TWI606057B - Phosphinated compound with allyl double bond, polymer thereof, copolymer thereof, and manufacturing method for the same - Google Patents

Phosphinated compound with allyl double bond, polymer thereof, copolymer thereof, and manufacturing method for the same Download PDF

Info

Publication number
TWI606057B
TWI606057B TW105123541A TW105123541A TWI606057B TW I606057 B TWI606057 B TW I606057B TW 105123541 A TW105123541 A TW 105123541A TW 105123541 A TW105123541 A TW 105123541A TW I606057 B TWI606057 B TW I606057B
Authority
TW
Taiwan
Prior art keywords
phosphorus
double bond
represented
allyl
polymer
Prior art date
Application number
TW105123541A
Other languages
Chinese (zh)
Other versions
TW201803882A (en
Inventor
林慶炫
陳建翰
汪孟緯
Original Assignee
國立清華大學
長春人造樹脂廠股份有限公司
長春石油化學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立清華大學, 長春人造樹脂廠股份有限公司, 長春石油化學股份有限公司 filed Critical 國立清華大學
Priority to TW105123541A priority Critical patent/TWI606057B/en
Application granted granted Critical
Publication of TWI606057B publication Critical patent/TWI606057B/en
Publication of TW201803882A publication Critical patent/TW201803882A/en

Links

Description

含烯丙基雙鍵的磷系化合物、其聚合物、其共聚物及其製備方法Phosphorus compound containing allyl double bond, polymer thereof, copolymer thereof and preparation method thereof

本發明是有關於一種磷系化合物、其聚合物、其共聚物及其製備方法,且特別是有關於一種含烯丙基雙鍵的磷系化合物、其聚合物、其共聚物及其製備方法。The present invention relates to a phosphorus compound, a polymer thereof, a copolymer thereof, and a preparation method thereof, and particularly to a phosphorus compound containing an allyl double bond, a polymer thereof, a copolymer thereof, and a process for preparing the same .

聚酯(polyester)為重要的塑膠材料,其具有良好的機械及化學特性,因此被廣泛地應用於合成纖維、織物、薄膜等相關產業。然而,聚酯的熱變形溫度(Heat deflection temperature, HDT)並不高,因此其應用性仍相對地受到限制。Polyester is an important plastic material with good mechanical and chemical properties, so it is widely used in synthetic fibers, fabrics, films and other related industries. However, the heat deflection temperature (HDT) of the polyester is not high, so its applicability is still relatively limited.

舉例來說,在電子元件可直接焊接在印刷電路板上的表面焊接技術(surface mount technology,SMT)中,其使用之焊料的溫度約為260°C。因此,若聚酯材料的熱變形溫度過低,則會使選用聚酯材料之電子元件的穩定性及可靠度下降。For example, in surface mount technology (SMT) where electronic components can be soldered directly onto a printed circuit board, the solder used has a temperature of about 260 °C. Therefore, if the heat distortion temperature of the polyester material is too low, the stability and reliability of the electronic component using the polyester material are lowered.

以聚酯中的聚對苯二甲酸丁二酯(Polybutylene terephthalate,PBT)為例,為了提升PBT的熱變形溫度,可先於其中添加可交聯的雙鍵化合物,之後對其進行游離輻射(ionizing radiation)。舉例來說,可於PBT中添加含有烯丙基雙鍵的三烯丙基異三聚氰酸酯(Triallyl isocyanurate,TAIC),之後再對其進行游離輻射以進行交聯反應,進而提升PBT的熱變形溫度。Taking polybutylene terephthalate (PBT) in polyester as an example, in order to increase the heat distortion temperature of PBT, a crosslinkable double bond compound may be added thereto before being subjected to free radiation ( Ionizing radiation). For example, Triallyl isocyanurate (TAIC) containing an allyl double bond can be added to PBT, and then subjected to free radiation for crosslinking reaction, thereby enhancing PBT. Heat distortion temperature.

然而,上述的方法存在PBT與烯丙基雙鍵之間的相容性問題。另外,若於PBT中添加非烯丙基雙鍵的雙鍵化合物,則所述雙鍵化合物的雙鍵易在高溫下聚合,而導致PBT在交聯反應中的不穩定性。However, the above method has a problem of compatibility between PBT and allyl double bonds. Further, if a double bond compound other than the allyl double bond is added to PBT, the double bond of the double bond compound is easily polymerized at a high temperature, resulting in instability of PBT in the crosslinking reaction.

本發明提供一種含烯丙基雙鍵的磷系化合物及其聚合物與共聚物,其中含烯丙基雙鍵的磷系聚合物具有相對於習知磷系聚合物高的玻璃轉移溫度以及低的熱膨脹係數,且含烯丙基雙鍵的磷系共聚物具有相對於習知聚酯高的熱變形溫度。The present invention provides a phosphorus-based compound containing an allyl double bond, and a polymer and copolymer thereof, wherein a phosphorus-based polymer containing an allyl double bond has a high glass transition temperature and a low relative to a conventional phosphorus-based polymer The coefficient of thermal expansion, and the phosphorus-based copolymer containing an allyl double bond has a high heat distortion temperature with respect to the conventional polyester.

本發明提供一種含烯丙基雙鍵的磷系化合物及其聚合物與共聚物的製造方法,其製備出的含烯丙基雙鍵的磷系聚合物具有相對於習知磷系聚合物高的玻璃轉移溫度以及低的熱膨脹係數,且其製備出的含烯丙基雙鍵的磷系共聚物具有相對於習知聚酯高的熱變形溫度。The present invention provides a method for producing a phosphorus-based compound containing an allyl double bond and a polymer and a copolymer thereof, which comprises a phosphorus-based polymer containing an allyl double bond which is higher than a conventional phosphorus-based polymer. The glass transition temperature and the low coefficient of thermal expansion, and the prepared allyl double bond-containing phosphorus copolymer have a high heat distortion temperature with respect to the conventional polyester.

本發明的含烯丙基雙鍵的磷系化合物例如是由以下通式(I)所表示: (I) 其中X為H或甲基;R 1為苯基或者經取代或未經取代的C 1-C 10烷基。 The allyl double bond-containing phosphorus compound of the present invention is represented, for example, by the following general formula (I): (I) wherein X is H or methyl; R 1 is phenyl or substituted or unsubstituted C 1 -C 10 alkyl.

本發明的由以下通式(I)所表示的含烯丙基雙鍵的磷系化合物的製備方法例如是如以下步驟所述: (I), 提供磷系化合物,其由以下通式(a)所表示: (a), 將上述磷系化合物與烯丙基鹵化物混合進行反應,以得到由以下通式(b)所表示之化合物: (b), 將通式(b)所表示之化合物加熱,以得到由以下通式(c)所表示之化合物: (c), 將通式(c)所表示之化合物與碳酸乙烯酯或甲基碳酸乙烯酯混合進行反應, 在通式(a)、通式(b)、通式(c)及通式(I)中,X為H或甲基,R 1為苯基或者經取代或未經取代的C 1-C 10烷基。 The method for producing the allyl double bond-containing phosphorus compound represented by the following general formula (I) of the present invention is, for example, as described in the following steps: (I), providing a phosphorus-based compound represented by the following general formula (a): (a) The above phosphorus compound is mixed with an allyl halide to carry out a reaction to obtain a compound represented by the following formula (b): (b) heating a compound represented by the formula (b) to obtain a compound represented by the following formula (c): (c) reacting a compound represented by the formula (c) with ethylene carbonate or methyl ethylene carbonate in the formula (a), the formula (b), the formula (c) and the formula ( In I), X is H or a methyl group, and R 1 is a phenyl group or a substituted or unsubstituted C 1 -C 10 alkyl group.

在本發明的一實施例中,上述的烯丙基鹵化物可包括烯丙基溴。In an embodiment of the invention, the allyl halide described above may comprise allyl bromide.

本發明的含烯丙基雙鍵的磷系聚合物由以下通式(II)所表示: (II), 其中X為H或甲基;R 1為苯基或者經取代或未經取代的C 1-C 10烷基;R 2為羰基,且R 2在苯環上的位置為間位或對位;n為20~300的整數。 The allyl double bond-containing phosphorus-based polymer of the present invention is represented by the following formula (II): (II), wherein X is H or methyl; R 1 is phenyl or substituted or unsubstituted C 1 -C 10 alkyl; R 2 is carbonyl, and the position of R 2 on the phenyl ring is meta Or alignment; n is an integer from 20 to 300.

在本發明的一實施例中,上述的含烯丙基雙鍵的磷系聚合物例如是由下式(II-1)所表示: (II-1), 其中n為20~300的整數。 In one embodiment of the present invention, the above-mentioned allyl double bond-containing phosphorus-based polymer is represented, for example, by the following formula (II-1): (II-1), where n is an integer from 20 to 300.

在本發明的另一實施例中,上述的含烯丙基雙鍵的磷系聚合物例如是由下式(II-2)所表示: (II-2), 其中n為20~300的整數。 In still another embodiment of the present invention, the above-mentioned allyl double bond-containing phosphorus-based polymer is represented, for example, by the following formula (II-2): (II-2), where n is an integer from 20 to 300.

本發明的具有交聯結構的含烯丙基雙鍵的磷系聚合物由以下式(II-1-1)所表示: (II-1-1), 其係藉由將上述的由式(II-1)所表示的含烯丙基雙鍵的磷系聚合物進行加熱固化而形成,其中n為20~300的整數。 The allylic double bond-containing phosphorus-based polymer having a crosslinked structure of the present invention is represented by the following formula (II-1-1): (II-1-1), which is formed by heating and curing the above-described allyl double bond-containing phosphorus-based polymer represented by the formula (II-1), wherein n is an integer of 20 to 300 .

在本發明的一實施例中,上述的加熱固化的溫度例如是200°C~300°C。In an embodiment of the invention, the heat curing temperature is, for example, 200 ° C to 300 ° C.

本發明的具有交聯結構的含烯丙基雙鍵的磷系聚合物由以下式(II-2-1)所表示: (II-2-1), 其藉由將上述的由式(II-2)所表示的含烯丙基雙鍵的磷系聚合物進行加熱固化以形成,其中n為20~300的整數。 The allylic double bond-containing phosphorus-based polymer having a crosslinked structure of the present invention is represented by the following formula (II-2-1): (II-2-1), which is formed by heating and curing the above-described allyl double bond-containing phosphorus-based polymer represented by the formula (II-2), wherein n is an integer of from 20 to 300.

在本發明的一實施例中,上述的加熱固化的溫度例如是200°C~300°C。In an embodiment of the invention, the heat curing temperature is, for example, 200 ° C to 300 ° C.

本發明的由以下通式(II)所表示的含烯丙基雙鍵的磷系聚合物的製備方法如以下步驟所述: (II), 提供含烯丙基雙鍵的磷系化合物;以及 將上述含烯丙基雙鍵的磷系化合物與間苯二醯氯或對苯二醯氯進行聚合反應, 其中含烯丙基雙鍵的磷系化合物由以下通式(I)所表示: (I), 在通式(I)以及通式(II)中,X為H或甲基;R 1為苯基或者經取代或未經取代的C 1-C 10烷基,R 2為羰基,且R 2在苯環上的位置為間位或對位;n為20~300的整數。 The method for producing an allyl double bond-containing phosphorus-based polymer represented by the following general formula (II) of the present invention is as follows: (II) providing a phosphorus-based compound containing an allyl double bond; and polymerizing the above-mentioned allyl double bond-containing phosphorus compound with isophthalic chloride or terephthalic acid chloride, wherein the allyl group is contained The double bond phosphorus compound is represented by the following general formula (I): (I), in the general formula (I) and the general formula (II), X is H or a methyl group; R 1 is a phenyl group or a substituted or unsubstituted C 1 -C 10 alkyl group, and R 2 is a carbonyl group. And the position of R 2 on the benzene ring is meta or para; n is an integer of 20 to 300.

本發明的含烯丙基雙鍵的磷系共聚物由以下通式(III)所表示: (III), 其中X為H或甲基;R 1為苯基或者經取代或未經取代的C 1-C 10烷基;m、n分別為20~300的整數。 The allyl double bond-containing phosphorus-based copolymer of the present invention is represented by the following formula (III): (III), wherein X is H or methyl; R 1 is phenyl or substituted or unsubstituted C 1 -C 10 alkyl; m and n are each an integer of from 20 to 300.

本發明的由以下通式(III)所表示的含烯丙基雙鍵的磷系共聚物的製備方法如以下步驟所述: (III), 提供含烯丙基雙鍵的磷系聚合物;以及 將上述含烯丙基雙鍵的磷系聚合物與聚對苯二甲酸丁二酯以及三烯丙基異三聚氰酸酯進行混煉, 其中含烯丙基雙鍵的磷系聚合物由以下通式(II’)所表示: (II’), 在通式(II’)以及通式(III)中,X為H或甲基;R 1為苯基或者經取代或未經取代的C 1-C 10烷基;m、n分別為20~300的整數。 The method for producing an allyl double bond-containing phosphorus-based copolymer represented by the following general formula (III) of the present invention is as follows: (III), providing a phosphorus-based polymer containing an allyl double bond; and the above-mentioned allyl double bond-containing phosphorus-based polymer with polybutylene terephthalate and triallyl isocyanuric acid The ester is kneaded, wherein the phosphorus-based polymer containing an allyl double bond is represented by the following formula (II'): (II'), in the formula (II') and the formula (III), X is H or a methyl group; R 1 is a phenyl group or a substituted or unsubstituted C 1 -C 10 alkyl group; m, n is an integer from 20 to 300, respectively.

在本發明的一實施例中,上述的聚對苯二甲酸丁二酯、含烯丙基雙鍵的磷系聚合物及三烯丙基異三聚氰酸酯於混煉中的使用量的重量比例如是100:1~15:1~15。In one embodiment of the present invention, the polybutylene terephthalate, the allyl double bond-containing phosphorus polymer, and triallyl isocyanurate are used in kneading. The weight ratio is, for example, 100:1 to 15:1 to 15.

在本發明的一實施例中,上述的混煉的溫度例如是210°C~230°C。In an embodiment of the invention, the kneading temperature is, for example, 210 ° C to 230 ° C.

基於上述,本發明之含烯丙基雙鍵的磷系化合物在與間苯二醯氯或對苯二醯氯進行聚合反應後,所產生的磷系聚合物具有高的玻璃轉移溫度(T g)、低的熱膨脹係數(CTE)以及優異的熱穩定性及阻燃性。此外,藉由對所產生的磷系聚合物進行加熱固化可使其具有高的交聯密度。另外,本發明之含烯丙基雙鍵的磷系化合物在與間苯二醯氯進行聚合反應後,其產生的磷系聚合物可應用在PBT與TAIC的共聚反應,所述磷系聚合物和PBT與TAIC混煉產生的磷系共聚物具有相對於習知聚酯之高的熱變形溫度。 Based on the above, the phosphorus-based compound containing an allyl double bond of the present invention has a high glass transition temperature (T g ) after polymerization with isophthalic chloride or terephthalic acid chloride. ), low coefficient of thermal expansion (CTE) and excellent thermal stability and flame retardancy. Further, the resulting phosphorus-based polymer can be made to have a high crosslinking density by heat curing. Further, the phosphorus-based compound containing an allyl double bond of the present invention, after being polymerized with isophthalic chloride, can be used in a copolymerization reaction of PBT with TAIC, which is a phosphorus-based polymer. The phosphorus-based copolymer produced by kneading with PBT and TAIC has a high heat distortion temperature with respect to the conventional polyester.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

以下將藉由實施方式對本發明作進一步說明,但該等實施方式僅為例示說明之用,而非用以限制本發明之範圍。 [ 含烯丙基雙鍵的磷系化合物的結構 ] The invention is further illustrated by the following examples, which are intended to be illustrative only and not to limit the scope of the invention. [ Structure of Phosphorous Compound Containing Allyl Double Bond ]

本發明之含烯丙基雙鍵的磷系化合物由以下通式(I)所表示: (I) 其中X為H或甲基;R 1為苯基或者經取代或未經取代的C 1-C 10烷基。 [ 含烯丙基雙鍵的磷系化合物的合成方法 ] The allyl double bond-containing phosphorus compound of the present invention is represented by the following formula (I): (I) wherein X is H or methyl; R 1 is phenyl or substituted or unsubstituted C 1 -C 10 alkyl. [ Synthesis method of phosphorus-based compound containing allyl double bond ]

本發明之含烯丙基雙鍵的磷系化合物的合成方法例如以下述反應步驟所製備: 其中X為H或甲基;R 1為苯基或者經取代或未經取代的C 1-C 10烷基。 The method for synthesizing the allyl double bond-containing phosphorus compound of the present invention is, for example, prepared by the following reaction steps: Wherein X is H or methyl; R 1 is phenyl or substituted or unsubstituted C 1 -C 10 alkyl.

本發明之含烯丙基雙鍵的磷系化合物的製備方法的一具體例包含以下步驟:於步驟(i)中,將以通式(a)所表示之磷系化合物與烯丙基鹵化物(例如是烯丙基溴)、鹼性試劑(例如是碳酸鉀)以及溶劑(例如是二甲基乙醯胺(Dimethylacetamide,DMAC))混合反應,以得到由通式(b)所表示之磷系化合物;之後,於步驟(ii)中,將以通式(b)所表示之磷系化合物在氬氣環境下加熱至180°C並經過8小時的反應時間以進行重排,以得到由通式(c)所表示之磷系化合物;然後,於步驟(iii)中,將以通式(c)所表示之磷系化合物與碳酸乙烯酯或甲基碳酸乙烯酯、鹼性試劑(例如是碳酸鉀)及溶劑(例如是DMAC)混合反應,以得到本發明之由通式(I)表示之含烯丙基雙鍵的磷系化合物。 [ 含烯丙基雙鍵的磷系聚合物的結構 ] A specific example of the method for producing the allyl double bond-containing phosphorus compound of the present invention comprises the step of: in the step (i), the phosphorus compound represented by the formula (a) and the allyl halide (for example, allyl bromide), an alkaline reagent (for example, potassium carbonate), and a solvent (for example, dimethylacetamide (DMAC)) mixed reaction to obtain phosphorus represented by the general formula (b) a compound; after that, in the step (ii), the phosphorus compound represented by the formula (b) is heated to 180 ° C under an argon atmosphere and subjected to a reaction time of 8 hours for rearrangement to obtain a phosphorus-based compound represented by the formula (c); and then, in the step (iii), a phosphorus-based compound represented by the formula (c) and ethylene carbonate or methyl carbonate, an alkaline reagent (for example) It is a mixed reaction of potassium carbonate) and a solvent (for example, DMAC) to obtain a phosphorus-based compound containing an allyl double bond represented by the formula (I) of the present invention. [ Structure of phosphorus-based polymer containing allyl double bond ]

本發明之含烯丙基雙鍵的磷系聚合物由以下通式(II)所表示: (II), 其中X為H或甲基;R 1為苯基或者經取代或未經取代的C 1-C 10烷基;R 2為羰基,且R 2在苯環上的位置為間位或對位;n為20~300的整數。 The allyl double bond-containing phosphorus-based polymer of the present invention is represented by the following formula (II): (II), wherein X is H or methyl; R 1 is phenyl or substituted or unsubstituted C 1 -C 10 alkyl; R 2 is carbonyl, and the position of R 2 on the phenyl ring is meta Or alignment; n is an integer from 20 to 300.

在一實施例中,上述的含烯丙基雙鍵的磷系聚合物由以下式(II-1)所表示: (II-1), 其中n為20~300的整數。 In one embodiment, the above allyl double bond-containing phosphorus-based polymer is represented by the following formula (II-1): (II-1), where n is an integer from 20 to 300.

在一實施例中,對式(II-1)所表示的含烯丙基雙鍵的磷系聚合物進行加熱固化可得到由以下式(II-1-1)所表示之具有交聯結構的含烯丙基雙鍵的磷系聚合物: (II-1-1), 其中n為20~300的整數。 In one embodiment, the allyl double bond-containing phosphorus-based polymer represented by the formula (II-1) is subjected to heat curing to obtain a crosslinked structure represented by the following formula (II-1-1). Phosphorous polymer containing allyl double bond: (II-1-1), where n is an integer from 20 to 300.

在另一實施例中,上述的含烯丙基雙鍵的磷系聚合物由以下式(II-2)所表示: (II-2), 其中n為20~300的整數。 In another embodiment, the above allyl double bond-containing phosphorus-based polymer is represented by the following formula (II-2): (II-2), where n is an integer from 20 to 300.

在一實施例中,對式(II-2)所表示的含烯丙基雙鍵的磷系聚合物進行加熱固化可得到由以下式(II-2-1)所表示之具有交聯結構的含烯丙基雙鍵的磷系聚合物: (II-2-1), 其中n為20~300的整數。 In one embodiment, the allyl double bond-containing phosphorus-based polymer represented by the formula (II-2) is subjected to heat curing to obtain a crosslinked structure represented by the following formula (II-2-1). Phosphorous polymer containing allyl double bond: (II-2-1), where n is an integer from 20 to 300.

本發明之含烯丙基雙鍵的磷系聚合物具有高的玻璃轉移溫度(Tg)以及低的熱膨脹係數(CTE),因此具有優異的熱穩定性以及阻燃性。此外,由於本發明之含烯丙基雙鍵的磷系聚合物含有烯丙基雙鍵,其可藉由進行加熱固化而提高交聯密度,因此所得到的具有交聯結構的含烯丙基雙鍵的磷系聚合物具有高的玻璃轉移溫度(T g)以及低的熱膨脹係數(CTE),且因此具有優異的熱穩定性以及阻燃性。 [ 含烯丙基雙鍵的磷系聚合物的合成方法 ] The allyl double bond-containing phosphorus-based polymer of the present invention has a high glass transition temperature (Tg) and a low coefficient of thermal expansion (CTE), and thus has excellent heat stability and flame retardancy. Further, since the allyl double bond-containing phosphorus-based polymer of the present invention contains an allyl double bond, which can be cured by heating to increase the crosslinking density, the obtained allyl group having a crosslinked structure is obtained. The double-bonded phosphorus-based polymer has a high glass transition temperature (T g ) and a low coefficient of thermal expansion (CTE), and thus has excellent heat stability and flame retardancy. [ Synthesis method of phosphorus-based polymer containing allyl double bond ]

本發明之含烯丙基雙鍵的磷系聚合物,如下式(II)所表示,其合成方法例如以下述反應步驟所製備: 其中X為H或甲基;R 1為苯基或者經取代或未經取代的C 1-C 10烷基;R 2為羰基,且R 2在苯環上的位置為間位或對位;n為20~300。 The allyl double bond-containing phosphorus-based polymer of the present invention is represented by the following formula (II), and the synthesis method thereof is, for example, prepared by the following reaction steps: Wherein X is H or methyl; R 1 is phenyl or substituted or unsubstituted C 1 -C 10 alkyl; R 2 is carbonyl, and the position of R 2 on the phenyl ring is meta or para; n is 20~300.

在一實施例中,本發明之含烯丙基雙鍵的磷系聚合物的製備方法包含以下步驟:於步驟(iv)中,將本發明之以通式(I)表示之含烯丙基雙鍵的磷系化合物與間苯二醯氯(即R 2在苯環上的位置為間位)以及鄰二氯苯(o-dichlorobenzene)進行聚合反應,以得到由以下式(II-1)所表示的含烯丙基雙鍵的磷系聚合物: (II-1), 其中n為20~300。 In one embodiment, the method for preparing an allyl double bond-containing phosphorus polymer of the present invention comprises the step of: in the step (iv), the allyl group represented by the formula (I) of the present invention The double-bonded phosphorus-based compound is polymerized with m-benzoic acid chloride (that is, the position of R 2 on the benzene ring is meta-position) and o-dichlorobenzene to obtain the following formula (II-1). Phosphopolymer containing allyl double bond represented: (II-1), where n is 20~300.

在本實施例中,可進一步對由式(II-1)表示之含烯丙基雙鍵的磷系聚合物進行加熱固化,以得到由以下式(II-1-1)表示的具有交聯結構的含烯丙基雙鍵的磷系聚合物: (II-1-1), 其中n為20~300。對通式(II-1)所表示的含烯丙基雙鍵的磷系聚合物進行加熱固化的溫度例如是200°C~300°C。 In the present embodiment, the allylic double bond-containing phosphorus-based polymer represented by the formula (II-1) can be further heat-cured to obtain a cross-linking represented by the following formula (II-1-1). Structure of a phosphorus-based polymer containing an allyl double bond: (II-1-1), where n is 20~300. The temperature at which the allyl double bond-containing phosphorus-based polymer represented by the formula (II-1) is heat-cured is, for example, 200 ° C to 300 ° C.

在另一實施例中,本發明之含烯丙基雙鍵的磷系聚合物的製備方法包含以下步驟:於步驟(iv)中,將本發明之以通式(I)表示之含烯丙基雙鍵的磷系化合物與對苯二醯氯(即R 2在苯環上的位置為對位)以及鄰二氯苯進行聚合反應,以得到由以下式(II-2)所表示的含烯丙基雙鍵的磷系聚合物: (II-2), 其中n為20~300。 In another embodiment, the method for preparing an allyl double bond-containing phosphorus polymer of the present invention comprises the steps of: in the step (iv), the allylic group represented by the formula (I) of the present invention The phosphorus-based compound having a double bond is polymerized with p-benzoic chloride (i.e., the position of R 2 on the benzene ring) and o-dichlorobenzene to obtain a compound represented by the following formula (II-2). Phosphopolymers with allyl double bonds: (II-2), where n is 20~300.

在本實施例中,可進一步對由式(II-2)所表示之含烯丙基雙鍵的磷系聚合物進行加熱固化,以得到由以下式(II-2-1)所表示的具有交聯結構的含烯丙基雙鍵的磷系聚合物: (II-2-1), 其中n為20~300。對通式(II-2)所表示的含烯丙基雙鍵的磷系聚合物進行加熱固化的溫度例如是200°C~300°C。 [ 含烯丙基雙鍵的磷系共聚物的結構 ] In the present embodiment, the allylic double bond-containing phosphorus-based polymer represented by the formula (II-2) can be further heat-cured to obtain a compound represented by the following formula (II-2-1). Crosslinked polystyrene double bond-containing phosphorus polymer: (II-2-1), where n is 20~300. The temperature at which the allylic double bond-containing phosphorus-based polymer represented by the formula (II-2) is heat-cured is, for example, 200 ° C to 300 ° C. [ Structure of Phosphorus Copolymer Containing Allyl Double Bonds ]

本發明之含烯丙基雙鍵的磷系共聚物具有由以下通式(III)所表示的結構: (III), 其中X為H或甲基;R 1為苯基或者經取代或未經取代的C 1-C 10烷基;m、n分別為20~300。 The allyl double bond-containing phosphorus-based copolymer of the present invention has a structure represented by the following formula (III): (III), wherein X is H or methyl; R 1 is phenyl or substituted or unsubstituted C 1 -C 10 alkyl; m and n are respectively from 20 to 300.

本發明之含烯丙基雙鍵的磷系共聚物由於含有烯丙基雙鍵,因此具有相對高的交聯密度,進而具有相對於習知聚酯高的熱變形溫度。 [ 含烯丙基雙鍵的磷系共聚物的合成方法 ] Since the allyl double bond-containing phosphorus-based copolymer of the present invention contains an allyl double bond, it has a relatively high crosslinking density and further has a high heat distortion temperature with respect to a conventional polyester. [ Synthesis method of phosphorus-based copolymer containing allyl double bond ]

本發明之含烯丙基雙鍵的磷系共聚物的合成方法例如以下述反應步驟製備: 其中以通式(II’)表示之含烯丙基雙鍵的磷系聚合物為以通式(II)表示之含烯丙基雙鍵的磷系聚合物的一實施例,在此實施例中,R 2為羰基,且R 2在苯環上的位置為間位。另外,在以通式(II’)以及通式(III)中,X為H或甲基;R 1為苯基或者經取代或未經取代的C 1-C 10烷基;m、n分別為20~300。 The synthesis method of the allyl double bond-containing phosphorus-based copolymer of the present invention is prepared, for example, by the following reaction steps: The phosphorus-based polymer containing an allyl double bond represented by the formula (II') is an example of a phosphorus-based polymer containing an allyl double bond represented by the formula (II). Wherein R 2 is a carbonyl group, and the position of R 2 on the benzene ring is meta. Further, in the general formula (II') and the general formula (III), X is H or a methyl group; R 1 is a phenyl group or a substituted or unsubstituted C 1 - C 10 alkyl group; m, n respectively It is 20~300.

本發明之含烯丙基雙鍵的磷系共聚物的製備方法的一具體例包含以下步驟:於步驟(v)中,將本發明之以通式(II’)所表示之含烯丙基雙鍵的磷系聚合物、聚對苯二甲酸丁二酯(Polybutylene terephthalate,PBT)以及三烯丙基異三聚氰酸酯(Triallyl isocyanurate,TAIC)進行混煉,以得到由通式(III)所表示之含烯丙基雙鍵的磷系共聚物。A specific example of the method for producing the allyl double bond-containing phosphorus-based copolymer of the present invention comprises the step of: in the step (v), the allyl group represented by the formula (II') of the present invention A double bond phosphorus-based polymer, polybutylene terephthalate (PBT), and triallyl isocyanurate (TAIC) are kneaded to obtain a formula (III). A phosphorus-based copolymer containing an allyl double bond.

在上述的混煉反應中,PBT、以通式(II’)表示之含烯丙基雙鍵的磷系聚合物以及TAIC於所述混煉中的使用量的重量比為100:1~15:1~15。另外,進行混煉反應的溫度例如是210°C~230°C。在一示範實施例中,進行混煉的溫度為220°C。In the above kneading reaction, the weight ratio of PBT, the allyl double bond-containing phosphorus-based polymer represented by the general formula (II'), and the amount of TAIC used in the kneading is 100:1 to 15 :1~15. Further, the temperature at which the kneading reaction is carried out is, for example, 210 ° C to 230 ° C. In an exemplary embodiment, the temperature at which the mixing is carried out is 220 °C.

在一實施例中,可對以通式(III)表示之含烯丙基雙鍵的磷系共聚物進行熱壓成型,以使其進行交聯而形成交聯結構。In one embodiment, the phosphorus-based copolymer containing an allyl double bond represented by the general formula (III) may be subjected to hot press forming to cause crosslinking to form a crosslinked structure.

本發明之含烯丙基雙鍵的磷系共聚物的合成方法藉由將通式(II’)表示之含烯丙基雙鍵的磷系聚合物摻入PBT以及TAIC中並進行混煉,因此所形成的以通式(III)表示之含烯丙基雙鍵的磷系共聚物具有相對高的交聯密度,進而具有相對於習知聚酯之高的熱變形溫度。 [ 實施例 ] The method for synthesizing the allyl double bond-containing phosphorus-based copolymer of the present invention is obtained by incorporating a phosphorus-based polymer containing an allyl double bond represented by the general formula (II') into PBT and TAIC, and kneading the mixture. Therefore, the phosphorus-based copolymer having an allyl double bond represented by the formula (III) thus formed has a relatively high crosslinking density and further has a high heat distortion temperature with respect to a conventional polyester. [ Examples ]

以下將藉由數個實施例對本發明作進一步說明,但該等實施例僅為例示說明之用,而非用以限制本發明之範圍。 合成例 1 中間產物 (b-1) 之合成 The invention is further illustrated by the following examples, which are intended to be illustrative only and not to limit the scope of the invention. Synthesis Example 1: Intermediate (b-1) Synthesis of

[反應流程圖1] [Reaction Flow Chart 1]

中間產物(b-1)是以雙酚單體DMP與烯丙基溴在鹼性環境下反應而得,其中雙酚單體DMP如上述化合物(a-1)所示。中間產物(b-1)之合成步驟如下: 取雙酚單體DMP(20 g, 46.68 mmol)、烯丙基溴(16.9432 g, 140.04 mmol)、碳酸鉀(20 g, 46.68 mmol)和DMAC(200 mL)置於500 mL三頸反應器中攪拌,並在65°C以及氮氣環境下反應24小時。於反應結束後,將三頸反應器中的產物冷卻至室溫並將其滴入飽和食鹽水中以析出。之後,將析出物抽氣過濾後置於65°C的真空烘箱中乾燥,可得淡黃色微黏固體的中間產物(b-1),其產率約為85%。之後,將中間產物(b-1)溶於DMSO-d 6溶劑中,並以超導核磁共振光譜儀( 1H-NMR)分析中間產物(b-1)的化學位移,可得中間產物(b-1)的光譜資料。 中間產物(b-1)的化學位移:δ=1.62 (3H, H 14), 4.5 (2H, H 19), 5.2~5.4 (2H, H 21), 6.10 (1H, H 20), 6.8 (1H, H 17), 7.11 (1H, H 10), 7.12~7.2 (3H, H 4,8,16’), 7.30~7.38 (3H, H 3,9,16), 7.68 (1H, H 2), 7.95 (1H, H 7) , 8.60 (1H, H 1)。 合成例 2 中間產物 (c-1) 之合成 The intermediate product (b-1) is obtained by reacting a bisphenol monomer DMP with allyl bromide in an alkaline environment, wherein the bisphenol monomer DMP is as shown in the above compound (a-1). The synthesis procedure of the intermediate product (b-1) was as follows: Take bisphenol monomer DMP (20 g, 46.68 mmol), allyl bromide (16.9432 g, 140.04 mmol), potassium carbonate (20 g, 46.68 mmol) and DMAC ( 200 mL) was stirred in a 500 mL three-neck reactor and reacted at 65 ° C for 24 hours under nitrogen. After the end of the reaction, the product in the three-necked reactor was cooled to room temperature and dropped into saturated brine to precipitate. Thereafter, the precipitate was suction-filtered and dried in a vacuum oven at 65 ° C to obtain an intermediate product (b-1) of a pale yellow micro-viscous solid in a yield of about 85%. Thereafter, the intermediate product (b-1) is dissolved in a DMSO-d 6 solvent, and the chemical shift of the intermediate product (b-1) is analyzed by a superconducting nuclear magnetic resonance spectrometer ( 1 H-NMR) to obtain an intermediate product (b). -1) Spectral data. Chemical shift of intermediate product (b-1): δ=1.62 (3H, H 14 ), 4.5 (2H, H 19 ), 5.2~5.4 (2H, H 21 ), 6.10 (1H, H 20 ), 6.8 (1H , H 17 ), 7.11 (1H, H 10 ), 7.12~7.2 (3H, H 4,8,16' ), 7.30~7.38 (3H, H 3,9,16 ), 7.68 (1H, H 2 ), 7.95 (1H, H 7 ) , 8.60 (1H, H 1 ). Synthesis Example 2: Intermediate (c-1) Synthesis of

[反應流程圖2] [Reaction Flow Chart 2]

中間產物(c-1)是藉由加熱重排中間產物(b-1)而得,其合成步驟如下: 取中間產物(b-1)(20 g, 39.33 mmol)置於150 mL三頸反應器中攪拌,並在180°C以及氬氣環境下反應8小時。於反應結束後,將三頸反應器中的產物冷卻至室溫,可得橘色固體的中間產物(c-1),其產率約為95%。之後,將中間產物(c-1)溶於DMSO-d 6溶劑中,並以超導核磁共振光譜儀( 1H-NMR)分析中間產物(c-1)的化學位移,可得中間產物(c-1)的光譜資料。 中間產物(c-1)的化學位移:δ=1.66 (3H, H 14), 3.0~3.2 (2H, H 21), 4.8~5.0 (1H, H 23), 6.8 (1H, H 17), 7.11 (1H, H 10), 7.12~7.2 (3H, H 4,8,16’), 7.30~7.38 (3H, H 3,9,16), 7.68 (1H, H 2), 7.95 (1H, H 7) , 8.60 (1H, H 1)。 合成例 3 化合物 (I-1) 之合成 The intermediate product (c-1) is obtained by heating and rearranging the intermediate product (b-1), and the synthesis procedure is as follows: The intermediate product (b-1) (20 g, 39.33 mmol) is placed in a 150 mL three-neck reaction. The apparatus was stirred and reacted at 180 ° C under an argon atmosphere for 8 hours. After the end of the reaction, the product in the three-necked reactor was cooled to room temperature to obtain an orange solid intermediate (c-1) in a yield of about 95%. Thereafter, the intermediate product (c-1) was dissolved in a DMSO-d 6 solvent, and the chemical shift of the intermediate product (c-1) was analyzed by a superconducting nuclear magnetic resonance spectrometer ( 1 H-NMR) to obtain an intermediate product (c). -1) Spectral data. Chemical shift of intermediate product (c-1): δ=1.66 (3H, H 14 ), 3.0~3.2 (2H, H 21 ), 4.8~5.0 (1H, H 23 ), 6.8 (1H, H 17 ), 7.11 (1H, H 10 ), 7.12~7.2 (3H, H 4,8,16' ), 7.30~7.38 (3H, H 3,9,16 ), 7.68 (1H, H 2 ), 7.95 (1H, H 7 ), 8.60 (1H, H 1 ). Synthesis of Compound (I-1) of: Synthesis Example 3

[反應流程圖3] [Reaction Flow Chart 3]

化合物(I-1)是以中間產物(c-1)與碳酸乙烯酯(Ethylene carbonate)在鹼性環境下反應而得,其合成步驟如下: 取中間產物(c-1)(15 g, 29.55 mmol)、碳酸乙烯酯(5.7 g, 65.01 mmol)、碳酸鉀(2.038 g, 14.78 mmol)和DMAC(225 mL)置於500 mL三頸反應器中攪拌,並在120°C以及氮氣環境下反應2小時。於反應結束後,將三頸反應器中的產物冷卻至室溫並將其滴入飽和食鹽水中以析出。之後,將析出物抽氣過濾後置於65°C的真空烘箱中乾燥,可得暗褐色固體的化合物(I-1),其產率約為68%。之後,將化合物(I-1)溶於DMSO-d 6溶劑中,並以超導核磁共振光譜儀( 1H-NMR)分析化合物(I-1)的化學位移。圖1為化合物(I-1)於DMSO-d 6溶劑中的超導核磁共振光譜儀( 1H-NMR)的光譜圖。 化合物(I-1)的化學位移:δ=1.7 (3H, H 14), 3.1 (4H, H 21), 3.7 (4H, H 25), 3.9 (4H, H 24), 4.9 (4H, H 23), 5.7 (2H, H 22), 6.6~8.2 (14H, Ar-H), 4.9 (2H, OH)。 合成例 4 聚合物 (II-1) 之合成 Compound (I-1) is obtained by reacting intermediate product (c-1) with ethylene carbonate in an alkaline environment, and the synthesis procedure is as follows: Intermediate product (c-1) (15 g, 29.55) Methyl acetate (5.7 g, 65.01 mmol), potassium carbonate (2.038 g, 14.78 mmol) and DMAC (225 mL) were placed in a 500 mL three-neck reactor and stirred at 120 ° C under nitrogen atmosphere. 2 hours. After the end of the reaction, the product in the three-necked reactor was cooled to room temperature and dropped into saturated brine to precipitate. Thereafter, the precipitate was suction-filtered and dried in a vacuum oven at 65 ° C to obtain a compound (I-1) as a dark brown solid in a yield of about 68%. Thereafter, the compound (I-1) was dissolved in a DMSO-d 6 solvent, and the chemical shift of the compound (I-1) was analyzed by a superconducting nuclear magnetic resonance spectrometer ( 1 H-NMR). Fig. 1 is a spectrum diagram of a superconducting nuclear magnetic resonance spectrometer ( 1 H-NMR) of a compound (I-1) in a DMSO-d 6 solvent. Chemical shift of compound (I-1): δ = 1.7 (3H, H 14 ), 3.1 (4H, H 21 ), 3.7 (4H, H 25 ), 3.9 (4H, H 24 ), 4.9 (4H, H 23 ), 5.7 (2H, H 22 ), 6.6~8.2 (14H, Ar-H), 4.9 (2H, OH). Synthetic polymers (II-1) of: Synthesis Example 4

[反應流程圖4] [Reaction Flow Chart 4]

聚合物(II-1-1)是以化合物(I-1)與間苯二醯氯(Isophthaloyl chloride)在高溫環境下進行聚合反應而得,其合成步驟如下: 取化合物(I-1)(5.54 g, 9.23 mmol)、間苯二醯氯(1.885 g, 9.23 mmol)和鄰二氯苯(o-dichlorobenzene)(29.70 g, 25 wt%)置於150 mL三頸反應器中攪拌,並在氮氣環境下以迴流溫度反應20小時。於反應結束後,將三頸反應器中的產物冷卻至室溫並將其滴入甲醇中以析出。之後,將析出物以四氫呋喃THF回溶後再減壓濃縮,可得暗褐色固體的聚合物(II-1),其中n為20~300。之後,將聚合物(II-1)溶於DMSO-d 6溶劑中,並以超導核磁共振光譜儀( 1H-NMR)分析聚合物(II-1)的化學位移。圖2為聚合物(II-1)於DMSO-d 6溶劑中的超導核磁共振光譜儀的光譜圖。 聚合物(II-1-1)的化學位移:δ=1.7 (3H, H 14), 3.1 (4H, H 21), 4.2 (4H, H 25), 4.6 (4H, H 24), 4.8 (4H, H 23), 5.7 (2H, H 22), 6.3~8.7 (14H, Ar-H)。 合成例 5 聚合物 (II-2) 之合成 The polymer (II-1-1) is obtained by polymerizing the compound (I-1) with Isophthaloyl chloride in a high temperature environment, and the synthesis procedure is as follows: Take the compound (I-1) ( 5.54 g, 9.23 mmol), m-benzoic acid chloride (1.885 g, 9.23 mmol) and o-dichlorobenzene (29.70 g, 25 wt%) were placed in a 150 mL 3-neck reactor and stirred at The reaction was carried out at a reflux temperature for 20 hours under a nitrogen atmosphere. After the end of the reaction, the product in the three-necked reactor was cooled to room temperature and dropped into methanol to precipitate. Thereafter, the precipitate was re-dissolved in tetrahydrofuran THF and concentrated under reduced pressure to give a dark brown solid polymer (II-1), where n was from 20 to 300. Thereafter, the polymer (II-1) was dissolved in a DMSO-d 6 solvent, and the chemical shift of the polymer (II-1) was analyzed by a superconducting nuclear magnetic resonance spectrometer ( 1 H-NMR). 2 is a spectrum diagram of a superconducting nuclear magnetic resonance spectrometer of a polymer (II-1) in a DMSO-d 6 solvent. Chemical shift of polymer (II-1-1): δ = 1.7 (3H, H 14 ), 3.1 (4H, H 21 ), 4.2 (4H, H 25 ), 4.6 (4H, H 24 ), 4.8 (4H , H 23 ), 5.7 (2H, H 22 ), 6.3~8.7 (14H, Ar-H). Synthetic polymer (II-2) of: Synthesis Example 5

[反應流程圖5] [Reaction Flow Chart 5]

聚合物(II-2)是以化合物(I-1)與對苯二醯氯(Terephthaloyl chloride)在高溫環境下進行聚合反應而得,其合成步驟如下: 取化合物(I-1)(5.27 g, 8.83 mmol)、對苯二醯氯(1.7931 g, 8.83 mmol)和鄰二氯苯(28.25 g, 25 wt%)置於150 mL三頸反應器中攪拌,並在氮氣環境下以迴流溫度反應20小時。於反應結束後,將三頸反應器中的產物冷卻至室溫並將其滴入甲醇中以析出。之後,將析出物以THF回溶後再減壓濃縮,可得暗褐色固體的聚合物(II-2),其中n為20~300。之後,將聚合物(II-2)溶於DMSO-d 6溶劑中,並以超導核磁共振光譜儀( 1H-NMR)分析聚合物(II-2)的化學位移。圖3為聚合物(II-2)於DMSO-d 6溶劑中的超導核磁共振光譜儀的光譜圖。 聚合物(II-2)的化學位移:δ=1.6 (3H, H 14), 3.1 (4H, H 21), 4.2 (4H, H 25), 4.6 (4H, H 24), 4.8 (4H, H 23), 5.7 (2H, H 22), 6.5~8.4 (14H, Ar-H)。 實施例 1 聚合物 (II-1-1)~(II-1-3) 之製備 The polymer (II-2) is obtained by polymerizing the compound (I-1) and terephthaloyl chloride in a high temperature environment, and the synthesis procedure is as follows: Compound (I-1) (5.27 g) is taken. , 8.83 mmol), p-benzoquinone chloride (1.7931 g, 8.83 mmol) and o-dichlorobenzene (28.25 g, 25 wt%) were placed in a 150 mL three-neck reactor and stirred at reflux temperature under nitrogen. 20 hours. After the end of the reaction, the product in the three-necked reactor was cooled to room temperature and dropped into methanol to precipitate. Thereafter, the precipitate was re-dissolved in THF and concentrated under reduced pressure to give a dark brown solid polymer (II-2), where n was from 20 to 300. Thereafter, the polymer (II-2) was dissolved in a DMSO-d 6 solvent, and the chemical shift of the polymer (II-2) was analyzed by a superconducting nuclear magnetic resonance spectrometer ( 1 H-NMR). Figure 3 is a spectrum diagram of a superconducting nuclear magnetic resonance spectrometer of polymer (II-2) in DMSO-d 6 solvent. Chemical shift of polymer (II-2): δ=1.6 (3H, H 14 ), 3.1 (4H, H 21 ), 4.2 (4H, H 25 ), 4.6 (4H, H 24 ), 4.8 (4H, H 23 ), 5.7 (2H, H 22 ), 6.5~8.4 (14H, Ar-H). Example 1 : Preparation of Polymer (II-1-1)~(II-1-3)

聚合物(II-1-1)Polymer (II-1-1)

[反應流程圖6] [Reaction Flow Chart 6]

取聚合物(II-1)(0.3 g)溶於DMAC(0.7 g)中以配製成30 wt%之溶液,等聚合物(II-1)完全溶解後,利用塗佈機將所述配置出之溶液塗佈至玻璃基板上,並將膜厚控制為約150 μm。之後,於循環烘箱中在60°C下加熱處理12小時以除去大部份溶劑,然後,將溫度從60°C以階段升溫的方式(以各一小時的速率)依序升至100°C、150°C、200°C,並將玻璃基板置於水中脫膜以得到聚合物(II-1-1)。The polymer (II-1) (0.3 g) was dissolved in DMAC (0.7 g) to prepare a 30 wt% solution, and after the polymer (II-1) was completely dissolved, the configuration was carried out by a coater. The resulting solution was applied to a glass substrate and the film thickness was controlled to be about 150 μm. Thereafter, heat treatment was carried out in a circulating oven at 60 ° C for 12 hours to remove most of the solvent, and then the temperature was raised from 60 ° C in a stepwise manner (at a rate of one hour) to 100 ° C. At 150 ° C, 200 ° C, the glass substrate was taken out in water to remove a film to obtain a polymer (II-1-1).

聚合物(II-1-2)Polymer (II-1-2)

聚合物(II-1-2)的製備方法與聚合物(II-1-1)的製備方法類似,唯一的差異在於當玻璃基板於循環烘箱中在60°C下加熱處理12小時後,將溫度從60°C以階段升溫的方式(以各一小時的速率)依序升至100°C、150°C、200°C、260°C,並將玻璃基板置於水中脫膜以得到聚合物(II-1-2)。The preparation method of the polymer (II-1-2) is similar to the preparation method of the polymer (II-1-1), the only difference is that when the glass substrate is heat-treated at 60 ° C for 12 hours in a circulating oven, The temperature was raised from 60 ° C in stages (at a rate of one hour) to 100 ° C, 150 ° C, 200 ° C, 260 ° C, and the glass substrate was stripped in water to obtain a polymerization. (II-1-2).

聚合物(II-1-3)Polymer (II-1-3)

聚合物(II-1-3)的製備方法與聚合物(II-1-1)的製備方法類似,唯一的差異在於當玻璃基板於循環烘箱中在60°C下加熱處理12小時後,將溫度從60°C以階段升溫的方式(以各一小時的速率)依序升至100°C、150°C、200°C、300°C,並將玻璃基板置於水中脫膜以得到聚合物(II-1-3)。 實施例 2 聚合物 (II-2-1)~(II-2-3) 之製備 The preparation method of the polymer (II-1-3) is similar to the preparation method of the polymer (II-1-1), the only difference is that after the glass substrate is heat-treated at 60 ° C for 12 hours in a circulating oven, The temperature was raised from 60 ° C in a stepwise manner (at a rate of one hour) to 100 ° C, 150 ° C, 200 ° C, 300 ° C, and the glass substrate was placed in water to remove the film to obtain a polymerization. (II-1-3). Example 2 : Preparation of Polymer (II-2-1)~(II-2-3)

聚合物(II-2-1)Polymer (II-2-1)

[反應流程圖7] [Reaction Flowchart 7]

取聚合物(II-2)(0.3 g)溶於DMAC(0.7 g)中以配製成30 wt%之溶液,等聚合物(II-2)完全溶解後,利用塗佈機將所述配置出之溶液塗佈至玻璃基板上,並將膜厚控制為約150 μm。之後,於循環烘箱中在60°C下加熱處理12小時以除去大部份溶劑,然後,將溫度從60°C以階段升溫的方式(以各一小時的速率)依序升至100°C、150°C、200°C,並將玻璃基板置於水中脫膜以得到聚合物(II-2-1)。The polymer (II-2) (0.3 g) was dissolved in DMAC (0.7 g) to prepare a 30 wt% solution, and after the polymer (II-2) was completely dissolved, the configuration was carried out by a coater. The resulting solution was applied to a glass substrate and the film thickness was controlled to be about 150 μm. Thereafter, heat treatment was carried out in a circulating oven at 60 ° C for 12 hours to remove most of the solvent, and then the temperature was raised from 60 ° C in a stepwise manner (at a rate of one hour) to 100 ° C. At 150 ° C and 200 ° C, the glass substrate was taken out in water to remove a film to obtain a polymer (II-2-1).

聚合物(II-2-2)Polymer (II-2-2)

聚合物(II-2-2)的製備方法與聚合物(II-2-1)的製備方法類似,唯一的差異在於當玻璃基板於循環烘箱中在60°C下加熱處理12小時後,將溫度從60°C以階段升溫的方式(以各一小時的速率)依序升至100°C、150°C、200°C、260°C,並將玻璃基板置於水中脫膜以得到聚合物(II-2-2)。The preparation method of the polymer (II-2-2) is similar to the preparation method of the polymer (II-2-1), the only difference being that after the glass substrate is heat-treated at 60 ° C for 12 hours in a circulating oven, The temperature was raised from 60 ° C in stages (at a rate of one hour) to 100 ° C, 150 ° C, 200 ° C, 260 ° C, and the glass substrate was stripped in water to obtain a polymerization. (II-2-2).

聚合物(II-2-3)Polymer (II-2-3)

聚合物(II-2-3)的製備方法與聚合物(II-2-1)的製備方法類似,唯一的差異在於當玻璃基板於循環烘箱中在60°C下加熱處理12小時後,將溫度從60°C以階段升溫的方式(以各一小時的速率)依序升至100°C、150°C、200°C、300°C,並將玻璃基板置於水中脫膜以得到聚合物(II-2-3)。The preparation method of the polymer (II-2-3) is similar to the preparation method of the polymer (II-2-1), the only difference is that when the glass substrate is heat-treated at 60 ° C for 12 hours in a circulating oven, The temperature was raised from 60 ° C in a stepwise manner (at a rate of one hour) to 100 ° C, 150 ° C, 200 ° C, 300 ° C, and the glass substrate was placed in water to remove the film to obtain a polymerization. (II-2-3).

圖4為聚合物(II-1-1)~(II-1-3)以及(II-2-1)~(II-2-3)的動態機械分析(DMA)圖。由阻尼(tan δ)波峰所對應之溫度可得知聚合物(II-1-1)~(II-1-3)以及聚合物(II-2-1)~(II-2-3)的玻璃轉移溫度(T g)。另外,由實施例1製備之聚合物(II-1-1)~(II-1-3)以及實施例2製備之聚合物(II-2-1)~(II-2-3)的熱機械分析(TMA)結果列於表1。 4 is a dynamic mechanical analysis (DMA) diagram of polymers (II-1-1) to (II-1-3) and (II-2-1) to (II-2-3). The polymer (II-1-1)~(II-1-3) and the polymer (II-2-1)~(II-2-3) can be known from the temperature corresponding to the damping (tan δ) peak. Glass transfer temperature (T g ). Further, the heat of the polymer (II-1-1) to (II-1-3) prepared in Example 1 and the polymer (II-2-1) to (II-2-3) prepared in Example 2 Mechanical analysis (TMA) results are listed in Table 1.

表1 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 聚合物 </td><td> T<sub>g</sub> (°C) </td><td> T<sub>g</sub> (°C) </td><td> CTE (ppm/°C) </td><td> T<sub>d5%</sub> (°C) </td><td> Char yield (%) </td></tr><tr><td> N<sub>2</sub></td><td> Air </td><td> N<sub>2</sub></td><td> Air </td></tr><tr><td> (II-1-1) </td><td> 208 </td><td> 161 </td><td> 73 </td><td> 410 </td><td> 413 </td><td> 38 </td><td> 43 </td></tr><tr><td> (II-1-2) </td><td> 249 </td><td> 217 </td><td> 59 </td><td> 414 </td><td> 380 </td><td> 50 </td><td> 33 </td></tr><tr><td> (II-1-3) </td><td> 300 </td><td> 258 </td><td> 46 </td><td> 414 </td><td> 400 </td><td> 50 </td><td> 27 </td></tr><tr><td> (II-2-1) </td><td> 230 </td><td> 180 </td><td> 61 </td><td> 386 </td><td> 362 </td><td> 38 </td><td> 32 </td></tr><tr><td> (II-2-2) </td><td> 264 </td><td> 234 </td><td> 50 </td><td> 377 </td><td> 359 </td><td> 44 </td><td> 33 </td></tr><tr><td> (II-2-3) </td><td> 305 </td><td> 264 </td><td> 34 </td><td> 391 </td><td> 374 </td><td> 49 </td><td> 33 </td></tr></TBODY></TABLE>Table 1         <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> polymer</td><td> T<sub>g</sub> (°C ) </td><td> T<sub>g</sub> (°C) </td><td> CTE (ppm/°C) </td><td> T<sub>d5%</ Sub> (°C) </td><td> Char yield (%) </td></tr><tr><td> N<sub>2</sub></td><td> Air < /td><td> N<sub>2</sub></td><td> Air </td></tr><tr><td> (II-1-1) </td><td > 208 </td><td> 161 </td><td> 73 </td><td> 410 </td><td> 413 </td><td> 38 </td><td> 43 </td></tr><tr><td> (II-1-2) </td><td> 249 </td><td> 217 </td><td> 59 </td>< Td> 414 </td><td> 380 </td><td> 50 </td><td> 33 </td></tr><tr><td> (II-1-3) </ Td><td> 300 </td><td> 258 </td><td> 46 </td><td> 414 </td><td> 400 </td><td> 50 </td> <td> 27 </td></tr><tr><td> (II-2-1) </td><td> 230 </td><td> 180 </td><td> 61 < /td><td> 386 </td><td> 362 </td><td> 38 </td><td> 32 </td></tr><tr><td> (II-2- 2) </td><td> 264 </td><td> 234 </td><td> 50 </td><td> 377 </td><td> 359 </td><td> 44 </td><td> 33 </td></tr><tr><td> (II-2-3) </td><td> 305 </td><td> 264 </td>< Td> 34 </td><td> 391 </td><td> 374 </td><td> 49 </td><td> 33 </td></tr></TBODY></TABLE>

請參照圖4以及表1,可看出隨著聚合物(II-1)或聚合物(II-2)的最終固化溫度上升,藉由對聚合物(II-1)或聚合物(II-2)進行加熱固化而得之聚合物的玻璃轉移溫度(T g)也隨之上升。舉例來說,當聚合物(II-1)的最終固化溫度為260°C時,其藉由固化上述聚合物(II-1)而得之聚合物(II-1-3)的玻璃轉移溫度(T g)為249°C;而當聚合物(II-1)的最終固化溫度為300°C時,其藉由固化上述聚合物(II-1)而得之聚合物(II-1-3)的玻璃轉移溫度(T g)則可提升至300°C。 Referring to FIG. 4 and Table 1, it can be seen that as the final curing temperature of the polymer (II-1) or the polymer (II-2) rises, by the polymer (II-1) or the polymer (II- 2) The glass transition temperature (T g ) of the polymer obtained by heat curing also increases. For example, when the final curing temperature of the polymer (II-1) is 260 ° C, the glass transition temperature of the polymer (II-1-3) obtained by curing the above polymer (II-1) (T g ) is 249 ° C; and when the final curing temperature of the polymer (II-1) is 300 ° C, the polymer obtained by curing the above polymer (II-1) (II-1- 3) The glass transition temperature (T g ) can be increased to 300 ° C.

另外,可從圖4中觀察到阻尼(tan δ)值隨著聚合物(II-1)或聚合物(II-2)的最終固化溫度上升而減少,其顯示出其經加熱固化後之材料的交聯密度上升,並且由於其交聯密度的上升,進而使聚合物(II-1-1)~(II-1-3)以及聚合物(II-1-1)~(II-1-3)的玻璃轉移溫度(T g)明顯地提升。 In addition, it can be observed from FIG. 4 that the damping (tan δ) value decreases as the final curing temperature of the polymer (II-1) or the polymer (II-2) increases, which shows the material after heat curing. The crosslink density increases, and due to the increase in crosslink density, the polymer (II-1-1)~(II-1-3) and the polymer (II-1-1)~(II-1- 3) The glass transition temperature (T g ) is significantly improved.

請繼續參照表1,由表1也可看出隨著聚合物(II-1)或聚合物(II-2)的最終固化溫度上升,藉由對聚合物(II-1)或聚合物(II-2)進行加熱固化而得之聚合物的玻璃轉移溫度(T g)也隨之上升,其顯示出與圖4所示之動態分析結果具有相同的趨勢。另外,隨著聚合物(II-1)或聚合物(II-2)的最終固化溫度上升,藉由對聚合物(II-1)或聚合物(II-2)進行加熱固化而得之聚合物的熱膨脹係數(CTE)將下降,其原因在於經加熱固化後之材料的交聯密度將隨著最終固化溫度上升而提升,並且由於其交聯密度的提升而使整體分子的運動受到極大的限制,意即,隨著聚合物(II-1)或聚合物(II-2)的最終固化溫度上升,藉由對聚合物(II-1)或聚合物(II-2)進行加熱固化而得之聚合物的安定性將隨之上升。舉例來說,當聚合物(II-1)的最終固化溫度為300°C時,其藉由固化上述聚合物(II-1)而得之聚合物(II-1-3)具有熱膨脹係數為34 ppm/°C的優異性質。 Please continue to refer to Table 1. It can also be seen from Table 1 that as the final curing temperature of the polymer (II-1) or the polymer (II-2) rises, by the polymer (II-1) or the polymer ( II-2) The glass transition temperature (T g ) of the polymer obtained by heat curing also increased, which showed the same tendency as the dynamic analysis result shown in FIG. 4 . Further, as the final curing temperature of the polymer (II-1) or the polymer (II-2) rises, polymerization is carried out by heating and curing the polymer (II-1) or the polymer (II-2). The coefficient of thermal expansion (CTE) of the material will decrease because the crosslink density of the material after heat curing will increase as the final solidification temperature rises, and the movement of the whole molecule is greatly affected by the increase in crosslink density. Restriction means that the polymer (II-1) or the polymer (II-2) is cured by heating as the final curing temperature of the polymer (II-1) or the polymer (II-2) rises. The stability of the resulting polymer will increase. For example, when the final curing temperature of the polymer (II-1) is 300 ° C, the polymer (II-1-3) obtained by curing the above polymer (II-1) has a coefficient of thermal expansion of Excellent properties at 34 ppm/°C.

此外,於表1中還列出聚合物(II-1-1)~(II-1-3)以及聚合物(II-2-1)~(II-2-3)在氮氣環境及空氣環境下的熱機械分析結果。在氮氣環境下,可看出聚合物(II-1-1)~(II-1-3)以及聚合物(II-2-1)~(II-2-3)的5%熱重損失溫度皆在375°C以上,且焦炭殘餘率(Char yield)皆約在40%上下,其顯示出聚合物(II-1-1)~(II-1-3)以及聚合物(II-2-1)~(II-2-3)具有良好的熱穩定性。另外,在氮氣環境下的焦炭殘餘率皆大於25%,其顯示出含有磷系聚酯結構的聚合物(II-1-1)~(II-1-3)以及聚合物(II-2-1)~(II-2-3)具有優異的阻燃性。 實施例 3 :共 聚物 (III-1-1)~(III-1-3) 之製備 In addition, the polymers (II-1-1) to (II-1-3) and the polymers (II-2-1) to (II-2-3) are listed in Table 1 in a nitrogen atmosphere and an air environment. The results of the thermomechanical analysis. Under nitrogen atmosphere, the 5% thermogravimetric loss temperature of polymer (II-1-1)~(II-1-3) and polymer (II-2-1)~(II-2-3) can be seen. Both are above 375 ° C, and the Char yield is about 40%, which shows the polymer (II-1-1) ~ (II-1-3) and the polymer (II-2- 1) ~ (II-2-3) has good thermal stability. In addition, the coke residual ratio in the nitrogen atmosphere is more than 25%, which shows the polymer (II-1-1) to (II-1-3) and the polymer (II-2-) having a phosphorus-based polyester structure. 1) ~ (II-2-3) has excellent flame retardancy. Preparation of copolymer (III-1-1) ~ (III -1-3) of Example 3:

共聚物(III-1-1)Copolymer (III-1-1)

[反應流程圖8] [Reaction Flow Chart 8]

共聚物(III-1-1)是以聚合物(II-1)與聚對苯二甲酸丁二酯(Polybutylene terephthalate,PBT)以及三烯丙基異三聚氰酸酯(Triallyl isocyanurate,TAIC)進行混煉而得,其合成步驟如下: 取PBT(100 g)置於500 mL分離式反應器中攪拌,並在氮氣環境下將溫度升至220°C,等PBT完全液化後,加入聚合物(II-1)(5 g)並攪拌5分鐘,之後加入TAIC(5 g)以及第三丁基過氧化異丙苯(t-butyl cumyl peroxide)(0.5 g)並再攪拌5分鐘,然後降至室溫冷卻以得到共聚物(III-1-1),其中m、n分別為20~300。The copolymer (III-1-1) is a polymer (II-1) with polybutylene terephthalate (PBT) and triallyl isocyanurate (TAIC). For the mixing, the synthesis steps are as follows: PBT (100 g) is placed in a 500 mL separate reactor and stirred, and the temperature is raised to 220 ° C under a nitrogen atmosphere. After the PBT is completely liquefied, the polymer is added. (II-1) (5 g) and stirred for 5 minutes, then add TAIC (5 g) and t-butyl cumyl peroxide (0.5 g) and stir for another 5 minutes, then drop The mixture was cooled to room temperature to obtain a copolymer (III-1-1) wherein m and n were 20 to 300, respectively.

共聚物(III-1-2)Copolymer (III-1-2)

共聚物(III-1-2)的製備方法與共聚物(III-1-1)的製備方法類似,唯一的差異在於聚合物(II-1)以及TAIC的使用量不同,在共聚物(III-1-2)的製備方法中,聚合物(II-1)以及TAIC的使用量皆為10 g,因此,PBT、聚合物(II-1)以及TAIC的使用量之重量比為10:1:1。The preparation method of the copolymer (III-1-2) is similar to the preparation method of the copolymer (III-1-1), the only difference being that the amount of the polymer (II-1) and the TAIC are different, in the copolymer (III) In the preparation method of -1-2), the amount of the polymer (II-1) and the TAIC used is 10 g, and therefore, the weight ratio of the PBT, the polymer (II-1), and the TAIC is 10:1. :1.

共聚物(III-1-3)Copolymer (III-1-3)

共聚物(III-1-3)的製備方法與共聚物(III-1-1)的製備方法類似,唯一的差異在於聚合物(II-1)以及TAIC的使用量不同,在共聚物(III-1-3)的製備方法中,聚合物(II-1)以及TAIC的使用量皆為15 g,因此,PBT、聚合物(II-1)以及TAIC的使用量之重量比為20:3:3。 比較例 1 :共 聚物 (PBT-TAIC) 之製備 The preparation method of the copolymer (III-1-3) is similar to the preparation method of the copolymer (III-1-1), the only difference being that the amount of the polymer (II-1) and the TAIC are different, in the copolymer (III) In the preparation method of -1-3), both the polymer (II-1) and the TAIC are used in an amount of 15 g, and therefore, the weight ratio of the PBT, the polymer (II-1), and the TAIC is 20:3. :3. Preparation of copolymer (PBT-TAIC): A Comparative Example 1

共聚物(PBT-TAIC)是以PBT與TAIC進行混煉而得,其合成步驟如下: 取PBT(100 g)置於500 mL分離式反應器中攪拌,並在氮氣環境下將溫度升至220°C,等PBT完全液化後,加入TAIC(5 g)以及第三丁基過氧化異丙苯(0.5 g)並再攪拌5分鐘,然後降至室溫冷卻以得到共聚物(PBT-TAIC)。 比較例 2 :無烯丙基之磷系聚酯與 PBT 以及 TAIC 的混摻 物之製備 The copolymer (PBT-TAIC) is obtained by mixing PBT and TAIC. The synthesis procedure is as follows: PBT (100 g) is placed in a 500 mL separation reactor and stirred, and the temperature is raised to 220 under a nitrogen atmosphere. °C, after the PBT was completely liquefied, TAIC (5 g) and tert-butylperoxy cumene (0.5 g) were added and stirred for another 5 minutes, and then cooled to room temperature to obtain a copolymer (PBT-TAIC). . Comparative Example 2 : Preparation of a blend of allyl-free phosphorus-based polyester with PBT and TAIC

無烯丙基之磷系聚酯與PBT以及TAIC的混摻物之合成步驟如下: 取PBT(100 g)置於500 mL分離式反應器中攪拌,並在氮氣環境下將溫度升至220°C,等PBT完全液化後,加入如下式(1)所示的無烯丙基之磷系聚酯(5 g)(取自中華民國專利I408144)並攪拌5分鐘,之後加入TAIC(5 g)以及第三丁基過氧化異丙苯(0.5 g)並再攪拌5分鐘,然後降至室溫冷卻以得到無烯丙基之磷系聚酯與PBT以及TAIC的混摻物。 (1) 實驗例 The steps for synthesizing the blend of allyl-free phosphorus-based polyester and PBT and TAIC are as follows: PBT (100 g) is placed in a 500 mL separate reactor and stirred, and the temperature is raised to 220 ° under a nitrogen atmosphere. C, after the PBT is completely liquefied, the allyl-free phosphorus-based polyester (5 g) represented by the following formula (1) (taken from the Republic of China Patent I408144) is added and stirred for 5 minutes, after which TAIC (5 g) is added. And butyl butylperoxide (0.5 g) was further stirred for 5 minutes, and then cooled to room temperature to obtain a blend of allyl-free phosphorus-based polyester and PBT and TAIC. (1) Experimental example

分別將由實施例3製備之共聚物(III-1-1)~(III-1-3)、比較例1製備之共聚物(PBT-TAIC)以及比較例2製備之混摻物置入模具中,並將所述模具放置於熱壓機上進行預熱,以使聚酯先行熔化。之後,逐漸提高熱壓機的溫度及壓力,以在220°C的溫度以及100 kg/m 2的壓力下進行熱壓。在熱壓進行約五分鐘後,洩壓使熱壓機的內部氣體排出。重複進行上述加壓以及洩壓的步驟三次之後,將模具的溫度冷卻至室溫,即可脫膜而分別得到共聚物(III-1-1)~(III-1-3)、共聚物(PBT-TAIC)以及比較例2製備之混摻物的塊材,之後將所述塊材置入循環烘箱內在220°C的溫度下進行一小時的加熱硬化。 The copolymers (III-1-1) to (III-1-3) prepared in Example 3, the copolymer prepared in Comparative Example 1 (PBT-TAIC), and the blend prepared in Comparative Example 2 were placed in a mold, respectively. The mold was placed on a hot press for preheating to melt the polyester first. Thereafter, the temperature and pressure of the hot press were gradually increased to perform hot pressing at a temperature of 220 ° C and a pressure of 100 kg / m 2 . After about five minutes of hot pressing, the pressure relief causes the internal gas of the hot press to be discharged. After repeating the above steps of pressurizing and depressurizing three times, the temperature of the mold is cooled to room temperature, and the film can be removed to obtain copolymers (III-1-1) to (III-1-3) and copolymers, respectively. PBT-TAIC) and the bulk of the blend prepared in Comparative Example 2, which were then placed in a circulating oven for heat curing at 220 ° C for one hour.

圖5為PBT、共聚物(PBT-TAIC)及共聚物(III-1-1)、(III-1-3)的動態機械分析圖。另外,PBT、比較例1製備之共聚物(PBT-TAIC)、實施例3製備之共聚物(III-1-1)~(III-1-3)的熱變形溫度列於表2。Fig. 5 is a dynamic mechanical analysis diagram of PBT, copolymer (PBT-TAIC) and copolymers (III-1-1) and (III-1-3). Further, the heat distortion temperatures of PBT, the copolymer prepared in Comparative Example 1 (PBT-TAIC), and the copolymer (III-1-1) to (III-1-3) prepared in Example 3 are shown in Table 2.

表2 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> </td><td> PBT 使用量 (g) </td><td> TAIC使用量 (g) </td><td> 聚合物(II-1) 使用量 (g) </td><td> 無烯丙基之磷系聚酯使用量(g) </td><td> 熱變形溫度 (°C) </td></tr><tr><td> PBT </td><td> 100 </td><td> 0 </td><td> 0 </td><td> 0 </td><td> 213 </td></tr><tr><td> 由比較例1製備之共聚物(PBT-TAIC) </td><td> 100 </td><td> 5 </td><td> 0 </td><td> 0 </td><td> 210 </td></tr><tr><td> 由比較例2製備之混摻物 </td><td> 100 </td><td> 5 </td><td> 0 </td><td> 5 </td><td> 160 </td></tr><tr><td> 由實施例3製備之共聚物(III-1-1) </td><td> 100 </td><td> 5 </td><td> 5 </td><td> 0 </td><td> 220 </td></tr><tr><td> 由實施例3製備之共聚物(III-1-2) </td><td> 100 </td><td> 10 </td><td> 10 </td><td> 0 </td><td> 225 </td></tr><tr><td> 由實施例3製備之共聚物(III-1-3) </td><td> 100 </td><td> 15 </td><td> 15 </td><td> 0 </td><td> 215 </td></tr></TBODY></TABLE>Table 2         <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> </td><td> PBT usage (g) </td><td> TAIC Usage (g) </td><td> Polymer (II-1) Usage (g) </td><td> Allyl-free phosphorus-based polyester (g) </td>< Td> heat distortion temperature (°C) </td></tr><tr><td> PBT </td><td> 100 </td><td> 0 </td><td> 0 </ Td><td> 0 </td><td> 213 </td></tr><tr><td> Copolymer prepared by Comparative Example 1 (PBT-TAIC) </td><td> 100 < /td><td> 5 </td><td> 0 </td><td> 0 </td><td> 210 </td></tr><tr><td> Prepared by Comparative Example 2 Mixed admixture</td><td> 100 </td><td> 5 </td><td> 0 </td><td> 5 </td><td> 160 </td></ Tr><tr><td> Copolymer (III-1-1) prepared by Example 3 </td><td> 100 </td><td> 5 </td><td> 5 </td ><td> 0 </td><td> 220 </td></tr><tr><td> Copolymer (III-1-2) prepared by Example 3 </td><td> 100 </td><td> 10 </td><td> 10 </td><td> 0 </td><td> 225 </td></tr><tr><td> by embodiment 3 Preparation of Copolymer (III-1-3) </td><td> 100 </td><td> 15 </td><td> 15 </td><td> 0 </td><td> 215 </td></tr></TBODY></TABLE>

由圖5以及表2可看出,由比較例1製備之共聚物(PBT-TAIC)的熱變形溫度並未因為藉由PBT與TAIC共聚而增加,其熱變形溫度反而小於PBT的熱變形溫度,因此可看出在共聚物(PBT-TAIC)中確實存在雙鍵相容性之問題,使得共聚物(PBT-TAIC)的熱變形溫度無法有效地提升。另外,由比較例2製備之混摻物的熱變形溫度僅僅只有160°C,其顯示若於PBT與TAIC的共聚物中摻入無烯丙基之交聯基團將導致熱變形溫度大幅下降。As can be seen from FIG. 5 and Table 2, the heat distortion temperature of the copolymer prepared by Comparative Example 1 (PBT-TAIC) was not increased by copolymerization of PBT and TAIC, and the heat distortion temperature was smaller than the heat distortion temperature of PBT. Therefore, it can be seen that the problem of double bond compatibility does exist in the copolymer (PBT-TAIC), so that the heat distortion temperature of the copolymer (PBT-TAIC) cannot be effectively improved. In addition, the heat distortion temperature of the blend prepared by Comparative Example 2 was only 160 ° C, which showed that the incorporation of a cross-linking group without an allyl group in the copolymer of PBT and TAIC would cause a sharp drop in the heat distortion temperature. .

請繼續參照圖5以及表2,由實施例3製備之共聚物(III-1-1)~(III-1-3)的熱變形溫度明顯皆高於PBT的熱變形溫度,因此可看出於PBT與TAIC中摻入由合成例4製備之聚合物(II-1)可有效改善雙鍵相容性之問題,且因此提升共聚物(III-1-1)~(III-1-3)的熱變形溫度。另外,由表2也可看出,共聚物(III-1-2)(即PBT、聚合物(II-1)以及TAIC的使用量之重量比為10:1:1)具有略高於共聚物(III-1-1)以及共聚物(III-1-3)的熱變形溫度。Referring to FIG. 5 and Table 2, the heat distortion temperature of the copolymer (III-1-1) to (III-1-3) prepared in Example 3 is obviously higher than the heat distortion temperature of PBT, so it can be seen that The incorporation of the polymer (II-1) prepared in Synthesis Example 4 into PBT and TAIC can effectively improve the problem of double bond compatibility, and thus enhance the copolymer (III-1-1) to (III-1-3). The heat distortion temperature. In addition, as can be seen from Table 2, the copolymer (III-1-2) (i.e., the weight ratio of PBT, polymer (II-1), and TAIC used is 10:1:1) has slightly higher copolymerization. The heat distortion temperature of the substance (III-1-1) and the copolymer (III-1-3).

綜上所述,本發明之含烯丙基雙鍵的磷系化合物在與間苯二醯氯或對苯二醯氯進行聚合反應後,所產生的磷系聚合物具有高的玻璃轉移溫度(T g)、低的熱膨脹係數(CTE)以及優異的熱穩定性及阻燃性。此外,藉由對所產生的磷系聚合物進行加熱固化可使其具有高的交聯密度。另外,本發明之含烯丙基雙鍵的磷系化合物在與間苯二醯氯進行聚合反應後,其產生的磷系聚合物可應用在PBT與TAIC的共聚反應,所述磷系聚合物和PBT與TAIC混煉產生的磷系共聚物具有相對於習知聚酯之高的熱變形溫度。 In summary, the phosphorus-based polymer containing the allyl double bond of the present invention has a high glass transition temperature after polymerization with isophthalic chloride or terephthalic acid chloride. T g ), low coefficient of thermal expansion (CTE), and excellent thermal stability and flame retardancy. Further, the resulting phosphorus-based polymer can be made to have a high crosslinking density by heat curing. Further, the phosphorus-based compound containing an allyl double bond of the present invention, after being polymerized with isophthalic chloride, can be used in a copolymerization reaction of PBT with TAIC, which is a phosphorus-based polymer. The phosphorus-based copolymer produced by kneading with PBT and TAIC has a high heat distortion temperature with respect to the conventional polyester.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

無。no.

圖1為化合物(I-1)於DMSO-d 6溶劑中的超導核磁共振光譜儀( 1H-NMR)的光譜圖。 圖2為聚合物(II-1)於DMSO-d 6溶劑中的超導核磁共振光譜儀的光譜圖。 圖3為聚合物(II-2)於DMSO-d 6溶劑中的超導核磁共振光譜儀的光譜圖。 圖4為聚合物(II-1-1)~(II-1-3)以及(II-2-1)~(II-2-3)的動態機械分析(DMA)圖。 圖5為PBT、共聚物(PBT-TAIC)及共聚物(III-1-1)、(III-1-3)的動態機械分析圖。 Fig. 1 is a spectrum diagram of a superconducting nuclear magnetic resonance spectrometer ( 1 H-NMR) of a compound (I-1) in a DMSO-d 6 solvent. 2 is a spectrum diagram of a superconducting nuclear magnetic resonance spectrometer of a polymer (II-1) in a DMSO-d 6 solvent. Figure 3 is a spectrum diagram of a superconducting nuclear magnetic resonance spectrometer of polymer (II-2) in DMSO-d 6 solvent. 4 is a dynamic mechanical analysis (DMA) diagram of polymers (II-1-1) to (II-1-3) and (II-2-1) to (II-2-3). Fig. 5 is a dynamic mechanical analysis diagram of PBT, copolymer (PBT-TAIC) and copolymers (III-1-1) and (III-1-3).

Claims (14)

一種由以下通式(I)表示的含烯丙基雙鍵的磷系化合物的製備方法, 包括:提供磷系化合物,其中所述磷系化合物由以下通式(a)所表示: 將所述磷系化合物與烯丙基鹵化物混合進行反應,以得到由以下通式(b)所表示之化合物: 將所述通式(b)所表示之化合物加熱,以得到由以下通式(c)所表示之化合物: ;以及將所述通式(c)所表示之化合物與碳酸乙烯酯或甲基碳酸乙烯酯混合進行反應,在通式(a)、通式(b)、通式(c)及通式(I)中,X為H或甲基,R1為苯基或者經取代或未經取代的C1-C10烷基。 A method for producing a phosphorus-based compound containing an allyl double bond represented by the following formula (I), The method includes providing a phosphorus compound, wherein the phosphorus compound is represented by the following general formula (a): The phosphorus compound is mixed with an allyl halide to carry out a reaction to obtain a compound represented by the following formula (b): The compound represented by the above formula (b) is heated to obtain a compound represented by the following formula (c): And reacting the compound represented by the formula (c) with ethylene carbonate or methyl ethylene carbonate in the formula (a), the formula (b), the formula (c) and the formula ( In I), X is H or a methyl group, and R 1 is a phenyl group or a substituted or unsubstituted C 1 -C 10 alkyl group. 如申請專利範圍第1項所述的由以下通式(I)表示的含烯丙基雙鍵的磷系化合物的製備方法,其中所述烯丙基鹵化物包括烯丙基溴。 The method for producing an allyl double bond-containing phosphorus compound represented by the following general formula (I) according to the first aspect of the invention, wherein the allyl halide includes allyl bromide. 一種含烯丙基雙鍵的磷系聚合物,其由以下通式(II)所表示: 其中X為H或甲基;R1為苯基或者經取代或未經取代的C1-C10烷基;R2為羰基,且R2在苯環上的位置為間位或對位;n為20~300的整數。 A phosphorus-based polymer containing an allyl double bond represented by the following formula (II): Wherein X is H or methyl; R 1 is phenyl or substituted or unsubstituted C 1 -C 10 alkyl; R 2 is carbonyl, and the position of R 2 on the phenyl ring is meta or para; n is an integer from 20 to 300. 如申請專利範圍第3項所述的含烯丙基雙鍵的磷系聚合物,其中所述含烯丙基雙鍵的磷系聚合物由下式(II-1)所表示: 其中n為20~300的整數。 The allylic double bond-containing phosphorus-based polymer according to claim 3, wherein the allylic double bond-containing phosphorus-based polymer is represented by the following formula (II-1): Where n is an integer from 20 to 300. 如申請專利範圍第3項所述的含烯丙基雙鍵的磷系聚合物,其中所述含烯丙基雙鍵的磷系聚合物由下式(II-2)表示: 其中n為20~300的整數。 The allylic double bond-containing phosphorus-based polymer according to claim 3, wherein the allyl double bond-containing phosphorus-based polymer is represented by the following formula (II-2): Where n is an integer from 20 to 300. 一種具有交聯結構的含烯丙基雙鍵的磷系聚合物,其由以下式(II-1-1)所表示: 係藉由將如申請專利範圍第4項所述的含烯丙基雙鍵的磷系聚合物進行加熱固化而形成,其中n為20~300的整數。 A phosphorus-based polymer having a crosslinked structure and having an allyl double bond, which is represented by the following formula (II-1-1): It is formed by heat-curing a phosphorus-based polymer containing an allyl double bond as described in claim 4, wherein n is an integer of from 20 to 300. 如申請專利範圍第6項所述的含烯丙基雙鍵的磷系聚合物,其中所述加熱固化的溫度為200℃~300℃。 The allylic double bond-containing phosphorus-based polymer according to claim 6, wherein the heat curing temperature is 200 ° C to 300 ° C. 一種具有交聯結構的含烯丙基雙鍵的磷系聚合物,其由以下式(II-2-1)所表示: 係藉由將如申請專利範圍第5項所述的含烯丙基雙鍵的磷系聚合物進行加熱固化以形成,其中n為20~300的整數。 A phosphorus-based polymer having a crosslinked structure and having an allyl double bond, which is represented by the following formula (II-2-1): It is formed by heat-curing a phosphorus-based polymer containing an allyl double bond as described in claim 5, wherein n is an integer of from 20 to 300. 如申請專利範圍第8項所述的含烯丙基雙鍵的磷系聚合物,其中所述加熱固化的溫度為200℃~300℃。 The allylic double bond-containing phosphorus-based polymer according to claim 8, wherein the heat curing temperature is 200 ° C to 300 ° C. 一種由以下通式(II)所表示的含烯丙基雙鍵的磷系聚合物的製備方法, 包括:提供含烯丙基雙鍵的磷系化合物;以及將所述含烯丙基雙鍵的磷系化合物與間苯二醯氯或對苯二醯氯進行聚合反應,其中所述含烯丙基雙鍵的磷系化合物由以下通式(I)所表示: 在通式(I)以及通式(II)中,X為H或甲基;R1為苯基或者經取代或未經取代的C1-C10烷基,R2為羰基,且R2在苯環上的位置為間位或對位;n為20~300的整數。 A method for preparing a phosphorus-based polymer containing an allyl double bond represented by the following formula (II), The invention comprises: providing a phosphorus-based compound containing an allyl double bond; and polymerizing the phosphorus-based compound containing an allyl double bond with isophthalic chloride or terephthalic acid chloride, wherein the allene-containing The phosphorus-based compound having a double bond is represented by the following formula (I): In the general formula (I) and the general formula (II), X is H or methyl; R 1 is phenyl or substituted or unsubstituted C 1 -C 10 alkyl, R 2 is carbonyl, and R 2 The position on the benzene ring is meta or para; n is an integer from 20 to 300. 一種含烯丙基雙鍵的磷系共聚物,其由以下通式(III)所表示: 其中X為H或甲基;R1為苯基或者經取代或未經取代的C1-C10烷基;m、n分別為20~300的整數。 A phosphorus-based copolymer containing an allyl double bond represented by the following formula (III): Wherein X is H or methyl; R 1 is phenyl or substituted or unsubstituted C 1 -C 10 alkyl; m and n are each an integer of from 20 to 300. 一種由以下通式(III)所表示的含烯丙基雙鍵的磷系共聚物的製備方法, 包括:提供含烯丙基雙鍵的磷系聚合物;以及 將所述含烯丙基雙鍵的磷系聚合物與聚對苯二甲酸丁二酯以及三烯丙基異三聚氰酸酯進行混煉,其中所述含烯丙基雙鍵的磷系聚合物由以下通式(II’)所表示; 在通式(II’)以及通式(III)中,X為H或甲基;R1為苯基或者經取代或未經取代的C1-C10烷基;m、n分別為20~300的整數。 A method for preparing a phosphorus-based copolymer containing an allyl double bond represented by the following formula (III), The invention comprises: providing a phosphorus-based polymer containing an allyl double bond; and the phosphorus-based polymer containing an allyl double bond and polybutylene terephthalate and triallyl isocyanurate Performing kneading, wherein the phosphorus-based polymer containing an allyl double bond is represented by the following formula (II'); In the general formula (II') and the general formula (III), X is H or a methyl group; R 1 is a phenyl group or a substituted or unsubstituted C 1 -C 10 alkyl group; m and n are respectively 20~ An integer of 300. 如申請專利範圍第12項所述的由以下通式(III)所表示的含烯丙基雙鍵的磷系共聚物的製備方法,其中所述聚對苯二甲酸丁二酯、所述含烯丙基雙鍵的磷系聚合物及所述三烯丙基異三聚氰酸酯於所述混煉中的使用量的重量比為100:1~15:1~15。 A method for producing an allyl double bond-containing phosphorus-based copolymer represented by the following general formula (III), wherein the polybutylene terephthalate, the The weight ratio of the phosphorus-based polymer of the allyl double bond and the triallyl isocyanurate used in the kneading is from 100:1 to 15:1 to 15. 如申請專利範圍第12項所述的由以下通式(III)所表示的含烯丙基雙鍵的磷系共聚物的製備方法,其中所述混煉的溫度為210℃~230℃。 The method for producing an allyl double bond-containing phosphorus-based copolymer represented by the following general formula (III) according to claim 12, wherein the kneading temperature is from 210 ° C to 230 ° C.
TW105123541A 2016-07-26 2016-07-26 Phosphinated compound with allyl double bond, polymer thereof, copolymer thereof, and manufacturing method for the same TWI606057B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105123541A TWI606057B (en) 2016-07-26 2016-07-26 Phosphinated compound with allyl double bond, polymer thereof, copolymer thereof, and manufacturing method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105123541A TWI606057B (en) 2016-07-26 2016-07-26 Phosphinated compound with allyl double bond, polymer thereof, copolymer thereof, and manufacturing method for the same

Publications (2)

Publication Number Publication Date
TWI606057B true TWI606057B (en) 2017-11-21
TW201803882A TW201803882A (en) 2018-02-01

Family

ID=61023198

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105123541A TWI606057B (en) 2016-07-26 2016-07-26 Phosphinated compound with allyl double bond, polymer thereof, copolymer thereof, and manufacturing method for the same

Country Status (1)

Country Link
TW (1) TWI606057B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110330650B (en) * 2019-07-30 2021-07-09 苏州大学 Bismaleimide resin prepolymer and application thereof
CN110330649B (en) * 2019-07-30 2021-04-27 苏州大学 Remodelable bismaleimide resin and application thereof
CN110330648B (en) * 2019-07-30 2021-06-18 苏州大学 Prepolymer for remoldable bismaleimide resin and application thereof
CN110330647B (en) * 2019-07-30 2021-06-18 苏州大学 Remodelable shape memory bismaleimide resin and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201331217A (en) * 2012-01-16 2013-08-01 Univ Nat Chunghsing Phosphorous-containing compounds, blends thereof and preparing method for the same
TW201502134A (en) * 2013-07-05 2015-01-16 Nat Univ Chung Hsing Novel phosphinated compounds, phosphinated curable polyimides, and the preparation thereof
TWI537281B (en) * 2015-10-08 2016-06-11 長春人造樹脂廠股份有限公司 Phosphinated poly(2,6-dimethyl phenylene oxide) oligomers and thermosets thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201331217A (en) * 2012-01-16 2013-08-01 Univ Nat Chunghsing Phosphorous-containing compounds, blends thereof and preparing method for the same
TW201502134A (en) * 2013-07-05 2015-01-16 Nat Univ Chung Hsing Novel phosphinated compounds, phosphinated curable polyimides, and the preparation thereof
TWI537281B (en) * 2015-10-08 2016-06-11 長春人造樹脂廠股份有限公司 Phosphinated poly(2,6-dimethyl phenylene oxide) oligomers and thermosets thereof

Also Published As

Publication number Publication date
TW201803882A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
TWI606057B (en) Phosphinated compound with allyl double bond, polymer thereof, copolymer thereof, and manufacturing method for the same
TWI486335B (en) Base generator
EP3239199B1 (en) Thermosetting resin composition
KR101766427B1 (en) Polybenzoxazine Precursor and Preparing Method thereof
KR20190004131A (en) Multifunctional radical curable poly phenylene ether resin and preparation method of the same
CN109749328B (en) Reversible crosslinking reactive compositions
EP3239200B1 (en) Thermosetting resin composition
TWI426122B (en) Low dielectric dielectric flame retardant bifunctional Benzoxazine resin and its manufacturing method
KR20190084126A (en) Curable resin composition, cured product thereof, and structure comprising the cured product
CN111601843B (en) Cross-linker compound, photosensitive composition comprising the same, and photosensitive material using the same
JP2019172894A (en) Silicone-modified polyimide resin composition
KR102253388B1 (en) Benzoxazine and Preparing Method thereof
TWI625346B (en) Development of dicyclopentadiene-derived polyethers with low dielectric and flame retardancy application
CN114031719B (en) Bismaleimide-triazine resin and preparation method and application thereof
TWI573820B (en) Polybenzoxazine precursor and preparing method thereof
JP7177809B2 (en) Phosphorus-based (2,6-dimethylphenyl ether) oligomer, method for producing the same, and cured product
KR20210074800A (en) Bismaleimide based epoxy containing multicyclic structure and Method for preparing the same
TWI758949B (en) Phosphorus-containing (2,6-dimethylphenyl ether) oligomer, preparation method thereof and cured product
TWI526498B (en) Dicyclopentadiene-containing oxo-nitrobenzene cyclohexane and cyanate ester resin copolymer and preparation method thereof
KR102499841B1 (en) Thermosetting resin composition and cured product of the same
JP2000053750A (en) N-allylated aromatic amine resin, its production and use
KR20190010234A (en) Phosphorous-based diamine compound, polyamic acid prepared therefrom the phosphorous-based diamine compound, polyimide prepared therefrom, and polyimide film including polyimde
KR20230034637A (en) Resin, preparation method thereof, resin composition and molded product
KR20230024574A (en) Resin and preparation method thereof, resin composition and molded product
TW201326190A (en) Phosphorous-containing benzoxazine compound, curable composition and cured article