TWI590329B - 藉由微波電漿處理以提升半導體裝置中之高介電常數膜成核速率及電移動度的方法 - Google Patents

藉由微波電漿處理以提升半導體裝置中之高介電常數膜成核速率及電移動度的方法 Download PDF

Info

Publication number
TWI590329B
TWI590329B TW104106451A TW104106451A TWI590329B TW I590329 B TWI590329 B TW I590329B TW 104106451 A TW104106451 A TW 104106451A TW 104106451 A TW104106451 A TW 104106451A TW I590329 B TWI590329 B TW I590329B
Authority
TW
Taiwan
Prior art keywords
substrate
interface layer
plasma
semiconductor device
forming
Prior art date
Application number
TW104106451A
Other languages
English (en)
Other versions
TW201546898A (zh
Inventor
坎達巴拉N 泰伯利
羅伯特D 克拉克
Original Assignee
東京威力科創股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京威力科創股份有限公司 filed Critical 東京威力科創股份有限公司
Publication of TW201546898A publication Critical patent/TW201546898A/zh
Application granted granted Critical
Publication of TWI590329B publication Critical patent/TWI590329B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • H01L21/02315Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02252Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02304Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment formation of intermediate layers, e.g. buffer layers, layers to improve adhesion, lattice match or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28211Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a gaseous ambient using an oxygen or a water vapour, e.g. RTO, possibly through a layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Description

藉由微波電漿處理以提升半導體裝置中之高介電常數膜成核速率及電移動度的方法 〔相關申請案之交互參照〕
本申請案係關於並主張在2014年3月2日所提申之美國臨時申請案第61/946,829號的優先權,其整體內容於此併入參考。本申請案係關於並主張在2014年5月1日所提申之美國臨時申請案第61/986,995號的優先權,其整體內容於此併入參考。
整體而言,本發明係關於在將高介電常數(高k)膜沉積於基板上之界面層之前,藉由對界面層進行微波電漿處理以提升半導體裝置中之高介電常數膜成核速率及電移動度的方法。
具有高移動度通道之裝置,諸如Si、SiGe、Ge、和化合物半導體提供超越傳統以Si為主的裝置之較佳裝置性能的可能性。具體而言,相較於Si,由於Ge與含Ge材料作為電荷載體具有較低有效質量及較高移動度,因 此Ge與含Ge材料係為具吸引力之候選者。然而,具有高移動度通道的問題之一在於不良的氧化物和界面品質,其可能導致裝置劣化。
在CMOS技術領域中,以HfO2為主的介電質已成功取代二氧化矽。然而,為了持續地更進一步縮放(scaling)以HfO2為主的閘極介電質及其他高k介電質,必須藉著縮放整體介電質的厚度(包含界面層的厚度)來縮放等效氧化層厚度(EOT)。
提供一種形成半導體裝置的方法。根據一實施例,該方法包含:在一製程腔室中提供一基板;使由氫(H2)及選擇性之鈍氣所組成之製程氣體流入該製程腔室中;以及藉著微波電漿來源由該製程氣體形成電漿激發物種。該方法更包含:將該基板上的界面層暴露於該電漿激發物種,以形成改質界面層;以及藉由原子層沉積法(ALD)在該改質界面層上沉積高介電常數(高k)膜。
根據另一實施例,該方法包含:在一製程腔室中提供一基板;使由氫(H2)及選擇性之鈍氣所組成之製程氣體流入該製程腔室中;以及藉著微波電漿來源由該製程氣體形成電漿激發物種。該方法更包含:將該基板上的界面層暴露於該電漿激發物種,以形成具有提高之電移動度的改質界面層,其中該暴露步驟減少該界面層之厚度;以及藉由原子層沉積法(ALD)在該改質界面層上沉積高介電常數(高k)膜,其中該高k膜在該改質界面層上相較於其在該界面層上以較高的速率成核。
根據又另一實施例,該方法包含:在一製程腔室中提供一含鍺的基板;使由氫(H2)及選擇性之鈍氣所組成之製程氣體流入該製程腔室中;以及藉著微波電漿來源由該製程氣體形成電漿激發物種。該方法更包含:將該基板上的含鍺界面層暴露於該電漿激發物種,以形成具有提高之電移動度的改質含鍺界面層;以及藉由原子層沉積法(ALD)在該改質含鍺界面層上沉積高介電常數(高k)膜,其中該高k膜在該改質含鍺界面層上相較於其在該含鍺界面層上以較高的速率成核。
100‧‧‧製程流程圖
102~110‧‧‧步驟
200‧‧‧基板
202‧‧‧界面層
204‧‧‧電漿激發物種
206‧‧‧改質界面層
208‧‧‧高k膜
210‧‧‧含金屬閘極膜
216‧‧‧圖案化之改質界面層
218‧‧‧圖案化之高k膜
220‧‧‧圖案化之含金屬閘極膜
300~306‧‧‧軌跡
400~406‧‧‧軌跡
540、542‧‧‧軌跡
700~730‧‧‧測試樣本(界面層)
800~830‧‧‧測試樣本
900‧‧‧氧化層厚度
902‧‧‧晶圓內之不均勻性
500‧‧‧電漿處理系統
550‧‧‧電漿處理腔室
551‧‧‧開口部
552‧‧‧基板夾具
553‧‧‧排放線路
554‧‧‧頂板
555‧‧‧真空幫浦
556‧‧‧基板偏壓系統
557‧‧‧加熱器
558‧‧‧基板
559‧‧‧電漿區域
560‧‧‧槽孔天線
560A‧‧‧槽孔
561‧‧‧微波電源
562‧‧‧軸向部
563‧‧‧波導器
563A‧‧‧環形波導器
563B‧‧‧環形波導器
563C‧‧‧同軸波導轉換器
563D‧‧‧矩形波導器
572‧‧‧氣體線路
599‧‧‧控制器
10‧‧‧電漿處理系統
20‧‧‧電漿處理腔室
21‧‧‧基板夾具
21a‧‧‧絕緣部件
21b‧‧‧冷卻套管
22‧‧‧外部高頻電源
23‧‧‧蓋板
25‧‧‧匹配網路
26‧‧‧排放線路
27‧‧‧真空線路
28‧‧‧壓力控制閥
29‧‧‧真空幫浦
30‧‧‧電漿氣體供應單元
31‧‧‧氣體供應孔
32‧‧‧氣體流道
33‧‧‧電漿氣體供應口
34‧‧‧電漿氣體供應源
35‧‧‧DC電壓產生器
40‧‧‧製程氣體供應單元
41‧‧‧氣體供應孔
42‧‧‧氣體流道
43‧‧‧製程氣體供應口
44‧‧‧開口
45‧‧‧製程氣體供應源
46‧‧‧製程氣體供應源
47‧‧‧製程氣體供應源
50‧‧‧天線單元
51‧‧‧平面天線主體
52‧‧‧徑向線槽孔板
53‧‧‧介電板
54‧‧‧同軸波導器
54A‧‧‧外導體
54B‧‧‧內導體
55‧‧‧外部微波產生器
56‧‧‧槽孔
56a‧‧‧槽孔
56b‧‧‧槽孔
W‧‧‧基板
在附圖中:圖1根據本發明之實施例,係為用以形成半導體裝置的製程流程圖。
圖2A-2E根據本發明之一實施例,通過剖面圖示意性地顯示用以形成半導體裝置的方法。
圖3顯示HfO2厚度與SiO2界面層厚度作為氧化時間的函數。
圖4顯示藉由XPS異地(ex-situ)量測之SiO2界面層厚度與藉由X光全反射法(XRR)量測之界面層粗糙度作為氧化時間的函數。
圖5顯示沉積於SiO2界面層上之HfO2厚度相對沉積於改質SiO2界面層上之HfO2厚度作為ALD循環數目之函數。
圖6顯示SiO2界面層粗糙度作為在將SiO2界面層暴露於微波電漿激發H2期間所使用之氣體壓力的函數。
圖7顯示對於四個不同測試樣本而言,所量測的互導(transconductance)(Gm x L/W)作為反轉氧化層厚度(Tinv)的函數。
圖8顯示所量測的電洞移動度作為有效電場的函數。
圖9顯示氧化鍺厚度與厚度均勻性作為微波電漿氧化時間的函數。
圖10係為根據本發明一實施例之電漿處理系統的示意圖,該電漿處理系統包含用以形成改質界面層的RLSATM電漿。
圖11-13係為根據本發明另一實施例之電漿處理系統的示意圖,該電漿處理系統包含用以形成改質界面層的RLSATM電漿。
本發明之實施例將參考附圖說明於下。依據一實施例,提供用以形成半導體裝置的方法。此方法使用微波電漿處理以提升半導體裝置中之高介電常數膜成核速率及電移動度。
依據一實施例,該方法包含:在一製程腔室中提供基板;使由H2及選擇性之鈍氣所組成之製程氣體流入該製程腔室中;以及藉著微波電漿來源由該製程氣體形成電漿激發物種。該方法更包含:將該基板上的界面層暴露於該電漿激發物種,以形成具有提高之電移動度的改質界面層;以及在該改質界面層上沉積高k膜。將界面層暴露於電漿激發物種可減少界面層的厚度,並且已發現改質界面層較原本未改質界面層具有更強的反應性。具更強反應性的界面層可在高k膜於改質界面層上之ALD期間提供改善的成核作 用。除了提高ALD沉積速率(且因此製造產能較高)之外,高k膜具有先進半導體裝置(包含縮放之CMOS裝置)所需的優異材料及電子特性。
根據本發明一實施例,圖1係為用以形成半導體裝置的製程流程圖,且圖2A-2E通過剖面圖示意性地顯示用以形成半導體裝置的方法。製程流程圖100包含於步驟102中,在製程腔室中提供基板200。舉例來說,基板200可包含矽、鍺、矽鍺、或化合物半導體。依據一實施例,基板200可包括含鍺基板,例如Ge或SiGe。
如圖2A所示,基板200可包括形成於其上之界面層202。舉例來說,界面層202可包含氧化物層、氮氧化物層、或氮化物層、或其組合。實例包含SiO2、SiON、與SiN。在含鍺基板200的情況中,含鍺界面層可包含氧化鍺(GeOx)。
在一例子中,在將基板200暴露於電漿激發物種之前,界面層202可在製程腔室中形成或沉積於基板200上。依據一實施例,在將基板200導入製程腔室中以及將基板200暴露於電漿激發物種此二時點之間,不使基板200暴露於空氣中。
在一例子中,可藉由將潔淨的基板200暴露於臭氧及水的交替脈衝而形成界面層202。在另一例子中,可藉由將基板暴露於電漿激發物種而形成界面層,該電漿激發物種係藉由含氧氣體之微波電漿激發而形成。此含氧氣體可包含氧氣以及選擇性的鈍氣。界面層202可使用下列基板溫度而形成:介於約20℃與約500℃、介於約20℃與約300℃、介於約20℃與約200℃、介於約20℃與約100℃、介於約100℃與約500℃、介於約200℃與約500℃、介於約 300℃與約500℃、介於約20℃與約500℃、或介於約200℃與約300℃。在一例子中,基板溫度可為約250℃。
當界面層202係藉由將基板200暴露於由O2及Ar之微波電漿激發所形成之電漿激發物種而形成時,Ar氣體流速可介於約100sccm與約5000sccm、介於約100sccm與約2000sccm、介於約100sccm與約1000sccm、介於約100sccm與約500sccm、介於約3000sccrm與約5000sccm、介於約2000sccm與約5000sccm、或介於約1000sccm與約5000sccm。O2氣體流速可介於約1sccm與約50sccm、介於約1sccm與約30sccm、介於約1sccm與約20sccm、介於約1sccm與約10sccm、介於約5sccm與約50sccm、介於約10sccm與約50sccm、或介於約20sccm與約50sccm。
在其他實例中,界面層202可藉由H2O2氧化、濕式(液體)化學氧化、或原位(in-situ)水蒸氣生長(ISSG)而形成。
根據一實施例,在製程腔室中於基板上形成界面層202之前,可在製程腔室中或在製程腔室之外將初始氧化物層(如原生氧化物層)自基板200移除。初始氧化物層可藉由化學氧化物移除(COR)製程或藉由暴露於濕稀釋氫氟酸(DHF)而移除。因此,在移除初始氧化物層之後,在製程腔室中所提供的基板200之表面可至少為實質無氧。
在一實例中,將含有初始氧化物層之基板200導入製程腔室中,在製程腔室中將初始氧化物層自基板移除,其後在製程腔室中將界面層202形成於基板上,之後使界面層202暴露於電漿激發物種,以在基板上形成改質界面層。
在另一實例中,將含有初始氧化物層之基板導入一輔助製程腔室(如用以執行化學氧化物移除(COR)製程之腔室)中,在該輔助製程腔室中將初始氧化物層自基板移除,其後在製程腔室中將界面層形成於基板上,之後在製程腔室中使界面層暴露於電漿激發物種,以在基板上形成改質界面層。
在步驟104中,該方法更包含使由氫氣(H2)及選擇性之鈍氣(如He或Ar)所組成之製程氣體流入製程腔室中。示範性之處理條件包括含有H2及Ar之製程氣體。Ar氣體流速可介於約100sccm與約5000sccm、介於約100sccm與約2000sccm、介於約100sccm與約1000sccm、介於約100sccm與約500sccm、介於約3000sccm與約5000sccm、介於約2000sccm與約5000sccm、或介於約1000sccm與約5000sccm。H2氣體流速可介於約10sccm與約500sccm、介於約10sccm與約300sccm、介於約10sccm與約200sccm、介於約10sccm與約100sccm、介於約50sccm與約500sccm、介於約100sccm與約500sccm、或介於約200sccm與約500sccm。在一例子中,Ar氣體流速可為約2000sccm,且H2氣體流速可為約100sccm。基板溫度可介於約20℃與約500℃、介於約20℃與約300℃、介於約20℃與約200℃、介於約20℃與約100℃、介於約100℃與約500℃、介於約200℃與約500℃、介於約300℃與約500℃、介於約20℃與約500℃、或介於約200℃與約300℃。在一例子中,基板溫度可為約250℃。
在步驟106中,該方法更包含藉著微波電漿來源由該製程氣體形成電漿激發物種。含有微波電漿來源之例示性電漿處理系統係描述於圖10-13中。
在步驟108中,該方法更包含將基板200上的界面層202暴露於電漿激發物種204,以形成改質界面層206。在一例子中,將界面層202暴露於 電漿激發物種可提高界面層202之電移動度、減少界面層202之厚度、並且形成改質界面層206,其可改善高k膜在改質界面層206上之ALD的成核特性。
在步驟110中,該方法更包含藉由ALD在改質界面層206上沉積高k膜208。在一例子中,ALD製程可在用以形成改質界面層206之相同製程腔室中進行。ALD製程可包括含金屬前驅物以及含氧氣體之交替暴露。
高k膜208可包含選自鹼土族元素、稀土類元素、元素週期表的IIIA族與IVB族元素之一或多種金屬元素。高k材料可包含該等元素之氧化物、氮氧化物、或氮化物。鹼土族金屬元素包括鈹(Be)、鎂(Mg)、鈣(Ca)、鍶(Sr)、與鋇(Ba)。例示性氧化物包括氧化鎂、氧化鈣、與氧化鋇、與它們的組合。稀土類金屬元素可選自抗(Se)、釔(Y)、鑥(Lu)、鑭(La)、鈰(Ce)、鐠(Pr)、釹(Nd)、釤(Sm)、銪(Eu)、釓(Gd)、鋱(Tb)、鏑(Dy)、鈥(Ho)、鉺(Er)、銩(Tm)、與鐿(Yb)之群組。ⅣB族元素包括鈦(Ti)、鉿(Hf)、與鋯(Zr)。依據本發明若干實施例,高k材料可包含HfO2、HfON、HfSiON、ZrO2、ZrON、ZrSiON、TiO2、TiON、Al2O3、La2O3、W2O3、CeO2、Y2O3、或Ta2O5、或其二者以上的組合。然而,亦可考慮及使用其他高k材料。
含ⅣB族金屬之前驅物的代表性範例包含:Hf(OtBu)4(叔丁氧基鉿,HTB)、Hf(NEt2)4(四(二乙基醯胺基)鉿,TDEAHf)、Hf(NEtMe)4(四(乙基甲基醯胺基)鉿,TEMAHf)、Hf(NMe2)4(四(二甲基醯胺基)鉿,TDMAHf)、Zr(OtBu)4(叔丁氧基鋯,ZTB)、Zr(NEt2)4(四(二乙基醯胺基)鋯,TDEAZr)、Zr(NMeEt)4(四(乙基甲基醯胺基)鋯,TEMAZ)、Zr(NMe2)4(四(二甲基醯胺基)鋯,TDMAZr)、Hf(mmp)4、Zr(mmp)4、Ti(mmp)4、HfCl4、ZrCl4、TiCl4、Ti(NiPr2)4、 Ti(NiPr2)3、三(N,N’-二甲基乙脒基)鈦(tris(N,N’-dimethylacetamidinato)titanium)、ZrCp2Me2、Zr(tBuCp)2Me2、Zr(NiPr2)4、Ti(OiPr)4、Ti(OtBu)4(叔丁氧基鈦,TTB)、Ti(NEt2)4(四(二乙基醯胺基)鈦,TDEAT)、Ti(NMeEt)4(四(乙基甲基醯胺基)鈦,TEMAT)、Ti(NMe2)4(四(二甲基醯胺基)鈦,TDMAT)、與Ti(THD)3(三(2,2,6,6-四甲基-3,5-庚二酮酸)鈦,tris(2,2,6,6-tetramethyl-3,5-heptanedionato)titanium)。
在某些例子中,高k膜208可為雙層,其包含1)如Al2O3、SiN、或AlN之擴散阻障層,以及2)HfO2、ZrO2、TiO2、La2O3、或Gd2O3
在於改質界面層206上形成高k膜208之後,可進一步處理基板200,例如藉著在高k膜208上沉積含金屬閘極膜210,並藉著對含金屬閘極膜210、高k膜208、與改質界面層206進行圖案化而形成閘極堆疊。圖2E中所繪的閘極堆疊包含圖案化之含金屬閘極膜220、圖案化之高k膜218、與圖案化之改質界面層216。
圖3顯示HfO2厚度與SiO2界面層厚度作為氧化時間的函數。厚度係藉由XPS異地(ex-situ)量測。氧化時間係關於矽基板暴露於微波電漿激發O2物種以形成SiO2界面層。氧化時間為15秒、30秒、與120秒。軌跡300顯示藉由將矽基板暴露於微波電漿激發O2物種所形成之SiO2厚度。軌跡302顯示藉由下列方式所形成之SiO2厚度:將矽基板暴露於微波電漿激發O2物種、且其後藉著暴露於微波電漿激發H2物種而對SiO2進行改質。軌跡304顯示藉由ALD沉積於SiO2界面層(藉由暴露於微波電漿激發O2物種所形成)上之HfO2厚度。軌跡306顯示藉由ALD沉積於SiO2界面層(藉由暴露於微波電漿激發O2物種所形成、且其後藉著暴露於微波電漿激發H2物種而改質)上之HfO2厚度。藉著在基板溫度250℃下交替暴露於鉿前驅物(四(乙基甲基醯胺基)鉿;TEMAHf)以及 水蒸氣40次而沉積HfO2膜。H2微波電漿激發係在腔室壓力90mTorr及基板溫度250℃下進行90秒。
圖3顯示改質SiO2界面層的厚度小於未改質SiO2界面層的厚度(約減少5埃厚之SiO2界面層),並且HfO2膜在改質SiO2界面層上的厚度大於其在未改質SiO2界面層上的厚度。這些結果係導因於:藉著暴露於被微波電漿來源所激發之H2氣體而使SiO2界面層變薄,並且改善了藉由ALD而形成在改質SiO2界面層上之HfO2的成核作用。
圖4顯示藉由XPS異地(ex-situ)量測之SiO2界面層厚度與藉由X光全反射法(XRR)量測之界面層粗糙度作為氧化時間的函數。軌跡400顯示藉由將矽基板暴露於微波電漿激發O2物種所形成之SiO2界面層的膜粗糙度。軌跡402顯示藉由下列方式所形成之SiO2界面層的膜粗糙度:將矽基板暴露於微波電漿激發O2物種、且其後藉著暴露於微波電漿激發H2物種而對SiO2界面層進行改質。軌跡406顯示藉由將矽基板暴露於微波電漿激發O2物種所形成之SiO2厚度。軌跡404顯示藉由下列方式所形成之SiO2厚度:將矽基板暴露於微波電漿激發O2物種、且其後藉著暴露於微波電漿激發H2物種而對SiO2進行改質。圖4中的結果顯示在暴露於微波電漿激發H2之後,觀察到SiO2界面層的粗糙度並未明顯增加(劣化)。
圖5顯示沉積於SiO2界面層上之HfO2厚度相對沉積於改質SiO2界面層上之HfO2厚度作為ALD循環數目之函數。HfO2在改質SiO2界面層上之沉積速率(生長速率)(軌跡542)較其在SiO2界面層上之沉積速率(軌跡540)高,此顯示HfO2在改質界面層上之成核作用較佳。此製程流程包含:藉由濕式製程在基板上形成化學氧化物膜;在製程腔室中使用化學氧化物移除製程移除該 化學氧化物膜;在製程腔室中藉由連續暴露於臭氧(O3)與水(H2O)以在基板上形成SiO2界面層;藉著暴露於微波電漿激發H2而改質該SiO2界面層;藉由ALD在改質SiO2界面層上形成HfO2;使用XPS異地量測HfO2厚度。該臭氧及水的連續暴露步驟包含臭氧之2次脈衝以及之後水的10次脈衝,各脈衝之間進行抽氣與沖淨。
圖6顯示SiO2界面層粗糙度作為在將SiO2界面層暴露於微波電漿激發H2期間所使用之氣體壓力的函數。準備含有SiO2界面層的基板,其中若干者在製程腔室中於不同氣體壓力下暴露於微波電漿激發H2物種。SiO2界面層藉著執行下列製程兩次來製備:臭氧及水的連續暴露,其包含臭氧之2次脈衝以及之後水的10次脈衝,各脈衝之間進行抽氣與沖淨。
圖6顯示增加氣體壓力會減少改質SiO2界面層之粗糙度(602,實心方形)。將氣體壓力增加至約3Torr或更大,可將改質SiO2界面層之粗糙度降低至大約與未改質SiO2界面層相同之粗糙度(600)。此粗糙度的降低可能導因於到達基板之微波電漿激發H2物種的量會隨著氣體壓力增加而減少,而激發H2物種被認為會增加改質SiO2界面層之粗糙度。然而,激發H2物種之量減少亦會降低改質界面層上的成核作用增強效果。
圖7顯示對於四個不同測試樣本而言,所量測的互導(transconductance)(Gm x L/W)作為反轉氧化層厚度(Tinv)的函數。互導係為半導體裝置中之電移動度的量測基準。測試樣本包含鍺(Ge)基板、在鍺基板上之未改質與改質氧化鍺界面層、藉由ALD而沉積於未改質與改質氧化鍺界面層上的Al2O3高k層、以及藉由ALD而沉積於Al2O3高k層上的ZrO2高k層。Al2O3層之厚度為約3埃,且ZrO2層之厚度為約30埃。測試樣本之界面層係如下製備: 700)使用微波電漿激發O2物種而氧化一潔淨的鍺基板;710)藉由暴露於微波電漿激發H2物種而對700中的界面層進行改質;720)使用臭氧及水的連續暴露(6次連續之臭氧氣體脈衝、之後10次連續之水脈衝)而氧化一潔淨的鍺基板;以及730)藉由暴露於微波電漿激發H2物種而對720中的界面層進行改質。
圖7顯示當測試樣本700與720藉由暴露於微波電漿激發H2物種而改質時,其二者之互導大幅提升。再者,相較於界面層700與710,界面層720與730之反轉氧化層厚度(且因此等效氧化層厚度(EOT))較小。可想見暴露於微波電漿激發H2物種會使界面層具有較高之反應性,同時亦可降低表面粗糙度及表面缺陷。如此可提高界面層與所產生之半導體裝置之電洞及/或電子移動度。
圖8顯示所量測的電洞移動度作為有效電場的函數。測試樣本800、810、及830分別與圖7中之測試樣本700、710、與730相同。圖8顯示樣本800與810間之移動度提高了53%、且樣本800與830間之移動度提高了30%。
圖9顯示氧化鍺厚度與厚度均勻性作為微波電漿氧化時間的函數。此氧化係在低於400℃之低基板溫度下完成。可觀察到藉由使用O2氣體之微波電漿對鍺的氧化具有非常良好的控制效果,其中對於1nm以下之氧化層厚度900控制良好,且晶圓內之不均勻性(with-in-wafer non-uniformity,WiWNU)902約為1%或低於1%。
圖10係為根據本發明一實施例之電漿處理系統的示意圖,該電漿處理系統包含用以形成改質界面層的RLSATM電漿(Tokyo Electron Limited,Akasaka,日本)。在電漿處理系統500內所產生之電漿的特徵為低電子溫度與高電漿密度。電漿處理系統500包含電漿處理腔室550,此電漿處理腔 室550在其上部具有比基板558更大的開口部551。設置由石英或氮化鋁或氧化鋁所製造的圓柱形介電頂板554,以覆蓋開口部551。
氣體線路572係設置在位於頂板554下方之電漿處理腔室550之上部的側壁中。在一範例中,氣體線路572的數量可為16條(在圖10中僅顯示其中兩條)。或者,可使用不同數量的氣體線路572。氣體線路572可周向地排列在電漿處理腔室550中,但此並非本發明所需。製程氣體可從氣體線路572均勻且均一地供應到位於電漿處理腔室550內的電漿區域559中。
在電漿處理系統500中,經由具有複數槽孔560A的槽孔天線560,使微波功率穿過頂板554而提供至電漿處理腔室550。槽孔天線560係面向待處理之基板558,以及槽孔天線560可由例如銅之金屬板加以製造。為了將微波功率供應至槽孔天線560,將波導器563配置在頂板554上,在此處,波導器563係連接至以例如約2.45GHz之頻率來產生微波的微波電源561。波導器563包含具有與槽孔天線560連接之下端的平面環形波導器563A、與環形波導器563A之上表面側連接的環形波導器563B、以及與環形波導器563B之上表面側連接的同軸波導轉換器563C。再者,矩形波導器563D係連接至同軸波導轉換器563C的側表面以及微波電源561。
在環形波導器563B之內部,同軸地設置由導電性材料所製造之軸向部562,俾使軸向部562的一端連接至槽孔天線560之上表面的中心(或近中心)部,並且使軸向部562的另一端連接至環形波導器563B的上表面,從而形成同軸結構。因此,環形波導器563B係建構以作為同軸波導器。微波功率可例如介於約0.5W/cm2與約4W/cm2之間。或者,微波功率可介於約0.5W/cm2與約3W/cm2之間。此微波輻射可包含約300MHz到約10GHz的微波頻率,例如約2.45 GHz,以及此電漿可包含小於或等於5eV的電子溫度,包含1、1.5、2、2.5、3、3.5、4、4.5或5eV、或其任何組合。在其他範例中,電子溫度可為5eV以下、4.5eV以下、4eV以下、或甚至3.5eV以下。在某些範例中,電子溫度可介於3.0與3.5eV之間、介於3.5eV與4.0eV之間、或介於4.0與4.5eV之間。此電漿可具有約1×1011/cm3到約1×1013/cm3、或更高的密度。
此外,在電漿處理腔室550中,基板夾具552係設置在頂板554的對面並用以支撐與加熱基板558(例如晶圓)。基板夾具552包含用以加熱基板558的加熱器557,在此加熱器557可為電阻加熱器。或者,加熱器557可為燈加熱器或任何其他類型的加熱器。再者,電漿處理腔室550包含與電漿處理腔室550之底部以及真空幫浦555連接的排放線路553。
電漿處理系統500更包含基板偏壓系統556,其用以對基板夾具552與基板558施加偏壓,以產生電漿及/或控制被吸引至基板558之離子的能量。基板偏壓系統556包含用以將電力耦合至基板夾具552的基板電源。此基板電源包含RF產生器以及阻抗匹配網路。此基板電源係藉由對基板夾具552中的電極供給能量而將電力耦合至基板夾具552。用於RF偏壓的典型頻率可從約0.1MHz分佈至約100MHz,並且可為13.56MHz。在某些範例中,RF偏壓可小於1MHz,例如小於0.8MHz、小於0.6MHz、小於0.4MHz、或甚至小於0.2MHz。在一範例中,RF偏壓可為約0.4MHz。或者,以多頻率將RF功率施加至此電極。基板偏壓系統556係設置以供應介於0W與100W、介於100W與200W、介於200W與300W、介於300W與400W、或介於400W與500W之RF偏壓功率。在某些實施例中,RF偏壓功率可小於100W、小於50W、或小於25W。用於電漿處理之RF偏壓 系統係熟習本項技藝者所熟知。再者,基板偏壓系統556可包含DC電壓產生器,其能夠將介於-5kV與+5kV之間的DC偏壓供應至基板夾具552。
基板偏壓系統556進一步用以非必要地提供RF偏壓功率的脈衝,此脈衝頻率可大於1Hz,例如2Hz、4Hz、6Hz、8Hz、10Hz、20Hz、30Hz、50Hz、或更大。吾人可注意到熟習本項技藝者可明白基板偏壓系統556的功率等級係與所處理之基板的尺寸相關。舉例而言,在處理期間,300mm的Si晶圓係需要比200mm晶圓更大的功率消耗。
依舊參考圖10,設置控制器599以控制電漿處理系統500。控制器599包含微處理器、記憶體、以及數位I/O埠,其能夠產生足以傳遞與啟動電漿處理系統500之輸入並且監視來自電漿處理系統500之輸出的控制電壓。此外,控制器599係耦合至電漿處理腔室550、真空幫浦555、加熱器557、基板偏壓系統556、以及微波電源561,並與其交換資訊。儲存在此記憶體中的程式係用以依照所儲存之製程配方而控制電漿處理系統500的上述構件。控制器599的一範例為以UNIX為基礎的工作站。或者,控制器599可如同通用電腦、數位信號處理系統等等般地被加以實施。
圖11係為根據本發明另一實施例之電漿處理系統的示意圖,該電漿處理系統包含用以形成改質界面層的RLSATM電漿(Tokyo Electron Limited,Akasaka,日本)。如圖11所示,電漿處理系統10包含電漿處理腔室20(真空腔室)、天線單元50(RLSA)、以及基板夾具21。電漿處理腔室20的內部大致上劃分成電漿產生區域R1、以及電漿擴散區域R2,此電漿產生區域R1係位於電漿氣體供應單元30的下方,而此電漿擴散區域R2係位在基板夾具21上方。在電漿產生區域R1中所產生的電漿可具有數個電子伏特(eV)的電子溫度。當電漿擴散 到電漿擴散區域R2(於此處執行膜形成製程)內時,靠近基板夾具21之電漿的電子溫度係下降至低於約2eV的數值。基板夾具21係中心地設置在電漿處理腔室20的底部上,並且作為用以支撐基板W的基板支座。在基板夾具21內,設置有絕緣部件21a、冷卻套管21b、以及用以控制基板溫度的溫度控制單元(未顯示)。
電漿處理腔室20的頂部為開放端(opened-ended)。電漿氣體供應單元30係放置在基板夾具21的對面,並且經由例如O形環的密封部件(其並未顯示於圖式中)而接附於電漿處理腔室20的頂部。亦可作為介電窗的電漿氣體供應單元30係由例如氧化鋁或石英的材料所製造,且其具有平坦表面。複數氣體供應孔31係設置在基板夾具21的對面並且在電漿氣體供應單元30的平坦表面上。複數氣體供應孔31係經由氣體流道32而與電漿氣體供應口33連通。電漿氣體供應源34將例如氬(Ar)氣體或其他惰性氣體的電漿氣體提供到電漿氣體供應口33內。之後經由複數氣體供應孔31將電漿氣體均勻地供應到電漿產生區域R1內。
電漿處理系統10更包含製程氣體供應單元40,其係定心於電漿處理腔室20中並且介於電漿產生區域R1與電漿擴散區域R2之間。製程氣體供應單元40係由例如包含鎂(Mg)之鋁合金或不銹鋼的導電材料所製造。類似於電漿氣體供應單元30,複數氣體供應孔41係設置在製程氣體供應單元40的平坦表面上。製程氣體供應單元40的平坦表面係配置在基板夾具21的對面。
電漿處理腔室20更包含排放線路26、真空線路27,此排放線路26係連接至電漿處理腔室20的底部,而此真空線路27係將此排放線路26連接至壓力控制閥28與真空幫浦29。壓力控制閥28可用以在電漿處理腔室20內實現期望氣體壓力。
在圖12中顯示製程氣體供應單元40的平面圖。如圖式所示,格子狀氣體流道42係形成在製程氣體供應單元40內。格子狀氣體流道42係與複數氣體供應孔41的上端連通,此等氣體供應孔係形成於直立方向。複數氣體供應孔41的下端係面向基板夾具21的開口。複數氣體供應孔41係經由格子圖案氣體流道42而與製程氣體供應口43連通。
又,複數開口44係形成在製程氣體供應單元40中,以使複數開口44在直立方向上通過製程氣體供應單元40。複數開口44將例如氬(Ar)氣體、氦(He)氣體、或其他惰性氣體的電漿氣體導入位在基板夾具21上方的電漿擴散區域R2內。如圖12所示,複數開口44係形成在鄰接的氣體流道42之間。從三個獨立的製程氣體供應源45-47將製程氣體供應至製程氣體供應口43。製程氣體供應源45-47可供應氫氣、氧氣、及氬氣。
製程氣體流過格子狀氣體流道42,並且經由複數氣體供應孔41均勻地供應到電漿擴散區域R2內。電漿處理系統10更包含四個閥(V1-V4)與四個質量流率控制器(MFC1-MFC4),以分別控制製程氣體的供應。
外部微波產生器55係經由同軸波導器54將預定頻率(例如2.45GHz)的微波提供至天線單元50。同軸波導器54可包含內導體54B以及外導體54A。來自微波產生器55的微波在電漿產生區域R1內之電漿氣體供應單元30正下方產生電場,此電場接著在電漿處理腔室20內造成製程氣體的激發。
圖13顯示天線單元50的部分橫剖面圖。如圖式所示,天線單元50可包含平面天線主體51、徑向線槽孔板52、以及使微波之波長變短的介電板53。平面天線主體51具有圓的形狀,其具有開放端底表面。平面天線主體51與徑向線槽孔板52係由導電性材料所製造。
複數槽孔56係設置在徑向線槽孔板52上以產生圓形極化波。複數槽孔56係排列成於各槽孔間具有微小間隙的實質T形。複數槽孔56順著圓周方向排列成同心圓圖案或螺旋圖案。由於槽孔56a與56b係互相垂直,所以包含兩個正交極化分量的圓形極化波係如同平面波般地從徑向線槽孔板52散發。
介電板53係由例如氧化鋁(Al2O3)或氮化矽(Si3N4)的低損耗介電材料所製造,此介電板53係位在徑向線槽孔板52與平面天線主體51之間。徑向線槽孔板52係使用密封部件(未顯示)而安裝在電漿處理腔室20上,以使徑向線槽孔板52與蓋板23緊鄰接觸。蓋板23係位在電漿氣體供應單元30的上表面上,並且由例如氧化鋁(Al2O3)的微波穿透介電材料所形成。
外部高頻電源22係經由匹配網路25而電性連接至基板夾具21。外部高頻電源22產生預定頻率(例如13.56MHz)的RF偏壓功率,以控制被吸引至基板W之電漿中離子的能量。電源22更用以非必要地提供RF偏壓功率的脈衝,此脈衝頻率可大於1Hz,例如2Hz、4Hz、6Hz、8Hz、10Hz、20Hz、30Hz、50Hz、或更大者。電源22係設置以提供介於0W與100W之間、介於100W與200W之間、介於200W與300W之間、介於300W與400W之間、或介於400W與500W之間的RF偏壓功率。吾人可注意到熟習本項技藝者將明白電源22的功率等級係與所處理之基板的尺寸相關。例如,在處理期間,300mm的Si晶圓係需要比200mm晶圓更大的功率消耗。電漿處理系統10更包含DC電壓產生器35,其能夠將介於-5kV與+5kV之間的DC電壓偏壓供應至基板夾具21。
已描述多個用以形成半導體裝置的實施例。此等方法使用微波電漿處理以提升半導體裝置中之高介電常數膜成核作用及電移動度。前述本發明實施例的說明係為了說明性之目的而提出。其並非窮舉或將本發明限制 在所揭露之精確形式。此等說明與後續申請專利範圍包含僅用於說明性目的而不應解釋為限制性之用語。熟習相關技藝者可理解到,根據以上教示,許多修改及變化皆有可能。因此,所意欲為使本發明之範圍並非由此詳細說明所限制,而係由本文所附之申請專利範圍所限制。
100‧‧‧製程流程圖
102~110‧‧‧步驟

Claims (20)

  1. 一種形成半導體裝置的方法,該方法包含: 在一製程腔室中提供一基板; 使由氫(H2 )及選擇性之鈍氣所組成之製程氣體流入該製程腔室中; 藉著微波電漿來源由該製程氣體形成電漿激發物種; 將該基板上的界面層暴露於該電漿激發物種,以形成改質界面層;以及 藉由原子層沉積法(ALD)在該改質界面層上沉積高介電常數(高k)膜。
  2. 如申請專利範圍第1項之形成半導體裝置的方法,其中,該改質界面層具有比該界面層高的電移動度。
  3. 如申請專利範圍第1項之形成半導體裝置的方法,其中,該高k膜在該改質界面層上相較於其在該界面層上以較高的速率成核。
  4. 如申請專利範圍第1項之形成半導體裝置的方法,其中,該界面層包含氧化物層、氮氧化物層、或氮化物層、或其組合。
  5. 如申請專利範圍第1項之形成半導體裝置的方法,其中,將該界面層暴露於該電漿激發物種之步驟減少該界面層之厚度。
  6. 如申請專利範圍第1項之形成半導體裝置的方法,更包含: 在該製程腔室中於該基板上形成該界面層。
  7. 如申請專利範圍第6項之形成半導體裝置的方法,其中,形成該界面層之步驟包含:       將該基板暴露於臭氧及水的連續脈衝。
  8. 如申請專利範圍第6項之形成半導體裝置的方法,其中,形成該界面層之步驟包含: 將該基板暴露於藉由微波電漿激發將O2 及選擇性的鈍氣所形成的電漿激發物種。
  9. 如申請專利範圍第6項之形成半導體裝置的方法,其中,於該基板上形成該界面層之前,自該基板移除一初始氧化物層。
  10. 如申請專利範圍第9項之形成半導體裝置的方法,其中,該初始氧化物層係藉由化學氧化物移除(COR)製程或藉由暴露於濕稀釋氫氟酸(DHF)而移除。
  11. 如申請專利範圍第1項之形成半導體裝置的方法, 其中,該提供步驟包含: 在該製程腔室中提供該基板,其中該基板的一表面至少實質上無氧;以及 在該製程腔室中於該基板上形成該界面層。
  12. 如申請專利範圍第1項之形成半導體裝置的方法,更包含在該高k膜上沉積一含金屬閘極膜。
  13. 如申請專利範圍第12項之形成半導體裝置的方法,更包含對該含金屬閘極膜、該高k膜、與該改質界面層進行圖案化,以於該基板上形成閘極堆疊。
  14. 如申請專利範圍第1項之形成半導體裝置的方法,其中該基板包含矽、鍺、矽鍺、或化合物半導體。
  15. 一種形成半導體裝置的方法,該方法包含: 在一製程腔室中提供一基板; 使由氫(H2 )及選擇性之鈍氣所組成之製程氣體流入該製程腔室中; 藉著微波電漿來源由該製程氣體形成電漿激發物種; 將該基板上的界面層暴露於該電漿激發物種,以形成具有提高之電移動度的改質界面層,其中該暴露步驟減少該界面層之厚度;以及 藉由原子層沉積法(ALD)在該改質界面層上沉積高介電常數(高k)膜,其中該高k膜在該改質界面層上相較於其在該界面層上以較高的速率成核。
  16. 如申請專利範圍第15項之形成半導體裝置的方法, 其中,該提供步驟包含: 在該製程腔室中提供該基板,其中該基板的一表面至少實質上無氧;以及 在該製程腔室中於該基板上形成該界面層。
  17. 一種形成半導體裝置的方法,該方法包含: 在一製程腔室中提供一含鍺的基板; 使由氫(H2 )及選擇性之鈍氣所組成之製程氣體流入該製程腔室中; 藉著微波電漿來源由該製程氣體形成電漿激發物種; 將該基板上的含鍺界面層暴露於該電漿激發物種,以形成具有提高之電移動度的改質含鍺界面層;以及 藉由原子層沉積法(ALD)在該改質含鍺界面層上沉積高介電常數(高k)膜,其中該高k膜在該改質含鍺界面層上相較於其在該含鍺界面層上以較高的速率成核。
  18. 如申請專利範圍第17項之形成半導體裝置的方法, 其中含鍺的該基板包含Ge或SiGe。
  19. 如申請專利範圍第17項之形成半導體裝置的方法, 其中該含鍺界面層包含氧化鍺。
  20. 如申請專利範圍第17項之形成半導體裝置的方法,其中,將該含鍺界面層暴露於該電漿激發物種之步驟減少該含鍺界面層之厚度。
TW104106451A 2014-03-02 2015-03-02 藉由微波電漿處理以提升半導體裝置中之高介電常數膜成核速率及電移動度的方法 TWI590329B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461946829P 2014-03-02 2014-03-02
US201461986995P 2014-05-01 2014-05-01

Publications (2)

Publication Number Publication Date
TW201546898A TW201546898A (zh) 2015-12-16
TWI590329B true TWI590329B (zh) 2017-07-01

Family

ID=54007103

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104106451A TWI590329B (zh) 2014-03-02 2015-03-02 藉由微波電漿處理以提升半導體裝置中之高介電常數膜成核速率及電移動度的方法

Country Status (3)

Country Link
US (1) US10522343B2 (zh)
TW (1) TWI590329B (zh)
WO (1) WO2015134398A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9263541B2 (en) * 2014-04-25 2016-02-16 Globalfoundries Inc. Alternative gate dielectric films for silicon germanium and germanium channel materials
US20160343806A1 (en) * 2015-05-21 2016-11-24 Globalfoundries Inc. Interface passivation layers and methods of fabricating
US9595449B1 (en) * 2015-12-21 2017-03-14 International Business Machines Corporation Silicon-germanium semiconductor devices and method of making
US10168475B2 (en) 2017-01-18 2019-01-01 Juniper Networks, Inc. Atomic layer deposition bonding for heterogeneous integration of photonics and electronics
US10555412B2 (en) 2018-05-10 2020-02-04 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator with a current-return output stage
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
JP7451540B2 (ja) 2019-01-22 2024-03-18 アプライド マテリアルズ インコーポレイテッド パルス状電圧波形を制御するためのフィードバックループ
US11508554B2 (en) 2019-01-24 2022-11-22 Applied Materials, Inc. High voltage filter assembly
US11024581B2 (en) * 2019-02-25 2021-06-01 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor packages and methods of manufacturing the same
KR102586579B1 (ko) * 2019-05-24 2023-10-10 가부시키가이샤 크리에이티브 코팅즈 분체의 성막 방법, 분체 성막용 용기 및 ald장치
US11462388B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Plasma processing assembly using pulsed-voltage and radio-frequency power
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11798790B2 (en) 2020-11-16 2023-10-24 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11495470B1 (en) 2021-04-16 2022-11-08 Applied Materials, Inc. Method of enhancing etching selectivity using a pulsed plasma
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11967483B2 (en) 2021-06-02 2024-04-23 Applied Materials, Inc. Plasma excitation with ion energy control
US11984306B2 (en) 2021-06-09 2024-05-14 Applied Materials, Inc. Plasma chamber and chamber component cleaning methods
US11810760B2 (en) 2021-06-16 2023-11-07 Applied Materials, Inc. Apparatus and method of ion current compensation
US11569066B2 (en) 2021-06-23 2023-01-31 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11776788B2 (en) 2021-06-28 2023-10-03 Applied Materials, Inc. Pulsed voltage boost for substrate processing
US11476090B1 (en) 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing
US11694876B2 (en) 2021-12-08 2023-07-04 Applied Materials, Inc. Apparatus and method for delivering a plurality of waveform signals during plasma processing
US11972924B2 (en) 2022-06-08 2024-04-30 Applied Materials, Inc. Pulsed voltage source for plasma processing applications

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1265276B1 (en) 2000-03-13 2011-06-22 Tadahiro Ohmi Method for forming dielectric film
JP4731694B2 (ja) * 2000-07-21 2011-07-27 東京エレクトロン株式会社 半導体装置の製造方法および基板処理装置
TWI220060B (en) 2001-05-10 2004-08-01 Macronix Int Co Ltd Cleaning method of semiconductor wafer
TW200506093A (en) 2003-04-21 2005-02-16 Aviza Tech Inc System and method for forming multi-component films
US6946368B1 (en) * 2004-03-23 2005-09-20 Applied Materials, Inc. Reduction of native oxide at germanium interface using hydrogen-based plasma
US7704896B2 (en) * 2005-01-21 2010-04-27 Asm International, N.V. Atomic layer deposition of thin films on germanium
US7393761B2 (en) * 2005-01-31 2008-07-01 Tokyo Electron Limited Method for fabricating a semiconductor device
US7498247B2 (en) * 2005-02-23 2009-03-03 Micron Technology, Inc. Atomic layer deposition of Hf3N4/HfO2 films as gate dielectrics
US7790628B2 (en) * 2007-08-16 2010-09-07 Tokyo Electron Limited Method of forming high dielectric constant films using a plurality of oxidation sources
US7964515B2 (en) * 2007-12-21 2011-06-21 Tokyo Electron Limited Method of forming high-dielectric constant films for semiconductor devices
US9711373B2 (en) 2008-09-22 2017-07-18 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabricating a gate dielectric for high-k metal gate devices
US8268683B2 (en) 2009-06-12 2012-09-18 Taiwan Semiconductor Manufacturing Company, Ltd. Method for reducing interfacial layer thickness for high-K and metal gate stack
US20120220116A1 (en) 2011-02-25 2012-08-30 Applied Materials, Inc. Dry Chemical Cleaning For Semiconductor Processing
US8809152B2 (en) * 2011-11-18 2014-08-19 International Business Machines Corporation Germanium oxide free atomic layer deposition of silicon oxide and high-k gate dielectric on germanium containing channel for CMOS devices
US8987096B2 (en) * 2012-02-07 2015-03-24 United Microelectronics Corp. Semiconductor process
US8791445B2 (en) 2012-03-01 2014-07-29 Intermolecular, Inc. Interfacial oxide used as switching layer in a nonvolatile resistive memory element

Also Published As

Publication number Publication date
TW201546898A (zh) 2015-12-16
US10522343B2 (en) 2019-12-31
WO2015134398A1 (en) 2015-09-11
US20150249009A1 (en) 2015-09-03

Similar Documents

Publication Publication Date Title
TWI590329B (zh) 藉由微波電漿處理以提升半導體裝置中之高介電常數膜成核速率及電移動度的方法
CN111033686B (zh) 用等离子体和/或热处理提高氧化铪基铁电材料性能的方法
CN101401194B (zh) 使用低能量等离子体***制造高介电常数晶体管栅极的方法和装置
US20130149852A1 (en) Method for forming a semiconductor device
TW202338140A (zh) 薄膜及沉積薄膜的方法
JP2013546182A (ja) マイクロ波プラズマを用いる誘電膜堆積方法
TWI433263B (zh) 深渠溝襯層移除製程
JP5460011B2 (ja) 窒化珪素膜の成膜方法、コンピュータ読み取り可能な記憶媒体およびプラズマcvd装置
JP4083000B2 (ja) 絶縁膜の形成方法
TW202414582A (zh) 電阻式隨機存取記憶體元件及其形成方法
JP7307745B2 (ja) 窒化ハフニウム層による酸化ハフニウムの強誘電特性の変更
US20100140683A1 (en) Silicon nitride film and nonvolatile semiconductor memory device
TWI621218B (zh) 包含鍺之半導體元件及其形成方法
JP4562751B2 (ja) 絶縁膜の形成方法
TWI845694B (zh) 電阻式隨機存取記憶體元件及其形成方法
TW202145372A (zh) 用於改良膜的有效氧化物厚度之氫化與氮化製程