TWI588307B - Method and systems for forming carbon nanotubes - Google Patents

Method and systems for forming carbon nanotubes Download PDF

Info

Publication number
TWI588307B
TWI588307B TW101150517A TW101150517A TWI588307B TW I588307 B TWI588307 B TW I588307B TW 101150517 A TW101150517 A TW 101150517A TW 101150517 A TW101150517 A TW 101150517A TW I588307 B TWI588307 B TW I588307B
Authority
TW
Taiwan
Prior art keywords
stream
reactor
heat exchanger
gas
feed
Prior art date
Application number
TW101150517A
Other languages
Chinese (zh)
Other versions
TW201341610A (en
Inventor
羅伯 戴特
達拉斯 諾耶斯
Original Assignee
艾克頌美孚上游研究公司
固體碳製品有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艾克頌美孚上游研究公司, 固體碳製品有限責任公司 filed Critical 艾克頌美孚上游研究公司
Publication of TW201341610A publication Critical patent/TW201341610A/en
Application granted granted Critical
Publication of TWI588307B publication Critical patent/TWI588307B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/62Manufacturing or production processes characterised by the final manufactured product related technologies for production or treatment of textile or flexible materials or products thereof, including footwear

Description

形成奈米碳管之方法及系統 Method and system for forming carbon nanotubes

本技術係關於形成碳纖維及奈米碳物質的工業尺度之方法。 This technology is an industrial scale method for forming carbon fibers and nanocarbon materials.

本節要介紹本技藝的各種方面,其可與本技術的示範性具體實例結合。相信該討論有助於提供促進對本技術特殊方面更加瞭解之架構。因此,應理解為本節應以此觀點解讀,且不需先前技藝的授允。 This section is intended to introduce various aspects of the art that may be combined with an exemplary embodiment of the present technology. It is believed that this discussion will help provide an architecture that promotes a better understanding of the particular aspects of the technology. Therefore, it should be understood that this section should be interpreted in this view and does not require prior art.

多年來在許多產品中,絕大多數已使用固體或元素碳所形成的物質。例如,碳黑為高碳含量物質,使用作為顏料及如汽車輪胎之橡膠與塑膠產品中的增強性化合物。碳黑通常係以烴的不完全熱裂解而形成,例如以甲烷或重質芳族油。以天然氣熱裂解而形成的熱黑包括大的未黏聚顆粒,例如尤其是尺寸在200至500 nm的範圍內。以重油裂解而形成的爐黑包括尺寸在10至100 nm範圍內之更小的顆粒,黏聚或沾黏在一起而形成結構物。在該二種情形中,可由具有開放的末端或邊緣的石墨片層而形成顆粒。在化學上,開放的邊緣形成反應性面積,可用於吸收、與基質鍵結等。 Over the years, in many products, the vast majority have used solid or elemental carbon to form substances. For example, carbon black is a high carbon content material that is used as a reinforcing compound in pigments and rubber and plastic products such as automobile tires. Carbon black is typically formed by incomplete thermal cracking of hydrocarbons, such as methane or heavy aromatic oils. The thermal black formed by thermal cracking of natural gas includes large unagglomerated particles, for example, especially in the range of 200 to 500 nm. The furnace black formed by cracking of heavy oil includes smaller particles ranging in size from 10 to 100 nm, which are cohesive or stuck together to form a structure. In both cases, the particles may be formed from a layer of graphite flakes having open ends or edges. Chemically, the open edges form a reactive area that can be used for absorption, bonding to substrates, and the like.

已發展之元素碳最近的形式例如富樂烯(fullerene),並開始發展商業應用。與碳黑較開放的結構相反,富樂烯係以密閉的石墨烯結構的碳所形成,亦即其邊緣與其他邊 緣鍵結而形成球體、管狀物等。奈米碳纖維及奈米碳管此二種結構具有多種可能的應用,涵蓋電池與電子產品至使用於營建工業中的水泥。奈米碳物質可具有石墨烯的單一壁或石墨烯的多重網形壁,或以杯形或平板形的層疊薄片組而形成的纖維結構。奈米碳管的末端常以類似富樂烯的構形而覆蓋著半球形的結構。與碳黑不同的是,尚未實現對奈米碳物質之大尺度的製造方法。然而,對許多建議的製造方法已進行研究。 The most recent form of elemental carbon that has been developed, such as fullerene, has begun to develop commercial applications. In contrast to the more open structure of carbon black, the fullerene is formed by the carbon of a closed graphene structure, that is, its edges and other sides. The edges are bonded to form a sphere, a tube, and the like. Nano Carbon Fiber and Nano Carbon Tubes These two structures have many possible applications, ranging from batteries and electronics to cement used in the construction industry. The nanocarbon material may have a single wall of graphene or a multiple mesh wall of graphene, or a fiber structure formed by a stack of sheets of cups or plates. The ends of the carbon nanotubes are often covered with a hemispherical structure in a configuration similar to the fullerene. Unlike carbon black, large-scale manufacturing methods for nanocarbon materials have not yet been achieved. However, many proposed manufacturing methods have been studied.

電弧系、雷射系削切技術及化學蒸氣沈積傳統上已用於以碳表面產生奈米碳管。例如,Karthikeyan等人之E-Journal of Chemistry,2009,6(1),1-12「奈米碳管的大尺度合成」中,回顧產生奈米碳管的技術。在所述及的一種技術,係在金屬催化劑存在下,使用電弧將電極的石墨汽化,達到約1克/分鐘的產率。述及的另一技術係使用雷射削切,在惰性氣流下,將目標電極的碳汽化。然而,雷射技術使用高純度的石墨及高能量雷射,但提供的奈米碳管產量低,使其對大尺度合成並不實際。該作者述及的第三種技術係以化學蒸氣沈積(CVD)為基礎,其中在催化劑存在下將烴熱分解。在有些研究中,這些技術在70%純度水準下,已達到產率達數公斤/小時。然而,述及的方法對大尺度的商業製造皆不實際。 Arc systems, laser cutting techniques, and chemical vapor deposition have traditionally been used to produce carbon nanotubes on carbon surfaces. For example, in Karthikeyan et al., E-Journal of Chemistry, 2009, 6(1), 1-12 "Small scale synthesis of carbon nanotubes", the technique for producing carbon nanotubes is reviewed. In one such technique, the graphite of the electrode is vaporized using an electric arc in the presence of a metal catalyst to a yield of about 1 gram per minute. Another technique described is the use of laser cutting to vaporize the carbon of the target electrode under an inert gas stream. However, laser technology uses high-purity graphite and high-energy lasers, but the low carbon nanotube yields make it impractical for large-scale synthesis. The third technique mentioned by the author is based on chemical vapor deposition (CVD) in which hydrocarbons are thermally decomposed in the presence of a catalyst. In some studies, these techniques have reached yields of several kilograms per hour at 70% purity. However, the methods described are not practical for large-scale commercial manufacturing.

烴裂解係使用於碳黑及各種奈米碳管與富樂烯產品的製造。對於產生及獲得各式的固體碳之現有的各種方法係使用溫度、壓力及在催化劑存在下將烴裂解,以控制所得 的固體碳形貌。例如,Kauffman等人(US專利2,796,331)揭示在剩餘氫的存在下,使用硫化氫作為催化劑,以烴製造各種形式纖維碳之方法,及收集固體表面上的纖維碳之方法。Kauffman也申請使用煉焦爐氣作為烴來源的專利範圍。 Hydrocarbon cracking is used in the manufacture of carbon black and various carbon nanotubes and fullerene products. The various existing methods for producing and obtaining various types of solid carbon use temperature, pressure, and cracking of hydrocarbons in the presence of a catalyst to control the yield. Solid carbon topography. For example, Kauffman et al. (U.S. Patent 2,796,331) discloses the use of hydrogen sulfide as a catalyst, the production of various forms of fibrous carbon from hydrocarbons, and the method of collecting fibrous carbon on a solid surface in the presence of residual hydrogen. Kauffman also applied for a patented range of coke oven gas as a source of hydrocarbons.

在另一研究中,Vander Wal,R.L.等人於2003年八月之第七屆微重力燃燒及化學反應系統國際研討會論文集第73至76頁之「單壁奈米碳管及奈米碳纖維的火焰合成」(NASA研究出版:NASA/CP-2003-212376/REV1)中描述火焰系的技術。所使用的技術係連同催化劑將CO或CO/C2H2混合物導入火焰中,以形成奈米碳管。該作者注意到對於碳黑的製造,使用火焰系技術可達到高產率。然而,該作者注意到要放大火焰合成的尺度存在許多挑戰。特別是,催化劑顆粒的形成、奈米碳管初始、及奈米碳管生長之總時間限制為約100 ms。 In another study, Vander Wal, RL et al., August 7th, 2003, Proceedings of the International Symposium on Microgravity Combustion and Chemical Reaction Systems, pp. 73-76, "Single-walled carbon nanotubes and nanocarbons The technique of flame system is described in Flame Synthesis (NASA Research Publication: NASA/CP-2003-212376/REV1). The technique used is to introduce a CO or CO/C 2 H 2 mixture into the flame along with the catalyst to form a carbon nanotube. The authors note that for the manufacture of carbon black, high yields can be achieved using flame system technology. However, the author noted that there are many challenges in scaling up the scale of flame synthesis. In particular, the total time for formation of catalyst particles, initial carbon nanotubes, and carbon nanotube growth is limited to about 100 ms.

Noyes所提出的國際專利申請案公告WO/2010/120581,揭示以還原劑在催化劑存在下將碳氧化物還原,製造各種形貌的固體碳產物之方法。碳氧化物通常為一氧化碳或二氧化碳。還原劑通常為烴氣體或氫。可由使用於還原反應中之特定催化劑、反應條件及隨意的添加劑,控制固體碳產物希望的形貌。該方法係在低壓下進行,並使用冷凍的冷卻方法將進料流的水移除。 International Patent Application Publication No. WO/2010/120581, filed by No. No. 5, discloses a method of producing a solid carbon product of various morphologies by reducing a carbon oxide with a reducing agent in the presence of a catalyst. The carbon oxides are usually carbon monoxide or carbon dioxide. The reducing agent is usually a hydrocarbon gas or hydrogen. The desired morphology of the solid carbon product can be controlled by the particular catalyst used in the reduction reaction, the reaction conditions, and the optional additives. The process is carried out at low pressure and the water of the feed stream is removed using a chilled cooling process.

所有述及的技術皆可用以形成奈米碳管,但每一技術皆無法對大量或工業尺度製造提供實際的方法。特別是, 形成量及方法效率二者皆很低。 All of the techniques described can be used to form carbon nanotubes, but each technique does not provide a practical method for mass or industrial scale manufacturing. especially, Both the amount of formation and the efficiency of the method are very low.

在此所述的具體實例提供製造奈米碳管的系統。該系統包括進氣加熱器,其係配置以廢氣流的廢熱將進氣加熱;反應器,其係配置以博希(Bosch)反應由進氣形成奈米碳管;分離器,其係配置以自反應器流出物流將奈米碳管分離,以形成廢氣流;及水移除系統。該水移除系統包括周溫熱交換器及配置以自廢氣流中分離大部分的水以形成乾廢氣流之分離器。 The specific examples described herein provide a system for making carbon nanotubes. The system includes an intake heater configured to heat the intake air with waste heat of the exhaust stream; a reactor configured to form a carbon nanotube from the intake air in a Bosch reaction; and a separator configured to The carbon nanotubes are separated from the reactor effluent stream to form a waste gas stream; and a water removal system. The water removal system includes a peripheral temperature heat exchanger and a separator configured to separate a substantial portion of the water from the exhaust stream to form a dry exhaust stream.

另一具體實例提供形成奈米碳管的方法。該方法包括於反應器中利用博希反應,形成奈米碳管;自反應器流出物中分離奈米碳管,以形成廢氣流;及以廢氣流的廢熱將進氣、乾廢氣流、或二者加熱。該廢氣流於周溫熱交換器中冷卻使水蒸氣凝結,而形成乾廢氣流。 Another embodiment provides a method of forming a carbon nanotube. The method comprises using a Bosch reaction in a reactor to form a carbon nanotube; separating a carbon nanotube from the reactor effluent to form an exhaust gas stream; and using the waste heat of the exhaust gas stream to feed the intake gas, the dry exhaust gas stream, or Both are heated. The exhaust stream is cooled in a peripheral temperature heat exchanger to condense the water vapor to form a dry exhaust stream.

另一具體實例提供形成奈米碳管的反應系統。該反應系統包括二個或多個反應器,其係配置以利用博希反應自氣流中形成奈米碳管,其中在最終反應器之前的每一反應器之流出物係用以作為下游反應器的進料流。最終反應器的流出物流包括反應物已耗盡之廢棄流。於每一反應器的下游配置分離系統,其中該分離系統係配置以自反應器的流出物中移出奈米碳管。於每一分離系統的下游配置進料加熱器,其中該進料加熱器包括熱交換器,其係配置以使用反應器流出物的廢熱將供下游反應器的進氣流加熱,且 其中在最終反應器下游的進料加熱器係配置以將供第一反應器的氣流加熱。周溫熱交換器位於每一進料加熱器的下游,其中該周溫熱交換器係配置以移除流出物的水,以形成供下游反應器的進料流。壓縮機係配置以提高反應物已耗盡之廢棄流的壓力。位在壓縮機下游的周溫熱交換器係配置以移除反應物已耗盡之廢棄流的水。氣體分餾系統係配置以將反應物已耗盡之廢棄流分離成富甲烷流及富二氧化碳流,及混合器係配置以將富甲烷流或富二氧化碳流摻雜進初始的進料流。 Another embodiment provides a reaction system for forming a carbon nanotube. The reaction system includes two or more reactors configured to form a carbon nanotube from a gas stream using a Bosch reaction, wherein the effluent of each reactor prior to the final reactor is used as a downstream reactor Feed stream. The effluent stream of the final reactor includes the spent stream from which the reactants have been consumed. A separation system is disposed downstream of each reactor, wherein the separation system is configured to remove carbon nanotubes from the effluent of the reactor. A feed heater is disposed downstream of each separation system, wherein the feed heater includes a heat exchanger configured to heat the feed stream to the downstream reactor using waste heat of the reactor effluent, and The feed heater downstream of the final reactor is configured to heat the gas stream for the first reactor. A peripheral temperature heat exchanger is located downstream of each feed heater, wherein the ambient temperature heat exchanger is configured to remove water from the effluent to form a feed stream for the downstream reactor. The compressor is configured to increase the pressure of the spent stream from which the reactants have been depleted. A peripheral temperature heat exchanger located downstream of the compressor is configured to remove water from the spent stream from which the reactants have been depleted. The gas fractionation system is configured to separate the spent reactant waste stream into a methane rich stream and a carbon rich stream, and the mixer train is configured to dope the methane rich stream or the carbon rich stream into the initial feed stream.

在以下詳細說明的章節中,說明本技術的特定具體實例。然而,以下說明所達的程度係對本技術的特別具體實例或特別用途為特定的,此係要僅作為示範用途且單純提供示範性具體實例的說明。因此,本技術並不受限於下述的特定具體實例,而是包括落於申請專利範圍的精神與範圍之內的所有替代方案、變化及均等。 Specific specific examples of the present technology are described in the sections detailed below. However, the degree of the following description is specific to specific examples or specific uses of the present technology, and is intended to serve as an exemplary use only and merely to provide a description of exemplary embodiments. Therefore, the present technology is not limited to the specific embodiments described below, but includes all alternatives, variations and equivalents falling within the spirit and scope of the claims.

首先,為了容易參考,說明本申請案使用的特定詞語及在本文中使用的意義。在此所用詞語所達的程度未在以下定義者,則應如熟悉本技藝者對於在至少一種印刷出版品或提出的專利呈現之詞語所給予的最寬定義。而且,本技術不受以下所示的詞語用法所限制,因作為相同或類似用途的所有均等、同義詞、新發展、及詞語或技術皆視為在本申請專利範圍之內。 First, for the sake of easy reference, the specific words used in the present application and the meanings used herein are explained. To the extent that the terms used herein are not defined below, the broadest definition of the words presented in the at least one printed publication or the claimed patent should be the same as the one skilled in the art. Further, the present technology is not limited by the usage of the words shown below, and all equivalents, synonyms, new developments, and words or techniques are considered to be within the scope of the present application.

碳的纖維、奈米纖維、及奈米管為具有圓柱形結構的碳同素異形體,可在奈米範圍內。碳的奈米纖維及奈米管為富勒烯結構群的成員,其包括稱為「巴克敏斯特-富勒烯」(buckminister fullerene)的球形碳球。奈米碳管壁係以石墨烯結構的碳薄片所形成。如在此所用,奈米管可包括任何長度的單壁奈米管及多壁奈米管。可瞭解在此及本申請專利範圍中所用的詞語「奈米碳管」包括其他的碳同素異形體,例如碳纖維、奈米碳纖維、及其他的碳奈米結構。 Carbon fibers, nanofibers, and nanotubes are carbon allotropes having a cylindrical structure and are in the nanometer range. Carbon nanofibers and nanotubes are members of the fullerene structure, which include spherical carbon spheres known as "buckminister fullerene". The carbon nanotube wall is formed by a carbon sheet of graphene structure. As used herein, a nanotube can include single-walled nanotubes of any length and multi-walled nanotubes. It is to be understood that the term "nanocarbon tube" as used herein and in the context of the present application includes other carbon allotropes such as carbon fibers, nanocarbon fibers, and other carbon nanostructures.

「壓縮機」為將包括氣體蒸氣混合物或廢氣之操作中氣體壓縮之裝置,且包括泵浦、壓縮機渦輪、往復式壓縮機、活塞壓縮機、轉輪式真空(rotary vane)或螺旋式壓縮機,及能夠將操作中氣體加以壓縮的裝置與組合。在一些具體實例中,較佳為例如壓縮機渦輪的特別類型的壓縮機。在此可使用的活塞壓縮機包括螺旋式壓縮機、轉輪式真空壓縮機等。 "Compressor" is a device that compresses an operating gas including a gas vapor mixture or exhaust gas, and includes a pump, a compressor turbine, a reciprocating compressor, a piston compressor, a rotary vane, or a spiral compression. And a combination of devices and devices capable of compressing the operating gas. In some embodiments, a particular type of compressor, such as a compressor turbine, is preferred. The piston compressor usable herein includes a screw compressor, a rotary vacuum compressor, and the like.

如在此所用,「設備」為化學或能量產物在其中加以處理或傳送之整套的物理性裝置。以其最廣泛的意義,設備此詞語係使用於可用以製造能量或形成化學產品的任何裝置。設施的實例包括聚合設備、碳黑設備、天然氣設備、及發電設備。 As used herein, "equipment" is a complete set of physical devices in which chemical or energy products are processed or delivered. In its broadest sense, the term device is used in any device that can be used to make energy or form a chemical product. Examples of facilities include polymerization equipment, carbon black equipment, natural gas equipment, and power generation equipment.

「烴」為主要包括氫及碳元素的有機化合物,雖然也可含有少量的氮、硫、氧、金屬、或任何數量的其他元素。如在此所述,烴通常係指天然氣、油、或化學處理設 施中所發現的成份。 "Hydrocarbon" is an organic compound mainly comprising hydrogen and carbon, although it may contain a small amount of nitrogen, sulfur, oxygen, metals, or any other amount of other elements. As used herein, hydrocarbons generally refer to natural gas, oil, or chemical treatments. The ingredients found in the application.

如在此所用,詞語「天然氣」係指自原油井或自岩層下的含氣層所獲得的多成份氣體。天然氣的組成及壓力可有很大變化。一般的天然氣流含有的甲烷(CH4)為主要成份,亦即大於50莫耳%的天然氣流為甲烷。天然氣流也可含有乙烷(C2H6)、較高分子量的烴(例如C3-C20烴)、一種或多種酸性氣體(例如硫化氫)、或其任何組合。天然氣也可含有微量的污染物,例如水、氮、硫化鐵、蠟、原油或其任何組合。天然氣流在具體實例中於使用前可實質地純化,以移除可能成為毒物的化合物。 As used herein, the term "natural gas" refers to a multi-component gas obtained from a crude oil well or a gas-bearing layer beneath a rock formation. The composition and pressure of natural gas can vary greatly. The natural gas stream contains methane (CH 4 ) as the main component, that is, more than 50 mol% of the natural gas stream is methane. The natural gas stream may also contain ethane (C 2 H 6 ), a higher molecular weight hydrocarbon (eg, a C 3 -C 20 hydrocarbon), one or more acid gases (eg, hydrogen sulfide), or any combination thereof. Natural gas may also contain minor amounts of contaminants such as water, nitrogen, iron sulfide, waxes, crude oil or any combination thereof. The natural gas stream can be substantially purified in a specific example prior to use to remove compounds that may become toxic.

「低BTU天然氣」為包括由貯存區獲取之實質比例的CO2氣體。例如,低BTU天然氣可包括10莫耳%或更高的CO2,再加上烴及其他成份。在一些情況下,低BTU天然氣可主要包括CO2"Low BTU natural gas" is a CO 2 gas that includes a substantial proportion of the storage area. For example, low BTU gas can comprise 10 mole% or more of CO 2, and other ingredients together with the hydrocarbon. In some cases, low BTU natural gas may primarily include CO 2 .

綜觀 Overview

在此所述的具體實例提供以工業尺度製造碳纖維、奈米碳纖維、及奈米碳管(CNTs)的系統及方法,使用可包含尤其是二氧化碳與甲烷接近化學計量之混合物的進料。在一些具體實例中,進料的CH4較高,而在其他具體實例中,進料的CO2較高。可使用其他進料,包括H2、CO、CO2、及其他烴的混合物。該方法在利用博希反應的高溫及壓力條件下進行,如關於圖2的討論。 The specific examples described herein provide systems and methods for producing carbon fibers, nanocarbon fibers, and carbon nanotubes (CNTs) on an industrial scale using a feed that can comprise a mixture of, in particular, near-stoichiometric amounts of carbon dioxide and methane. In some instances, CH 4 feed high, while in other particular examples, CO 2 feed high. Other feeds can be used, including, other hydrocarbons and mixtures of H 2, CO, CO 2. The process is carried out under high temperature and pressure conditions using a Bosch reaction, as discussed with respect to Figure 2.

該方法可略為放熱、能量中和、或略為吸熱。因此, 在連續操作中,提供一部份由方法所使用的熱,便可回收至少一部份反應的熱,並用以將進氣加熱。因使用高壓的方法,周溫熱交換器便足以自產物流中移除水蒸氣,無需使用冷凍冷卻器。在將產物及反應時形成的水分離後,使用氣體分餾系統,以自廢氣混合物中分離任何殘留量的限制性藥劑,並將該藥劑循環至方法中。 The method may be slightly exothermic, energy neutral, or slightly endothermic. therefore, In continuous operation, a portion of the heat used in the process is provided to recover at least a portion of the heat of the reaction and to heat the intake air. Due to the high pressure method, the ambient temperature heat exchanger is sufficient to remove water vapor from the product stream without the use of a refrigerated cooler. After separating the product and the water formed during the reaction, a gas fractionation system is used to separate any residual amount of limiting agent from the exhaust gas mixture and recycle the agent to the process.

如在此所用,常溫熱交換器可包括水冷卻器、空氣冷卻器、或以實質上為周溫的來源將熱交換之任何其他冷卻系統。可瞭解周溫實質上為位於設施處外部的空氣溫度,視設施的位置而定,例如範圍約-40℃至約+40℃。而且,視當時的周溫而定,可使用不同類型的常溫熱交換器。例如,在夏季使用水冷卻器的設備可在冬季使用空氣冷卻器。可瞭解在本文所述使用常溫熱交換器之任意處,可使用適當類型的熱交換器。視所需冷卻的量而定,常溫熱交換器在整個設備中可有不同的類型。 As used herein, a ambient temperature heat exchanger can include a water cooler, an air cooler, or any other cooling system that exchanges heat at a source that is substantially ambient temperature. It can be appreciated that the ambient temperature is substantially the temperature of the air outside of the facility, depending on the location of the facility, such as in the range of about -40 ° C to about +40 ° C. Moreover, depending on the ambient temperature at the time, different types of room temperature heat exchangers can be used. For example, equipment that uses a water cooler during the summer can use an air cooler during the winter. It will be appreciated that wherever a normal temperature heat exchanger is used herein, a suitable type of heat exchanger can be used. The room temperature heat exchanger can be of different types throughout the equipment, depending on the amount of cooling required.

在此所述的具體實例可用以製造工業量的碳產物,例如富勒烯、奈米碳管、奈米碳纖維、碳纖維、石墨、碳黑、及石墨烯,尤其是使用碳的氧化物作為主要的碳源。可能產物的平衡可由反應中所使用的條件加以調整,包括催化劑組成份、溫度、壓力、進料等。在反應器系統中,碳的氧化物催化性地轉化成固體碳及水。碳的氧化物可得自許多來源,包括大氣、燃燒氣體、方法的排氣、井氣體、及其他天然和工業來源。 The specific examples described herein can be used to produce industrial quantities of carbon products such as fullerenes, carbon nanotubes, nanocarbon fibers, carbon fibers, graphite, carbon black, and graphene, especially using carbon oxides as the primary Carbon source. The balance of possible products can be adjusted by the conditions used in the reaction, including catalyst components, temperature, pressure, feed, and the like. In a reactor system, carbon oxides are catalytically converted to solid carbon and water. Carbon oxides are available from a variety of sources, including the atmosphere, combustion gases, process exhausts, well gases, and other natural and industrial sources.

本方法使用二種進料,碳的氧化物例如二氧化碳 (CO2)或一氧化碳(CO),及還原劑例如甲烷(CH4)或其他烴、氫(H2)或其組合。還原劑可包括其他烴氣體、氫(H2)或其混合物。烴氣體可同時作為外加的碳源及作為碳氧化物的還原劑。其他氣體、例如合成氣可產生作為方法中的中間化合物,或可包含在進料中。這些氣體也可使用作為還原劑。合成氣或「合成的氣體」包括一氧化碳(CO)及氫(H2),且因此在單一混合物中同時包括氧化碳及還原性氣體。合成氣可使用作為進氣的全部或一部份。 The process employs two feeds, carbon oxides such as carbon dioxide (CO 2 ) or carbon monoxide (CO), and reducing agents such as methane (CH 4 ) or other hydrocarbons, hydrogen (H 2 ), or combinations thereof. The reducing agent may include other hydrocarbon gases, hydrogen (H 2 ), or a mixture thereof. The hydrocarbon gas can serve as both an additional carbon source and as a reducing agent for the carbon oxide. Other gases, such as syngas, can be produced as intermediate compounds in the process or can be included in the feed. These gases can also be used as reducing agents. Syngas or "synthesized gas" includes carbon monoxide (CO) and hydrogen (H 2 ), and thus includes both carbon oxide and a reducing gas in a single mixture. Syngas can be used as all or part of the intake air.

碳的氧化物、特別是二氧化碳為可抽取自廢氣、低-BTU井氣體、及自一些方法排氣的豐富氣體。雖然二氧化碳也可抽取自空氣,用以獲取二氧化碳的其他來源常具有更高濃度且為更經濟的來源。而且,二氧化碳可得自發電的副產物。藉由將部分的CO2轉化成碳的產物,使用這些來源的CO2可降低二氧化碳的排放。 Carbon oxides, particularly carbon dioxide, are rich gases that can be extracted from exhaust gases, low-BTU well gases, and vented from some methods. Although carbon dioxide can also be extracted from air, other sources for obtaining carbon dioxide often have higher concentrations and are more economical sources. Moreover, carbon dioxide can be obtained as a by-product of power generation. With part of the product CO 2 conversion into carbon, the use of these sources of CO 2 can reduce carbon dioxide emissions.

在此所述的系統可納入發電及將碳氧化物隔離的工業方法中,使其轉化成固體的碳產物。例如,燃燒或方法排氣中的碳氧化物可分離並濃縮成為本方法的進料。在一些情況,這些方法可直接納入方法流而未分離及濃縮,例如作為多階段氣體渦輪發電站的中間步驟。 The system described herein can be incorporated into an industrial process for generating electricity and isolating carbon oxides to convert it into a solid carbon product. For example, the carbon oxides in the combustion or process exhaust can be separated and concentrated to feed the process. In some cases, these methods can be directly incorporated into the process stream without separation and concentration, for example as an intermediate step in a multi-stage gas turbine power plant.

圖1為產生碳結構的反應系統100的方塊圖,例如為二氧化碳隔離反應的副產物。反應系統100提供進氣102,其可為CO2及CH4的混合物。在一些具體實例中,反應可使發電廠等的廢氣流的CO2隔離。在其他具體實例 中,CH4在例如天然氣領域的氣流中為較高濃度。進氣102可含有其他成份,例如C2H6、C2H4等。在一具體實例中,進氣102已經過處理以移出這些成份而將其例如作為產品流銷售。 1 is a block diagram of a reaction system 100 that produces a carbon structure, such as a by-product of a carbon dioxide sequestration reaction. Inlet 100 provides a reaction system 102 which can be a mixture of CH 4 and CO 2 gas. In some embodiments, the reaction may sequester CO 2 from the exhaust stream of a power plant or the like. In other instances, CH 4 in the gas stream such as natural gas to higher concentrations in the art. The intake air 102 may contain other components such as C 2 H 6 , C 2 H 4 , and the like. In one embodiment, the intake air 102 has been treated to remove these components and sold, for example, as a product stream.

進氣102通過熱交換器104,待加熱以供反應。在連續操作時,部分的加熱係使用回收自反應的熱106所提供。供反應的剩餘熱可由如下述的輔助加熱器提供。在啟動時,輔助加熱器係用以提供總熱,使進料達適當的反應溫度,例如約930-1832℉(約500-1000℃)。在一具體實例中,進料加熱至約1650℉(約900℃)。經加熱的進氣108饋入反應器110。 Intake air 102 passes through heat exchanger 104 to be heated for reaction. During continuous operation, a portion of the heating is provided using heat 106 recovered from the reaction. The residual heat for the reaction can be provided by an auxiliary heater as described below. At startup, the auxiliary heater is used to provide total heat to bring the feed to an appropriate reaction temperature, such as about 930-1832 °F (about 500-1000 °C). In one embodiment, the feed is heated to about 1650 °F (about 900 °C). The heated intake air 108 is fed to the reactor 110.

在反應器110中利用博希反應,催化劑與部分經加熱的進氣108反應,以形成奈米碳管112。如下更詳細的說明,反應器110可為使用任何數量的不同催化劑之流體化床反應器,包括例如金屬射出、承載的催化劑等。奈米碳管112與反應器110外之流動流114分離,留下含有過量藥劑與水蒸氣的廢氣流116。在流動流114進入冷卻器作為廢氣流116之前,使用至少一部份流動流114的熱,以形成經加熱的進氣108。 The Bosch reaction is utilized in reactor 110 and the catalyst is reacted with a portion of heated feed gas 108 to form carbon nanotubes 112. As explained in more detail below, reactor 110 can be a fluidized bed reactor using any number of different catalysts including, for example, metal injection, supported catalyst, and the like. The carbon nanotubes 112 are separated from the flow stream 114 outside of the reactor 110, leaving an exhaust stream 116 containing excess medicament and water vapor. The heat of at least a portion of the flow stream 114 is used to form the heated intake air 108 before the flow stream 114 enters the cooler as the exhaust stream 116.

廢氣流116通過常溫熱交換器,例如水冷卻器118,將水120冷凝出來。所得的乾廢氣流122用以作為氣體分餾系統124的進料流。可瞭解在此所用的乾廢氣流已移除大部分的水,但可進一步含有少量的水蒸氣。例如,乾廢氣流的露點可大於約10℃、大於約20℃、或更高。在氣 體分餾之前,可使用乾燥器以降低露點,例如至-50℃或更低。 The exhaust stream 116 is condensed out of the water 120 by a normal temperature heat exchanger, such as a water cooler 118. The resulting dry exhaust stream 122 is used as a feed stream to the gas fractionation system 124. It will be appreciated that the dry exhaust stream used herein has removed most of the water but may further contain a small amount of water vapor. For example, the dry exhaust stream may have a dew point greater than about 10 ° C, greater than about 20 ° C, or higher. In gas Prior to bulk fractionation, a dryer can be used to reduce the dew point, for example to -50 ° C or lower.

氣體分餾系統124移出進氣102中部份較低濃度的藥劑,並將其循環至方法中,例如將循環流126與進氣102摻雜。進氣102中較高濃度的氣體可以過量進料128加以棄置,例如銷售給下游使用者。作為實例,若在與CH4摻雜中,CO2為最高濃度的氣體,氣體分餾系統124可用以移出殘留在廢氣流中的CH4,並以循環126將其送回方法中。該方法作用為在藥劑與固體碳之間的平衡反應,如進一步關於圖2的討論。當CH4過量時,可不需要氣體分餾系統124,因許多CO2可在反應中消耗。因此,含有CH4且也可含有H2、CO、及其他氣體的過量進料128可使用於發電廠中產生電力,而無需進一步的純化或氣體分離,如關於圖1C的討論。 The gas fractionation system 124 removes a portion of the lower concentration of medicament from the intake air 102 and recycles it to the process, such as doping the recycle stream 126 with the intake air 102. The higher concentration of gas in the intake 102 can be disposed of by excess feed 128, such as for sale to downstream users. As an example, if the doping with CH 4, CO 2 is the highest concentration of a gas, gas fractionation system 124 can be used to remove the remaining in the exhaust gas stream CH 4, and to circulate it back to process 126. This method acts as an equilibrium reaction between the agent and the solid carbon, as discussed further with respect to Figure 2. When the excess CH 4, gas fractionation system 124 may not be needed, because a lot of CO 2 may be consumed in the reaction. Thus, containing CH 4 and may also contain H 2, CO, other gases and excess feed 128 can be used in power plants to generate electricity, without further separation or gas purification, as discussed with respect to FIG. 1C.

圖1A為在加強油回收(EOR)方法中使用過量二氧化碳進料的方塊圖。若過量的進氣102(圖1)為CO2,可經由管線130將過量進料128販售給批發商供運銷。個別的使用者可自管線130獲得CO2,並將其使用於加強油回收方法132。例如,CO2可用以將烴貯槽加壓,以增加烴的回收。 Figure 1A is a block diagram of the use of excess carbon dioxide feed in a Enhanced Oil Recovery (EOR) process. If excessive intake 102 (FIG. 1) of CO 2, can overfeed 128 via line 130 for distribution sold to wholesalers. Individual users may be obtained from the line 130 CO 2, and which is used to strengthen the oil recovery process 132. For example, CO 2 may be used to the hydrocarbon reservoir pressure, to increase the recovery of hydrocarbons.

圖1B為在發電方法中使用過量甲烷進料的方塊圖。若過量進氣102(圖1)為CH4,過量進料128可用於發電設備134,以現場或在過量進料128經由管線運輸至發電設備134之後發電。在發電設備134中產生的電力136 可在現場使用以驅動反應系統100,或可提供至電網給其他消費者使用。過量進料128可含有CNT形成方法的副產物之許多其他氣體,且因此過量進料128可在例如給管線公司之任何商業銷售之前加以純化。 Figure 1B is a block diagram of the use of excess methane feed in a power generation process. If excessive intake 102 (FIG. 1) is CH 4, 128 can be used to feed excess power generating apparatus 134, on-site power generation or after the excess feed via line 128 to the power generating device 134 in the transport. The power 136 generated in the power plant 134 can be used in the field to drive the reaction system 100 or can be provided to the grid for use by other consumers. The excess feed 128 can contain many other gases as a by-product of the CNT formation process, and thus the excess feed 128 can be purified, for example, prior to any commercial sale to the pipeline company.

圖2為碳202、氫204、及氧206之間平衡的C-H-O平衡圖200,指出在各種溫度條件下平衡的物種。包含該三種元素的反應範圍,其中各種平衡皆以反應命名。在橫跨圖形之各種溫度處的平衡線顯示固體碳可形成的大致範圍。對每一溫度而言,固體碳會在相關的平衡線上方區域內形成,但不會在平衡線下方的區域內形成。 2 is a balanced C-H-O equilibrium diagram 200 between carbon 202, hydrogen 204, and oxygen 206, indicating species that are equilibrated under various temperature conditions. The reaction range of the three elements is included, wherein each balance is named after the reaction. The equilibrium line at various temperatures across the graph shows the approximate range that solid carbon can form. For each temperature, solid carbon is formed in the area above the associated equilibrium line, but not in the area below the equilibrium line.

烴裂解為氫及碳之間的平衡反應,有利於固體碳製造,通常在少量或無氧或水的存在下,例如沿著平衡線208,自較高氫204含量至較高碳202含量。波達(Boudouard)反應,也稱為一氧化碳不相稱反應,為有利於固體碳製造的碳及氧之間的平衡反應,通常在少量或無氫或水的存在下,且沿著平衡線210自較高氧206含量至較高碳202含量。 Hydrocarbon cracking is an equilibrium reaction between hydrogen and carbon that facilitates solid carbon production, typically in the presence of little or no oxygen or water, such as along equilibrium line 208, from a higher hydrogen 204 content to a higher carbon 202 content. The Boudouard reaction, also known as the carbon monoxide disproportionate reaction, is an equilibrium reaction between carbon and oxygen that facilitates solid carbon production, usually in the presence of little or no hydrogen or water, and along the equilibrium line 210. Higher oxygen 206 content to higher carbon 202 content.

博希反應為在碳、氧及氫存在下,有利於固體碳製造的平衡反應。在C-H-O平衡圖200中,博希反應位於三角圖的內部區域,例如在區域212中,而在固體碳與含有各種組合的碳、氫、及氧的藥劑之間建立平衡。博希反應區212中的許多點有利於CNTs及一些其他形式的固體碳產物形成。反應速率及產物可藉由使用催化劑而加強,例如鐵。催化劑、反應氣體、及反應條件的選擇,可提供對所 形成碳類型的控制。因此,這些方法開啟例如CNTs之固體碳產品生產的新途徑。 The Bosch reaction is an equilibrium reaction that favors the manufacture of solid carbon in the presence of carbon, oxygen and hydrogen. In the C-H-O equilibrium map 200, the Bosch reaction is located in the interior region of the triangle, such as in region 212, and establishes a balance between solid carbon and agents containing various combinations of carbon, hydrogen, and oxygen. Many of the points in the Bosch reaction zone 212 facilitate the formation of CNTs and some other forms of solid carbon product. The reaction rate and product can be enhanced by the use of a catalyst such as iron. The choice of catalyst, reaction gas, and reaction conditions can provide the right place Form the control of the carbon type. Therefore, these methods open up new avenues for the production of solid carbon products such as CNTs.

反應系統 Reaction system

圖3為單反應器系統300的簡化方法流程圖,以包含二氧化碳及甲烷的進氣製造奈米碳管。如所示,單反應器系統300可使用於CO2較高或CH4較高的進氣302。以圖5及6對較高CO2含量的進氣及圖7及8對較高CH4含量的進氣,討論更特定的反應器系統。在單反應器系統300中,進氣302與具有增強濃度的較少氣體之循環氣304混合。此可使用靜態混合器306而完成。 3 is a simplified process flow diagram of a single reactor system 300 for producing carbon nanotubes from carbon dioxide and methane feed. As shown, a single reactor system 300 can be used in higher CO 2 or CH 4 302 higher intake. 7 and 8 to the intake of high levels of CH 4 Figures 5 and 6 of the CO 2 content higher intake and FIG discussion more particular reactor system. In single reactor system 300, intake 302 is mixed with recycle gas 304 having a reduced concentration of less gas. This can be done using static mixer 306.

混合氣流308通過熱交換器310或系列的熱交換器組310,以反應器的流出物流加熱。對受熱的氣流312,溫度可自約90℉(約32.2℃)上升至約1400℉(約760℃)。該溫度足以維持連續操作時的反應。然而,部分的熱可由包封加熱器314所提供,其實質上可用於加熱,使反應物提高至開始時的溫度。再將熱氣流316導入流體化床反應器318。一般的流體化床反應器可使用於以圖9所討論的具體實例中。流體化床反應器318中,奈米碳管在催化劑顆粒上形成。以圖10進一步討論催化劑顆粒及反應。 The mixed gas stream 308 is passed through a heat exchanger 310 or a series of heat exchanger groups 310 to be heated by the effluent stream of the reactor. For heated gas stream 312, the temperature can rise from about 90 °F (about 32.2 °C) to about 1400 °F (about 760 °C). This temperature is sufficient to maintain the reaction in continuous operation. However, some of the heat may be provided by the encapsulation heater 314, which is substantially useful for heating to raise the reactants to the initial temperature. Hot gas stream 316 is then directed to fluidized bed reactor 318. A typical fluidized bed reactor can be used in the specific example discussed in Figure 9. In fluidized bed reactor 318, a carbon nanotube is formed on the catalyst particles. Catalyst particles and reactions are further discussed in Figure 10.

奈米碳管以反應器流出物流320自第一流體化床反應器318帶出。反應器流出物流320可為溫度約1650℉(約900℃),且可由與混合氣流308交換熱而冷卻,例如, 提供一些或全部的熱用以將反應物加熱。不論在冷卻前或後,反應器流出物流320通過例如旋風分離器之分離裝置322,以移出奈米碳管324。所得的廢氣流326可用以對熱交換器310內的混合氣流308提供熱。也可在比廢氣流326溫度更低的第二分離裝置(未示出)中移出碳。 The carbon nanotubes are carried out of the first fluidized bed reactor 318 as a reactor effluent stream 320. Reactor effluent stream 320 can be at a temperature of about 1650 °F (about 900 ° C) and can be cooled by exchanging heat with mixed gas stream 308, for example, Some or all of the heat is provided to heat the reactants. The reactor effluent stream 320 passes through a separation device 322, such as a cyclone, to remove the carbon nanotubes 324, either before or after cooling. The resulting exhaust stream 326 can be used to provide heat to the mixed gas stream 308 within the heat exchanger 310. Carbon may also be removed in a second separation device (not shown) that is cooler than the exhaust stream 326.

在對混合氣流308提供熱之後,經冷卻的廢棄流328通過周溫熱交換器330,然後再饋入分離槽332。水334在分離槽332中沈降,並自底部移除。所得的氣流336為約100℉(約38℃)且壓力約540 psia(約3,720 kPa)。在一具體實例中,於乾燥器中(未示出)再將該氣體乾燥至低的露點。該流進入壓縮機338,將氣流336的壓力提高至約1050 psia(約7,240 kPa),形成高壓流340,通過另一周溫熱交換器342。自周溫熱交換器342,高壓流340饋入分離槽344,以移除任何殘留的水334,例如當未使用乾燥器時。 After providing heat to the mixed gas stream 308, the cooled waste stream 328 passes through the ambient temperature heat exchanger 330 and is then fed to the separation tank 332. The water 334 settles in the separation tank 332 and is removed from the bottom. The resulting gas stream 336 is about 100 °F (about 38 °C) and has a pressure of about 540 psia (about 3,720 kPa). In one embodiment, the gas is again dried to a low dew point in a dryer (not shown). The stream enters compressor 338, raising the pressure of gas stream 336 to about 1050 psia (about 7,240 kPa) to form high pressure stream 340 through another ambient temperature heat exchanger 342. From the ambient temperature heat exchanger 342, the high pressure stream 340 is fed to the separation tank 344 to remove any residual water 334, such as when a dryer is not in use.

在具體實例中,其中進氣302中的CO2為過量,再將乾氣流346送至氣體分餾系統348,以分離循環氣304的過量進料350。在以成比例過量的CO2為基礎的反應系統300中,過量進料350可主要包括CO2且循環氣304可主要包括CH4。在以成比例過量的CH4為基礎的反應系統300中,過量進料350不具有實質的CO2含量,且部分可無需進一步純化而加以循環。在一些具體實例中,可接通部分過量進料350、循環氣304、或二者,以提供燃料氣流、吹掃氣流、或二者使用於設備中。 In a particular example, wherein the intake 302 of CO 2 in excess, then the dry gas stream 346 to the gas fractionation system 348, to separate the excess circulation gas feed 304 350. In a proportional excess of CO based on the reaction system in 3002, the excess feed 350 may comprise mainly CO 2 and 304 of the recycle gas may include CH 4. In a proportional excess CH 4 based reaction system 300, 350 having no overfeed substantial content of CO.'S 2, and a portion may be circular without further purification. In some embodiments, a portion of the excess feed 350, recycle gas 304, or both can be turned on to provide a fuel gas stream, a purge gas stream, or both for use in the apparatus.

使用的反應條件可導致金屬表面嚴重的劣化,如催化劑本身的選擇所指示,可包括不銹鋼珠。於是,可設計本方法以降低對方法條件暴露的金屬量,如進一步以下述圖形的討論。 The reaction conditions employed can result in severe degradation of the metal surface, which can include stainless steel beads as indicated by the choice of catalyst itself. Thus, the method can be designed to reduce the amount of metal exposed to the process conditions, as further discussed in the figures below.

圖4為以包括二氧化碳及甲烷的氣體進料,製造奈米碳管的二反應器系統400之簡化方法流程圖。相同的編號項目如關於圖3的討論。在二反應器系統400中,所得的廢氣流402係用以提供熱交換器404中的熱。碳也可在比廢氣流402更低溫度下於第二分離裝置(未示出)中移出。此特別容易進行,當平行的多重熱交換器可用以將廢氣流402冷卻而連續地將下一個反應器的進氣加熱時。通常,在廢氣流402中所含任何水蒸氣凝結之前,所有碳固體會被分離裝置所移出。 4 is a simplified flow diagram of a two-reactor system 400 for producing carbon nanotubes from a gas feed comprising carbon dioxide and methane. The same numbered items are as discussed with respect to Figure 3. In the two reactor system 400, the resulting exhaust stream 402 is used to provide heat in the heat exchanger 404. Carbon can also be removed in a second separation device (not shown) at a lower temperature than the exhaust stream 402. This is particularly easy when parallel multiple heat exchangers can be used to cool the exhaust stream 402 while continuously heating the intake of the next reactor. Typically, all of the carbon solids are removed by the separation device prior to condensation of any water vapor contained in the exhaust stream 402.

經冷卻的廢氣流406再通過常溫熱交換器408,其進一步將經冷卻的廢氣流406冷卻,並導致大部分形成的水以液體凝結,然後饋入分離槽410。水334自分離槽移除,且反應物流412自約100℉(約38℃)的分離槽410上方離開。 The cooled exhaust stream 406 is passed through a room temperature heat exchanger 408 which further cools the cooled exhaust stream 406 and causes most of the formed water to condense with the liquid and then feed into the separation tank 410. Water 334 is removed from the separation tank and reactant stream 412 exits above separation tank 410 at about 100 °F (about 38 °C).

反應物流412通過熱交換器404,並以廢氣流402的廢熱加熱。經加熱之流414饋入第二流體化床反應器416,其中形成額外的奈米碳管。然而,經加熱之流414可能並非足夠高溫、例如大於約1600℉(約871℃),以在第二流體化床反應器416中形成奈米碳管。為增加經加熱之流414的溫度,可使用第二包封加熱器418。第二包 封加熱器418可為第一包封加熱器314中的獨立加熱區域。在一些具體實例中,使用第二反應器流出物流420對經加熱之流414提供熱。再將第二反應器流出物流420饋入例如旋風分離器之第二分離器422,以自第二反應器流出物流420將碳產物分離。所得的廢氣流424係用以對通過熱交換器310時的混合氣流308提供熱。 Reaction stream 412 passes through heat exchanger 404 and is heated by the waste heat of exhaust stream 402. The heated stream 414 is fed to a second fluidized bed reactor 416 where additional carbon nanotubes are formed. However, heated stream 414 may not be sufficiently high temperature, such as greater than about 1600 °F (about 871 °C), to form a carbon nanotube in second fluidized bed reactor 416. To increase the temperature of the heated stream 414, a second encapsulation heater 418 can be used. Second package Sealing heater 418 can be an independent heating zone in first encapsulating heater 314. In some embodiments, the second reactor effluent stream 420 is used to provide heat to the heated stream 414. The second reactor effluent stream 420 is then fed to a second separator 422, such as a cyclone, to separate the carbon product from the second reactor effluent stream 420. The resulting exhaust stream 424 is used to provide heat to the mixed gas stream 308 as it passes through the heat exchanger 310.

雖然在此具體實例中僅顯示二個流體化床反應器318及416,反應系統400若需要可含有更多反應器。反應器數目的決定可基於進料的濃度及所要之每一進料的殘留量。在一些環境下,可連續使用三、四、或更多反應器,其中每一反應器的流出物流對連續的下一反應器進氣提供熱。而且,因其他結構可使用於具體實例中,反應器不必須為流體化床反應器。例如,可使用固定床反應器、管狀反應器、連續進料反應器、或任何數量的其他結構。應注意的是實例中的CH4為過量,氣體分餾系統348可由能將乾氣流346分開成為過量進料350及循環氣304的歧管所取代。 Although only two fluidized bed reactors 318 and 416 are shown in this particular example, reaction system 400 may contain more reactors if desired. The number of reactors can be determined based on the concentration of the feed and the amount of residue required for each feed. In some circumstances, three, four, or more reactors may be used continuously, with the effluent stream of each reactor providing heat to the continuous next reactor feed. Moreover, since other structures may be used in the specific examples, the reactor does not have to be a fluidized bed reactor. For example, a fixed bed reactor, a tubular reactor, a continuous feed reactor, or any number of other structures can be used. It is noted that in the example in excess CH 4, gas fractionation system 348 can be separated into an excess of dry gas stream 346 and 350 of the recycle gas feed manifold 304 is replaced.

圖5為以包括二氧化碳及甲烷的氣體進料,製造奈米碳管的單反應器系統500之簡化方法流程圖,其中二氧化碳為過量。圖5中,相同的號碼項目如圖3所述。方法中編號的菱形相當於模擬的方法值,如表1所示對較高CO2含量的進氣302。至於圖3,進氣302通過靜態混合器306,在該處與高甲烷含量的循環氣304混合。混合氣流308通過熱交換器310,例如包括多重殼及管狀熱交換器 502。圖5與圖3更詳細的方法流程圖之間的主要差異為在將CNTs自反應器流出物流320分離出來之前,使用熱交換器將反應器流出物流320冷卻。 Figure 5 is a simplified flow diagram of a single reactor system 500 for producing carbon nanotubes with a gas feed comprising carbon dioxide and methane, wherein the carbon dioxide is in excess. In Fig. 5, the same number items are as shown in Fig. 3. The method of diamond simulation method corresponds to the number of values, such as a higher CO 2 content of the intake shown in Table 1302. As with Figure 3, the intake air 302 passes through a static mixer 306 where it is mixed with a high methane content recycle gas 304. The mixed gas stream 308 passes through the heat exchanger 310, for example, including a multiple shell and tubular heat exchanger 502. The main difference between the more detailed method flow diagrams of Figures 5 and 3 is that the reactor effluent stream 320 is cooled using a heat exchanger prior to separating the CNTs from the reactor effluent stream 320.

在此具體實例中,經加熱的氣流312在流經第二熱交換器504之前,於熱交換器310中提高溫度至約800℉(約427℃)。在第二熱交換器504中,經加熱的氣流312流經第一陶瓷塊狀熱交換器506,如箭號508所示。儲存在第一陶瓷塊狀熱交換器506中的熱交換至經加熱的氣流312,並可增加溫度至約1540℉(約838℃)。 In this particular example, heated gas stream 312 is elevated in heat exchanger 310 to about 800 °F (about 427 °C) before flowing through second heat exchanger 504. In the second heat exchanger 504, the heated gas stream 312 flows through the first ceramic block heat exchanger 506 as indicated by arrow 508. The heat stored in the first ceramic block heat exchanger 506 is exchanged to the heated gas stream 312 and the temperature can be increased to about 1540 °F (about 838 ° C).

第一陶瓷塊狀熱交換器506係用以將經加熱的氣流312加熱,第二陶瓷塊狀加熱器510係藉由反應器流出物流320流經第二陶瓷塊狀加熱器510而將此流冷卻,如箭號512所示。當第二陶瓷塊狀熱交換器510達到選定的溫度時,或第一陶瓷塊狀熱交換器506掉至選定的溫度時,入口閥514及出口閥516的位置會交換。易言之,關閉打開的閥且打開關閉的閥。閥位置的改變會有所改變,陶瓷塊狀熱交換器506或510係以反應器318的流加熱,且陶瓷塊狀熱交換器506或510係用以將經加熱的氣流312加熱。 The first ceramic block heat exchanger 506 is for heating the heated gas stream 312, and the second ceramic block heater 510 flows through the second ceramic block heater 510 through the reactor effluent stream 320. Cool, as indicated by arrow 512. When the second ceramic block heat exchanger 510 reaches a selected temperature, or when the first ceramic block heat exchanger 506 falls to a selected temperature, the positions of the inlet valve 514 and the outlet valve 516 are exchanged. In other words, close the open valve and open the closed valve. The change in valve position will vary, the ceramic block heat exchanger 506 or 510 is heated by the flow of reactor 318, and the ceramic block heat exchanger 506 or 510 is used to heat the heated gas stream 312.

熱可能不足以將溫度增加至足以反應。因此,如關於圖3的敘述,可使用包封加熱器314,進一步提升經加熱的氣流312的溫度,形成可饋入流體化床反應器318的熱氣流316。CNTs在流體化床反應器318中形成,且在反應器流出物流320中完成。 Heat may not be sufficient to increase the temperature enough to react. Thus, as described with respect to FIG. 3, the encapsulation heater 314 can be used to further increase the temperature of the heated gas stream 312 to form a hot gas stream 316 that can be fed to the fluidized bed reactor 318. CNTs are formed in fluidized bed reactor 318 and are completed in reactor effluent stream 320.

在流經第二陶瓷塊狀加熱器510之後,反應器流出物流320流至用以將CNTs自反應器流出物流320移出的分離系統518。在此具體實例中,CNTs的分離系統518包括旋風分離器520、閉鎖式料斗522、及過濾器524。大多數CNTs在以旋風分離器520移出並沈積進入閉鎖式料斗522之後,使用過濾器524移出廢氣流526剩餘的CNTs。此可幫助預防阻塞,或因廢氣流526中的殘留CNTs導致的其他問題。過濾器524除了其他類型之外,還可包括袋式過濾器、燒結金屬過濾器、及陶瓷過濾器。自CNTs分離 系統518,可將CNTs導至包封系統,進一步細節如關於圖10的討論。在過濾器524之後,廢氣流526在流至常溫熱交換器330之前流經熱交換器310,再饋入分離槽332,以分離水。在流經分離槽332之後,該流如關於圖3的敘述。 After flowing through the second ceramic block heater 510, the reactor effluent stream 320 flows to a separation system 518 for removing CNTs from the reactor effluent stream 320. In this particular example, the separation system 518 of CNTs includes a cyclone 520, a lock hopper 522, and a filter 524. Most of the CNTs are removed from the remaining CNTs of the exhaust stream 526 using a filter 524 after being removed by the cyclone 520 and deposited into the lock hopper 522. This can help prevent blockages or other problems caused by residual CNTs in the exhaust stream 526. Filter 524 may include, among other types, a bag filter, a sintered metal filter, and a ceramic filter. Separation from CNTs System 518 can direct the CNTs to the encapsulation system, as further details are discussed with respect to FIG. After the filter 524, the exhaust stream 526 flows through the heat exchanger 310 before flowing to the normal temperature heat exchanger 330, and is fed to the separation tank 332 to separate the water. After flowing through the separation tank 332, the flow is as described with respect to FIG.

在此具體實例中,可由出自氣體分餾系統348經分離的流提供二道外加的流。燃料氣流528可取自循環氣304,並送至發電設備,例如發電設備134(圖1)。吹掃氣流530可取自CO2出口流,其可用以吹掃各種部分的設備,例如過濾器524或旋風分離器520。 In this particular example, two additional streams may be provided by a stream separated from the gas fractionation system 348. Fuel gas stream 528 may be taken from recycle gas 304 and sent to a power plant, such as power plant 134 (Fig. 1). Purge stream 530 may be taken from the outlet stream of CO 2, which may be used to purge the part of the various devices, such as a filter or cyclone 524 520.

圖6A、6B、及6C為以包括二氧化碳及甲烷的氣體進料,製造奈米碳管的二反應器系統600之簡化方法流程圖,其中二氧化碳為過量。相同的編號項目如關於圖3及5的敘述。圖5及圖6A至6C所示的具體實例之間的主要差異為使用第二反應器,以自第一反應器流出物中剩餘的反應物提供另一CNTs的量。 6A, 6B, and 6C are simplified flow diagrams of a two-reactor system 600 for producing carbon nanotubes with a gas feed comprising carbon dioxide and methane, wherein the carbon dioxide is in excess. The same numbered items are as described with respect to Figures 3 and 5. The main difference between the specific examples shown in Figure 5 and Figures 6A through 6C is the use of a second reactor to provide the amount of another CNTs from the reactants remaining in the first reactor effluent.

如關於單反應器500(圖5)的敘述,當進氣302與循環氣304在靜態混合器304中摻雜時,該流便開始。混合氣流308通過熱交換器602,待以反應器流出物的熱廢氣流加熱。熱交換器602可與圖5所述的熱交換器310類似。自熱交換器602,經加熱的氣流312通過第二熱交換器604,其可使用陶瓷塊狀熱交換器506及510,以進一步對經加熱的氣流312加熱,如對圖5的第二熱交換器504所述。所得高溫經加熱的氣流312可進一步於包封加 熱器中加熱,以形成熱氣流316,其可饋入流體化床反應器318。CNTs在流體化床反應器318中形成,並於反應器流出物流320中完成。 As described with respect to single reactor 500 (Fig. 5), this flow begins when intake 302 and recycle gas 304 are doped in static mixer 304. The mixed gas stream 308 passes through a heat exchanger 602 to be heated with a stream of hot exhaust gas from the reactor effluent. Heat exchanger 602 can be similar to heat exchanger 310 described in FIG. From heat exchanger 602, heated gas stream 312 passes through second heat exchanger 604, which may use ceramic block heat exchangers 506 and 510 to further heat heated gas stream 312, such as the second heat of FIG. Switch 504 is described. The resulting high temperature heated gas stream 312 can be further encapsulated The heat is heated to form a hot gas stream 316 that can be fed to the fluidized bed reactor 318. CNTs are formed in fluidized bed reactor 318 and are completed in reactor effluent stream 320.

反應器流出物流320可流入熱交換器606中,其中該流在陶瓷塊狀熱交換器510中冷卻,如箭號512所示。經冷卻的流出物流607可自熱交換器606流至分離系統608,其中如關於圖5所述,CNTs以例如旋風分離器520自經冷卻的流出物流607分離。所得的廢氣流609可流經分離系統608中的過濾器524,以移出大多數殘留的CNTs。在過濾器524之後,廢氣流609在流經周溫熱交換器612之前流經熱交換器610,並流至分離槽614,以將水分離。然後所得的乾流616可流經熱交換器610,待與廢氣流609熱交換而加熱。熱交換器610可包括殼-及-管狀熱交換器422,在此情況下,將乾流616的溫度於第11點處自約100℉(約37.8℃)提高至於第12點處約715℉(約379.4℃)。經加熱的氣流618藉由流經第二熱交換器606中的陶瓷塊狀加熱器506進一步加熱。 Reactor effluent stream 320 can flow into heat exchanger 606 where it is cooled in ceramic block heat exchanger 510 as indicated by arrow 512. The cooled effluent stream 607 can flow from the heat exchanger 606 to the separation system 608, wherein the CNTs are separated from the cooled effluent stream 607, for example, by a cyclone 520, as described with respect to FIG. The resulting exhaust stream 609 can flow through a filter 524 in the separation system 608 to remove most of the residual CNTs. After the filter 524, the exhaust stream 609 flows through the heat exchanger 610 before flowing through the ambient temperature heat exchanger 612 and flows to the separation tank 614 to separate the water. The resulting dry stream 616 can then be passed through a heat exchanger 610 to be heat exchanged with the exhaust stream 609 for heat exchange. The heat exchanger 610 can include a shell-and-tubular heat exchanger 422, in which case the temperature of the main stream 616 is increased from about 100 °F (about 37.8 °C) at point 11 to about 715 °F at the 12th point. (about 379.4 ° C). The heated gas stream 618 is further heated by flowing through a ceramic block heater 506 in the second heat exchanger 606.

可使用包封加熱器622提供進一步的熱量,將經加熱的氣流618提高至足以反應的溫度。將最終熱氣流624饋入第二流體化床反應器626中,形成另一部份的CNTs。 The encapsulating heater 622 can be used to provide further heat to raise the heated gas stream 618 to a temperature sufficient for the reaction. The final hot gas stream 624 is fed into the second fluidized bed reactor 626 to form another portion of the CNTs.

以反應器流出物流628將CNTs自第二流體化床反應器626中帶出,其流經第二陶瓷塊狀加熱器510以冷卻。流出物流630自第二陶瓷塊狀加熱器510流至分離系統632,如對分離系統608的敘述。在分離系統632中的過 濾器524移出廢氣流634的CNTs之後,廢氣流634通過熱交換器602,以進一步冷卻。所得的廢氣流526通過周溫熱交換器330,以將水凝結出來。 The CNTs are taken up from the second fluidized bed reactor 626 in a reactor effluent stream 628 which flows through the second ceramic block heater 510 for cooling. The effluent stream 630 flows from the second ceramic block heater 510 to the separation system 632 as described for the separation system 608. In the separation system 632 After the filter 524 is removed from the CNTs of the exhaust stream 634, the exhaust stream 634 passes through the heat exchanger 602 for further cooling. The resulting exhaust stream 526 passes through a peripheral temperature heat exchanger 330 to condense water.

第二熱交換器606中陶瓷塊狀加熱器506係建構成具有交換的流,如圖5中關於第二熱交換器504的討論。雖然方法值可有不同,系統600的其他部分與關於圖3及5的討論類似。表2或表3顯示模擬二反應器系統之系統的相關方法值。而且,具體實例也可使用超過二反應器的系統。 The ceramic block heater 506 in the second heat exchanger 606 is constructed to have an exchanged flow, as discussed with respect to the second heat exchanger 504 in FIG. While the method values may vary, other portions of system 600 are similar to those discussed with respect to Figures 3 and 5. Table 2 or Table 3 shows the relevant method values for the system simulating the two reactor system. Moreover, specific examples may also use systems that exceed two reactors.

如關於前述圖形的討論,自第三分離槽344中的高壓流340移除最終部分的水之後,經乾燥的氣流346送至氣體分餾系統348,其可自CO2廢棄流350移出高甲烷循環氣304。氣體分餾系統348進一步以圖11討論。 As the foregoing discussion of the pattern, from the third separation groove 344 after the final portion of the high pressure water stream 340 is removed, the dried gas stream 346 to the gas fractionation system 348, which may waste stream 350 from the CO 2 removal loop high methane Gas 304. Gas fractionation system 348 is further discussed in FIG.

個別的流304及350可用以對方法供應其他氣體。例如,可自高甲烷循環氣304移出燃料氣流528,並使用於發電渦輪機、鍋爐、或其他設備,以對系統600或對電網提供電力。而且,可自CO2廢棄流350移除吹掃氣流530。可使用吹掃氣流530,將CNTs冷卻及吹掃,如關於圖12的敘述。吹掃氣體也可使用於設備中的各種清潔功能,例如當流反向時,將殘留的CNTs吹離陶瓷加熱器506或510。 Individual streams 304 and 350 can be used to supply other gases to the process. For example, fuel gas stream 528 can be removed from high methane recycle gas 304 and used to power a turbine, boiler, or other device to power system 600 or the grid. Also, the waste stream 350 from the CO 2 purge stream 530 is removed. The purge gas stream 530 can be used to cool and purge the CNTs as described with respect to FIG. The purge gas can also be used in various cleaning functions in the apparatus, such as blowing residual CNTs away from the ceramic heater 506 or 510 when the flow is reversed.

表2及3所示的方法條件僅要作為設備中可發現的條件實例,如模擬所決定。實際的條件可能明顯不同,且可明顯變化自所示的條件。類似的設備結構可使用於高甲烷進氣,如關於圖7及8的討論。而且,循環及排放廢棄流可含有實質量的氫及一氧化碳,例如每一個皆大於約5莫 耳%、10莫耳%、或甚至每一成份皆20莫耳%。這些成份通常存在於進料,且所有非CO2產物流、亦即該循環的甲烷總是會含有一些CO及H2The method conditions shown in Tables 2 and 3 are only to be considered as examples of conditions that can be found in the device, as determined by the simulation. The actual conditions may vary significantly and may vary significantly from the conditions shown. A similar equipment structure can be used for high methane feed, as discussed with respect to Figures 7 and 8. Moreover, the recycle and discharge waste streams may contain substantial amounts of hydrogen and carbon monoxide, for example each greater than about 5 mole percent, 10 mole percent, or even 20 mole percent per component. These components are usually present in the feed, and all non-CO 2 product streams, ie, the recycled methane, will always contain some CO and H 2 .

圖7為以包括二氧化碳及甲烷的氣體進料,製造奈米碳管的單反應器系統700之簡化方法流程圖,其中甲烷為過量。相同的編號項目如前述圖形的討論,且刪除部分的參考號碼,以簡化圖形。在此具體實例中,雖然可使用任何比例,例如約80莫耳%CH4及20莫耳%CO2,進氣的甲烷可高於二氧化碳。高甲烷進氣702可使用於單反應器系統700或二反應器系統800(圖8),以形成CNTs。除了氣體分餾系統348已由歧管704所取代之外,這些系統700及800與上述討論類似。當氣體進料702為高甲烷時,CO2在方法中可接近消耗。於是,可無需進一步的分離。 7 is a simplified process flow diagram of a single reactor system 700 for producing carbon nanotubes with a gas feed comprising carbon dioxide and methane, wherein the methane is in excess. The same numbered items are discussed as in the previous figures, and part of the reference numbers are deleted to simplify the drawing. In this particular example, although any ratio can be used, such as about 80 mole % CH 4 and 20 mole % CO 2 , the methane of the intake gas can be higher than the carbon dioxide. High methane feed 702 can be used in single reactor system 700 or two reactor system 800 (Fig. 8) to form CNTs. These systems 700 and 800 are similar to the above discussion except that the gas fractionation system 348 has been replaced by a manifold 704. When the gas feed 702 to a high methane, CO 2 accessible consumed in the process. Thus, no further separation is required.

在歧管704中,乾氣流346可分離成數部分。第一部份形成循環氣706,其在靜態混合器306中與進氣702摻雜,以形成饋入反應器的混合氣流308。第二部份可使用作為低BTU燃料氣體528,例如饋入位於設施的發電設備134。除了少量的CO2以外,因乾氣流346包括類似比例的CH4、CO、及H2,在其可銷售至管線之前會需要一些純化。因此,輸出的CH4混合物流708會僅限於其他發電設備,而非使用於消費者的應用。 In manifold 704, dry gas stream 346 can be separated into portions. The first portion forms a recycle gas 706 that is doped with the intake 702 in a static mixer 306 to form a mixed gas stream 308 that is fed to the reactor. The second portion can be used as a low BTU fuel gas 528, such as feed to a power plant 134 located at the facility. Apart from a small amount of CO 2, due to the dry gas stream 346 includes a similar proportion of CH 4, CO, and H 2, before it can be sold to the pipeline will require some purification. Therefore, the output CH 4 mixture stream 708 will be limited to other power generation equipment, rather than to consumer applications.

圖8A、8B、及8C為以包括二氧化碳及甲烷的氣體進料,製造奈米碳管的二反應器系統之簡化方法流程圖,其 中甲烷為過量。相同的編號項目如前述圖形的討論,且刪除部分的參考號碼,以簡化圖形。 8A, 8B, and 8C are flow diagrams of a simplified method of a two-reactor system for producing a carbon nanotube by a gas feed comprising carbon dioxide and methane, The methane is in excess. The same numbered items are discussed as in the previous figures, and part of the reference numbers are deleted to simplify the drawing.

因氣體進料702的甲烷較高,乾氣流346會有低的CO2含量,使得分離不經濟。因此,如圖7所注意,氣體分餾系統可以歧管704所取代。剩下的方法會與關於圖5所討論的系統500類似。然而,因為CH4混合物708在商業上可售予能源市場,可使用建構以產生更高純度CH4的純化系統,例如約99莫耳%的CH4或更高。 Since the methane of the gas feed 702 is higher, the dry gas stream 346 will have a lower CO 2 content, making the separation uneconomical. Thus, as noted in Figure 7, the gas fractionation system can be replaced by a manifold 704. The remaining methods will be similar to the system 500 discussed with respect to FIG. However, since the mixture 708 CH 4 sold commercially in the energy market, may be used to produce a higher purity CH Construction purification system 4, for example from about 99 mole% of CH 4 or higher.

可瞭解形成奈米碳管的系統可包括任何數目的反應器,或任何數目的類型,包括所示的流體化床反應器。在一具體實例中,可使用超過二個反應器,以形成奈米碳管。 It will be appreciated that the system for forming the carbon nanotubes can include any number of reactors, or any number of types, including the illustrated fluidized bed reactors. In one embodiment, more than two reactors can be used to form a carbon nanotube.

反應器系統 Reactor system

圖9為形成奈米碳管902的流體化床反應器900的圖形。熱氣體進料流904經由管線906饋入流體化床反應器900的底部。可使用控制閥908,以調節熱氣體進料流904流入反應器中。熱氣體進料流904流經分佈板910,且會將維持在反應器壁914的催化劑球912的床流體化。如在此所用,「流體化」意為催化劑球912會在彼此附近流過而使氣泡通過,提供似流體流的行為。如在此討論,反應條件對任何暴露的金屬表面非常嚴苛,因為金屬表面會成為反應的催化劑。因此,反應會導致暴露的金屬表面緩慢的劣化。於是,反應器的內表面、包括反應器壁914及頭 915、以及分佈板910、及其他部件,可用陶瓷物質所製,以保護表面。 FIG. 9 is a diagram of a fluidized bed reactor 900 forming a carbon nanotube 902. Hot gas feed stream 904 is fed to the bottom of fluidized bed reactor 900 via line 906. Control valve 908 can be used to regulate the flow of hot gas feed stream 904 into the reactor. Hot gas feed stream 904 flows through distribution plate 910 and will fluidize the bed of catalyst balls 912 maintained at reactor wall 914. As used herein, "fluidizing" means that the catalyst balls 912 will flow near each other to pass the bubbles, providing a fluid-like behavior. As discussed herein, the reaction conditions are very severe for any exposed metal surface as the metal surface becomes a catalyst for the reaction. Therefore, the reaction causes a slow deterioration of the exposed metal surface. Thus, the inner surface of the reactor, including the reactor wall 914 and the head 915, as well as the distribution plate 910, and other components, may be made of a ceramic material to protect the surface.

當熱氣體進料流904流經催化劑顆粒912的流體化床時,會由催化劑球912形成CNTs 902。流動的熱氣體進料流904將CNTs 902帶入上方管線916,在此將其自反應器900移出。視流量而定,例如以控制閥908調整,一些量的催化劑球912、或催化劑球912碎裂的顆粒可帶入上方管線916中。於是,催化劑分離器918可用以將催化劑球912與反應器流出物流920的較大顆粒分離,並使其經由循環管線922返回反應器900。對催化劑分離器918可使用任何數目的結構,包括旋風分離器、沈降槽、料斗等。以圖10更詳細地討論在流體化床中發生的反應。 When hot gas feed stream 904 flows through the fluidized bed of catalyst particles 912, CNTs 902 are formed from catalyst balls 912. The flowing hot gas feed stream 904 brings the CNTs 902 into the upper line 916 where it is removed from the reactor 900. Depending on the flow rate, such as adjusted by control valve 908, some amount of catalyst ball 912, or particles of catalyst ball 912 that are fragmented, may be carried into upper line 916. Catalyst separator 918 can then be used to separate catalyst ball 912 from larger particles of reactor effluent stream 920 and return it to reactor 900 via recycle line 922. Any number of configurations can be used with the catalyst separator 918, including cyclones, settling tanks, hoppers, and the like. The reaction occurring in the fluidized bed is discussed in more detail in FIG.

圖10為以催化劑球1002形成奈米碳管的催化性反應1000之示意圖。一部份的CH4與在熱氣體進料流1006中的CO2之間的起始反應1004導致CO及H2以化學計量形成。過量的來源氣體1006繼續流經反應器,幫助床的流體化,並將CNTs 1008及催化劑顆粒1010帶離。 Figure 10 is a schematic illustration of a catalytic reaction 1000 for forming a carbon nanotube from a catalyst sphere 1002. A part of the CO and CH 4 and H 2 is formed in a stoichiometric hot gas feed stream 1006 in an initial reaction between CO 21004 leads. Excess source gas 1006 continues to flow through the reactor, helping to fluidize the bed and carry away CNTs 1008 and catalyst particles 1010.

形成CNTs 1008的反應在催化劑球1002上發生。可由顆粒1012的尺寸,控制CNTs 1008的尺寸及CNTs 1008的類型,例如單壁或多壁CNTs 1008。易言之,足夠尺寸鐵原子的核在顆粒邊界形成結核點,供碳產物在催化劑球1002上生長。通常,較小的顆粒1012導致CNTs 1008中的層數較少,且可用以獲得單壁CNTs 1008。可使用其他參數,同樣也影響最終產物的形貌,包括反應溫 度、壓力、及進氣流量。 The reaction to form CNTs 1008 occurs on catalyst sphere 1002. The size of the CNTs 1008 and the type of CNTs 1008, such as single or multi-walled CNTs 1008, can be controlled by the size of the particles 1012. In other words, a nucleus of sufficient size iron atoms forms a nodule point at the particle boundary for the carbon product to grow on the catalyst sphere 1002. Generally, the smaller particles 1012 result in fewer layers in the CNTs 1008 and can be used to obtain single walled CNTs 1008. Other parameters can be used, which also affect the morphology of the final product, including the reaction temperature. Degree, pressure, and intake air flow.

CO及H2在顆粒邊界1014反應,抬升活性催化劑顆粒1016離開催化劑球1002,且形成H2O 1018及CNTs 1008的固體碳。CNTs 1008自催化劑球1002及催化劑顆粒1010破裂。可捕捉較大的催化劑顆粒1010並返回反應器,例如,以關於圖9所討論的催化劑分離器918,而很細的催化劑顆粒1010會隨著CNTs 1008帶出。最終產物會包括約95莫耳%的固體碳及約5莫耳%的金屬,例如鐵。CNTs 1008常會團聚而形成叢集1020,為最終產物常見的形式。一些量的CO及H2通過反應器而未反應,且為反應器流出物流中的污染物。 CO and H 2 in the grain boundaries 1014 reactor, raising the catalyst activity of the catalyst particles leave the ball 1016 1002, and the solid carbon formed H 2 O 1018 and CNTs 1008's. The CNTs 1008 are broken from the catalyst sphere 1002 and the catalyst particles 1010. Larger catalyst particles 1010 can be captured and returned to the reactor, for example, with the catalyst separator 918 discussed with respect to Figure 9, while very fine catalyst particles 1010 are carried with the CNTs 1008. The final product will include about 95 mole percent solid carbon and about 5 mole percent metal, such as iron. CNTs 1008 often agglomerate to form cluster 1020, a common form of the final product. Some amount of unreacted H 2 and CO through the reactor, and the effluent stream as contaminants reactor.

隨著反應的進行,催化劑球1002劣化且最終會消耗。於是,反應可描述為金屬的粉塵反應。在一些具體實例中,金屬表面受到保護以防被陶瓷內襯的攻擊,因為金屬表面與反應條件的接觸不僅會劣化,而也會導致品質較差的產物形成。 As the reaction proceeds, the catalyst sphere 1002 deteriorates and eventually consumes. Thus, the reaction can be described as a dusty reaction of the metal. In some embodiments, the metal surface is protected from attack by the ceramic liner because contact of the metal surface with the reaction conditions not only degrades, but also results in poor quality product formation.

催化劑球1002可包括任何數量的其他金屬,例如鎳、釕、鈷、鉬及其他。然而,催化劑球1002上的催化性位址主要含有鐵原子。在一具體實例中,催化劑球1002包括金屬射出,例如用於噴擊之約20至50網目的金屬珠。在一具體實例中,催化劑可為不銹鋼球軸承等。 Catalyst ball 1002 can include any number of other metals, such as nickel, ruthenium, cobalt, molybdenum, and others. However, the catalytic site on catalyst sphere 1002 contains primarily iron atoms. In one embodiment, the catalyst sphere 1002 comprises a metal shot, such as a metal bead of about 20 to 50 mesh for spraying. In one embodiment, the catalyst can be a stainless steel ball bearing or the like.

氣體分餾系統 Gas fractionation system

圖11為氣體分餾系統1100的簡化方法流程圖’可使 用於製造奈米碳管的反應器系統。氣體分餾系統1100為整體的分餾方法,可使用於高CO2反應器系統,例如關於圖4的討論。在氣體分餾系統1100中,進氣1102饋入乾燥機1104,以將露點降低至約-70℉(約-56.7℃)或更低。進氣1102可相當於關於圖3至5所討論的乾氣流346。乾燥機1104可為固定或流體化乾燥機床,含有例如分子篩、乾燥劑等的吸附劑。也可使用其他乾燥機技術,例如冷凍乾燥機系統。在一些具體實例中,乾燥機可位在壓縮機338之前,可免於需要周溫熱交換器342。 11 is a simplified process flow diagram of a gas fractionation system 1100 that can be used in a reactor system for producing carbon nanotubes. The gas fractionation system 1100 is an integral fractionation process that can be used in high CO 2 reactor systems, such as discussed with respect to FIG. In the gas fractionation system 1100, the intake air 1102 is fed to a dryer 1104 to reduce the dew point to about -70 °F (about -56.7 °C) or lower. Intake 1102 may correspond to dry gas stream 346 as discussed with respect to Figures 3-5. The dryer 1104 can be a fixed or fluidized drying machine tool containing an adsorbent such as a molecular sieve, a desiccant, or the like. Other dryer technologies, such as freeze dryer systems, can also be used. In some embodiments, the dryer can be positioned prior to the compressor 338 to avoid the need for the ambient temperature heat exchanger 342.

乾氣體進料1106再饋入通過冷凍冷卻器1108,以降低準備分離的溫度。因CO2會由約-77℉(約-61℃)的氣體凝結,可使用多階段冷卻系統1110,以將溫度降低至大約此水準。多階段冷卻系統1110可包括熱回收系統1112,用以將具有乾氣體進料1106的能量1113之出口氣體加熱。 The dry gas feed 1106 is fed back through the chiller 1108 to reduce the temperature at which the separation is ready. CO 2 will condense because of from about -77 deg.] F (about -61 deg.] C) gas may be used multi-stage cooling system 1110, in order to reduce the temperature to approximately this level. The multi-stage cooling system 1110 can include a heat recovery system 1112 for heating the outlet gas of the energy 1113 having the dry gas feed 1106.

將冷卻的進料1116饋入分離槽1118,以分離液體流1120及蒸氣流1122。蒸氣流1122通過膨脹機1124,藉由以絕熱膨脹方法產生機械功1126而降低溫度。在一具體實例中,機械功1126係用以驅動發電機1128,可提供設備中所使用的部份電力。在另一具體實例中,機械功1126係用以驅動壓縮機,例如將多階段冷卻系統1110的冷凍劑流壓縮。膨脹可導致二相流1130。 The cooled feed 1116 is fed to a separation tank 1118 to separate the liquid stream 1120 and the vapor stream 1122. Vapor stream 1122 passes through expander 1124 to reduce temperature by generating mechanical work 1126 in an adiabatic expansion process. In one embodiment, mechanical work 1126 is used to drive generator 1128 to provide a portion of the power used in the device. In another embodiment, mechanical work 1126 is used to drive a compressor, such as compressing a refrigerant stream of multi-stage cooling system 1110. Expansion can result in a two-phase flow 1130.

液體流1120及二相流1130例如沿著分離塔1132的不同點,饋入分離塔1132。以再熱器1134將熱供應至分 離塔1132。以熱交換器1136的流將再熱器1134加熱。熱交換器1136可為冷卻系統的一部份,其雖然低於周溫,但較分離塔1132暖和。塔底流1138通過再熱器1134,且一部份1140在受熱後重新注入。再熱器1134的出口流1142提供CO2產物1144。一部份1146的CO2產物1144可循環通過熱交換器1136,以將能量帶至再熱器1134。 Liquid stream 1120 and two-phase stream 1130 are fed to separation column 1132, for example, at different points along separation column 1132. Heat is supplied to the separation column 1132 with a reheater 1134. The reheater 1134 is heated by the flow of the heat exchanger 1136. The heat exchanger 1136 can be part of a cooling system that, although below ambient temperature, is warmer than the separation column 1132. The bottom stream 1138 passes through the reheater 1134 and a portion 1140 is reinjected after being heated. Reheater outlet stream to provide CO 2 11421134 1144 product. Part 1144 1146 CO 2 product can be recycled through a heat exchanger 1136 to the energy band 1134 to the reheater.

分離塔1132的上方流1148為甲烷的強化流,例如包括約73莫耳%的CH4及約23莫耳%的CO2。應注意的是,可在冷卻器系統1112中使用上方流1148,以將乾氣體進料1106冷卻,將上方流1148加熱以形成循環氣1150。循環氣1150中可存在其他成份,包括例如約3.5莫耳% CO及H2。若要銷售甲烷,例如關於圖9討論的高甲烷反應系統中,可使用高純度的分離系統,如關於圖9的討論。 Stream 1148 above separation column 1132 is a fortified stream of methane, for example comprising about 73 mole % CH 4 and about 23 mole % CO 2 . It should be noted that the upper stream 1148 can be used in the chiller system 1112 to cool the dry gas feed 1106 and the upper stream 1148 to heat to form the recycle gas 1150. 1150 recycle gas may be present in the other ingredients, including for example, from about 3.5 mole% CO and H 2. To sell methane, such as in the high methane reaction system discussed with respect to Figure 9, a high purity separation system can be used, as discussed with respect to Figure 9.

關於圖11討論的結構及單元僅為示範性質。可對這些系統作任何數目的變化。而且,在具體實例中可使用其他的氣體分離系統,只要可達到流量及純度水準。 The structures and units discussed with respect to Figure 11 are merely exemplary. Any number of changes can be made to these systems. Moreover, other gas separation systems can be used in specific examples as long as the flow and purity levels are achieved.

包封系統 Encapsulation system

圖12為包封系統1200的簡化方法流程圖,該系統可將自單反應器系統的流出物流分離的奈米碳管包封。包封系統1200與圖5及6所示的分離系統518及632之閉鎖式料斗522重疊,且用以將包封方法的CNTs單離。 12 is a flow diagram of a simplified method of encapsulating system 1200 that encapsulates carbon nanotubes separated from the effluent stream of a single reactor system. The encapsulation system 1200 overlaps the latching hopper 522 of the separation systems 518 and 632 illustrated in Figures 5 and 6, and is used to singulate the CNTs of the encapsulation process.

包封系統1200為包封列1202的一部份。包封列1202 可具有採樣閥1204,以移出閉鎖式料斗522的CNTs。採樣閥1204可為旋轉閥,配置以使特定量的CNTs及氣體在部份旋轉循環時通過。在一些具體實例中,採樣閥1204可為球閥,配置以在選定的時段完全打開,使選定量的CNTs及氣體在完全關閉之前通過。容許CNTs及氣體流入鼓1206,以吹掃及冷卻。 The encapsulation system 1200 is part of the encapsulation column 1202. Envelope column 1202 A sampling valve 1204 can be provided to remove the CNTs of the lock hopper 522. The sampling valve 1204 can be a rotary valve configured to pass a particular amount of CNTs and gas during a partial spin cycle. In some embodiments, the sampling valve 1204 can be a ball valve configured to fully open for a selected period of time such that a selected amount of CNTs and gas pass before being fully closed. CNTs and gases are allowed to flow into the drum 1206 for purging and cooling.

在採樣閥1204已經關閉之後,吹掃流1208可打開進入鼓1206,以掃除殘流的氣體,例如CO、H2、H2O、及CH4。應注意的是,吹掃流1208可取自氣體分餾系統CO2豐富的一側,例如關於圖5所討論的吹掃氣流530。吹掃出口流1210會攜帶一些量的CNTs,及其他細微顆粒,且在被送回方法作為吹掃返回1214之前可通過過濾器1212。過濾器1212可為袋式過濾器、旋風分離器、或任何適當的分離系統。在完成吹掃之後,包封閥1216會打開,並使包括CNTs的流1218流至填充站1220,以待於鼓中包封或桶槽中待售。 After the sample has been closed valve 1204, 1208 may be the purge flow enters the open drum 1206, in order to remove the residual gas stream, such as CO, H 2, H 2 O , and CH 4. It should be noted that the purge flow may be taken from the 1208 side 2 rich gas fractionation system CO, e.g. purge stream 530 discussed with respect to FIG. 5. The purge outlet stream 1210 will carry some amount of CNTs, as well as other fine particles, and may pass through the filter 1212 before being sent back to the purge return 1214. Filter 1212 can be a bag filter, a cyclone, or any suitable separation system. After the purge is completed, the encapsulation valve 1216 opens and the stream 1218 comprising CNTs is flowed to the filling station 1220 for inclusion in the drum or in the tank for sale.

圖13為分離系統1300的簡化方法流程圖,該系統可將自二反應器系統的每一反應器流出物流分離的奈米碳管包封。如圖13所示,在二反應器系統中,例如關於圖7及8的討論,系統中每一反應器可具有獨立的包封列,例如包封列1202及1302。第一包封列1202可連接至分離系統518的閉鎖式料斗522,而第二包封列1302可連接至分離系統632的閉鎖式料斗522。因不同反應器可製造不同量的CNTs,雖然功能可能相同,設備的尺寸可不同。例 如,在第一個模擬中,以第一包封列1202單離的CNTs的量可為約162.7公噸/天(148,000公斤/天),而移出至第二包封列1302的量可為約57.5公噸/天(52,000公斤/天)。 13 is a flow diagram of a simplified method of separation system 1300 that encapsulates carbon nanotubes separated from each reactor effluent stream of a two reactor system. As shown in FIG. 13, in a two reactor system, such as discussed with respect to Figures 7 and 8, each reactor in the system can have separate encapsulation columns, such as encapsulation columns 1202 and 1302. The first enclosure column 1202 can be coupled to the lock hopper 522 of the separation system 518, while the second enclosure column 1302 can be coupled to the lock hopper 522 of the separation system 632. Different reactors can be manufactured with different amounts of CNTs, although the functions may be the same and the size of the equipment may vary. example For example, in the first simulation, the amount of CNTs that are separated by the first envelope column 1202 can be about 162.7 metric tons per day (148,000 kilograms per day), and the amount that is removed to the second envelope column 1302 can be about 57.5 metric tons / day (52,000 kg / day).

上述的單離系統僅為示範性質。具體實例中可使用任何數量的其他系統。然而,CNTs的密度很低,低於約0.5g/cc,視形貌分佈而定,且可最好在配置以將其自大氣單離的系統中包封,以降低對設備環境損失的量。而且,吹掃氣體可單離自進料氣體,如圖5及6所示的系統,或獨立提供給例如圖7及8的系統。 The above described single system is merely exemplary. Any number of other systems can be used in a specific example. However, the density of CNTs is very low, below about 0.5 g/cc, depending on the topographical distribution, and may preferably be encapsulated in a system that is isolated from the atmosphere to reduce the amount of environmental damage to the equipment. . Moreover, the purge gas may be separate from the feed gas, as shown in the systems of Figures 5 and 6, or independently provided to systems such as Figures 7 and 8.

方法 method

圖14為自包括甲烷及二氧化碳的進氣產生奈米碳管的方法1400。方法1400以方塊1402開始,其中獲得混合的CO2/CH4進料。該進料可得自任何數量的來源。如所提及,進料可包括採自地表下貯存區的天然氣、發電設備的廢氣、或來自天然或設備來源的任何數量的其他氣體。而且,具體實例中可使用其他進料,包括其他物質,例如合成氣、CO、H2、其他烴等。 14 is a method 1400 of producing a carbon nanotube from an intake gas comprising methane and carbon dioxide. The method 1400 begins in block 1402, wherein obtain a mixed CO 2 / CH 4 feed. This feed can be obtained from any number of sources. As mentioned, the feed may include natural gas from a subsurface storage area, exhaust from a power plant, or any other amount of gas from a natural or equipment source. Further, specific examples may be used in other feeds, including other substances, such as syngas, CO, H 2, other hydrocarbons and the like.

方塊1404中,進料與得自方法中產生的廢氣之循環氣混合。如在此所述,循環氣可得自冷凍氣體分餾、以及任何數量的其他技術的廢氣。在方塊1406中,以回收自反應方法的廢熱將混合的氣流加熱。加熱之後,方塊1408中,混合的氣流與反應器中的金屬催化劑反應,以形成 CNTs。方塊1410中,自廢氣分離CNTs。方塊1412中,將經分離的CNTs吹掃、冷卻、並包封以送至市場。 In block 1404, the feed is mixed with recycle gas from the offgas produced in the process. As described herein, the recycle gas can be obtained from fractional distillation of the chilled gas, as well as any number of other technologies. At a block 1406, the mixed gas stream is heated with waste heat recovered from the reaction process. After heating, in block 1408, the mixed gas stream reacts with the metal catalyst in the reactor to form CNTs. In block 1410, the CNTs are separated from the exhaust. In block 1412, the separated CNTs are purged, cooled, and encapsulated for delivery to the market.

廢氣經冷卻以移除反應時形成的過量水。當方法在高溫及高壓下進行時,常溫熱交換器提供足夠的冷卻,以將水蒸氣凝結出來。方塊1406至1414中所述的方法會對反應系統中每一系列的反應器重複。 The exhaust gas is cooled to remove excess water formed during the reaction. When the process is carried out at elevated temperatures and pressures, the ambient temperature heat exchanger provides sufficient cooling to condense the water vapor. The method described in blocks 1406 to 1414 is repeated for each series of reactors in the reaction system.

方塊1416中,將廢氣分餾成富CO2流及富CH4流。方塊1418中,無論含有過量藥劑的哪個流皆可銷售,而其他流可循環至方塊1404,以待使用於方法中。 In block 1416, the offgas is fractionated into a CO 2 rich stream and a CH 4 rich stream. In block 1418, any stream containing excess drug can be sold, while other streams can be recycled to block 1404 for use in the method.

本申請專利範圍的主題內容之進一步其他具體實例,可包括以下編號段落所列元素的任何組合: Further specific examples of the subject matter of the scope of the present patent application may include any combination of the elements listed in the following numbered paragraphs:

1、一種製造奈米碳管的系統,其包含:進氣加熱器,其係配置以廢氣流的廢熱將進氣加熱;反應器,其係配置以博希反應由進氣形成奈米碳管;分離器,其係配置為以自反應器流出物流將奈米碳管分離,以形成廢氣流;及水移除系統,其包含周溫熱交換器及配置以自廢氣流中分離大部分的水以形成乾廢氣流之分離器。 What is claimed is: 1. A system for producing a carbon nanotube comprising: an intake heater configured to heat the intake air with waste heat of the exhaust stream; and a reactor configured to form a carbon nanotube from the intake air by a Bosch reaction a separator configured to separate the carbon nanotubes from the reactor effluent stream to form an exhaust gas stream; and a water removal system comprising a peripheral temperature heat exchanger and configured to separate a majority of the exhaust gas stream Water to form a separator for the dry exhaust stream.

2、如第1段之系統,其中該周溫熱交換器包含水冷卻器。 2. The system of paragraph 1, wherein the ambient temperature heat exchanger comprises a water cooler.

3、如第1或2段之系統,其中該周溫熱交換器包含氣冷式熱交換器。 3. The system of paragraph 1 or 2, wherein the ambient temperature heat exchanger comprises an air cooled heat exchanger.

4、如第1、2或3段之系統,其包含包封加熱器,其係配置為以在系統初始啟動階段將進氣加熱。 4. The system of paragraph 1, 2 or 3, comprising an encapsulating heater configured to heat the intake air during an initial startup phase of the system.

5、如前述任一段之系統,其包含:壓縮機,其係配置以提高乾廢氣流的壓力;及最終水移除系統,其係配置以移除乾廢氣流中的水。 5. The system of any of the preceding paragraphs comprising: a compressor configured to increase the pressure of the dry exhaust stream; and a final water removal system configured to remove water from the dry exhaust stream.

6、如第5段之系統,其包含氣體分餾系統,其係配置以自乾廢氣流中分離富甲烷流及富CO2流。 6. The system of paragraph 5, comprising a gas fractionation system, which system is configured to separate from the dry waste gas stream enriched in methane stream and the CO 2 rich stream.

7、如第6段之系統,其包含混合系統,其係配置以在進氣加熱器之前,將富甲烷流混合入進氣中。 7. The system of paragraph 6, comprising a mixing system configured to mix the methane enriched stream into the intake air prior to the intake heater.

8、如第1至5段任一段之系統,其中該反應器為使用進氣的逆流將催化劑流體化的流體化床反應器。 8. The system of any of paragraphs 1 to 5, wherein the reactor is a fluidized bed reactor fluidizing the catalyst using a countercurrent flow of the feed gas.

9、如第8段之系統,其中該催化劑包含金屬噴擊珠。 9. The system of paragraph 8, wherein the catalyst comprises metal spray beads.

10、如第1至5或8段任一段之系統,其包含:熱交換器,其係配置以廢氣流的廢熱將乾廢氣流加熱,以形成第二進氣;第二反應器,其係配置以第二進氣形成奈米碳管;分離器,其係配置以自第二反應器的流出物流中分離奈米碳管,以形成第二廢氣流,且其中該使用於進氣加熱器中的廢氣流包含第二廢氣流;及水移除系統,其係配置以使用周溫熱交換器將第二廢氣流中的水分離,以冷卻第二廢氣流,並移除大部分的水以形成第二乾廢氣流。 10. The system of any of paragraphs 1 to 5 or 8, comprising: a heat exchanger configured to heat the dry exhaust stream with waste heat of the exhaust stream to form a second intake; the second reactor Configuring a second intake air to form a carbon nanotube; a separator configured to separate the carbon nanotube from the effluent stream of the second reactor to form a second exhaust stream, and wherein the use is for an intake heater The exhaust stream comprises a second exhaust stream; and a water removal system configured to separate the water in the second exhaust stream using a peripheral temperature heat exchanger to cool the second exhaust stream and remove most of the water To form a second dry exhaust stream.

11、如第10段之系統,其包含壓縮機,其係配置以提高第二乾廢氣流的壓力;及 最終水移除系統,其係配置以移除第二廢氣流中的水。 11. The system of paragraph 10, comprising a compressor configured to increase the pressure of the second dry exhaust stream; A final water removal system is configured to remove water from the second exhaust stream.

12、如第11段之系統,其包含氣體分餾系統,其係配置以自第二乾廢氣流中分離富甲烷流及富CO2流。 12. The system of paragraph 11, comprising a gas fractionation system, which system is configured to dry exhaust gas stream from the second separation of methane enriched stream and the CO 2 rich stream.

13、如第12段之系統,其包含混合系統,其係配置以在進氣加熱器之前,將富甲烷流混合入進氣中。 13. The system of paragraph 12, comprising a mixing system configured to mix the methane enriched stream into the intake air prior to the intake heater.

14、如第1至5、8或10段任一段之系統,其中該反應器為使用進氣的逆流將催化劑流體化的流體化床反應器。 14. The system of any of paragraphs 1 to 5, 8 or 10, wherein the reactor is a fluidized bed reactor fluidizing the catalyst using a countercurrent of the feed gas.

15、如第14段之系統,其中該催化劑包含金屬噴擊珠。 15. The system of paragraph 14, wherein the catalyst comprises metal spray beads.

16、如第14段之系統,其中該催化劑包含含有鐵及鎳、鉻、或其任何組合的金屬珠。 16. The system of paragraph 14, wherein the catalyst comprises metal beads comprising iron and nickel, chromium, or any combination thereof.

17、如第14段之系統,其中該催化劑包含尺寸介於約25網目至50網目的金屬珠。 17. The system of paragraph 14, wherein the catalyst comprises metal beads having a size between about 25 mesh and 50 mesh.

18、如第1至5、8、10或14段任一段之系統,其中該反應器係內襯有一材料,該材料係配置以防止金屬殼劣化。 The system of any of paragraphs 1 to 5, 8, 10 or 14, wherein the reactor is lined with a material configured to prevent deterioration of the metal shell.

19、如第1至5、8、10、14或18段任一段之系統,其中在反應器與交流式熱交換器之間的連接管線以防火材料為內襯,其係配置以保護金屬表面防止劣化。 19. The system of any of paragraphs 1 to 5, 8, 10, 14 or 18, wherein the connecting line between the reactor and the alternating heat exchanger is lined with a fireproof material configured to protect the metal surface Prevent deterioration.

20、如第1至5、8、10、14、18或19段任一段之系統,其中該進氣加熱器包含熱交換器,其係配置以用於金屬粉塵環境中。 The system of any of paragraphs 1 to 5, 8, 10, 14, 18 or 19, wherein the intake heater comprises a heat exchanger configured for use in a metal dust environment.

21、一種形成奈米碳管的方法,其包含:於反應器中利用博希反應形成奈米碳管;自反應器流出物中分離奈米碳管,而形成廢氣流;以來自該廢氣流的廢熱將進氣、乾廢氣流、或二者加熱;及於周溫熱交換器中將廢氣流冷卻使水蒸氣凝結,而形成乾廢氣流。 21. A method of forming a carbon nanotube comprising: forming a carbon nanotube by a Bosch reaction in a reactor; separating a carbon nanotube from the reactor effluent to form an exhaust stream; The waste heat heats the intake, dry exhaust stream, or both; and the exhaust stream is cooled in a peripheral temperature heat exchanger to condense the water vapor to form a dry exhaust stream.

22、如第21段之方法,其包含:將乾廢氣流壓縮,而形成經壓縮的氣體;將經壓縮的氣體通過周溫熱交換器,以冷凝及移除任何剩餘的水蒸氣;將經壓縮的氣體分餾,以分離甲烷及二氧化碳;及將甲烷加入進氣中。 22. The method of paragraph 21, comprising: compressing the dry exhaust stream to form a compressed gas; passing the compressed gas through a peripheral temperature heat exchanger to condense and remove any remaining water vapor; The compressed gas is fractionated to separate methane and carbon dioxide; and methane is added to the feed.

23、如第21或22段之方法,其包含:將乾廢氣流饋入第二反應器中;在第二反應器中形成另一部份的奈米碳管;將奈米碳管分離,而形成第二廢氣流;以來自該第二廢氣流的廢熱將進料加熱;及於周溫熱交換器中將第二廢氣流冷卻以冷凝水蒸氣,形成第二乾廢氣流。 23. The method of paragraph 21 or 22, comprising: feeding a dry exhaust stream into the second reactor; forming another portion of the carbon nanotube in the second reactor; separating the carbon nanotubes, And forming a second exhaust stream; heating the feed with waste heat from the second exhaust stream; and cooling the second exhaust stream to condense the water vapor in the ambient temperature heat exchanger to form a second dry exhaust stream.

24、如第21至23段任一段之方法,其包含:將第二乾廢氣流壓縮,而形成經壓縮的氣體;將經壓縮的氣體通過周溫熱交換器,以冷凝及移除任何剩餘的水蒸氣; 將經壓縮的氣體分餾,以分離甲烷及二氧化碳;及將甲烷加入進氣中。 The method of any of paragraphs 21 to 23, comprising: compressing the second dry exhaust stream to form a compressed gas; passing the compressed gas through a peripheral temperature heat exchanger to condense and remove any remaining Water vapor The compressed gas is fractionated to separate methane and carbon dioxide; and methane is added to the feed.

25、一種形成奈米碳管的反應系統,其包含:二個或多個反應器,其係配置以利用博希反應自氣流中形成奈米碳管,其中在最終反應器之前的每一反應器之流出物係用以作為下游反應器的進料流,且其中最終反應器的流出物流包含反應物已耗盡之廢棄流;在每一反應器下游的分離系統,其中該分離系統係配置以自反應器的流出物中移出奈米碳管;在每一分離系統下游的進料加熱器,其中該進料加熱器包含熱交換器,其係配置以使用來自反應器流出物的廢熱將供下一個反應器的進氣流加熱,且其中在最終反應器下游的進料加熱器係配置以將供第一反應器的氣流加熱;在每一進料加熱器下游的周溫熱交換器,其中該周溫熱交換器係配置以自流出物中移除水,而形成供下一個反應器用的進料流;壓縮機,其係配置以提高反應物已耗盡之廢棄流的壓力;在壓縮機下游的周溫熱交換器,其係配置以自該反應物已耗盡之廢棄流中移除水;氣體分餾系統,其係配置以將反應物已耗盡之廢棄流分離成富甲烷流及富二氧化碳流;及混合器,其係配置以將富甲烷流或富二氧化碳流摻入初始的進料流中。 25. A reaction system for forming a carbon nanotube comprising: two or more reactors configured to form a carbon nanotube from a gas stream using a Bosch reaction, wherein each reaction prior to the final reactor The effluent of the reactor is used as a feed stream to the downstream reactor, and wherein the effluent stream of the final reactor comprises a waste stream from which the reactants have been depleted; a separation system downstream of each reactor, wherein the separation system is configured Removing the carbon nanotubes from the effluent of the reactor; a feed heater downstream of each separation system, wherein the feed heater comprises a heat exchanger configured to use waste heat from the reactor effluent The feed stream for the next reactor is heated, and wherein the feed heater downstream of the final reactor is configured to heat the gas stream for the first reactor; the peripheral temperature heat exchanger downstream of each feed heater Wherein the ambient temperature heat exchanger is configured to remove water from the effluent to form a feed stream for the next reactor; the compressor is configured to increase the pressure of the spent stream from which the reactants have been depleted; in a peripheral temperature heat exchanger downstream of the compressor, configured to remove water from the waste stream from which the reactant has been depleted; a gas fractionation system configured to separate the waste stream from which the reactants have been depleted into a methane-rich stream And a carbon dioxide rich stream; and a mixer configured to incorporate a methane rich stream or a carbon rich stream into the initial feed stream.

26、如第25段之反應系統,其中該反應器包含使用金屬珠作為催化劑的流體化床反應器。 26. The reaction system of paragraph 25, wherein the reactor comprises a fluidized bed reactor using metal beads as a catalyst.

27、如第25或26段之反應系統,其包含在每一周溫熱交換器下游的分離槽,其中該分離槽係配置以自氣流中分離液態水。 27. The reaction system of paragraph 25 or 26, comprising a separation tank downstream of each of the weekly heat exchangers, wherein the separation tank is configured to separate liquid water from the gas stream.

28、如第25至27段任一段之反應系統,其包含多個包封加熱器,其係配置以將該等二個或更多反應器中每一個的進料流加熱。 28. The reaction system of any of paragraphs 25 to 27, comprising a plurality of encapsulating heaters configured to heat the feed stream of each of the two or more reactors.

29、如第25至28段任一段之反應系統,其包含包封加熱器,其係配置以將供設備啟動用的初始進料流加熱。 29. The reaction system of any of paragraphs 25 to 28, comprising an encapsulating heater configured to heat an initial feed stream for starting the apparatus.

30、如第29段之反應系統,其中該包封加熱器係用以將後續反應器的進料流加熱。 30. The reaction system of paragraph 29, wherein the encapsulating heater is for heating a feed stream of a subsequent reactor.

31、如第29段之反應系統,其中該包封加熱器係為配置以現場安裝之加熱器或電力加熱器、配置以供氣體加熱用的商用加熱器、或其任何組合。 31. The reaction system of paragraph 29, wherein the encapsulating heater is a heater or electric heater configured to be installed in the field, a commercial heater configured for gas heating, or any combination thereof.

32、如第29段之反應系統,其中該包封加熱器係配置以加熱還原氣體流而無實質傷害。 32. The reaction system of paragraph 29, wherein the encapsulating heater is configured to heat the reducing gas stream without substantial damage.

本技術可接受各種變化及替代形式,上述討論的具體實例僅以範例顯示。然而,應再次瞭解本技術並非受在此揭示的特殊具體實例所限制。實際上,本技術包括所有落在申請專利範圍的真正精神與範圍內之替代方案、變化、及均等。 The present technology is susceptible to various modifications and alternative forms, and the specific examples discussed above are shown by way of example only. However, it should be understood that the present technology is not limited by the specific embodiments disclosed herein. In fact, this technology includes all alternatives, variations, and equivalents that fall within the true spirit and scope of the invention.

102‧‧‧進氣 102‧‧‧ intake

104‧‧‧熱交換器 104‧‧‧ heat exchanger

106‧‧‧熱 106‧‧‧Hot

108‧‧‧經加熱的進氣 108‧‧‧heated intake

110‧‧‧反應器 110‧‧‧Reactor

112‧‧‧奈米碳管 112‧‧‧Nano Carbon Tube

114‧‧‧流動流 114‧‧‧current flow

116‧‧‧廢氣流 116‧‧‧Exhaust flow

118‧‧‧水冷卻器 118‧‧‧Water cooler

120‧‧‧水 120‧‧‧ water

122‧‧‧廢氣流 122‧‧‧Exhaust flow

124‧‧‧氣體分餾系統 124‧‧‧ gas fractionation system

126‧‧‧循環流 126‧‧‧Circular flow

128‧‧‧過量進料 128‧‧‧Excess feed

130‧‧‧管線 130‧‧‧ pipeline

132‧‧‧加強油回收方法 132‧‧‧Enhanced oil recovery method

134‧‧‧發電設備 134‧‧‧Power generation equipment

136‧‧‧電力 136‧‧‧Power

202‧‧‧碳 202‧‧‧Carbon

204‧‧‧氫 204‧‧‧ hydrogen

206‧‧‧氧 206‧‧‧Oxygen

208‧‧‧平衡線 208‧‧‧balance line

210‧‧‧平衡線 210‧‧‧ Balance line

212‧‧‧博希反應區 212‧‧·Boch reaction zone

302‧‧‧進氣 302‧‧‧ intake

304‧‧‧循環氣 304‧‧‧ cycle gas

306‧‧‧靜態混合器 306‧‧‧Static mixer

308‧‧‧混合氣流 308‧‧‧ Mixed airflow

310‧‧‧熱交換器 310‧‧‧ heat exchanger

312‧‧‧經加熱的氣流 312‧‧‧heated airflow

314‧‧‧包封加熱器 314‧‧‧Encapsulated heater

316‧‧‧熱氣流 316‧‧‧ hot air

318‧‧‧流體化床反應器 318‧‧‧ Fluidized Bed Reactor

320‧‧‧反應器流出物流 320‧‧‧Reactor effluent logistics

322‧‧‧分離裝置 322‧‧‧Separation device

324‧‧‧奈米碳管 324‧‧‧Nano Carbon Tube

326‧‧‧廢氣流 326‧‧‧Exhaust flow

328‧‧‧經冷卻的廢棄流 328‧‧‧ cooled waste stream

330‧‧‧周溫熱交換器 330‧‧‧Weed temperature heat exchanger

332‧‧‧分離槽 332‧‧‧Separation tank

334‧‧‧水 334‧‧‧ water

336‧‧‧氣流 336‧‧‧ airflow

338‧‧‧壓縮機 338‧‧‧Compressor

340‧‧‧高壓流 340‧‧‧High pressure flow

342‧‧‧周溫熱交換器 342‧‧‧Weed temperature heat exchanger

344‧‧‧分離槽 344‧‧‧Separation tank

346‧‧‧乾氣流 346‧‧‧dry airflow

348‧‧‧氣體分餾系統 348‧‧‧ gas fractionation system

350‧‧‧過量進料 350‧‧‧Excess feed

402‧‧‧廢氣流 402‧‧‧Exhaust flow

404‧‧‧熱交換器 404‧‧‧ heat exchanger

406‧‧‧經冷卻的廢氣流 406‧‧‧ cooled exhaust gas stream

408‧‧‧周溫熱交換器 408‧‧‧Weed temperature heat exchanger

410‧‧‧分離槽 410‧‧‧Separation tank

412‧‧‧反應物流 412‧‧‧Reaction Logistics

414‧‧‧經加熱之流 414‧‧‧heated stream

416‧‧‧第二流體化床反應器 416‧‧‧Second fluidized bed reactor

418‧‧‧第二包封加熱器 418‧‧‧Second-encapsulated heater

420‧‧‧第二反應器流出物流 420‧‧‧Second reactor effluent

422‧‧‧第二分離器 422‧‧‧Second separator

424‧‧‧廢氣流 424‧‧‧Exhaust flow

502‧‧‧管狀熱交換器 502‧‧‧Tubular heat exchanger

504‧‧‧第二熱交換器 504‧‧‧second heat exchanger

506‧‧‧第一陶瓷塊狀熱交換器 506‧‧‧First ceramic block heat exchanger

510‧‧‧第二陶瓷塊狀熱交換器 510‧‧‧Second ceramic block heat exchanger

512‧‧‧箭號 512‧‧‧Arrow

514‧‧‧入口閥 514‧‧‧Inlet valve

516‧‧‧出口閥 516‧‧‧Export valve

518‧‧‧分離系統 518‧‧‧Separation system

520‧‧‧旋風分離器 520‧‧‧Cyclone separator

522‧‧‧閉鎖式料斗 522‧‧‧Lock hopper

524‧‧‧過濾器 524‧‧‧Filter

526‧‧‧廢氣流 526‧‧‧Exhaust flow

528‧‧‧燃料氣流 528‧‧‧fuel flow

530‧‧‧吹掃氣流 530‧‧‧purge airflow

602‧‧‧熱交換器 602‧‧‧ heat exchanger

604‧‧‧第二熱交換器 604‧‧‧second heat exchanger

606‧‧‧熱交換器 606‧‧‧ heat exchanger

607‧‧‧經冷卻的流出物流 607‧‧‧ cooled effluent

608‧‧‧分離系統 608‧‧‧Separation system

609‧‧‧廢氣流 609‧‧‧Exhaust flow

610‧‧‧熱交換器 610‧‧‧ heat exchanger

612‧‧‧周溫熱交換器 612‧‧‧Weed temperature heat exchanger

614‧‧‧分離槽 614‧‧‧Separation tank

616‧‧‧乾流 616‧‧‧The main stream

618‧‧‧經加熱的氣流 618‧‧‧heated airflow

622‧‧‧包封加熱器 622‧‧‧Enclosed heater

624‧‧‧最終熱氣流 624‧‧‧Final hot air

626‧‧‧第二流體化床反應器 626‧‧‧Second fluidized bed reactor

628‧‧‧反應器流出物流 628‧‧‧Reactor effluent

630‧‧‧流出物流 630‧‧‧Outflow logistics

632‧‧‧分離系統 632‧‧‧Separation system

634‧‧‧廢氣流 634‧‧‧Exhaust flow

702‧‧‧進氣 702‧‧‧ intake

704‧‧‧歧管 704‧‧‧Management

706‧‧‧循環氣 706‧‧‧ cycle gas

708‧‧‧CH4混合物 708‧‧‧CH 4 mixture

900‧‧‧流體化床反應器 900‧‧‧Fluidized bed reactor

902‧‧‧奈米碳管 902‧‧・nano carbon tube

904‧‧‧熱氣體進料流 904‧‧‧hot gas feed stream

906‧‧‧管線 906‧‧‧ pipeline

908‧‧‧控制閥 908‧‧‧Control valve

910‧‧‧分配板 910‧‧‧Distribution board

912‧‧‧催化劑球 912‧‧‧Catalyst Ball

914‧‧‧反應器壁 914‧‧‧reactor wall

915‧‧‧頭 915‧‧ head

916‧‧‧上方管線 916‧‧‧Upper pipeline

920‧‧‧反應器流出物流 920‧‧‧Reactor effluent

922‧‧‧循環管線 922‧‧‧Circular pipeline

1002‧‧‧催化劑球 1002‧‧‧Catalyst Ball

1004‧‧‧初始反應 1004‧‧‧ initial reaction

1006‧‧‧熱氣體進料流 1006‧‧‧hot gas feed stream

1008‧‧‧奈米碳管 1008‧‧‧Nano Carbon Tube

1010‧‧‧催化劑顆粒 1010‧‧‧ catalyst particles

1012‧‧‧顆粒 1012‧‧‧Particles

1014‧‧‧顆粒邊界 1014‧‧‧ grain boundaries

1020‧‧‧叢集 1020‧‧ ‧ cluster

1100‧‧‧氣體分餾系統 1100‧‧‧ gas fractionation system

1102‧‧‧進氣 1102‧‧‧ intake

1104‧‧‧乾燥機 1104‧‧‧Dryer

1106‧‧‧乾氣體進料 1106‧‧‧dry gas feed

1108‧‧‧冷凍冷卻器 1108‧‧‧Freezer cooler

1110‧‧‧多階段冷卻系統 1110‧‧‧Multi-stage cooling system

1112‧‧‧熱回收系統 1112‧‧‧Heat recovery system

1113‧‧‧能量 1113‧‧‧ Energy

1116‧‧‧冷卻的進料 1116‧‧‧Cooled feed

1118‧‧‧分離槽 1118‧‧‧Separation tank

1120‧‧‧液體流 1120‧‧‧Liquid flow

1122‧‧‧蒸氣流 1122‧‧‧Vapor flow

1124‧‧‧膨脹機 1124‧‧‧Expansion machine

1126‧‧‧機械功 1126‧‧‧Mechanical work

1128‧‧‧發電機 1128‧‧‧Generator

1130‧‧‧二相流 1130‧‧‧Two-phase flow

1132‧‧‧分離塔 1132‧‧‧Separation Tower

1134‧‧‧再熱器 1134‧‧‧reheater

1136‧‧‧熱交換器 1136‧‧‧ heat exchanger

1138‧‧‧塔底流 1138‧‧‧ bottom stream

1140‧‧‧部份 1140‧‧‧Parts

1142‧‧‧出口流 1142‧‧‧Export stream

1144‧‧‧CO2產物 1144‧‧‧CO 2 product

1146‧‧‧部份 1146‧‧‧Parts

1148‧‧‧上方流 1148‧‧‧Upstream

1150‧‧‧循環氣 1150‧‧‧ cycle gas

1200‧‧‧包封系統 1200‧‧‧Encapsulation system

1202‧‧‧包封列 1202‧‧‧Enclosed column

1204‧‧‧採樣閥 1204‧‧‧Sampling valve

1206‧‧‧鼓 1206‧‧‧ drum

1208‧‧‧吹掃流 1208‧‧‧Sweeping stream

1210‧‧‧吹掃出口流 1210‧‧‧ Purge the exit stream

1212‧‧‧過濾器 1212‧‧‧Filter

1214‧‧‧吹掃返回 1214‧‧‧Sweep back

1216‧‧‧包封閥 1216‧‧‧Encapsulation valve

1218‧‧‧流 1218‧‧‧ flow

1220‧‧‧填充站 1220‧‧‧fill station

1300‧‧‧分離系統 1300‧‧‧Separation system

1302‧‧‧包封列 1302‧‧‧Package

本發明技術的優點可藉由參考以下詳細說明及所附圖式而更加瞭解,其中:圖1為產生奈米碳管(例如作為二氧化碳隔離反應的副產物)之反應系統的方塊圖;圖1A為於加強油回收(EOR)方法中,使用過量二氧化碳進料的方塊圖;圖1B為於發電方法中,使用過量甲烷進料的方塊圖;圖2為碳、氫、及氧之間平衡的C-H-O平衡圖,指出在各種溫度條件下呈平衡狀態的物種;圖3為以包括二氧化碳及甲烷的進氣製造奈米碳管之單一反應器系統的簡化方法流程圖;圖4為以包括二氧化碳及甲烷的進氣製造奈米碳管之二反應器系統的簡化方法流程圖;圖5為以包括二氧化碳及甲烷的進氣製造奈米碳管之單一反應器系統的簡化方法流程圖,其中二氧化碳為過量;圖6A、6B及6C為以包括二氧化碳及甲烷的進氣製造奈米碳管之二反應器系統的簡化方法流程圖,其中二氧化碳為過量;圖7為以包括二氧化碳及甲烷的進氣製造奈米碳管之單一反應器系統的簡化方法流程圖,其中甲烷為過量;圖8A、8B及8C為以包括二氧化碳及甲烷的進氣製造奈米碳管之二反應器系統的簡化方法流程圖,其中甲烷 為過量;圖9為形成奈米碳管的流體化床反應器的圖;圖10為在催化劑球上形成奈米碳管的催化性反應示意圖;圖11為氣體分餾方法的簡化方法流程圖,其可用於將製造奈米碳管的反應器系統中過量的二氧化碳進料分離;圖12為包封系統的簡化方法流程圖,其可將由單一反應器系統的反應器流出物流所分離出的奈米碳管包封;圖13為包封系統的簡化方法流程圖,其可將由二反應器系統的每一反應器流出物流分離出的奈米碳管包封;圖14為以包括甲烷及二氧化碳的進氣產生奈米碳管的方法。 The advantages of the present technology can be further understood by referring to the following detailed description and the accompanying drawings in which: FIG. 1 is a block diagram of a reaction system for producing a carbon nanotube (for example, as a by-product of carbon dioxide isolation reaction); For the enhanced oil recovery (EOR) process, a block diagram of the excess carbon dioxide feed is used; Figure 1B is a block diagram of the excess methane feed used in the power generation process; Figure 2 is a balance between carbon, hydrogen, and oxygen. CHO balance diagram indicating species that are in equilibrium under various temperature conditions; Figure 3 is a simplified method flow diagram of a single reactor system for producing carbon nanotubes from feed gas comprising carbon dioxide and methane; A simplified method flow diagram for a two-reactor system for the production of carbon nanotubes from the feed of methane; FIG. 5 is a simplified method flow diagram of a single reactor system for producing carbon nanotubes from an inlet comprising carbon dioxide and methane, wherein carbon dioxide is Excess; FIG. 6A, 6B and 6C are simplified flow diagrams of a two-reactor system for producing a carbon nanotube with an intake gas comprising carbon dioxide and methane, wherein the carbon dioxide is in excess; 7 is a simplified method flow diagram of a single reactor system for producing carbon nanotubes from an intake gas comprising carbon dioxide and methane, wherein methane is in excess; and Figures 8A, 8B and 8C are carbon nanotubes produced from carbon dioxide and methane. Flow chart of a simplified method for a two-tube reactor system in which methane Figure 9 is a schematic diagram of a fluidized bed reactor for forming a carbon nanotube; Figure 10 is a schematic diagram of a catalytic reaction for forming a carbon nanotube on a catalyst sphere; and Figure 11 is a flow chart of a simplified method for a gas fractionation method. It can be used to separate excess carbon dioxide feed in a reactor system for producing carbon nanotubes; Figure 12 is a simplified process flow diagram of an encapsulation system that can separate the naphthalene separated from the reactor effluent stream of a single reactor system Rice carbon tube encapsulation; Figure 13 is a simplified method flow diagram of the encapsulation system, which encapsulates the carbon nanotubes separated from each reactor effluent stream of the two reactor system; Figure 14 includes methane and carbon dioxide The method of generating the carbon nanotubes by the intake air.

300‧‧‧單反應器系統 300‧‧‧Single Reactor System

302‧‧‧進氣 302‧‧‧ intake

304‧‧‧循環氣 304‧‧‧ cycle gas

306‧‧‧靜態混合器 306‧‧‧Static mixer

308‧‧‧混合氣流 308‧‧‧ Mixed airflow

310‧‧‧熱交換器 310‧‧‧ heat exchanger

312‧‧‧經加熱的氣流 312‧‧‧heated airflow

314‧‧‧包封加熱器 314‧‧‧Encapsulated heater

316‧‧‧熱氣流 316‧‧‧ hot air

318‧‧‧流體化床反應器 318‧‧‧ Fluidized Bed Reactor

320‧‧‧反應器流出物流 320‧‧‧Reactor effluent logistics

322‧‧‧分離裝置 322‧‧‧Separation device

324‧‧‧奈米碳管 324‧‧‧Nano Carbon Tube

326‧‧‧廢氣流 326‧‧‧Exhaust flow

328‧‧‧經冷卻的廢棄流 328‧‧‧ cooled waste stream

330‧‧‧周溫熱交換器 330‧‧‧Weed temperature heat exchanger

332‧‧‧分離槽 332‧‧‧Separation tank

334‧‧‧水 334‧‧‧ water

336‧‧‧氣流 336‧‧‧ airflow

338‧‧‧壓縮機 338‧‧‧Compressor

340‧‧‧高壓流 340‧‧‧High pressure flow

342‧‧‧周溫熱交換器 342‧‧‧Weed temperature heat exchanger

344‧‧‧分離槽 344‧‧‧Separation tank

346‧‧‧乾氣流 346‧‧‧dry airflow

348‧‧‧氣體分餾系統 348‧‧‧ gas fractionation system

350‧‧‧過量進料 350‧‧‧Excess feed

Claims (30)

一種製造奈米碳管的系統,其包含:進氣加熱器,其包含經配置為以來自廢氣流的廢熱將進氣加熱的熱交換器,其中該熱交換器包含殼-及-管狀熱交換器或陶瓷塊狀熱交換器;反應器,其係配置為接收該熱交換器下游之進氣並以博希(Bosch)反應由該進氣形成奈米碳管;分離器,其係配置為以自反應器流出物流中分離出奈米碳管,而形成該廢氣流;及水移除系統,其包含周溫熱交換器及分離槽,該水移除系統係配置為以自該廢氣流中分離大部分的水而形成乾廢氣流。 A system for producing a carbon nanotube comprising: an intake heater comprising a heat exchanger configured to heat intake air with waste heat from an exhaust stream, wherein the heat exchanger comprises a shell-and-tubular heat exchange Or a ceramic block heat exchanger; a reactor configured to receive the intake air downstream of the heat exchanger and form a carbon nanotube from the intake air in a Bosch reaction; the separator is configured to Separating a carbon nanotube from the reactor effluent stream to form the exhaust stream; and a water removal system comprising a peripheral temperature heat exchanger and a separation tank configured to flow from the exhaust stream Most of the water is separated to form a dry exhaust stream. 如申請專利範圍第1項之系統,其中該周溫熱交換器包含水冷卻器以冷凝該大部分的水。 The system of claim 1, wherein the ambient temperature heat exchanger comprises a water cooler to condense the majority of the water. 如申請專利範圍第1項之系統,其中該周溫熱交換器包含氣冷式熱交換器以冷凝該大部分的水。 The system of claim 1, wherein the ambient temperature heat exchanger comprises an air cooled heat exchanger to condense the majority of the water. 如申請專利範圍第1項之系統,其包含包封加熱器,該包封加熱器係配置為以在系統啟動階段期間將進氣加熱。 A system of claim 1, comprising an encapsulating heater configured to heat the intake air during a system startup phase. 如申請專利範圍第1項之系統,其包含:壓縮機,其係配置為提高該乾廢氣流的壓力;及最終水移除系統,其係配置為移除該乾廢氣流中的水。 A system of claim 1, comprising: a compressor configured to increase a pressure of the dry exhaust stream; and a final water removal system configured to remove water from the dry exhaust stream. 如申請專利範圍第5項之系統,其包含氣體分餾系統,其係配置為自該乾廢氣流中分離富甲烷流及富CO2流。 A system of claim 5, comprising a gas fractionation system configured to separate the methane enriched stream and the CO 2 rich stream from the dry exhaust stream. 如申請專利範圍第6項之系統,其包含混合系統,其係配置為在進氣加熱器之前,將富甲烷流混入進氣中。 A system of claim 6 that includes a mixing system configured to mix a methane-rich stream into the intake air prior to the intake heater. 如申請專利範圍第1項之系統,其中該反應器為使用進氣來將催化劑流體化的流體化床反應器,其中該周溫熱交換器冷凝該大部分的水,且其中該經冷凝之大部分的水沉降於該分離槽中並自該分離槽底部排出。 The system of claim 1, wherein the reactor is a fluidized bed reactor that uses intake air to fluidize the catalyst, wherein the ambient temperature heat exchanger condenses the majority of the water, and wherein the condensation is Most of the water settles in the separation tank and is discharged from the bottom of the separation tank. 如申請專利範圍第8項之系統,其中該催化劑包含金屬噴擊珠。 The system of claim 8 wherein the catalyst comprises metal spray beads. 如申請專利範圍第1項之系統,其包含:第二熱交換器,其係配置為以來自該廢氣流的廢熱將該乾廢氣流加熱,而形成第二進氣;第二反應器,其係配置為自該第二進氣中形成奈米碳管;第二分離器,其係配置為以自該第二反應器的流出物流中分離奈米碳管,而形成第二廢氣流,且其中該使用於進氣加熱器中的廢氣流包含該第二廢氣流;及第二水移除系統,其係配置為以使用第二周溫熱交換器將該第二廢氣流中的水分離,而冷卻該第二廢氣流,並移除大部分的水而形成第二乾廢氣流。 The system of claim 1, comprising: a second heat exchanger configured to heat the dry exhaust stream with waste heat from the exhaust stream to form a second intake; a second reactor Is configured to form a carbon nanotube from the second intake; a second separator configured to separate the carbon nanotube from the effluent stream of the second reactor to form a second exhaust stream, and Wherein the exhaust stream for use in the intake heater comprises the second exhaust stream; and the second water removal system configured to separate the water in the second exhaust stream using a second ambient temperature heat exchanger And cooling the second exhaust stream and removing most of the water to form a second dry exhaust stream. 如申請專利範圍第10項之系統,其包含壓縮機,其係配置為提高該第二乾廢氣流的壓力;及 最終水移除系統,其係配置為移除該第二廢氣流中的水。 The system of claim 10, comprising a compressor configured to increase the pressure of the second dry exhaust stream; A final water removal system configured to remove water from the second exhaust stream. 如申請專利範圍第11項之系統,其包含氣體分餾系統,其係配置為自該第二廢氣流中分離富甲烷流及富CO2流。 A system of claim 11, comprising a gas fractionation system configured to separate the methane enriched stream and the CO 2 rich stream from the second exhaust stream. 如申請專利範圍第12項之系統,其包含混合系統,其係配置為在進氣加熱器之前,將富甲烷流混入進氣中。 A system of claim 12, comprising a mixing system configured to mix a methane-rich stream into the intake air prior to the intake heater. 如申請專利範圍第10項之系統,其中該第二反應器為使用進氣來將催化劑流體化的流體化床反應器。 The system of claim 10, wherein the second reactor is a fluidized bed reactor that uses intake air to fluidize the catalyst. 如申請專利範圍第14項之系統,其中該催化劑包含金屬噴擊珠。 The system of claim 14, wherein the catalyst comprises metal spray beads. 如申請專利範圍第8項之系統,其中該催化劑包含含有鐵及鎳、鉻、或其任何組合的金屬珠。 The system of claim 8 wherein the catalyst comprises metal beads comprising iron and nickel, chromium, or any combination thereof. 如申請專利範圍第8項之系統,其中該催化劑包含尺寸介於約25網目至50網目的金屬珠。 The system of claim 8 wherein the catalyst comprises metal beads having a size of from about 25 mesh to 50 mesh. 如申請專利範圍第1項之系統,其包含旋風分離器以自反應器流出物分離催化劑並經由循環管線將該催化劑返回反應器,其中該反應器係內襯有一材料,該材料係配置以防止金屬殼劣化。 A system as claimed in claim 1, comprising a cyclone separator for separating the catalyst from the reactor effluent and returning the catalyst to the reactor via a recycle line, wherein the reactor is lined with a material configured to prevent The metal shell is degraded. 如申請專利範圍第1項之系統,其中在該反應器與該熱交換器之間的連接管線以防火材料為內襯,其係配置以保護金屬表面防止劣化。 The system of claim 1, wherein the connecting line between the reactor and the heat exchanger is lined with a fireproofing material configured to protect the metal surface from degradation. 如申請專利範圍第7項之系統,其中該混合系統 包含靜態混合器。 Such as the system of claim 7 of the patent scope, wherein the hybrid system Contains a static mixer. 一種形成奈米碳管的方法,其包含:於反應器中利用博希反應由進氣形成奈米碳管;自反應器流出物中分離奈米碳管,而形成廢氣流;在該進氣進入反應器之前,以來自該廢氣流的廢熱經由熱交換器將該進氣加熱,其中該熱交換器包含殼-及-管狀熱交換器或陶瓷塊狀熱交換器;及於周溫熱交換器中將該廢氣流冷卻使水蒸氣凝結,而形成乾廢氣流。 A method of forming a carbon nanotube comprising: forming a carbon nanotube from an inlet by a Bosch reaction in a reactor; separating a carbon nanotube from the reactor effluent to form an exhaust gas stream; Before entering the reactor, the intake air is heated by a waste heat from the exhaust gas stream, wherein the heat exchanger comprises a shell-and-tubular heat exchanger or a ceramic block heat exchanger; The exhaust stream is cooled to condense the water vapor to form a dry exhaust stream. 如申請專利範圍第21項之方法,其包含:將該乾廢氣流壓縮,而形成經壓縮的氣體;將該經壓縮的氣體通過另一周溫熱交換器,以冷凝及移除任何剩餘的水蒸氣;將該經壓縮的氣體分餾,以分離甲烷及二氧化碳;及將甲烷加入進氣中。 The method of claim 21, comprising: compressing the dry exhaust stream to form a compressed gas; passing the compressed gas through another ambient temperature heat exchanger to condense and remove any remaining water Vapor; the compressed gas is fractionated to separate methane and carbon dioxide; and methane is added to the feed. 一種形成奈米碳管的反應系統,其包含:二個或多個反應器,其係配置以利用博希反應自氣流中形成奈米碳管,其中在最終反應器之前的每一反應器之流出物係用作下游反應器的進料流,且其中該最終反應器的流出物流包含反應物已耗盡之廢棄流;在每一反應器下游的分離系統,其中該分離系統係配置以自反應器的流出物中移出奈米碳管;在每一分離系統下游的進料加熱器,其中該進料加熱器包含熱交換器,其係配置以使用來自反應器流出物的廢 熱將供下一個反應器用的進氣流加熱,且其中在最終反應器下游的進料加熱器係配置以將供第一反應器用的氣流加熱;在每一進料加熱器下游的周溫熱交換器,其中該周溫熱交換器係配置以自流出物中移除水,而形成供下一個反應器用的進料流;壓縮機,其係配置以提高反應物已耗盡之廢棄流的壓力;在該壓縮機下游的周溫熱交換器,其係配置以自該反應物已耗盡之廢棄流中移除水;氣體分餾系統,其係配置以將該反應物已耗盡之廢棄流分離成富甲烷流及富二氧化碳流;及混合器,其係配置以將該富甲烷流或富二氧化碳流摻入初始的進料流中。 A reaction system for forming a carbon nanotube comprising: two or more reactors configured to form a carbon nanotube from a gas stream using a Bosch reaction, wherein each reactor before the final reactor The effluent is used as a feed stream to the downstream reactor, and wherein the effluent stream of the final reactor comprises a waste stream from which the reactants have been depleted; a separation system downstream of each reactor, wherein the separation system is configured to The carbon nanotubes are removed from the effluent of the reactor; a feed heater downstream of each separation system, wherein the feed heater comprises a heat exchanger configured to use waste from the reactor effluent Heat heats the feed stream for the next reactor, and wherein the feed heater downstream of the final reactor is configured to heat the gas stream for the first reactor; the ambient temperature heat downstream of each feed heater An exchanger wherein the ambient temperature heat exchanger is configured to remove water from the effluent to form a feed stream for the next reactor; the compressor is configured to increase the spent stream of spent reactants Pressure; a peripheral temperature heat exchanger downstream of the compressor configured to remove water from the waste stream from which the reactant has been depleted; a gas fractionation system configured to deplete the reactants The stream is separated into a methane-rich stream and a carbon dioxide rich stream; and a mixer configured to incorporate the methane-rich stream or the carbon-rich stream into the initial feed stream. 如申請專利範圍第23項之反應系統,其中該反應器包含使用金屬珠作為催化劑的流體化床反應器。 The reaction system of claim 23, wherein the reactor comprises a fluidized bed reactor using metal beads as a catalyst. 如申請專利範圍第23項之反應系統,其包含在每一周溫熱交換器下游的分離槽,其中該分離槽係配置以自氣流中分離液態水。 A reaction system according to claim 23, comprising a separation tank downstream of each of the peripheral heat exchangers, wherein the separation tank is configured to separate liquid water from the gas stream. 如申請專利範圍第23項之反應系統,其包含多個包封加熱器,其係配置以將該等二個或更多反應器中每一個的進料流加熱。 A reaction system according to claim 23, comprising a plurality of encapsulating heaters configured to heat the feed stream of each of the two or more reactors. 如申請專利範圍第23項之反應系統,其包含包封加熱器,其係配置以將供設備啟動用的初始進料流加熱。 A reaction system according to claim 23, comprising an encapsulating heater configured to heat an initial feed stream for starting the apparatus. 如申請專利範圍第27項之反應系統,其中該包封加熱器係用以將後續反應器的進料流加熱。 The reaction system of claim 27, wherein the encapsulating heater is for heating a feed stream of a subsequent reactor. 如申請專利範圍第27項之反應系統,其中該包封加熱器係為配置以現場安裝之加熱器或電力加熱器、配置以供氣體加熱用的商用加熱器、或其任何組合。 The reaction system of claim 27, wherein the encapsulating heater is a heater or electric heater configured to be installed in the field, a commercial heater configured for gas heating, or any combination thereof. 如申請專利範圍第27項之反應系統,其中該包封加熱器係配置以加熱還原氣體流而無實質傷害。 The reaction system of claim 27, wherein the encapsulating heater is configured to heat the reducing gas stream without substantial damage.
TW101150517A 2011-12-30 2012-12-27 Method and systems for forming carbon nanotubes TWI588307B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201161582098P 2011-12-30 2011-12-30

Publications (2)

Publication Number Publication Date
TW201341610A TW201341610A (en) 2013-10-16
TWI588307B true TWI588307B (en) 2017-06-21

Family

ID=49771330

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101150517A TWI588307B (en) 2011-12-30 2012-12-27 Method and systems for forming carbon nanotubes

Country Status (2)

Country Link
AR (1) AR089617A1 (en)
TW (1) TWI588307B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200923121A (en) * 2007-11-30 2009-06-01 Univ Yuan Ze Fluidized-bed system and method for forming carbon nanotube
TWM365928U (en) * 2009-04-10 2009-10-01 Ningbo Nanomaterials Inc Carbon nanotube production equipment
WO2010120581A1 (en) * 2009-04-17 2010-10-21 Noyes Dallas B Method for producing solid carbon by reducing carbon oxides

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200923121A (en) * 2007-11-30 2009-06-01 Univ Yuan Ze Fluidized-bed system and method for forming carbon nanotube
TWM365928U (en) * 2009-04-10 2009-10-01 Ningbo Nanomaterials Inc Carbon nanotube production equipment
WO2010120581A1 (en) * 2009-04-17 2010-10-21 Noyes Dallas B Method for producing solid carbon by reducing carbon oxides

Also Published As

Publication number Publication date
AR089617A1 (en) 2014-09-03
TW201341610A (en) 2013-10-16

Similar Documents

Publication Publication Date Title
JP6252911B2 (en) Method and system for forming carbon nanotubes
KR102116696B1 (en) Reactor system for the production of carbon allotropes
US10351974B2 (en) Feedstocks for forming carbon allotropes
TWI627130B (en) Removing carbon nanotubes from a continuous reactor effluent
WO2013090274A1 (en) Methods and system for forming carbon nanotubes
US9504998B2 (en) Generating catalysts for forming carbon allotropes
TWI588307B (en) Method and systems for forming carbon nanotubes

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees