TWI602206B - Capacitor structure - Google Patents

Capacitor structure Download PDF

Info

Publication number
TWI602206B
TWI602206B TW105137583A TW105137583A TWI602206B TW I602206 B TWI602206 B TW I602206B TW 105137583 A TW105137583 A TW 105137583A TW 105137583 A TW105137583 A TW 105137583A TW I602206 B TWI602206 B TW I602206B
Authority
TW
Taiwan
Prior art keywords
capacitor structure
organic
capacitor
dielectric layer
inorganic composite
Prior art date
Application number
TW105137583A
Other languages
Chinese (zh)
Other versions
TW201724138A (en
Inventor
杜佾璋
蔡麗端
林甘軒
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to CN201611126816.4A priority Critical patent/CN107017087B/en
Priority to US15/388,465 priority patent/US10020119B2/en
Publication of TW201724138A publication Critical patent/TW201724138A/en
Application granted granted Critical
Publication of TWI602206B publication Critical patent/TWI602206B/en

Links

Description

電容結構 Capacitor structure

本揭露關於電容器結構,更特別關於其有機-無機複合物層之組成。 The present disclosure relates to capacitor structures, and more particularly to the composition of their organic-inorganic composite layers.

長期以來,電解電容器發展的一項主要課題即為提高電解質之導電度,以降低電容器的等效串聯電阻,達到高頻低阻抗並具高可靠度之特性。由於導電性高分子較傳統電解電容器所用的液態電解液或是固態有機半導體錯鹽,如TCNQ複合鹽,有更高的導電度,且具有適度的高溫絕緣化特性,因此導電性高分子成為現今電解電容器所使用之固態電解質的開發潮流。 For a long time, a major issue in the development of electrolytic capacitors has been to improve the conductivity of the electrolyte to reduce the equivalent series resistance of the capacitor, to achieve high frequency and low impedance and high reliability. Since the conductive polymer is more salty than the liquid electrolyte used in the conventional electrolytic capacitor or the solid organic semiconductor, such as the TCNQ composite salt, has higher conductivity and moderate high-temperature insulating properties, the conductive polymer becomes the present day. The development trend of solid electrolytes used in electrolytic capacitors.

雖然相較於傳統液態電解質,以原位聚合法所合成之導電性共軛高分子作為電解質之電容器具有低阻抗與熱穩定佳等優點,但是導電性共軛高分子耐電壓特性遠不如液態電解質。因此低工作電壓成為導電性共軛高分子在電解電容用途上的最大阻礙。 Although the conductive conjugated polymer synthesized by the in-situ polymerization method has the advantages of low impedance and good thermal stability compared with the conventional liquid electrolyte, the withstand voltage characteristic of the conductive conjugated polymer is far less than that of the liquid electrolyte. . Therefore, the low operating voltage becomes the biggest obstacle to the use of the conductive conjugated polymer in electrolytic capacitors.

綜上所述,目前亟需新的電容結構克服上述問題。 In summary, there is a need for a new capacitor structure to overcome the above problems.

本揭露一實施例提供之電容結構,包括:正極;介電層,位於正極上;以及有機-無機複合物層,位於介電層 上;負極;以及導電性共軛高分子電解質,位於有機-無機複合物層與負極之間。 The capacitor structure provided by an embodiment includes: a positive electrode; a dielectric layer on the positive electrode; and an organic-inorganic composite layer on the dielectric layer And a negative electrode; and a conductive conjugated polymer electrolyte between the organic-inorganic composite layer and the negative electrode.

10‧‧‧電容結構 10‧‧‧Capacitor structure

11A‧‧‧正極 11A‧‧‧ positive

11B‧‧‧介電層 11B‧‧‧ dielectric layer

11C‧‧‧有機-無機複合物層 11C‧‧‧Organic-inorganic composite layer

13‧‧‧電解質 13‧‧‧ Electrolytes

15‧‧‧負極 15‧‧‧negative

第1圖係本揭露一實施例中,電容結構的示意圖。 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing a capacitor structure in an embodiment.

如第1圖所示之實施例中,電容結構10包括正極11A、正極11A上之介電層11B、介電層11B上之有機-無機複合物層11C、負極15、與夾設於有機-無機複合物層11C與負極15之間的電解質13。在一實施例中,正極11A所使用之閥金屬包括鋁、鉭、鈮、鈦、鋯、或上述之合金。正極11A之形狀可為片狀箔或以顆粒燒結成多孔錠狀。依據需求可進行蝕刻以獲取更大比表面積。 In the embodiment shown in FIG. 1, the capacitor structure 10 includes a positive electrode 11A, a dielectric layer 11B on the positive electrode 11A, an organic-inorganic composite layer 11C on the dielectric layer 11B, a negative electrode 15, and an organic layer- The electrolyte 13 between the inorganic composite layer 11C and the anode 15. In one embodiment, the valve metal used for the positive electrode 11A includes aluminum, tantalum, niobium, titanium, zirconium, or alloys thereof. The shape of the positive electrode 11A may be a sheet-like foil or sintered into a porous ingot shape. Etching can be performed as needed to obtain a larger specific surface area.

在一實施例中,介電層11B可為上述正極11A的氧化物。舉例來說,可採用化學方式處理正極11A之表面,以形成介電層11B於正極11A之表面上。在其他實施例中,可採用其他方式形成介電層11B,比如濺鍍金屬氧化物於正極11A上。 In an embodiment, the dielectric layer 11B may be an oxide of the above positive electrode 11A. For example, the surface of the positive electrode 11A may be chemically treated to form the dielectric layer 11B on the surface of the positive electrode 11A. In other embodiments, the dielectric layer 11B may be formed in other ways, such as by sputtering a metal oxide on the positive electrode 11A.

上述有機-無機複合物層11C可為單層或多層結構之複合層。在一實施例中,有機-無機複合物層11C係由絕緣高分子與無機物混合而成。舉例來說,可先將絕緣高分子之單體或前驅物與無機物混合後,再聚合成絕緣高分子。此外,亦可先將絕緣高分子之單體或前驅物聚合成絕緣高分子後,再與無機物混合。 The above organic-inorganic composite layer 11C may be a composite layer of a single layer or a multilayer structure. In one embodiment, the organic-inorganic composite layer 11C is formed by mixing an insulating polymer and an inorganic material. For example, the monomer or precursor of the insulating polymer may be mixed with the inorganic substance and then polymerized into an insulating polymer. Alternatively, the monomer or precursor of the insulating polymer may be polymerized into an insulating polymer and then mixed with the inorganic material.

在一實施例中,有機-無機複合物層11C之絕緣高 分子可為含氮高分子如聚乙烯吡咯烷酮[poly(vinyl pyrrolidone),PVP)];含氧高分子如聚氧化乙烯[(poly(ethylene oxide),PEO)];或上述之混掺物。 In one embodiment, the organic-inorganic composite layer 11C has a high insulation. The molecule may be a nitrogen-containing polymer such as poly(vinyl pyrrolidone, PVP); an oxygen-containing polymer such as poly(ethylene oxide) (PEO); or a blend of the above.

上述有機-無機複合物層之絕緣高分子其分子量並無特別限制,但線性絕緣高分子之數目平均分子量可介於1000至2000000之間。分子量過低,則線性高分子室溫下呈現液態,不易於介電層表面形成穩定的層狀結構。分子量過高,則影響有機-無機複合物層在介電層表面成膜。 The molecular weight of the insulating polymer of the above organic-inorganic composite layer is not particularly limited, but the number average molecular weight of the linear insulating polymer may be between 1,000 and 2,000,000. When the molecular weight is too low, the linear polymer exhibits a liquid state at room temperature, and it is not easy to form a stable layered structure on the surface of the dielectric layer. If the molecular weight is too high, the organic-inorganic composite layer is affected to form a film on the surface of the dielectric layer.

上述無機物可先以前驅物的形式先與絕緣高分子或絕緣高分子前驅物混合後,再反應形成無機物。此外,亦可先將無機物之前驅物反應形成無機物後,再與絕緣高分子或絕緣高分子前驅物混合。 The inorganic substance may be first mixed with an insulating polymer or an insulating polymer precursor in the form of a precursor, and then reacted to form an inorganic substance. In addition, the inorganic precursor may be first reacted to form an inorganic substance, and then mixed with an insulating polymer or an insulating polymer precursor.

在一實施例中,無機物可為氧化鋁、氧化鋅、硼酸與氧化鋅之組合、或硼酸與氫氧化鋁之組合。在一實施例中,無機物為顆粒態,且平均粒徑可小於或等於1000微米以良好分散於有機-無機複合物層11C中。在一實施例中,無機物之平均粒徑介於10nm至100nm之間。上述有機-無機複合物層11C之絕緣高分子與無機物之重量比例可介於1:100至100:1之間,比如100:40。換言之,上述有機-無機複合物層11C可包含1重量份之絕緣高分子與100至0.01重量份之無機物。 In one embodiment, the inorganic material may be alumina, zinc oxide, a combination of boric acid and zinc oxide, or a combination of boric acid and aluminum hydroxide. In one embodiment, the inorganic material is in a particulate state, and the average particle diameter may be less than or equal to 1000 μm to be well dispersed in the organic-inorganic composite layer 11C. In one embodiment, the inorganic material has an average particle size of between 10 nm and 100 nm. The weight ratio of the insulating polymer to the inorganic substance of the organic-inorganic composite layer 11C may be between 1:100 and 100:1, such as 100:40. In other words, the above organic-inorganic composite layer 11C may contain 1 part by weight of the insulating polymer and 100 to 0.01 parts by weight of the inorganic substance.

上述負極15可為金屬箔片,並可依據需求可在金屬箔片表面進行蝕刻以獲得更大表面積,或是附著其他物質如碳或鈦以提升化學穩定性或提高電容量。在一實施例中,負極15亦可為附著於電解質13上的導電銀膠或碳膠。 The above negative electrode 15 may be a metal foil, and may be etched on the surface of the metal foil to obtain a larger surface area as needed, or may be attached with other substances such as carbon or titanium to enhance chemical stability or increase electrical capacity. In an embodiment, the anode 15 may also be a conductive silver paste or a carbon paste attached to the electrolyte 13.

上述電解質13可為導電性共軛高分子,比如掺雜態之聚噻吩、聚吡咯、或聚苯胺、或其衍生物。在一實施例中,導電性共軛高分子可為聚(3,4-乙烯二氧噻吩)(poly(3,4-ethylenedioxythiophene),PEDOT)、或含有上述結構之共聚合物或混掺物。 The electrolyte 13 may be a conductive conjugated polymer such as a polythiophene, a polypyrrole, or a polyaniline in a doped state, or a derivative thereof. In one embodiment, the conductive conjugated polymer may be poly(3,4-ethylenedioxythiophene) (PEDOT), or a copolymer or blend containing the above structure. .

為使共軛高分子具有優良的導電度,共軛高分子以摻雜態為最佳。摻雜劑可為磺酸類化合物,如甲烷磺酸、苯磺酸、或對甲苯磺酸;磺酸類高分子如聚苯乙烯磺酸(poly(styrene sulfonic acid),PSS)或其共聚物;羧酸類化合物如苯甲酸、苯二甲酸、或琥珀酸(succinic acid);接酸類高分子如聚丙烯酸或其共聚合物;胺基酸如甘胺酸;磷酸類化合物如磷酸、依替磷酸(Etidronic acid)、或磷酸二苯酯;或上述之組合。 In order to make the conjugated polymer have excellent conductivity, the conjugated polymer is preferably in a doped state. The dopant may be a sulfonic acid compound such as methanesulfonic acid, benzenesulfonic acid, or p-toluenesulfonic acid; a sulfonic acid polymer such as poly(styrene sulfonic acid, PSS) or a copolymer thereof; An acid compound such as benzoic acid, phthalic acid, or succinic acid; an acid polymer such as polyacrylic acid or a copolymer thereof; an amino acid such as glycine; a phosphate compound such as phosphoric acid or etidron (Etidronic) Acid), or diphenyl phosphate; or a combination of the above.

上述共軛高分子之摻雜方式可為先聚合成共軛高分子後再添加摻雜劑進行摻雜、在共軛高分子聚合過程中即添加摻雜劑,或以氧化劑引發共軛高分子聚合時所產生之副產物作為摻雜劑進行摻雜,比如對甲苯磺酸鐵引發共軛高分子聚合時所產生之對甲苯磺酸作為摻雜劑。 The conjugated polymer may be doped by first polymerizing into a conjugated polymer, then doping with a dopant, adding a dopant during the polymerization of the conjugated polymer, or initiating a conjugated polymer with an oxidizing agent. The by-products generated during the polymerization are doped as a dopant, for example, p-toluenesulfonic acid generated as a dopant when the conjugated polymer is initiated by iron p-toluenesulfonate.

上述導電性共軛高分子合成方式可為原位(in-situ)化學聚合法,即取導電性共軛高分子之前驅物於有機-無機複合層11C之表面聚合;電化學聚合法,使導電性共軛高分子單體在有機-無機複合層11C之表面進行電化學聚合;將已合成完畢之水溶性導電高分子如PEDOT:PSS水溶液塗佈或含浸於有機-無機複合層11C表面作為導電性共軛高分子。上述原位化學 聚合法所使用之氧化劑可為含鐵離子之鹽類或含銅離子之鹽類。上述含鐵離子之鹽類包括苯磺酸鐵、對甲苯磺酸鐵、氯化鐵、硝酸鐵、硫酸鐵、或其組合。上述含銅離子之鹽類包括過硫酸銅。 The above-mentioned conductive conjugated polymer synthesis method may be an in-situ chemical polymerization method in which a conductive conjugated polymer precursor is polymerized on the surface of the organic-inorganic composite layer 11C; and an electrochemical polymerization method is used. The conductive conjugated polymer monomer is electrochemically polymerized on the surface of the organic-inorganic composite layer 11C; and the synthesized water-soluble conductive polymer such as PEDOT:PSS aqueous solution is coated or impregnated on the surface of the organic-inorganic composite layer 11C. Conductive conjugated polymer. Above in situ chemistry The oxidizing agent used in the polymerization method may be a salt containing iron ions or a salt containing copper ions. The above iron ion-containing salts include iron benzenesulfonate, iron p-toluenesulfonate, iron chloride, iron nitrate, iron sulfate, or a combination thereof. The above copper ion-containing salts include copper persulfate.

在一實施例中,可電化學腐蝕鋁箔以形成高表面積的鋁箔,並於其上附著碳層作為負極15。接著可視情況在正極11與負極15之間夾設隔離紙(未圖示),再捲繞成固態電解電容器素子(element)。在某些實施例中,可採用有機酸水溶液處理上述固態電解電容器素子,以修補破損的介電層11B。在一實施例中,有機酸可為草酸或醋酸。 In one embodiment, the aluminum foil can be electrochemically etched to form a high surface area aluminum foil with a carbon layer attached thereto as the negative electrode 15. Then, a separator paper (not shown) may be interposed between the positive electrode 11 and the negative electrode 15 as needed, and then wound into a solid electrolytic capacitor element. In some embodiments, the solid electrolytic capacitor element described above may be treated with an aqueous solution of an organic acid to repair the damaged dielectric layer 11B. In one embodiment, the organic acid can be oxalic acid or acetic acid.

接著將上述固態電解電容器素子含浸有機-無機複合物的水液中,再加熱除水以形成有機-無機複合物層11C於介電層11B上。在一實施例中,絕緣高分子可為含氮或含氧聚合物,如聚乙烯吡咯烷酮(PVP)、聚氧化乙烯,其數目平均分子量介於1000至2000000之間。在一實施例中,無機物可為氧化鋁、或氧化鋅。在一實施例中,無機物為氧化鋁。在一實施例中,無機物為氧化鋅。在一實施例中,無機物為硼酸與氧化鋅之組合。在一實施例中,無機物為硼酸與氫氧化鋁之組合。 Next, the solid electrolytic capacitor element is impregnated into the aqueous liquid of the organic-inorganic composite, and then heated to remove water to form the organic-inorganic composite layer 11C on the dielectric layer 11B. In one embodiment, the insulating polymer may be a nitrogen-containing or oxygen-containing polymer such as polyvinylpyrrolidone (PVP) or polyethylene oxide having a number average molecular weight of between 1,000 and 2,000,000. In an embodiment, the inorganic material may be aluminum oxide or zinc oxide. In one embodiment, the inorganic material is alumina. In one embodiment, the inorganic material is zinc oxide. In one embodiment, the inorganic material is a combination of boric acid and zinc oxide. In one embodiment, the inorganic material is a combination of boric acid and aluminum hydroxide.

接著將上述固態電解電容器素子含浸於導電性共軛高分子的前驅物中,再聚合前驅物以形成導電性共軛高分子作為電解質13於正極11與負極15之間。在一實施例中,導電性共軛高分子可為掺雜之聚噻吩、聚吡咯、聚苯胺、或聚(3,4-乙烯二氧噻吩)。 Next, the solid electrolytic capacitor element is impregnated into the precursor of the conductive conjugated polymer, and the precursor is polymerized to form a conductive conjugated polymer as the electrolyte 13 between the positive electrode 11 and the negative electrode 15. In one embodiment, the conductive conjugated polymer may be doped polythiophene, polypyrrole, polyaniline, or poly(3,4-ethylenedioxythiophene).

對固態電容結構而言,由於介電層的缺陷或厚度 不均勻,局部介電層的耐電壓特性較差。理想情況下,可藉由導電性共軛高分子電解質的局部絕緣反應提高局部介電層的耐電壓特性。然而當電壓過高或是介電層有嚴重缺陷時,可能會使導電性共軛高分子電解質發生大量絕緣,使電容器的電容量大幅衰退、阻抗升高、與漏電流過大,嚴重者甚至會因無法抵抗工作電壓而發生短路。上述有機-無機複合物層可填補局部介電層(厚度較薄的部份)與結構缺陷,以提高電容器的耐電壓並減少導電性共軛高分子電解質發生絕緣的機會。如此一來,電容器的阻抗與電容量將可長時間維持穩定。 For solid capacitor structures, due to defects or thickness of the dielectric layer The unevenness of the local dielectric layer is poor. Ideally, the withstand voltage characteristics of the local dielectric layer can be improved by a partial insulation reaction of the conductive conjugated polymer electrolyte. However, when the voltage is too high or the dielectric layer is seriously defective, the conductive conjugated polymer electrolyte may be largely insulated, causing the capacitance of the capacitor to be greatly degraded, the impedance to rise, and the leakage current to be excessively large. A short circuit occurs because it cannot withstand the operating voltage. The above organic-inorganic composite layer can fill a local dielectric layer (thinner portion) and structural defects to increase the withstand voltage of the capacitor and reduce the chance of insulation of the conductive conjugated polymer electrolyte. As a result, the impedance and capacitance of the capacitor will remain stable for a long time.

為了讓本揭露之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉數實施例作詳細說明如下: The above and other objects, features, and advantages of the present invention will become more apparent and understood.

實施例 Example

比較例1 Comparative example 1

以21V電化學電解反應處理正極鋁箔,形成氧化鋁介電層於正極鋁箔上。以電化學腐蝕負極碳箔,形成高表面積之負極碳箔。在正極與負極之間夾設隔離紙,再捲繞成固態電解電容器素子(element)。以有機酸水溶液處理上述固態電解電容器素子,以修補破損氧化鋁介電層。 The positive electrode aluminum foil was treated by 21 V electrochemical electrolysis to form an alumina dielectric layer on the positive electrode aluminum foil. The negative electrode carbon foil is electrochemically etched to form a high surface area negative carbon foil. A separator paper is interposed between the positive electrode and the negative electrode, and then wound into a solid electrolytic capacitor element. The solid electrolytic capacitor element is treated with an aqueous solution of an organic acid to repair the damaged alumina dielectric layer.

接著將上述固態電解電容器素子含浸於3,4-乙烯二氧噻吩(EDOT)單體及濃度50wt%的甲苯磺酸鐵乙醇溶液所組成之混合物中,加熱混合物以加速聚合反應。在聚合反應時,最高溫可達170℃以確保反應完全。經上述聚合反應後,形成導電性共軛高分子如掺雜之PEDOT於正極與負極之間。接著將此固態電解電容器素子套入鋁殼,以橡膠蓋封口,完成固 態電解電容器製作並進行固態電解電容器的特性測試。最後在125℃下對電容器通以16V電流12小時,進行過電壓負載測試,其電性如第2表所列。 Next, the above solid electrolytic capacitor element was impregnated with a mixture of 3,4-ethylenedioxythiophene (EDOT) monomer and a 50 wt% toluenesulfonic acid iron ethanol solution, and the mixture was heated to accelerate the polymerization. At the time of polymerization, the highest temperature can reach 170 ° C to ensure the reaction is complete. After the above polymerization reaction, a conductive conjugated polymer such as doped PEDOT is formed between the positive electrode and the negative electrode. Then, the solid electrolytic capacitor element is placed in an aluminum shell, and the rubber cap is sealed to complete the solid. State electrolytic capacitors are fabricated and tested for characteristics of solid electrolytic capacitors. Finally, the capacitor was subjected to an overvoltage load test by applying a current of 16 V for 12 hours at 125 ° C, and its electrical properties are listed in Table 2.

比較例2 Comparative example 2

與比較例1類似,差別在於將固態電解電容器素子含浸於3,4-乙烯二氧噻吩(EDOT)單體及濃度50wt%的甲苯磺酸鐵乙醇溶液所組成之混合物中之前,先將固態電解電容器素子含浸於PVP(數目平均分子量為約1300000)的水液(見第1表)中。之後加熱至60℃後維持一小時,再加熱至125℃後維持一小時以除水,即形成PVP層於氧化鋁介電層上。之後形成掺雜之PEDOT、封口、特性測試、與過電壓負載測試等步驟,均與比較例1類似。此實施例之電容器的電性如第2表所列。 Similar to Comparative Example 1, the difference is that the solid electrolytic capacitor element is impregnated with a mixture of 3,4-ethylenedioxythiophene (EDOT) monomer and a concentration of 50% by weight of an iron toluenesulfonic acid solution. The capacitor element is impregnated with an aqueous solution of PVP (number average molecular weight of about 1,300,000) (see Table 1). After heating to 60 ° C, it was maintained for one hour, and then heated to 125 ° C for one hour to remove water, that is, a PVP layer was formed on the alumina dielectric layer. Then, steps such as doping PEDOT, sealing, characteristic test, and overvoltage load test were formed, which were similar to Comparative Example 1. The electrical properties of the capacitor of this embodiment are listed in Table 2.

實施例1 Example 1

與比較例1類似,差別在於將固態電解電容器素子含浸於3,4-乙烯二氧噻吩(EDOT)單體及濃度50wt%的甲苯磺酸鐵乙醇溶液所組成之混合物中之前,先將固態電解電容器素子含浸於PVP(數目平均分子量為約1300000)與γ-Al2O3(粒徑介於40nm-80nm之間)的水液(見第1表)中。之後加熱至60℃後維持一小時,再加熱至125℃後維持一小時以除水,即形成PVP-γ-Al2O3之有機-無機複合物層於氧化鋁介電層上。之後形成掺雜之PEDOT、封口、特性測試、與過電壓負載測試等步驟,均與比較例1類似。此實施例之電容器的電性如第2表所列。 Similar to Comparative Example 1, the difference is that the solid electrolytic capacitor element is impregnated with a mixture of 3,4-ethylenedioxythiophene (EDOT) monomer and a concentration of 50% by weight of an iron toluenesulfonic acid solution. The capacitor element is impregnated with an aqueous solution of PVP (number average molecular weight of about 1,300,000) and γ-Al 2 O 3 (particle size of between 40 nm and 80 nm) (see Table 1). After heating to 60 ° C, it was maintained for one hour, and then heated to 125 ° C for one hour to remove water, that is, an organic-inorganic composite layer of PVP-γ-Al 2 O 3 was formed on the alumina dielectric layer. Then, steps such as doping PEDOT, sealing, characteristic test, and overvoltage load test were formed, which were similar to Comparative Example 1. The electrical properties of the capacitor of this embodiment are listed in Table 2.

實施例2 Example 2

與實施例1類似,差別在於將PVP與γ-Al2O3的水液,置換 為PVP與ZnO(粒徑為約20nm)的水液(見第1表),以形成PVP-ZnO之有機-無機複合物層於氧化鋁介電層上。此實施例之電容器的電性如第2表所列。 Similar to Example 1, the difference is that the aqueous solution of PVP and γ-Al 2 O 3 is replaced by an aqueous solution of PVP and ZnO (particle size of about 20 nm) (see Table 1) to form an organic PVP-ZnO. The inorganic composite layer is on the alumina dielectric layer. The electrical properties of the capacitor of this embodiment are listed in Table 2.

比較例3 Comparative example 3

與實施例1類似,差別在於將PVP與γ-Al2O3的水液,置換為PVP與TiO2(粒徑小於25nm)的水液(見第1表),以形成PVP-TiO2之有機-無機複合物層於氧化鋁介電層上。此比較例之電容器的電性如第2表所列。 Similar to Example 1, the difference is that the aqueous solution of PVP and γ-Al 2 O 3 is replaced with an aqueous solution of PVP and TiO 2 (particle size less than 25 nm) (see Table 1) to form PVP-TiO 2 . The organic-inorganic composite layer is on the alumina dielectric layer. The electrical properties of the capacitor of this comparative example are listed in Table 2.

如第2表所示,電容器封口後,除了比較例1的100kHz ESR比較高之外,其餘各比較例與實施例之電容量與100kHz ESR之特性相近。 As shown in Table 2, after the capacitor was sealed, the capacitances of the other comparative examples and the examples were similar to those of the 100 kHz ESR except that the 100 kHz ESR of Comparative Example 1 was relatively high.

實施例1與2與比較例1至3所採用之21V電化學電解反應所形成之氧化鋁介電層在未經有機無機保護層處理之前的適合最高工作電壓為10V。經過12小時,125℃高溫的16V過電壓負載測試後,不同電容器特性表現出極大的差異。比較例1之電容器(介電層直接接觸導電性共軛高分子電解質)之靜電容量衰退17.51%,且100kHz ESR亦大幅上升,16V平均漏電流亦高達1743μA,且電容短路率高達60%。比較例2之電容器(具有PVP層位於介電層上)在過電壓負載測試之後,其電容量衰退8.69%,100kHz ESR由封口後的14.43mΩ上升至18.18mΩ,增加約26%。至於具有有機-無機複合物層於介電層上的固態電容中,實施例1(PVP-氧化鋁)與實施例2(PVP-氧化鋅)的電容器其電容量微降約2.7%,100kHz ESR略增15%,且無任何電容發生短路或漏電流過高的情況。而比較例3(PVP-氧化鈦)之固態電容器雖然具有有機-無機複合物層於介電層上,但電容器其電容量衰退達13.76%,且漏電流高達4080μA,在過電壓負載測試中更有20%的電容器發生短路。 The alumina dielectric layers formed by the 21 V electrochemical electrolysis reactions of Examples 1 and 2 and Comparative Examples 1 to 3 were suitable for a maximum operating voltage of 10 V before being treated with the organic inorganic protective layer. After 12 hours of 16V overvoltage load test at 125°C, the characteristics of the different capacitors showed great differences. The capacitance of the capacitor of Comparative Example 1 (the dielectric layer directly contacts the conductive conjugated polymer electrolyte) was 17.51%, and the ESR of 100 kHz was also greatly increased. The average leakage current of 16 V was also as high as 1743 μA, and the short-circuit rate of the capacitor was as high as 60%. The capacitor of Comparative Example 2 (with the PVP layer on the dielectric layer) had a capacitance degradation of 8.69% after the overvoltage load test, and the 100 kHz ESR increased from 14.43 mΩ after sealing to 18.18 mΩ, an increase of about 26%. As for the solid capacitor having the organic-inorganic composite layer on the dielectric layer, the capacitors of Example 1 (PVP-alumina) and Example 2 (PVP-Zinc Oxide) have a capacitance of about 2.7%, 100 kHz ESR. Slightly increased by 15%, and there is no short circuit or excessive leakage current. While the solid capacitor of Comparative Example 3 (PVP-titanium oxide) has an organic-inorganic composite layer on the dielectric layer, the capacitance of the capacitor is reduced by 13.76%, and the leakage current is as high as 4080 μA, which is more in the overvoltage load test. A 20% capacitor has a short circuit.

綜上所述,只有特定組成的有機-無機複合物層如PVP-氧化鋁、及PVP-氧化鋅等位於介電層上,方可有效提升電容器的耐電壓特性。上述有機-無機複合物層可使電容器在過電壓負載狀況下仍能保持較佳的電容量、阻抗與漏電流特性並可防止電容器發生短路。 In summary, only a specific composition of the organic-inorganic composite layer such as PVP-alumina, and PVP-zinc oxide on the dielectric layer can effectively improve the withstand voltage characteristics of the capacitor. The above organic-inorganic composite layer allows the capacitor to maintain better capacitance, impedance and leakage current characteristics under overvoltage conditions and to prevent short circuiting of the capacitor.

比較例4至8與實施例3至4 Comparative Examples 4 to 8 and Examples 3 to 4

以67V電化學電解反應處理正極鋁箔,形成氧化鋁介電層於正極鋁箔上。以電化學腐蝕負極碳箔,形成高表面積之負極碳箔。在正極與負極之間夾設隔離紙,再捲繞成固態電解電容器素子(element)。以有機酸水溶液處理上述固態電解電容器素子,以修補破損氧化鋁介電層。 The positive electrode aluminum foil was treated by electrochemical electrolysis at 67 V to form an aluminum oxide dielectric layer on the positive electrode aluminum foil. The negative electrode carbon foil is electrochemically etched to form a high surface area negative carbon foil. A separator paper is interposed between the positive electrode and the negative electrode, and then wound into a solid electrolytic capacitor element. The solid electrolytic capacitor element is treated with an aqueous solution of an organic acid to repair the damaged alumina dielectric layer.

將固態電解電容器素子含浸於不同組成的水液(見第3表)中,其中PVP的數目平均分子量為約1300000。之後加熱至60℃後維持一小時,再加熱至125℃後維持一小時以除水,即形成有機-無機複合物層於氧化鋁介電層上。 The solid electrolytic capacitor elements are impregnated with a different composition of aqueous liquid (see Table 3), wherein the number average molecular weight of PVP is about 1,300,000. After heating to 60 ° C, it was maintained for one hour, and then heated to 125 ° C for one hour to remove water, that is, an organic-inorganic composite layer was formed on the alumina dielectric layer.

接著將上述固態電解電容器素子含浸於-乙烯二氧噻吩(EDOT)單體及濃度50wt%的甲苯磺酸鐵乙醇溶液所組成之混合物中,加熱混合物以加速聚合反應。在聚合反應時,最高溫可達170℃以確保反應完全。經上述聚合反應後,形成導電性共軛高分子如掺雜之PEDOT於正極與負極之間。接著將此固態電解電容器素子套入鋁殼,以橡膠蓋封口,完成固態電解電容器製作並進行固態電解電容器的特性測試。最後在125℃下對電容器通以40.5V電流6小時,進行過電壓負載測試,其電性如第4與5表所列。 Next, the above solid electrolytic capacitor element was impregnated with a mixture of ethylene dioxythiophene (EDOT) monomer and a 50 wt% aqueous solution of iron toluenesulfonic acid, and the mixture was heated to accelerate the polymerization. At the time of polymerization, the highest temperature can reach 170 ° C to ensure the reaction is complete. After the above polymerization reaction, a conductive conjugated polymer such as doped PEDOT is formed between the positive electrode and the negative electrode. Then, the solid electrolytic capacitor element is placed in an aluminum shell, sealed with a rubber cap, and the solid electrolytic capacitor is fabricated and tested for the characteristics of the solid electrolytic capacitor. Finally, the capacitor was subjected to an overvoltage load test at a current of 40.5 V for 6 hours at 125 ° C, and its electrical properties are listed in Tables 4 and 5.

實施例3至4與比較例4至8以67V電化學電解反應所形成氧化鋁介電層在未經有機無機保護層處理之前的適合最高工作電壓為30V。各組電容器封口後的特性相近。但經40.5V過電壓負載測試後,比較例4至6之電容器發生不同程度的短路。比較例5中以氫氧化鋁與PVP之組合作為電容保護層,以及比較例6中以硼酸與PVP之組合作為電容保護層,均比比較例4中以純PVP作為電容保護層的短路率還高。反之,當實施例3中以氫氧化鋁、硼酸、與PVP之組合作為電容保護層時,可改 善電容器於過電壓負載測試的短路情況。另一方面,實施例4中以氧化鋅、硼酸、與PVP之組合作為電容保護層亦可改善電容器於過電壓負載測試的短路狀況。 The optimum operating voltage of the alumina dielectric layer formed by electrochemical electrochemical reaction of Examples 3 to 4 and Comparative Examples 4 to 8 at 67 V was not 30 V before the treatment with the organic inorganic protective layer. The characteristics of each group of capacitors after sealing are similar. However, after the 40.5V overvoltage load test, the capacitors of Comparative Examples 4 to 6 were short-circuited to different degrees. In Comparative Example 5, the combination of aluminum hydroxide and PVP was used as the capacitance protective layer, and the combination of boric acid and PVP in Comparative Example 6 was used as the capacitance protective layer, and the short-circuit rate was higher than that of the pure PVP as the capacitance protective layer in Comparative Example 4. . On the contrary, when the combination of aluminum hydroxide, boric acid and PVP is used as the capacitor protection layer in Embodiment 3, it can be changed. Good capacitor short circuit condition in overvoltage load test. On the other hand, in Example 4, the combination of zinc oxide, boric acid, and PVP as a capacitive protective layer can also improve the short circuit condition of the capacitor under the overvoltage load test.

如第5表所示,當比較例7之以咪唑與PVP組合作為電容保護層時,電容器的特性與過電壓負載後的短路情況與比較例4之以純PVP做為電容保護層之電容器類似。但當比較例8之以咪唑、硼酸、與PVP組合作為電容保護層時,電容器經過電壓負載測試後全部短路。綜上所述,當硼酸與特定的無機鹼(如氧化鋅及氫氧化鋁)搭配用於電容保護層,可以提升電容器之耐電壓特性。然若硼酸單獨使用或搭配有機鹼(如咪唑)作為電容保護層,則反而降低電容器的耐電壓特性。 As shown in Table 5, when the combination of imidazole and PVP in Comparative Example 7 was used as the capacitance protective layer, the characteristics of the capacitor and the short circuit after the overvoltage load were similar to those of the capacitor of Comparative Example 4 in which the pure PVP was used as the capacitance protective layer. However, when the combination of imidazole, boric acid, and PVP was used as the capacitor protective layer in Comparative Example 8, the capacitor was completely short-circuited after the voltage load test. In summary, when boric acid is combined with a specific inorganic base such as zinc oxide and aluminum hydroxide for the capacitor protection layer, the withstand voltage characteristics of the capacitor can be improved. However, if boric acid is used alone or with an organic base (such as imidazole) as a capacitor protection layer, the voltage withstand characteristics of the capacitor are reduced.

雖然本揭露已以數個實施例揭露如上,然其並非用以限定本揭露,任何本技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作任意之更動與潤飾,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。 The present disclosure has been disclosed in the above several embodiments, but it is not intended to limit the disclosure, and any one skilled in the art can make any changes and refinements without departing from the spirit and scope of the disclosure. Therefore, the scope of protection of this disclosure is subject to the definition of the scope of the patent application.

10‧‧‧電容結構 10‧‧‧Capacitor structure

11A‧‧‧正極 11A‧‧‧ positive

11B‧‧‧介電層 11B‧‧‧ dielectric layer

11C‧‧‧有機-無機複合物層 11C‧‧‧Organic-inorganic composite layer

13‧‧‧電解質 13‧‧‧ Electrolytes

15‧‧‧負極 15‧‧‧negative

Claims (10)

一種電容結構,包括:一正極;一介電層,位於該正極上;一有機-無機複合物層,位於該介電層上,其中該有機-無機複合物層係由絕緣高分子與無機物混合而成;一負極;以及一導電性共軛高分子電解質,位於該有機-無機複合物層與該負極之間。 A capacitor structure comprising: a positive electrode; a dielectric layer on the positive electrode; an organic-inorganic composite layer on the dielectric layer, wherein the organic-inorganic composite layer is mixed with an insulating polymer and an inorganic substance And a negative electrode; and a conductive conjugated polymer electrolyte between the organic-inorganic composite layer and the negative electrode. 如申請專利範圍第1項所述之電容結構,其中該正極包括鋁、鉭、鈮、鈦、鋯、或上述之合金。 The capacitor structure of claim 1, wherein the positive electrode comprises aluminum, tantalum, niobium, titanium, zirconium, or an alloy thereof. 如申請專利範圍第1項所述之電容結構,其中該介電層包括該正極之氧化物。 The capacitor structure of claim 1, wherein the dielectric layer comprises an oxide of the positive electrode. 如申請專利範圍第1項所述之電容結構,其中該有機-無機複合物層包括1重量份之絕緣高分子與100至0.01重量份之無機物。 The capacitor structure according to claim 1, wherein the organic-inorganic composite layer comprises 1 part by weight of an insulating polymer and 100 to 0.01 parts by weight of an inorganic substance. 如申請專利範圍第4項所述之電容結構,其中該絕緣高分子包括含氮高分子、含氧高分子、或上述之混掺物。 The capacitor structure according to claim 4, wherein the insulating polymer comprises a nitrogen-containing polymer, an oxygen-containing polymer, or a blend of the above. 如申請專利範圍第5項所述之電容結構,其中該含氮高分子包括聚乙烯吡咯烷酮。 The capacitor structure of claim 5, wherein the nitrogen-containing polymer comprises polyvinylpyrrolidone. 如申請專利範圍第5項所述之電容結構,其中該含氧高分子包括聚氧化乙烯。 The capacitor structure of claim 5, wherein the oxygen-containing polymer comprises polyethylene oxide. 如申請專利範圍第4項所述之電容結構,其中該無機物包括氧化鋁、氧化鋅、硼酸與氧化鋅之組合、或硼酸與氫氧化 鋁之組合。 The capacitor structure of claim 4, wherein the inorganic substance comprises alumina, zinc oxide, a combination of boric acid and zinc oxide, or boric acid and hydroxide A combination of aluminum. 如申請專利範圍第1項所述之電容結構,其中該負極包括金屬箔片。 The capacitor structure of claim 1, wherein the negative electrode comprises a metal foil. 如申請專利範圍第1項所述之電容結構,其中該導電性共軛高分子電解質包含摻雜之聚噻吩、聚吡咯、聚苯胺、或聚(3,4-乙烯二氧噻吩)。 The capacitor structure according to claim 1, wherein the conductive conjugated polymer electrolyte comprises doped polythiophene, polypyrrole, polyaniline, or poly(3,4-ethylenedioxythiophene).
TW105137583A 2015-12-28 2016-11-17 Capacitor structure TWI602206B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201611126816.4A CN107017087B (en) 2015-12-28 2016-12-09 capacitor structure
US15/388,465 US10020119B2 (en) 2015-12-28 2016-12-22 Capacitor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104143993 2015-12-28

Publications (2)

Publication Number Publication Date
TW201724138A TW201724138A (en) 2017-07-01
TWI602206B true TWI602206B (en) 2017-10-11

Family

ID=60047220

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105137583A TWI602206B (en) 2015-12-28 2016-11-17 Capacitor structure

Country Status (1)

Country Link
TW (1) TWI602206B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201405605A (en) * 2012-07-26 2014-02-01 Ind Tech Res Inst Electrolyte mixture, electrolytic capacitor using the same and oxidant mixture for conjugated polymer synthesis
TW201435938A (en) * 2012-12-28 2014-09-16 Intel Corp Nanostructured electrolytic energy storage devices
TWI483275B (en) * 2012-07-26 2015-05-01 Ind Tech Res Inst Electrolyte mixture for electrolytic capacitor, composition for conductive polymer synthesis and conductive polymer solid electrolytic capacitor formed by using the same
TW201526047A (en) * 2013-12-30 2015-07-01 Ind Tech Res Inst Composite electrode and electrolytic capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201405605A (en) * 2012-07-26 2014-02-01 Ind Tech Res Inst Electrolyte mixture, electrolytic capacitor using the same and oxidant mixture for conjugated polymer synthesis
TWI483275B (en) * 2012-07-26 2015-05-01 Ind Tech Res Inst Electrolyte mixture for electrolytic capacitor, composition for conductive polymer synthesis and conductive polymer solid electrolytic capacitor formed by using the same
TW201435938A (en) * 2012-12-28 2014-09-16 Intel Corp Nanostructured electrolytic energy storage devices
TW201526047A (en) * 2013-12-30 2015-07-01 Ind Tech Res Inst Composite electrode and electrolytic capacitor

Also Published As

Publication number Publication date
TW201724138A (en) 2017-07-01

Similar Documents

Publication Publication Date Title
CN101106021B (en) Method of manufacturing electrolytic capacitor and electrolytic capacitor
JP4836887B2 (en) Electrolytic capacitor manufacturing method and electrolytic capacitor
JP5441952B2 (en) Conductive polymer suspension and method for producing the same, conductive polymer material, and electrolytic capacitor and method for producing the same
JP4600398B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5388811B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US20150348715A1 (en) Capacitor with Charge Time Reducing Additives and Work Function Modifiers
EP2267053A1 (en) Conductive polymer suspension and method for producing the same, conductive polymer material, and solid electrolytic capacitor and method for producing the same
TWI483274B (en) Composite electrode and electrolytic capacitor
WO2018020985A1 (en) Electrolytic capacitor and production method thereof
KR20120096438A (en) Electrolytic capacitor and method of manufacturing electrolytic capacitor
TWI717793B (en) Conductive polymer composite material and capacitor
JP2021184493A (en) Electrolytic capacitor
US8345409B2 (en) Solid electrolytic capacitor
US10020119B2 (en) Capacitor structure
TW201405606A (en) Electrolyte mixture for electrolytic capacitor, composition for conductive polymer synthesis and conductive polymer solid electrolytic capacitor formed by using the same
WO2012137968A1 (en) Conductive polymer aqueous suspension, method for producing same, conductive organic material, solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
TWI602206B (en) Capacitor structure
WO2018043063A1 (en) Electrolytic capacitor and method for producing same
JP3356018B2 (en) Capacitor and manufacturing method thereof
JP6726886B2 (en) Electrolytic capacitor and manufacturing method thereof
JP2003173932A (en) Solid-state capacitor and its manufacturing method
TWI836647B (en) Composition for electrolytic capacitor and electrolytic capacitor including the same
JP4849257B2 (en) Solid electrolyte and solid electrolytic capacitor using the same
CN102651283A (en) Solid electrolytic capacitor and production method thereof
TWI597313B (en) Conductive composition and capacitor utilizing the same