TWI592721B - Flexible liquid crystal display - Google Patents

Flexible liquid crystal display Download PDF

Info

Publication number
TWI592721B
TWI592721B TW105143836A TW105143836A TWI592721B TW I592721 B TWI592721 B TW I592721B TW 105143836 A TW105143836 A TW 105143836A TW 105143836 A TW105143836 A TW 105143836A TW I592721 B TWI592721 B TW I592721B
Authority
TW
Taiwan
Prior art keywords
thickness direction
phase difference
liquid crystal
direction phase
flexible
Prior art date
Application number
TW105143836A
Other languages
Chinese (zh)
Other versions
TW201823818A (en
Inventor
梁輝鴻
Original Assignee
住華科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住華科技股份有限公司 filed Critical 住華科技股份有限公司
Priority to TW105143836A priority Critical patent/TWI592721B/en
Priority to CN201710541529.8A priority patent/CN107300809B/en
Application granted granted Critical
Publication of TWI592721B publication Critical patent/TWI592721B/en
Publication of TW201823818A publication Critical patent/TW201823818A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Description

可撓式液晶顯示器 Flexible liquid crystal display

本發明實施例係有關於一種液晶顯示器,且特別有關於一種可撓式液晶顯示器。 Embodiments of the present invention relate to a liquid crystal display, and more particularly to a flexible liquid crystal display.

隨著攜帶式顯示器被廣泛地應用,針對可撓式顯示器之開發也越趨積極。目前可撓式顯示器之開發主要以可撓式有機發光二極體(OLED)顯示器為主,然而其製造成本較高。 With the widespread use of portable displays, the development of flexible displays has become more aggressive. At present, the development of flexible displays is mainly based on flexible organic light-emitting diode (OLED) displays, but the manufacturing cost is high.

另一方面,液晶顯示器由於成本較低且耐濕性較佳,因此可撓式液晶顯示器也成為各家廠商努力發展的對象。為了達到”可撓曲”之要求,一般係以塑膠基板取代傳統的玻璃基板。然而,塑膠基板能否與液晶層之光學性質搭配亦為影響顯示效果的重要關鍵。 On the other hand, liquid crystal displays are also low-cost and moisture-resistant, so flexible liquid crystal displays have also become the object of development by various manufacturers. In order to achieve the "flexible" requirement, a conventional glass substrate is generally replaced by a plastic substrate. However, whether the plastic substrate can be matched with the optical properties of the liquid crystal layer is also an important key to affect the display effect.

因此,如何搭配液晶與塑膠基板之光學特性以提高整體的光學表現為可撓式液晶顯示器發展上一重要課題。 Therefore, how to match the optical characteristics of liquid crystal and plastic substrate to improve the overall optical performance is an important issue in the development of flexible liquid crystal displays.

本發明實施例提供一種可撓式液晶顯示器,包括:液晶層;以及夾設上述液晶層之第一可撓式基板及第二可撓式基板。上述第一可撓式基板具有第一厚度方向位相差值,第二可撓式基板具有第二厚度方向位相差值,且第一厚度方向位相 差值及第二厚度方向位相差值之總合為20nm至220nm。上述可撓式液晶顯示器係運行於橫向電場切換(in-plane switching,IPS)模式或是邊界電場切換(fringe field switching,FFS)模式。 The embodiment of the invention provides a flexible liquid crystal display, comprising: a liquid crystal layer; and a first flexible substrate and a second flexible substrate sandwiching the liquid crystal layer. The first flexible substrate has a first thickness direction phase difference, the second flexible substrate has a second thickness direction phase difference, and the first thickness direction phase The sum of the difference between the difference and the second thickness direction is 20 nm to 220 nm. The flexible liquid crystal display operates in a transverse-in-plane switching (IPS) mode or a fringe field switching (FFS) mode.

本發明實施例亦提供一種可撓式液晶顯示器,包括:液晶層;夾設上述液晶層之第一可撓式基板及第二可撓式基板;以及第一光學補償膜,設置於第一可撓式基板上。上述第一可撓式基板具有第一厚度方向位相差值,第二可撓式基板具有第二厚度方向位相差值,第一光學補償膜具有第三厚度方向位相差值,且第一厚度方向位相差值、第二厚度方向位相差值及第三厚度方向位相差值之總合為20nm至220nm。上述可撓式液晶顯示器係運行於橫向電場切換(in-plane switching,IPS)模式或是邊界電場切換(fringe field switching,FFS)模式。 The embodiment of the present invention also provides a flexible liquid crystal display, comprising: a liquid crystal layer; a first flexible substrate and a second flexible substrate sandwiching the liquid crystal layer; and a first optical compensation film disposed on the first On the flexible substrate. The first flexible substrate has a first thickness direction phase difference, the second flexible substrate has a second thickness direction phase difference, the first optical compensation film has a third thickness direction phase difference, and the first thickness direction The sum of the phase difference value, the second thickness direction phase difference value, and the third thickness direction phase difference value is 20 nm to 220 nm. The flexible liquid crystal display operates in a transverse-in-plane switching (IPS) mode or a fringe field switching (FFS) mode.

本發明實施例另提供一種可撓式液晶顯示器,包括:液晶層;夾設上述液晶層之第一可撓式基板及第二可撓式基板;第一光學補償膜,設置於第一可撓式基板上;以及第二光學補償膜,設置於第二可撓式基板上。上述第一可撓式基板具有第一厚度方向位相差值,第二可撓式基板具有第二厚度方向位相差值,第一光學補償膜具有第三厚度方向位相差值,第二光學補償膜具有第四厚度方向位相差值,且第一厚度方向位相差值、第二厚度方向位相差值、第三厚度方向位相差值及第四厚度方向位相差值之總合為20nm至220nm。上述可撓式液晶顯示器係運行於橫向電場切換(in-plane switching,IPS)模式或是邊界電場切換(fringe field switching,FFS)模式。 The embodiment of the invention further provides a flexible liquid crystal display, comprising: a liquid crystal layer; a first flexible substrate and a second flexible substrate sandwiching the liquid crystal layer; and a first optical compensation film disposed on the first flexible And a second optical compensation film disposed on the second flexible substrate. The first flexible substrate has a first thickness direction phase difference, the second flexible substrate has a second thickness direction phase difference, the first optical compensation film has a third thickness direction phase difference, and the second optical compensation film And having a fourth thickness direction phase difference value, wherein the first thickness direction phase difference value, the second thickness direction phase difference value, the third thickness direction phase difference value, and the fourth thickness direction phase difference value are 20 nm to 220 nm. The flexible liquid crystal display operates in a transverse-in-plane switching (IPS) mode or a fringe field switching (FFS) mode.

10、20、30‧‧‧可撓式液晶顯示器 10, 20, 30‧‧‧flexible liquid crystal display

100‧‧‧液晶層 100‧‧‧Liquid layer

100’‧‧‧液晶顯示單元 100'‧‧‧Liquid Crystal Display Unit

102‧‧‧第一可撓式基板 102‧‧‧First flexible substrate

104‧‧‧第二可撓式基板 104‧‧‧Second flexible substrate

106‧‧‧第一偏光板 106‧‧‧First polarizer

108‧‧‧第二偏光板 108‧‧‧Second polarizer

200‧‧‧第一光學補償膜 200‧‧‧First optical compensation film

300‧‧‧第二光學補償膜 300‧‧‧Second optical compensation film

以下將配合所附圖式詳述本發明之實施例。應注意的是,依據在業界的標準做法,各種特徵並未按照比例繪製且僅用以說明例示。事實上,可能任意地放大或縮小元件的尺寸,以清楚地表現出本發明實施例的特徵。 Embodiments of the present invention will be described in detail below with reference to the drawings. It should be noted that, in accordance with standard practice in the industry, the various features are not drawn to scale and are merely illustrative. In fact, the dimensions of the elements may be arbitrarily enlarged or reduced to clearly show the features of the embodiments of the invention.

第1圖根據本發明一些實施例繪示出在液晶層之位相差值(Delta_nd)為350nm時,設置於液晶層一側之膜層之厚度方向位相差值的總和與IPS/FFS液晶顯示器之漏光量之間的關係。 1 is a view showing the sum of phase difference values in the thickness direction of a film layer disposed on one side of a liquid crystal layer and the IPS/FFS liquid crystal display when the phase difference (Delta_nd) of the liquid crystal layer is 350 nm according to some embodiments of the present invention. The relationship between the amount of light leakage.

第2圖根據本發明第一實施例繪示出可撓式液晶顯示器10之剖面圖。 Figure 2 is a cross-sectional view showing a flexible liquid crystal display 10 in accordance with a first embodiment of the present invention.

第3圖根據本發明第二實施例繪示出可撓式液晶顯示器20之剖面圖。 Figure 3 is a cross-sectional view showing a flexible liquid crystal display 20 in accordance with a second embodiment of the present invention.

第4圖根據本發明第三實施例繪示出可撓式液晶顯示器30之剖面圖。 Figure 4 is a cross-sectional view showing a flexible liquid crystal display 30 in accordance with a third embodiment of the present invention.

第5a圖繪示出使用玻璃基板之IPS/FFS液晶顯示器之各視角的漏光量分布圖。 Fig. 5a is a diagram showing a light leakage amount distribution diagram of each of the viewing angles of the IPS/FFS liquid crystal display using a glass substrate.

第5b圖係根據本發明之實施例,繪示出使用聚亞醯胺基板之IPS/FFS液晶顯示器之各視角的漏光量分布圖。 Fig. 5b is a diagram showing light leakage amount distribution diagrams of respective viewing angles of an IPS/FFS liquid crystal display using a polyimide substrate according to an embodiment of the present invention.

第6a圖繪示出使用玻璃基板之IPS/FFS液晶顯示器之各視角的漏光量分布圖。 Fig. 6a is a diagram showing a light leakage amount distribution diagram of each angle of view of an IPS/FFS liquid crystal display using a glass substrate.

第6b圖係根據本發明之實施例,繪示出使用聚亞醯胺基板以及光學補償模之IPS/FFS液晶顯示器之各視角的漏光量分布圖。 Fig. 6b is a diagram showing light leakage amount distribution diagrams of respective viewing angles of an IPS/FFS liquid crystal display using a polyimide substrate and an optical compensation mode according to an embodiment of the present invention.

以下公開許多不同的實施方法或是例子來實行本發明之不同特徵,以下描述具體的元件及其排列的實施例以闡述本發明。當然這些實施例僅用以例示,且不該以此限定本發明的範圍。例如,在說明書中提到第一元件形成於第二元件之上,其包括第一元件與第二元件是直接接觸的實施例,另外也包括於第一元件與第二元件之間另外有其他元件的實施例,亦即,第一元件與第二元件並非直接接觸。此外,在不同實施例中可能使用重複的標號或標示,這些重複僅為了簡單清楚地敘述本發明實施例,不代表所討論的不同實施例及/或結構之間有特定的關係。 The various features of the invention are set forth in the description of the various embodiments of the invention. These examples are for illustrative purposes only and are not intended to limit the scope of the invention. For example, it is mentioned in the specification that a first element is formed over a second element, which includes an embodiment in which the first element is in direct contact with the second element, and is additionally included between the first element and the second element. An embodiment of the component, that is, the first component is not in direct contact with the second component. In addition, the various embodiments may be used in the various embodiments of the present invention, and are not to be construed as a limitation of the various embodiments and/or structures discussed.

此外,其中可能用到與空間相關用詞,例如“在...下方”、“下方”、“較低的”、“上方”、“較高的”及類似的用詞,這些空間相關用詞係為了便於描述圖示中一個(些)元件或特徵與另一個(些)元件或特徵之間的關係,這些空間相關用詞包括使用中或操作中的裝置之不同方位,以及圖式中所描述的方位。裝置可能被轉向不同方位(旋轉90度或其他方位),則其中使用的空間相關形容詞也可相同地照著解釋。 In addition, space-related terms such as "below," "below," "lower," "above," "higher," and similar terms may be used. Words used to describe the relationship between one element or feature(s) in the drawing and another element or feature(s), such spatially related terms include different orientations of the device in operation or operation, and in the drawings The orientation described. The device may be turned to a different orientation (rotated 90 degrees or other orientation), and the spatially related adjectives used therein may also be interpreted identically.

另外,本發明實施例關於光學性質之用語的定義如下: In addition, the definitions of the terms of optical properties of the embodiments of the present invention are as follows:

(1)nx係為膜層之面內折射率最大之方向(即遲相軸方向)上之折射率,ny係為膜層之面內與遲相軸方向垂直之方向(即進相軸方向)上之折射率,nz係為膜層厚度方向之折射率,d係為膜層之厚度。 (1) n x is the refractive index in the direction in which the refractive index of the film layer is the largest (ie, the direction of the slow axis), and n y is the direction perpendicular to the direction of the slow axis in the plane of the film layer (ie, the phase advance) The refractive index in the axial direction, n z is the refractive index in the thickness direction of the film layer, and d is the thickness of the film layer.

(2)膜面內位相差值R0係定義為(nx-ny)×d。一般而言,膜面內位相差值係使用波長590nm(奈米)之光來測定。 (2) The phase difference R0 in the film plane is defined as (n x - n y ) × d. In general, the in-plane phase difference is measured using light having a wavelength of 590 nm (nano).

(3)厚度方向位相差值Rth係定義為{[(nx+ny)/2]-nz}×d。一般而言,厚度方向位相差值係使用波長590nm之光來測定。 (3) The phase difference value Rth in the thickness direction is defined as {[(n x + n y )/2] - n z } × d. In general, the difference in the thickness direction is measured using light having a wavelength of 590 nm.

一般而言,橫向電場切換(In-Plane-Switching,IPS)液晶顯示面板包括一對基板以及設置於上述基板之間的液晶層,且液晶層裡的液晶分子平行於基板排列。其中一個基板為電晶體陣列基板且包含多個像素電極和共電壓電極,其中像素電極和共電壓電極位於共平面上且交叉排列。另外,邊緣電場切換(Fringe-Field Switching,FFS)液晶顯示面板同樣包括一對基板以及設置於上述基板之間的液晶層,且液晶層裡的液晶分子平行於基板排列。與IPS不同的是,FFS的電晶體陣列基板裡的像素電極和共電壓電極非位於共平面上。雖然IPS和FFS結構有些微不同,然操作模式卻極為類似。當給予對應之訊號於像素電極時,像素電極和共電壓電極形成電場,液晶分子可透過電場驅動呈水平扭轉(平行於基板)使得部分光線可通過液晶平面。由於液晶分子呈水平扭轉,因此IPS或FFS液晶顯示面板能得到較佳之視角(例如:上下左右178度的視角)。然而,也由於IPS/FFS液晶顯示面板的液晶分子呈水平排列,光線的穿透率也較不佳。為了有更好的展示亮色就要增加背光的發光度,進而導致漏光的問題,使得IPS/FFS液晶顯示面板的對比不佳。 In general, an In-Plane-Switching (IPS) liquid crystal display panel includes a pair of substrates and a liquid crystal layer disposed between the substrates, and liquid crystal molecules in the liquid crystal layer are aligned parallel to the substrate. One of the substrates is a transistor array substrate and includes a plurality of pixel electrodes and a common voltage electrode, wherein the pixel electrode and the common voltage electrode are located on a common plane and are arranged in a cross arrangement. In addition, the Fringe-Field Switching (FFS) liquid crystal display panel also includes a pair of substrates and a liquid crystal layer disposed between the substrates, and liquid crystal molecules in the liquid crystal layer are arranged parallel to the substrate. Unlike IPS, the pixel electrode and the common voltage electrode in the transistor array substrate of the FFS are not coplanar. Although the IPS and FFS structures are slightly different, the mode of operation is very similar. When the corresponding signal is applied to the pixel electrode, the pixel electrode and the common voltage electrode form an electric field, and the liquid crystal molecules can be horizontally twisted (parallel to the substrate) by the electric field so that part of the light can pass through the liquid crystal plane. Since the liquid crystal molecules are horizontally twisted, the IPS or FFS liquid crystal display panel can obtain a better viewing angle (for example, a viewing angle of 178 degrees from top to bottom and left and right). However, since the liquid crystal molecules of the IPS/FFS liquid crystal display panel are horizontally arranged, the transmittance of light is also poor. In order to have a better display of bright colors, it is necessary to increase the luminosity of the backlight, which in turn leads to the problem of light leakage, which makes the contrast of the IPS/FFS liquid crystal display panel poor.

據此,本發明提供一種用於IPS/FFS模式的液晶顯示器的結構,特別是用在可撓式液晶顯示器,使得其除了具有視角佳的特性外,還具有低漏光高對比的特性。 Accordingly, the present invention provides a structure of a liquid crystal display for an IPS/FFS mode, particularly for use in a flexible liquid crystal display, which has characteristics of low light leakage and high contrast in addition to characteristics having good viewing angle.

請參照第1圖,根據本發明一些實施例,其繪示出在液晶層之位相差值(Delta_nd)為350nm時,設置於液晶層一側之膜層之厚度方向位相差值的總和與IPS/FFS液晶顯示器之漏光量之間的關係。由第1圖可以清楚地看出,在設置於液晶層一側之膜層之厚度方向位相差值的總和為10nm至110nm(較佳為40nm至80nm)時,FFS/IPS顯示器可具有較佳之光學表現。換言之,若設置於液晶層一側之膜層之厚度方向位相差值的總和可控制在10nm至110nm(較佳為40nm至80nm)時,FFS/IPS顯示器的漏光量可控制在0.006%以下(較佳為0.005%以下,更佳為0.004%以下),因此可改善FFS/IPS顯示器在各視角的對比度。 Referring to FIG. 1 , according to some embodiments of the present invention, the sum of the phase difference values in the thickness direction of the film layer disposed on the liquid crystal layer side and the IPS when the phase difference (Delta_nd) of the liquid crystal layer is 350 nm is illustrated. The relationship between the amount of light leakage of the /FFS liquid crystal display. As is clear from Fig. 1, the FFS/IPS display can be preferably used when the sum of the phase difference values in the thickness direction of the film layer disposed on the liquid crystal layer side is 10 nm to 110 nm (preferably 40 nm to 80 nm). Optical performance. In other words, if the sum of the phase difference values in the thickness direction of the film layer disposed on one side of the liquid crystal layer can be controlled to be 10 nm to 110 nm (preferably 40 nm to 80 nm), the light leakage amount of the FFS/IPS display can be controlled to 0.006% or less ( It is preferably 0.005% or less, more preferably 0.004% or less, so that the contrast of the FFS/IPS display at various viewing angles can be improved.

【第一實施例】 [First Embodiment]

本實施例係根據上述第1圖之結果搭配可撓式基板與液晶層之位相差值,以使可撓式液晶顯示器可具有良好之光學表現。 In this embodiment, the difference between the flexible substrate and the liquid crystal layer is matched according to the result of the above FIG. 1 so that the flexible liquid crystal display can have good optical performance.

請參照第2圖,其繪示出本實施例之可撓式液晶顯示器10,其包括液晶顯示單元100’、第一偏光板106及第二偏光板108,其中液晶顯示單元100’包括液晶層100、第一可撓式基板102及第二可撓式基板104。於本實施例中,可撓式液晶顯示器10操作於IPS模式或是FFS模式。換言之,液晶層100裡的液晶分子與第一可撓式基板102及第二可撓式基板104呈水平排列,且像素電極和共電壓電極(未繪於圖式)位於液晶層100的同一側(亦即,像素電極和共電壓電極共同位在第一可撓式基板102上或是共同位在第二可撓式基板104上)。 Referring to FIG. 2, a flexible liquid crystal display 10 of the present embodiment is illustrated, which includes a liquid crystal display unit 100', a first polarizing plate 106, and a second polarizing plate 108, wherein the liquid crystal display unit 100' includes a liquid crystal layer. 100. The first flexible substrate 102 and the second flexible substrate 104. In the embodiment, the flexible liquid crystal display 10 operates in an IPS mode or an FFS mode. In other words, the liquid crystal molecules in the liquid crystal layer 100 are horizontally arranged with the first flexible substrate 102 and the second flexible substrate 104, and the pixel electrode and the common voltage electrode (not shown) are located on the same side of the liquid crystal layer 100. (ie, the pixel electrode and the common voltage electrode are co-located on the first flexible substrate 102 or co-located on the second flexible substrate 104).

在一些實施例中,液晶層100之位相差值(Delta_nd) 可為310nm至370nm,其中液晶層100的折射率差△n可介於約0.09和0.12之間。 In some embodiments, the phase difference (Delta_nd) of the liquid crystal layer 100 may be 310 nm to 370 nm, wherein the refractive index difference Δ n of the liquid crystal layer 100 may be between about 0.09 and 0.12.

請繼續參照第2圖,第一可撓式基板102及第二可撓式基板104係夾設(sandwich)液晶層100。在一些實施例中,第一可撓式基板102及第二可撓式基板104係各自與液晶層100直接接觸。 Referring to FIG. 2 , the first flexible substrate 102 and the second flexible substrate 104 sandwich the liquid crystal layer 100 . In some embodiments, the first flexible substrate 102 and the second flexible substrate 104 are each in direct contact with the liquid crystal layer 100.

舉例來說,第一可撓式基板102可為主動矩陣基板,其設有控制液晶之電光學特性的開關元件(例如:薄膜電晶體),以及對上述開關元件供給閘信號之掃描線與供給源極信號之信號線,第二可撓式基板104可為彩色濾光片基板,其設有彩色濾光片。然而,上述彩色濾光片亦可設置於主動矩陣基板。 For example, the first flexible substrate 102 can be an active matrix substrate provided with a switching element (eg, a thin film transistor) that controls the electro-optical characteristics of the liquid crystal, and a scan line and supply for supplying a gate signal to the switching element. The signal line of the source signal, the second flexible substrate 104 can be a color filter substrate, which is provided with a color filter. However, the above color filter may also be disposed on the active matrix substrate.

舉例而言,第一可撓式基板102及第二可撓式基板104可由聚亞醯胺(polyimide,簡稱PI)形成,不同於傳統之玻璃基板,以聚亞醯胺所形成之基板因高分子結構及製程條件等影響,其具有光學異向之特性,因而產生光學位相差值,因此在與液晶層一起使用時,須考慮其與液晶層之光學性質的搭配以獲得較佳之光學表現。舉例來說,上述由聚亞醯胺所形成之基板102及104各自可具有適當之光學異向性,例如nx=ny>nz。另外,第一可撓式基板102及第二可撓式基板104之可見光透光率各自可大於90%(例如90.99%至99.99%)。此外,上述由聚亞醯胺所形成之基板102及104具有可撓曲的特性,而可滿足可撓式液晶顯示器10可撓曲的需求。舉例而言,可於玻璃等基板塗佈聚亞醯胺材料,並於成膜之後取下作為第一可撓式基板102 及第二可撓式基板104。 For example, the first flexible substrate 102 and the second flexible substrate 104 may be formed of polyimide (PI), which is different from the conventional glass substrate, and the substrate formed by the polyamidene is high. The molecular structure and process conditions have the characteristics of optical anisotropy, which results in optical phase difference. Therefore, when used together with the liquid crystal layer, it must be considered in combination with the optical properties of the liquid crystal layer to obtain better optical performance. For example, each of the substrates 102 and 104 formed of polymethyleneamine described above may have an appropriate optical anisotropy, such as n x = n y > n z . In addition, the visible light transmittances of the first flexible substrate 102 and the second flexible substrate 104 may each be greater than 90% (eg, 90.99% to 99.99%). In addition, the substrates 102 and 104 formed of the above polyamines have the flexible characteristics to meet the flexibility of the flexible liquid crystal display 10. For example, the polyimide material may be coated on a substrate such as glass, and then removed as a first flexible substrate 102 and a second flexible substrate 104 after film formation.

第一可撓式基板102具有第一厚度方向位相差值R1,第二可撓式基板104具有第二厚度方向位相差值R2,根據第1圖所呈現之結果,為配合位相差值為310nm至370nm之液晶層100,第一厚度方向位相差值及第二厚度方向位相差值之總和R1+R2可為20nm至220nm,較佳為80nm至160nm,而使得可撓式液晶顯示器10具有較低之漏光量及較佳之光學表現(例如:高對比度)。在一些實施例中,第一可撓式基板102及第二可撓式基板104之膜面內位相差值各自可為0nm。於一些實施例中,第一可撓式基板102及第二可撓式基板104中至少一者之厚度可為1μm至25μm,較佳為5μm至20μm,藉此讓第一厚度方向位相差值R1及第二厚度方向位相差值R2至少一者控制在10nm至110nm,較佳為40nm至80nm。應注意的是,第一厚度方向位相差值R1及第二厚度方向位相差值R2可為相同或不同。藉此,操作於IPS模式或FFS模式之可撓式液晶顯示器10的漏光量可控制在0.006%以下(較佳為0.005%以下,更佳為0.004%以下),讓在各視角的對比度得以提升。 The first flexible substrate 102 has a first thickness direction phase difference R1, and the second flexible substrate 104 has a second thickness direction phase difference R2. According to the result shown in FIG. 1, the matching phase difference is 310 nm. The liquid crystal layer 100 up to 370 nm, the sum of the first thickness direction phase difference and the second thickness direction phase difference R1+R2 may be 20 nm to 220 nm, preferably 80 nm to 160 nm, so that the flexible liquid crystal display 10 has a comparative Low light leakage and better optical performance (eg high contrast). In some embodiments, the in-plane phase difference values of the first flexible substrate 102 and the second flexible substrate 104 may each be 0 nm. In some embodiments, at least one of the first flexible substrate 102 and the second flexible substrate 104 may have a thickness of 1 μm to 25 μm, preferably 5 μm to 20 μm, thereby causing a difference in the first thickness direction. At least one of the phase difference R2 of R1 and the second thickness direction is controlled to be 10 nm to 110 nm, preferably 40 nm to 80 nm. It should be noted that the first thickness direction phase difference value R1 and the second thickness direction phase difference value R2 may be the same or different. Thereby, the amount of light leakage of the flexible liquid crystal display 10 operating in the IPS mode or the FFS mode can be controlled to 0.006% or less (preferably 0.005% or less, more preferably 0.004% or less), thereby improving the contrast at each viewing angle. .

請參照第5a及5b圖,其各自繪示出使用玻璃基板之IPS/FFS液晶顯示器、以及本實施例使用聚亞醯胺基板(例如:R1+R2=120nm)之IPS/FFS液晶顯示器兩者之各視角的漏光量,其中紅色區塊代表漏光量較大之部分(漏光量大於0.006%),LV表示整個區域之最大漏光量。由第5a及5b圖可以清楚地看出,第一可撓式基板102的第一厚度方向位相差值R1和第二可撓式基板104的第二厚度方向位相差值R2之總和 R1+R2在120nm時,相較於玻璃基板的液晶顯示器,各視角的漏光量都有明顯地減少,其中整個區域之最大漏光量從0.0071%降低至0.0045%。 Please refer to FIGS. 5a and 5b, which respectively illustrate an IPS/FFS liquid crystal display using a glass substrate, and an IPS/FFS liquid crystal display using a polyimide substrate (for example, R1+R2=120 nm) in this embodiment. The amount of light leakage at each viewing angle, wherein the red block represents a portion with a large amount of light leakage (the amount of light leakage is greater than 0.006%), and LV represents the maximum amount of light leakage in the entire region. As can be clearly seen from the 5th and 5th diagrams, the sum of the first thickness direction phase difference R1 of the first flexible substrate 102 and the second thickness direction phase difference R2 of the second flexible substrate 104 When R1+R2 is at 120 nm, the amount of light leakage at each viewing angle is significantly reduced compared to the liquid crystal display of the glass substrate, and the maximum light leakage amount of the entire region is reduced from 0.0071% to 0.0045%.

請繼續參照第2圖,第一偏光板106及第二偏光板108係夾設第一可撓式基板102、第二可撓式基板104及液晶層100。在一些實施例中,第一偏光板106係與第一可撓式基板102直接接觸且第二偏光板108係與第二可撓式基板104直接接觸而無其他膜層介於其間。第一偏光板106及第二偏光板108各自可具有適當之厚度。第一偏光板106及第二偏光板108各自可包括吸附碘或二色性染料後經單軸延伸之親水性高分子膜,例如:聚乙烯醇系膜、部分二甲氧甲烷化聚乙烯醇系膜、乙烯-乙酸乙烯酯共聚物系部分皂化膜、上述之組合或其他適當之材料。 Referring to FIG. 2 , the first polarizing plate 106 and the second polarizing plate 108 are interposed between the first flexible substrate 102 , the second flexible substrate 104 , and the liquid crystal layer 100 . In some embodiments, the first polarizer 106 is in direct contact with the first flexible substrate 102 and the second polarizer 108 is in direct contact with the second flexible substrate 104 without other layers interposed therebetween. Each of the first polarizing plate 106 and the second polarizing plate 108 may have a suitable thickness. Each of the first polarizing plate 106 and the second polarizing plate 108 may include a hydrophilic polymer film which is uniaxially stretched after adsorbing iodine or a dichroic dye, for example, a polyvinyl alcohol film or a partially dimethoxymethane polyvinyl alcohol. A film, an ethylene-vinyl acetate copolymer partially saponified film, a combination of the above or other suitable materials.

綜合上述,本實施例係使得第一可撓式基板102與第二可撓式基板104具有適當之厚度方向位相差值(例如:兩者之厚度方向位相差值之總和為20nm至220nm,較佳為80nm至160nm),使其與位相差值為310nm至370nm之液晶層100搭配使用時可具有較佳之光學表現。 In summary, the present embodiment is such that the first flexible substrate 102 and the second flexible substrate 104 have appropriate thickness direction difference values (for example, the sum of the difference in thickness direction between the two is 20 nm to 220 nm, Preferably, it is 80 nm to 160 nm), so that it can have better optical performance when used in combination with the liquid crystal layer 100 having a phase difference of 310 nm to 370 nm.

【第二實施例】 [Second embodiment]

請參照第3圖,其繪示出本實施例之可撓式液晶顯示器20,其與第一實施例之可撓式液晶顯示器10的差異在於可撓式液晶顯示器20之第一可撓式基板102與第一偏光板106之間更設置有第一光學補償膜200。另外,可撓式液晶顯示器20係適當地搭配光學補償膜200、第一可撓式基板102、第二可撓式基板104及液晶層之位相差值而可具有良好之光學表現。 Please refer to FIG. 3 , which illustrates the flexible liquid crystal display 20 of the present embodiment, which differs from the flexible liquid crystal display 10 of the first embodiment in the first flexible substrate of the flexible liquid crystal display 20 . A first optical compensation film 200 is further disposed between the first polarizing plate 106 and the first polarizing plate 106. In addition, the flexible liquid crystal display 20 can have a good optical performance by appropriately matching the phase difference between the optical compensation film 200, the first flexible substrate 102, the second flexible substrate 104, and the liquid crystal layer.

上述第一光學補償膜200可具有適當之光學異向性,例如nx=ny<nz,而可與第一基板102及第二基板104(其光學異向性可為nx=ny>nz)相互搭配而得到適當的厚度方向位相差值之總和,因此可增加膜層設計之彈性。於本實施例中,第一可撓式基板102具有第一厚度方向位相差值R1,第二可撓式基板104具有第二厚度方向位相差值R2,第一光學補償膜200具有第三厚度方向位相差值R3。舉例而言,第三厚度方向位相差值R3可為0至-500nm。為配合位相差值為310nm至370nm之液晶層100,第一厚度方向位相差值R1、第二厚度方向位相差值R2及第三厚度方向位相差值R3之總和R1+R2+R3可為20nm至220nm,較佳為80nm至160nm,而使得可撓式液晶顯示器20具有較低之漏光量及較佳之光學表現(例如:高對比度)。 The first optical compensation film 200 may have an appropriate optical anisotropy, for example, n x = n y < n z , and may be combined with the first substrate 102 and the second substrate 104 (the optical anisotropy may be n x = n y >n z ) is matched to each other to obtain the sum of the difference in the thickness direction, so that the elasticity of the film design can be increased. In this embodiment, the first flexible substrate 102 has a first thickness direction phase difference R1, the second flexible substrate 104 has a second thickness direction phase difference R2, and the first optical compensation film 200 has a third thickness. Directional phase difference R3. For example, the third thickness direction phase difference value R3 may be 0 to -500 nm. To match the liquid crystal layer 100 having a phase difference of 310 nm to 370 nm, the sum of the first thickness direction phase difference R1, the second thickness direction phase difference R2, and the third thickness direction phase difference R3 may be 20 nm. Up to 220 nm, preferably 80 nm to 160 nm, allows the flexible liquid crystal display 20 to have a lower light leakage amount and better optical performance (for example, high contrast).

舉例而言,第一厚度方向位相差值及第三厚度方向位相差值之總和R1+R3與第二厚度方向位相差值R2至少一者為10nm至110nm,較佳為40nm至80nm。應注意的是,第一厚度方向位相差值及第三厚度方向位相差值之總和R1+R3與第二厚度方向位相差值R2可為相同或不同。藉此,操作於IPS模式或FFS模式之可撓式液晶顯示器20的漏光量可控制在0.006%以下(較佳為0.005%以下,更佳為0.004%以下),讓在各視角的對比度得以提升。 For example, the sum of the first thickness direction phase difference and the third thickness direction phase difference value R1+R3 and the second thickness direction phase difference R2 is at least one of 10 nm to 110 nm, preferably 40 nm to 80 nm. It should be noted that the sum of the first thickness direction phase difference and the third thickness direction phase difference R1+R3 and the second thickness direction phase difference R2 may be the same or different. Thereby, the amount of light leakage of the flexible liquid crystal display 20 operating in the IPS mode or the FFS mode can be controlled to 0.006% or less (preferably 0.005% or less, more preferably 0.004% or less), so that the contrast at each viewing angle can be improved. .

第一光學補償膜200之厚度可為0.1至50μm,較佳為1至20μm,藉此讓第三厚度方向位相差值R3控制在0nm至-500nm。舉例而言,第一光學補償膜200可由聚醯胺、聚醯亞胺、聚酯、聚醚酮、聚醯胺醯亞胺、聚酯醯亞胺、上述之組合 或其他適當之材料所形成。舉例而言,可利用液晶塗佈法或其他適當之方法形成第一光學補償膜200,在一些以液晶塗佈法形成第一光學補償膜200的實施例中,其可為圓盤狀之液晶形式。 The thickness of the first optical compensation film 200 may be 0.1 to 50 μm, preferably 1 to 20 μm, whereby the third thickness direction phase difference value R3 is controlled to be 0 nm to -500 nm. For example, the first optical compensation film 200 may be composed of polyamine, polyimine, polyester, polyether ketone, polyamidoximine, polyester quinone, and the combination thereof. Or other suitable materials. For example, the first optical compensation film 200 may be formed by a liquid crystal coating method or other suitable method. In some embodiments in which the first optical compensation film 200 is formed by a liquid crystal coating method, it may be a disk-shaped liquid crystal. form.

在一些實施例中,第一光學補償膜200可與第一可撓式基板102及/或第一偏光板106直接接觸而無其他膜層介於其間。另外,雖然於本實施例中,第一光學補償膜200係為單一膜層,然而若可滿足上述位相差值之相關條件,在一些其他的實施例中,第一光學補償膜200亦可包括複數個子層。 In some embodiments, the first optical compensation film 200 can be in direct contact with the first flexible substrate 102 and/or the first polarizing plate 106 without other film layers interposed therebetween. In addition, in the present embodiment, the first optical compensation film 200 is a single film layer. However, if the relevant conditions of the phase difference values are satisfied, in some other embodiments, the first optical compensation film 200 may also include Multiple sublayers.

【第三實施例】 [Third embodiment]

請參照第4圖,其繪示出本實施例之可撓式液晶顯示器30,其與第二實施例之可撓式液晶顯示器20之差異在於可撓式液晶顯示器30之第二可撓式基板104與第二偏光板108之間具有第二光學補償膜300。第二光學補償膜300可包括與第一光學補償膜200相同或相似之性質。 Please refer to FIG. 4 , which illustrates the flexible liquid crystal display 30 of the present embodiment, which is different from the flexible liquid crystal display 20 of the second embodiment in the second flexible substrate of the flexible liquid crystal display 30 . There is a second optical compensation film 300 between the 104 and the second polarizing plate 108. The second optical compensation film 300 may include the same or similar properties as the first optical compensation film 200.

上述第二光學補償膜300可具有適當之光學異向性,例如nx=ny<nz,而可與第一基板102、第二基板104以及第一光學補償膜200相互搭配而得到適當的厚度方向位相差值之總和,因此可增加膜層設計之彈性。 The second optical compensation film 300 may have an appropriate optical anisotropy, for example, n x = n y < n z , and may be appropriately matched with the first substrate 102, the second substrate 104, and the first optical compensation film 200. The sum of the difference in the thickness direction, thus increasing the flexibility of the film design.

於本實施例中,第一可撓式基板102具有第一厚度方向位相差值R1,第二可撓式基板104具有第二厚度方向位相差值R2,第一光學補償膜200具有第三厚度方向位相差值R3,第二光學補償膜300具有第四厚度方向位相差值R4。舉例而言,第三厚度方向位相差值R3及第四厚度方向位相差值R4至少 一者可為0至-500nm。為配合位相差值為310nm至370nm之液晶層100,第一厚度方向位相差值、第二厚度方向位相差值、第三厚度方向位相差值及第四厚度方向位相差值之總和R1+R2+R3+R4可為20nm至220nm,較佳為80nm至160nm,而使得可撓式液晶顯示器30具有較低之漏光量及較佳之光學表現(例如:高對比度)。 In this embodiment, the first flexible substrate 102 has a first thickness direction phase difference R1, the second flexible substrate 104 has a second thickness direction phase difference R2, and the first optical compensation film 200 has a third thickness. The directional phase difference value R3, the second optical compensation film 300 has a fourth thickness direction phase difference value R4. For example, the third thickness direction phase difference value R3 and the fourth thickness direction phase difference value R4 are at least One can be from 0 to -500 nm. In order to match the liquid crystal layer 100 having a phase difference of 310 nm to 370 nm, the first thickness direction phase difference value, the second thickness direction phase difference value, the third thickness direction phase difference value, and the fourth thickness direction phase difference sum R1+R2 +R3+R4 may be from 20 nm to 220 nm, preferably from 80 nm to 160 nm, so that the flexible liquid crystal display 30 has a lower light leakage amount and better optical performance (for example, high contrast).

舉例而言,第一厚度方向位相差值及第三厚度方向位相差值之總和R1+R3與第二厚度方向位相差值及第四厚度方向位相差值之總和R2+R4至少一者為10nm至110nm,較佳為40nm至80nm。應注意的是,第一厚度方向位相差值及第三厚度方向位相差值之總和R1+R3與第二厚度方向位相差值及第四厚度方向位相差值之總和R2+R4可為相同或不同。藉此,操作於IPS模式或FFS模式之可撓式液晶顯示器30的漏光量可控制在0.006%以下(較佳為0.005%以下,更佳為0.004%以下),讓在各視角的對比度得以提升。 For example, the sum of the first thickness direction phase difference value and the third thickness direction phase difference value R1+R3 and the second thickness direction phase difference value and the fourth thickness direction phase difference value R2+R4 is at least one of 10 nm. To 110 nm, preferably 40 nm to 80 nm. It should be noted that the sum of the first thickness direction phase difference value and the third thickness direction phase difference value R1+R3 and the second thickness direction phase difference value and the fourth thickness direction phase difference value R2+R4 may be the same or different. Thereby, the amount of light leakage of the flexible liquid crystal display 30 operating in the IPS mode or the FFS mode can be controlled to 0.006% or less (preferably 0.005% or less, more preferably 0.004% or less), so that the contrast at each viewing angle can be improved. .

請參照第6a及6b圖,其各自繪示出使用玻璃基板之IPS/FFS液晶顯示器、以及本實施例使用聚亞醯胺基板及光學補償模(例如:R1+R3=60nm,R2+R4=60nm)之IPS/FFS液晶顯示器兩者之各視角的漏光量,其中紅色區塊代表漏光量較大之部分(漏光量大於0.006%),LV表示整個區域之最大漏光量。由第6a及6b圖可以清楚地看出,第一可撓式基板102的第一厚度方向位相差值R1、第二可撓式基板104的第二厚度方向位相差值R2、光學補償膜200的第三厚度方向位相差值R3以及光學補償膜300的第四厚度方向位相差值R4之總和R1+R2+R3+R4在 120nm時,相較於玻璃基板的液晶顯示器,各視角的漏光量都有明顯地減少,其中整個區域之最大漏光量從0.0071%降低至0.0057%。 Please refer to FIGS. 6a and 6b, which respectively illustrate an IPS/FFS liquid crystal display using a glass substrate, and a polyimide substrate and an optical compensation mode using the embodiment (for example: R1+R3=60 nm, R2+R4= The light leakage amount of each of the 60 nm) IPS/FFS liquid crystal displays, wherein the red block represents a portion with a large amount of light leakage (the amount of light leakage is greater than 0.006%), and LV represents the maximum amount of light leakage throughout the region. As can be clearly seen from the 6th and 6th views, the first thickness direction phase difference R1 of the first flexible substrate 102, the second thickness direction phase difference R2 of the second flexible substrate 104, and the optical compensation film 200 The sum of the third thickness direction phase difference R3 and the fourth thickness direction phase difference R4 of the optical compensation film 300 R1+R2+R3+R4 At 120 nm, the amount of light leakage at each viewing angle is significantly reduced compared to the liquid crystal display of the glass substrate, wherein the maximum light leakage amount of the entire region is reduced from 0.0071% to 0.0057%.

在一些實施例中,第二光學補償膜300可與第二可撓式基板104及/或第二偏光板108直接接觸而無其他膜層介於其間。另外,雖然於本實施例中,第二光學補償膜300係為單一膜層,然而若可滿足上述位相差值之相關條件,在一些其他的實施例中,第二光學補償膜300亦可包括複數個子層。 In some embodiments, the second optical compensation film 300 can be in direct contact with the second flexible substrate 104 and/or the second polarizing plate 108 without other film layers interposed therebetween. In addition, in the present embodiment, the second optical compensation film 300 is a single film layer. However, if the correlation condition of the phase difference is satisfied, in some other embodiments, the second optical compensation film 300 may also include Multiple sublayers.

綜上所述,本發明實施例之液晶顯示器係使可撓式基板與光學補償膜具有適當之厚度方向位相差值,而可降低液晶顯示器之漏光並改善其光學表現。此外,具有適當厚度方向位相差值之可撓式基板在改善液晶顯示器之光學表現的同時,亦可滿足其可撓曲之需求。 In summary, the liquid crystal display of the embodiment of the present invention has a suitable thickness direction difference between the flexible substrate and the optical compensation film, thereby reducing light leakage of the liquid crystal display and improving its optical performance. In addition, the flexible substrate having the difference in the thickness direction of the appropriate thickness can also meet the flexibility requirements of the liquid crystal display while improving the optical performance of the liquid crystal display.

雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the invention has been described above in terms of several preferred embodiments, it is not intended to limit the scope of the present invention, and any one of ordinary skill in the art can make any changes without departing from the spirit and scope of the invention. And the scope of the present invention is defined by the scope of the appended claims.

10‧‧‧可撓式液晶顯示器 10‧‧‧Flexible LCD

100’‧‧‧液晶顯示單元 100'‧‧‧Liquid Crystal Display Unit

100‧‧‧液晶層 100‧‧‧Liquid layer

102‧‧‧第一可撓式基板 102‧‧‧First flexible substrate

104‧‧‧第二可撓式基板 104‧‧‧Second flexible substrate

106‧‧‧第一偏光板 106‧‧‧First polarizer

108‧‧‧第二偏光板 108‧‧‧Second polarizer

Claims (18)

一種可撓式液晶顯示器,包括:一液晶層;以及一第一可撓式基板及一第二可撓式基板,夾設該液晶層;其中該第一可撓式基板具有一第一厚度方向位相差值,該第二可撓式基板具有一第二厚度方向位相差值,且該第一厚度方向位相差值及該第二厚度方向位相差值之總合為20nm至220nm;其中該可撓式液晶顯示器係運行於橫向電場切換模式或是邊界電場切換模式。 A flexible liquid crystal display comprising: a liquid crystal layer; and a first flexible substrate and a second flexible substrate sandwiching the liquid crystal layer; wherein the first flexible substrate has a first thickness direction a phase difference, the second flexible substrate has a second thickness direction phase difference, and the first thickness direction phase difference value and the second thickness direction phase difference value are 20 nm to 220 nm; The flexible liquid crystal display operates in a transverse electric field switching mode or a boundary electric field switching mode. 如申請專利範圍第1項所述之可撓式液晶顯示器,其中該第一厚度方向位相差值與該第二厚度方向位相差值中至少一者為10nm至110nm。 The flexible liquid crystal display of claim 1, wherein at least one of the first thickness direction phase difference value and the second thickness direction phase difference is 10 nm to 110 nm. 如申請專利範圍第1項所述之可撓式液晶顯示器,其中該第一厚度方向位相差值及該第二厚度方向位相差值之總合為80nm至160nm。 The flexible liquid crystal display of claim 1, wherein the first thickness direction phase difference value and the second thickness direction phase difference value are 80 nm to 160 nm. 如申請專利範圍第3項所述之可撓式液晶顯示器,其中該第一厚度方向位相差值與該第二厚度方向位相差值中至少一者為40nm至80nm。 The flexible liquid crystal display of claim 3, wherein at least one of the first thickness direction phase difference value and the second thickness direction phase difference is 40 nm to 80 nm. 一種可撓式液晶顯示器,包括:一液晶層;一第一可撓式基板及一第二可撓式基板,夾設該液晶層;以及一第一光學補償膜,設置於該第一可撓式基板上; 其中該第一可撓式基板具有一第一厚度方向位相差值,該第二可撓式基板具有一第二厚度方向位相差值,該第一光學補償膜具有一第三厚度方向位相差值,且該第一厚度方向位相差值、該第二厚度方向位相差值及該第三厚度方向位相差值之總合為20nm至220nm;其中該可撓式液晶顯示器係運行於橫向電場切換模式或是邊界電場切換模式。 A flexible liquid crystal display comprising: a liquid crystal layer; a first flexible substrate and a second flexible substrate, the liquid crystal layer is interposed; and a first optical compensation film disposed on the first flexible On the substrate; The first flexible substrate has a first thickness direction phase difference, the second flexible substrate has a second thickness direction phase difference, and the first optical compensation film has a third thickness direction phase difference. And the sum of the first thickness direction phase difference value, the second thickness direction phase difference value, and the third thickness direction phase difference value is 20 nm to 220 nm; wherein the flexible liquid crystal display system operates in a transverse electric field switching mode Or the boundary electric field switching mode. 如申請專利範圍第5項所述之可撓式液晶顯示器,其中該第一厚度方向位相差值及該第三厚度方向位相差值之總和與該第二厚度方向位相差值中至少一者為10nm至110nm。 The flexible liquid crystal display of claim 5, wherein at least one of a difference between the first thickness direction phase difference value and the third thickness direction phase difference value and the second thickness direction bit difference is 10 nm to 110 nm. 如申請專利範圍第5項所述之可撓式液晶顯示器,其中該第一厚度方向位相差值、該第二厚度方向位相差值及該第三厚度方向位相差值之總合為80nm至160nm。 The flexible liquid crystal display of claim 5, wherein the first thickness direction phase difference value, the second thickness direction phase difference value, and the third thickness direction phase difference value are 80 nm to 160 nm. . 如申請專利範圍第7項所述之可撓式液晶顯示器,其中該第一厚度方向位相差值及該第三厚度方向位相差值之總和與該第二厚度方向位相差值中至少一者為40nm至80nm。 The flexible liquid crystal display of claim 7, wherein at least one of a difference between the first thickness direction phase difference and the third thickness direction phase difference value and the second thickness direction bit difference is 40 nm to 80 nm. 如申請專利範圍第5項所述之可撓式液晶顯示器,其中該第三厚度方向位相差值為0nm至-500nm。 The flexible liquid crystal display of claim 5, wherein the third thickness direction has a phase difference of 0 nm to -500 nm. 一種可撓式液晶顯示器,包括:一液晶層;一第一可撓式基板及一第二可撓式基板,夾設該液晶層;一第一光學補償膜,設置於該第一可撓式基板上;以及一第二光學補償膜,設置於該第二可撓式基板上;其中該第一可撓式基板具有一第一厚度方向位相差值,該 第二可撓式基板具有一第二厚度方向位相差值,該第一光學補償膜具有一第三厚度方向位相差值,該第二光學補償膜具有一第四厚度方向位相差值,且該第一厚度方向位相差值、該第二厚度方向位相差值、該第三厚度方向位相差值及該第四厚度方向位相差值之總合為20nm至220nm;其中該可撓式液晶顯示器係運行於橫向電場切換模式或是邊界電場切換模式。 A flexible liquid crystal display comprising: a liquid crystal layer; a first flexible substrate and a second flexible substrate, the liquid crystal layer is interposed; and a first optical compensation film is disposed on the first flexible And a second optical compensation film disposed on the second flexible substrate; wherein the first flexible substrate has a first thickness direction phase difference value, The second flexible substrate has a second thickness direction phase difference, the first optical compensation film has a third thickness direction phase difference, and the second optical compensation film has a fourth thickness direction phase difference value, and the The first thickness direction phase difference value, the second thickness direction phase difference value, the third thickness direction phase difference value, and the fourth thickness direction phase difference value are 20 nm to 220 nm; wherein the flexible liquid crystal display system It operates in a transverse electric field switching mode or a boundary electric field switching mode. 如申請專利範圍第10項所述之可撓式液晶顯示器,其中該第一厚度方向位相差值及該第三厚度方向位相差值之總和與該第二厚度方向位相差值及該第四厚度方向位相差值之總合中至少一者為10nm至110nm。 The flexible liquid crystal display of claim 10, wherein the sum of the first thickness direction phase difference and the third thickness direction phase difference is different from the second thickness direction and the fourth thickness At least one of the sum of the directional phase difference values is 10 nm to 110 nm. 如申請專利範圍第10項所述之可撓式液晶顯示器,其中該第一厚度方向位相差值、該第二厚度方向位相差值、該第三厚度方向位相差值及該第四厚度方向位相差值之總合為80nm至160nm。 The flexible liquid crystal display of claim 10, wherein the first thickness direction phase difference value, the second thickness direction phase difference value, the third thickness direction phase difference value, and the fourth thickness direction phase phase The sum of the differences is from 80 nm to 160 nm. 如申請專利範圍第12項所述之可撓式液晶顯示器,其中該第一厚度方向位相差值及該第三厚度方向位相差值之總和與該第二厚度方向位相差值為及該第四厚度方向位相差值之總合中至少一者為40nm至80nm。 The flexible liquid crystal display of claim 12, wherein the sum of the first thickness direction phase difference and the third thickness direction phase difference is different from the second thickness direction bit and the fourth At least one of the sum of the phase difference values in the thickness direction is 40 nm to 80 nm. 如申請專利範圍第10項所述之可撓式液晶顯示器,其中該第三厚度方向位相差值及該第四厚度方向位相差值中至少一者為0nm至-500nm。 The flexible liquid crystal display of claim 10, wherein at least one of the third thickness direction phase difference value and the fourth thickness direction phase difference value is 0 nm to -500 nm. 如申請專利範圍第1、5或10項所述之可撓式液晶顯示器,其中該第一可撓式基板及該第二可撓式基板包括聚亞醯 胺(polyimide),及/或該第一可撓式基板及該第二可撓式基板中至少一者之厚度介於1μm至25μm。 The flexible liquid crystal display of claim 1, wherein the first flexible substrate and the second flexible substrate comprise poly-Aachen The polyimide, and/or at least one of the first flexible substrate and the second flexible substrate has a thickness of from 1 μm to 25 μm. 如申請專利範圍第1、5或10項所述之可撓式液晶顯示器,還包括一第一偏光板及一第二偏光板,分別設置於該第一可撓式基板及該第二可撓式基板之上。 The flexible liquid crystal display of claim 1, wherein the first polarizing plate and the second polarizing plate are respectively disposed on the first flexible substrate and the second flexible Above the substrate. 如申請專利範圍第1、5或10項所述之可撓式液晶顯示器,其中該第一可撓式基板具有一第一膜面內位相差值及該第二可撓式基板具有一第二膜面內位相差值,其中該第一膜面內位相差值及該第二膜面內位相差值各自為0nm。 The flexible liquid crystal display of claim 1, wherein the first flexible substrate has a first in-plane phase difference and the second flexible substrate has a second The in-plane phase difference is wherein the first film in-plane phase difference and the second film in-plane phase difference are each 0 nm. 如申請專利範圍第1、5或10項所述之可撓式液晶顯示器,其中該第一可撓式基板及該第二可撓式基板之光學異向性各自為nx=ny>nz,其中nx係為面內折射率最大之方向上之折射率,ny係為與面內折射率最大之方向垂直的方向上之折射率,nz係為膜層厚度方向之折射率。 The flexible liquid crystal display of claim 1, wherein the optically anisotropic properties of the first flexible substrate and the second flexible substrate are each n x = n y > n z , wherein n x is the refractive index in the direction in which the in-plane refractive index is the largest, n y is the refractive index in the direction perpendicular to the direction in which the in-plane refractive index is maximum, and n z is the refractive index in the thickness direction of the film layer .
TW105143836A 2016-12-29 2016-12-29 Flexible liquid crystal display TWI592721B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105143836A TWI592721B (en) 2016-12-29 2016-12-29 Flexible liquid crystal display
CN201710541529.8A CN107300809B (en) 2016-12-29 2017-07-05 Flexible liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105143836A TWI592721B (en) 2016-12-29 2016-12-29 Flexible liquid crystal display

Publications (2)

Publication Number Publication Date
TWI592721B true TWI592721B (en) 2017-07-21
TW201823818A TW201823818A (en) 2018-07-01

Family

ID=60048507

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105143836A TWI592721B (en) 2016-12-29 2016-12-29 Flexible liquid crystal display

Country Status (2)

Country Link
CN (1) CN107300809B (en)
TW (1) TWI592721B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112394574A (en) * 2019-08-19 2021-02-23 群创光电股份有限公司 Electronic device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1658035A (en) * 2004-02-18 2005-08-24 力特光电科技股份有限公司 Wide-angle liquid crystal display panel
JP2006195205A (en) * 2005-01-14 2006-07-27 Fuji Photo Film Co Ltd Liquid crystal display device and polarizing plate
JP2007016137A (en) * 2005-07-08 2007-01-25 Konica Minolta Opto Inc Optical film polarizing plate liquid crystal display device
CN105629582B (en) * 2016-03-30 2019-08-02 京东方科技集团股份有限公司 Display base plate, liquid crystal display panel and display device

Also Published As

Publication number Publication date
TW201823818A (en) 2018-07-01
CN107300809A (en) 2017-10-27
CN107300809B (en) 2020-09-18

Similar Documents

Publication Publication Date Title
JP6820417B2 (en) Display device
KR101030538B1 (en) In-Plane Switching Mode Liquid Crystal Display Device
TWI352858B (en) Liquid crystal display device
TWI678574B (en) Liquid crystal panel and liquid crystal display device
KR101260841B1 (en) In-Plane Switching Mode Liquid Crystal Display Device
TWI521270B (en) Display apparatus
KR20090101620A (en) Polarizer intergally containing view angle compensating film and in plane switching liquid crystal display
CN211979379U (en) Liquid crystal display panel and display device
TW201227010A (en) Antireflective polarizing plate and image display apparatus comprising the same
US9720274B2 (en) Polarization member and display device including the same
US20190155082A1 (en) Liquid crystal display panel and liquid crystal display device
US20210231997A1 (en) Light control film and liquid crystal display device
CN111190305B (en) Liquid crystal display device having a plurality of pixel electrodes
TW200809326A (en) Liquid crystal display device and polarizing plate set for use in the same
CN111201483A (en) Liquid crystal display device having a plurality of pixel electrodes
US20050190320A1 (en) In-plane switching liquid crystal display device having extraordinary polarizers
US9256103B2 (en) Liquid crystal display including liquid crystal with different pretilt angles and method of manufacturing the same
TWI592721B (en) Flexible liquid crystal display
US20140240649A1 (en) Display device
TWI493260B (en) Electrical control birefringence type liquid crystal panel and liquid crystal display
JP4734533B2 (en) LCD display
KR20160085970A (en) Liquid crystal display
US11709385B2 (en) Electronically-controlled viewing angle switching device and display device
US20190302520A1 (en) Color filter substrate and liquid crystal display device
US20190285924A1 (en) Liquid crystal display device