21 美商微相科技股份有限公司 DUV photomask protective film aluminum frame adhesive treatment method

Also Published As

Publication number Publication date
TW201823833A (en) 2018-07-01

Similar Documents

Publication Publication Date Title
KR102310124B1 (en) Pellicle for exposure to extreme ultraviolet light, photomask assembly and method of manufacturing the pellicle
US20080318139A1 (en) Mask Blank, Photomask and Method of Manufacturing a Photomask
TWI638223B (en) Substrate with multilayer reflective film, reflective reticle substrate for EUV lithography, reflective reticle for EUV lithography, method of manufacturing the same, and method of manufacturing semiconductor device
CN114859653A (en) Protective film structure and manufacturing method thereof
WO2011125407A1 (en) Photomask unit and method of manufacturing same
KR20130088565A (en) Euv pellicle uging graphene and manufacturing method of the same
US9529250B2 (en) EUV mask with ITO absorber to suppress out of band radiation
WO2020175354A1 (en) Reflective mask blank, reflective mask, method for producing same, and method for producing semiconductor device
US20060257751A1 (en) Photo mask and method to form a self-assembled monolayer and an inorganic ultra thin film on the photo mask
JP2021056484A (en) Pellicle for euv lithography and method for manufacturing the same
TW201708941A (en) Method and system of cleaning photomask
JP5703841B2 (en) Reflective mask
US10012899B2 (en) Graphene pellicle for extreme ultraviolet lithography
TWI612369B (en) EUV reticle inorganic protective film assembly manufacturing method
CN111902772A (en) Mask blank, phase shift mask and method for manufacturing semiconductor device
TWI605304B (en) EUV reticle inorganic protective film assembly manufacturing method
US9418847B2 (en) Lithography system and method for haze elimination
JP7431288B2 (en) Mask pellicle for extreme ultraviolet lithography mask and method for manufacturing the same
JP4396354B2 (en) Photo mask
TWI571698B (en) Method for manufacturing EUV mask inorganic protective film module
TWM520723U (en) EUV photomask protective film structure
KR102008057B1 (en) Method for manufacturing pellicle
US11448956B2 (en) EUV mask
CN114995048A (en) Manufacturing method of EUV (extreme ultraviolet) photomask and EUV photomask
TWI810814B (en) Optical assembly optical assembly, method of using mask pellicle system, and method of forming optical assembly