TWI583478B - Anodized aluminum article - Google Patents

Anodized aluminum article Download PDF

Info

Publication number
TWI583478B
TWI583478B TW105116084A TW105116084A TWI583478B TW I583478 B TWI583478 B TW I583478B TW 105116084 A TW105116084 A TW 105116084A TW 105116084 A TW105116084 A TW 105116084A TW I583478 B TWI583478 B TW I583478B
Authority
TW
Taiwan
Prior art keywords
laser
anodized aluminum
mark
anodized
article
Prior art date
Application number
TW105116084A
Other languages
Chinese (zh)
Other versions
TW201630680A (en
Inventor
張海濱
格蘭 西門森
羅伯特 漢希
大衛 巴席克
傑弗瑞 豪爾頓
韋恩 克羅堤爾
派崔克 李奧納德
Original Assignee
伊雷克托科學工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伊雷克托科學工業股份有限公司 filed Critical 伊雷克托科學工業股份有限公司
Priority to TW105116084A priority Critical patent/TWI583478B/en
Publication of TW201630680A publication Critical patent/TW201630680A/en
Application granted granted Critical
Publication of TWI583478B publication Critical patent/TWI583478B/en

Links

Description

經過陽極氧化之鋁質物品 Anodized aluminum article

本發明係有關於經過陽極氧化(anodized)之鋁質物品之雷射標記(laser marking)。特別是關於利用雷射處理系統標記經過陽極氧化之鋁。尤其是,其係關於利用雷射處理系統以一種具持久性且符合商業需求之方式標記經過陽極氧化之鋁。具體言之,其係有關於使得可見光及紅外線波長的皮秒(picosecond)雷射脈衝與經過陽極氧化之鋁之間的交互作用具備獨特特徵,以可靠地並可重複地建立具持久性之預定顏色及光學密度(optical density)的標記。 The present invention relates to laser marking of an anodized aluminum article. In particular, the use of a laser processing system to mark anodized aluminum. In particular, it relates to the use of a laser processing system to mark anodized aluminum in a manner that is durable and commercially desirable. In particular, it has unique features for the interaction between picosecond laser pulses of visible and infrared wavelengths and anodized aluminum to reliably and reproducibly establish a durable schedule. Marking of color and optical density.

市面上的產品基於商業、管控、裝飾或功能上的目的,常需要在其上有某種形式的標記。所需的標記特性包含一致性的外觀、持久性以及施加的容易性。外觀係指可靠地並可重複地以一選定之形狀、顏色及光學密度呈現一標記的能力。持久性係儘管經過標記的表面有所磨耗,仍能維持不變之品質。施加的容易性係指製做一具有可編程性(programmability)之標記的材料、時間及資源上的成本。可編程性係指藉由改變軟體以一新的待標記圖案編程標記裝置,而非改變諸如篩版或遮罩等硬體。 Products on the market are based on commercial, regulatory, decorative or functional purposes and often require some form of marking on them. The required marking characteristics include consistent appearance, durability, and ease of application. Appearance refers to the ability to reliably and reproducibly present a mark in a selected shape, color, and optical density. Persistence maintains consistent quality despite the wear of the marked surface. Ease of application refers to the cost of materials, time, and resources for making a programmability mark. Programmability refers to programming a marking device with a new pattern to be marked by changing the software, rather than changing hardware such as a screen or mask.

經過陽極氧化之鋁,其質輕、堅固、易於形塑且擁有耐久的 表面拋光,故在工業及商業貨品上均有許多應用。陽極氧化意味多種電解鈍化處理中的任何一種,其中天然氧化層被增生於諸如鋁、鈦(titanium)、鋅、鎂、鈮(niobium)或鉭(tantalum)的金屬之上,以增進對於腐蝕或磨損的抵抗力以及獲得裝飾之目的。此等表面疊層事實上可以被著上或染上任何顏色,而在金屬上製造出一個永久性的、不褪色的、耐久性表面。許多此等金屬可以利用本發明之特色被有效益性地進行標記。此外,諸如抗腐蝕之不銹鋼等金屬均可以使用此方式加上標記。諸如此等的許多金屬製成品均需要永久性的、清楚可見的、符合商業需求之標記。經過陽極氧化之鋁係具有此需求之典型材料。利用藉由雷射處理系統產生的雷射脈衝標記經過陽極氧化之鋁可以在極低的標記成本下以可編程之方式快速地製做出耐久之標記。 Anodized aluminum, light, strong, easy to shape and durable The surface is polished, so there are many applications in industrial and commercial goods. Anodizing means any of a variety of electrolytic passivation treatments in which a natural oxide layer is proliferated on a metal such as aluminum, titanium, zinc, magnesium, niobium or tantalum to enhance corrosion or Resistance to wear and the purpose of decoration. These surface laminates can in fact be colored or dyed to create a permanent, non-fading, durable surface on the metal. Many of these metals can be effectively labeled using the features of the present invention. In addition, metals such as corrosion-resistant stainless steel can be marked in this manner. Many metal products such as these require permanent, clearly visible, commercially desirable markings. Anodized aluminum is a typical material with this need. The use of laser pulses generated by laser processing systems to mark anodized aluminum enables rapid and durable marking in a programmable manner at very low marking costs.

以雷射脈衝使經過陽極氧化之鋁的表面上產生顏色變化已行之多年。在P.Maja、M.Autric、P.Delaporte、P.Alloncle等人的一篇標題為"Dry laser cleaning of anodized aluminum(經過陽極氧化之鋁的乾式雷射清潔)"的論文中(COLA'99-5th International Conference on Laser Ablation(雷射燒蝕國際會議),1999年7月19-23日,Göttingen,德國,發行於Appl.Phys.A 69[Suppl.],S343-S346(1999),pp S43-S346),其描述自鋁的表面移除陽極氧化區,但應注意,其顏色變化係發生於雷射能量低於自表面移除陽極氧化區所需雷射能量之處。 It has been a long time for color changes on the surface of anodized aluminum by laser pulses. In a paper titled "Dry laser cleaning of anodized aluminum" by P. Maja, M. Autric, P. Delaporte, P. Alloncle et al. (COLA'99) -5th International Conference on Laser Ablation, July 19-23, 1999, Göttingen, Germany, published in Appl. Phys. A 69 [Suppl.], S343-S346 (1999), pp S43-S346), which describes the removal of the anodization from the surface of the aluminum, but it should be noted that the color change occurs where the laser energy is lower than the laser energy required to remove the anodization from the surface.

被提出以解釋金屬表面之光學密度或顏色變化的機制之一係雷射誘發週期表面微結構(laser-induced periodic surface structures;LIPSS)之產生。A.Y.Vorobyev和Chunlei Guo之論文"Colorizing metals with femtosecond laser pulses(利用飛秒雷射脈衝對金屬著色)"(Applied Physics Letters(應用物理快報)92,(041914)2008,第41914-1頁到第141914-3頁)描述可以利用飛秒雷射脈衝(femtosecond laser pulse)在鋁或類鋁金屬上製造出的各種不同顏色。此論文描述在金屬上製造出黑色或灰色標記並在金屬上建立一金黃的顏色。其亦提到一些其他顏色,但不多加贅述。LIPSS係其對於在金屬表面產生標記所提供的唯一說明。此外,其僅教示或提議具有65飛秒時序脈衝寬度之雷射脈衝以建立該等結構。並且,其並未提及在雷射處理之前,鋁質物品是否經過陽極氧化處理或者表面是否曾經過清潔。該論文亦未討論對於氧化層的可能損傷。 One of the mechanisms proposed to explain the optical density or color change of the metal surface is the generation of laser-induced periodic surface structures (LIPSS). A.Y.Vorobyev and Chunlei Guo's paper "Colorizing metals with femtosecond Laser pulses (Applied Physics Letters 92, (041914) 2008, pages 41914-1 through 141914-3) describe the use of femtosecond laser pulses (femtosecond laser pulse) A variety of different colors produced on aluminum or aluminum-like metals. This paper describes the creation of black or gray markings on metal and the creation of a golden color on the metal. It also mentions some other colors, but Not to mention more. LIPSS is the only description provided for marking on a metal surface. Furthermore, it only teaches or proposes a laser pulse with a pulse width of 65 femtoseconds to establish the structure. And it does not mention Whether the aluminum article has been anodized or the surface has been cleaned prior to laser processing. The paper also does not discuss possible damage to the oxide layer.

當論及雷射脈衝持續時間(duration)之時,量測脈衝持續時間的方法應該加以定義。時序脈衝形狀可以從簡單的高斯脈衝(Gaussian pulse)到更複雜的與個別作業有關之形狀。對於特定型態處理之有利的示範性非高斯雷射脈衝描述於編號7,126,746的美國專利GENERATING SETS OF TAILORED LASER PULSES(產生經過裁製的雷射脈衝群組)之中,發明人Sun等,該專利授讓於本發明之受讓人,此處以參照之形式納入本文。該專利揭示產生具有時間波形(temporal profile)異於二極體激發固態(diode pumped solid state;DPSS)雷射所製造出的典型高斯時間波形之雷射脈衝的方法及裝置。這些非高斯型態之脈衝被稱為"經過裁製的"脈衝,因為其時間波形係藉由結合一個以上的脈衝以產生單一脈衝及/或光電式地調變脈衝而改變自典型的高斯波形。此產生一脈衝,其脈衝能量隨時間改變,通常包含一或多個功率峰值,其中瞬間功率在脈衝持續時間的一小部分增加至一大於脈衝平均功率之數值。此種經過裁製的脈衝在高速率處理材料中可以有所效 用,其不會在材料周遭造成碎片或者過熱的問題。問題在於利用基本上應用於高斯脈衝的標準方法量測諸如該等複雜脈衝的持續時間可能產生異常的結果。高斯脈衝持續時間之量測通常是使用持續時間的半峰全幅值(full width at half maximum;FWHM)量測。相對於此,利用積分平方法,如描述於編號6,058,739的美國專利LONG LIFE FUSED SILICA ULTRAVIOLET OPTICAL ELEMENTS(長壽命熔融石英紫外線光學元件)之中者,發明人Morton等,允許複雜的時序形狀被量測並以一較具意義之方式進行比較。在此專利之中,其利用以下公式量測脈衝持續時間 When dealing with the duration of a laser pulse, the method of measuring the duration of the pulse should be defined. Timing pulse shapes can range from simple Gaussian pulses to more complex shapes associated with individual jobs. An exemplary exemplary non-Gaussian laser pulse for a particular type of processing is described in US Patent No. 7,126,746, US Patent GENERATING SETS OF TAILORED LASER PULSES, inventor Sun et al. The assignee of the present invention is hereby incorporated by reference. This patent discloses a method and apparatus for generating a laser pulse having a typical Gaussian time waveform produced by a temporal profile different from a diode pumped solid state (DPSS) laser. These non-Gaussian pulses are referred to as "trimmed" pulses because their time waveform is changed from a typical Gaussian waveform by combining more than one pulse to produce a single pulse and/or a photoelectrically modulated pulse. . This produces a pulse whose pulse energy changes over time and typically contains one or more power peaks, wherein the instantaneous power is increased over a fraction of the pulse duration to a value greater than the pulse average power. Such tailored pulses can be useful in high rate processing materials that do not cause debris or overheating problems around the material. The problem is that measuring the duration of such complex pulses with standard methods that are basically applied to Gaussian pulses may produce anomalous results. Gaussian pulse duration measurements are typically measured using a full width at half maximum (FWHM) of duration. In contrast, using the integral flat method, as described in US Patent No. 6,058,739, LONG LIFE FUSED SILICA ULTRAVIOLET OPTICAL ELEMENTS, inventor Morton et al., allows complex time series shapes to be measured And compare it in a more meaningful way. In this patent, it uses the following formula to measure the pulse duration

其中T(t)係代表雷射脈衝時序形狀之函數。 Where T(t) represents a function of the shape of the laser pulse timing.

關於可靠地並可重複地在經過陽極氧化之鋁上產生出具有預定顏色及光學密度的標記的另一問題在於,以極易取得的奈秒脈衝寬度固態雷射製造極深色標記所需的能量足以對陽極氧化區造成損傷,此係無法接受的結果。"黑暗度"或"明亮度"或顏色名稱均係相對性的用詞。以數量表示顏色的一個標準方法係參考色度量測(colorimetry)之CIE系統。此系統描述於Ohno,Y.的"CIE Fundamentals for Color Measurements(色彩量測的CIE基礎)"一文之中(IS&T NIP16 Conf,Vancouver,CN,2000年10月16-20日,第540-545頁)。在此量測系統之中,達成符合商業需求的黑色標記需要小於或等於L*=40、a*=5以及b*=10之參數。此產生無可見灰度或彩度的中性黑色。在編號6,777,098的美國專利MARKING OF AN ANODIZED LAYER OF AN ALUMINIUM OBJECT(鋁質物件陽極氧化層之標記)之中,發明人Keng Kit Yeo描述一種以黑色標記對經過陽極氧化之鋁質物品進行標記的方法,該黑色標記位於介於陽極氧化區及鋁之間的疊層之中,因而與陽極氧化表面同樣耐久。其中所述之標記被描述成具有深灰色或黑色之彩度,且相較於未利用奈秒級紅外線雷射脈衝標記過的部分顯得稍為較不具光澤。此外,其必須清除鋁的所有表面微粒,例如,在磨光之後而在陽極氧化之前殘留的微粒。依據該專利所請求的方法製做標記其不利性有以下二個原因:第一,以奈秒級脈衝建立符合商業需求的黑色標記傾向於對氧化層造成破壞;其次,磨光或其他處理之後跟隨的鋁的清潔在流程中加入額外步驟,增加相關費用,並可能干擾其它處理所需要的表面拋光。所需要的,但前述技術未揭示的,係在經過陽極氧化之鋁上製造出黑色或灰色或彩色之標記的可靠且可重複之方法,其不需要昂貴的飛秒雷射或者在製程中干擾到氧化層或在表面備妥之後需要清潔。此外,其並未提供如何在經過陽極氧化之鋁的表面上可重複性地建立各種不同顏色的資訊,亦未徹底追查對於陽極氧化層的脫色或損傷效應。故其有必要提出一種利用較低成本雷射可靠地並可重複地在經過陽極氧化之鋁上建立具有預定光學密度或灰階及顏色之標記的方法,其不會對其上的氧化物造成不良的傷害,且在陽極氧化之前不需要清潔。 Another problem with reliable and repeatable marking of a predetermined color and optical density on anodized aluminum is that it is required to produce very dark markings with a very readily available nanosecond pulse width solid state laser. The energy is sufficient to cause damage to the anodized zone, which is an unacceptable result. "Darkness" or "brightness" or color names are relative terms. A standard method of expressing color by number is the CIE system of reference colorimetry. This system is described in "CIE Fundamentals for Color Measurements" by Ohno, Y. (IS&T NIP16 Conf, Vancouver, CN, October 16-20, 2000, pp. 540-545 ). Among the measurement systems, a black mark that meets commercial requirements needs to be less than or equal to L*=40, a*=5, and b*=10. This produces a neutral black with no visible grayscale or chroma. In the US patent MARKING OF AN ANODIZED LAYER OF AN ALUMINIUM OBJECT (marked by the anodized layer of aluminum objects) No. 6,777,098, the inventor Keng Kit Yeo describes a method of marking an anodized aluminum article with a black mark located in a stack between the anodization zone and aluminum and thus as durable as an anodized surface. The indicia described therein are described as having a dark gray or black chroma and appear slightly less glossy than portions that have not been marked with nanosecond infrared laser pulses. In addition, it must remove all surface particles of aluminum, for example, particles that remain after anodization after polishing. There are two reasons for the disadvantages of marking according to the method claimed in the patent: First, the creation of a black mark that meets commercial requirements with a nanosecond pulse tends to cause damage to the oxide layer; second, after polishing or other processing The cleaning of the following aluminum adds extra steps to the process, adding to the associated costs and possibly interfering with the surface finishes required for other processing. What is required, but not disclosed in the foregoing, is a reliable and repeatable method of producing black or gray or colored markings on anodized aluminum that does not require expensive femtosecond lasers or interferes in the process. It needs to be cleaned after the oxide layer or after the surface is ready. Moreover, it does not provide information on how to reproducibly create a variety of different colors on the surface of anodized aluminum, nor does it thoroughly trace the effects of discoloration or damage to the anodized layer. Therefore, it is necessary to propose a method for reliably and reproducibly establishing a mark having a predetermined optical density or gray scale and color on anodized aluminum using a lower cost laser, which does not cause oxides thereon. Poor damage and no cleaning required before anodizing.

本發明之一特色係以各種不同光學密度或灰階及顏色之可看見標記加諸於經過陽極氧化之鋁質物品之上。此等標記應經久耐用且具有符合商業需求之外觀。此係藉由利用皮秒雷射脈衝建立該等標記而達成。該等標記被建立於氧化層下方的鋁的表面處,因此被氧化物所保護。 該皮秒雷射脈衝建立符合商業需求之標記且未對氧化層造成顯著損傷,從而使得該等標記經久耐用。其藉由控制產生及導控皮秒雷射脈衝之雷射參數而在經過陽極氧化之鋁上建立耐久且符合商業需求之標記。在本發明的一特色之中,雷射處理系統被調構成以可編程之方式產生具有適當參數之雷射脈衝。 One feature of the present invention is the addition of visible marks of various optical densities or gray levels and colors to the anodized aluminum article. These markings should be durable and have a look that meets commercial needs. This is achieved by establishing the markers using picosecond laser pulses. These marks are established at the surface of the aluminum below the oxide layer and are therefore protected by the oxide. The picosecond laser pulses establish a mark that meets commercial requirements without causing significant damage to the oxide layer, thereby rendering the marks durable. It establishes a durable and commercially desirable mark on anodized aluminum by controlling the generation and guidance of the laser parameters of the picosecond laser pulse. In one feature of the invention, the laser processing system is configured to produce a laser pulse with appropriate parameters in a programmable manner.

可選擇以增進雷射標記經過陽極氧化之鋁的可靠性及可重複性的示範性雷射脈衝參數包含雷射種類、波長、脈衝持續時間、脈衝重複率(repetition rate)、脈衝數目、脈衝能量、脈衝時序形狀、脈衝空間形狀以及焦斑(focal spot)尺寸及形狀。進一步的雷射脈衝參數包含指定焦斑相對於物品表面之位置以及導控雷射脈衝相對於物品的相對運動。 Exemplary laser pulse parameters that may be selected to enhance the reliability and repeatability of laser marked anodized aluminum include laser type, wavelength, pulse duration, repetition rate, number of pulses, pulse energy , pulse timing shape, pulse space shape, and focal spot size and shape. Further laser pulse parameters include specifying the position of the focal spot relative to the surface of the article and the relative motion of the guided laser pulse relative to the article.

本發明之特色藉由利用取決於所用特定雷射脈衝參數之範圍從肉眼幾乎無法察覺到黑色的光學密度加深陽極氧化區下方的鋁的表面之顏色而建立耐久且符合商業需求之標記。本發明之其他特色建立呈棕褐或金黃色彩的各種不同光學密度之顏色,同樣地取決於所用的特定雷射脈衝參數。本發明之其他特色藉由對染色或著色之陽極氧化區進行脫色或局部脫色,同時對下方的鋁加上或不加上標記,以在經過陽極氧化之鋁上建立耐久且符合商業需求之標記。 A feature of the present invention is to establish a durable and commercially desirable mark by utilizing the optical density of black which is barely perceptible to the naked eye depending on the range of specific laser pulse parameters used to enhance the color of the surface of the aluminum beneath the anodized region. Other features of the present invention establish colors of various optical densities in a brown or golden color, again depending on the particular laser pulse parameters used. Other features of the present invention provide for durable and commercially desirable markings on anodized aluminum by decolorizing or partially discoloring the dyed or colored anodized regions while or without marking the underlying aluminum. .

為了達成依據本發明目的之前述及其他特色,以本文所實施並寬廣陳述之形式,揭示一種用於在經過陽極氧化的鋁質物品上建立顏色及光學密度可選擇之可見標記的方法,以及調構以執行該方法之裝置。本發明係一種用於在經過陽極氧化的鋁質物品上建立顏色及光學密度可選擇之可見標記的方法及裝置。該方法包含提供雷射標記系統,其具有雷射、 雷射光學模組(laser optics)以及控制器有效連接至該雷射以控制雷射脈衝參數以及具有儲存雷射脈衝參數之控制器、選擇關聯預定顏色及光學密度之儲存雷射脈衝參數、導控該雷射標記系統以產生具有關聯預定顏色及光學密度之雷射脈衝參數之雷射脈衝,其包含大於大約1且小於大約1000皮秒之時序脈衝寬度以照射至該經過陽極氧化的鋁之上。 In order to achieve the foregoing and other features in accordance with the purpose of the present invention, a method for establishing a visible marker of color and optical density on an anodized aluminum article, and a method of modulating it, is disclosed and broadly stated herein. Constructed to perform the method. SUMMARY OF THE INVENTION The present invention is a method and apparatus for establishing visible indicia of color and optical density on an anodized aluminum article. The method includes providing a laser marking system having a laser, A laser optics and a controller are operatively coupled to the laser to control laser pulse parameters and a controller having stored laser pulse parameters, selecting a stored laser pulse parameter associated with a predetermined color and optical density, Controlling the laser marking system to produce a laser pulse having a laser pulse parameter associated with a predetermined color and optical density, comprising a timing pulse width greater than about 1 and less than about 1000 picoseconds to illuminate the anodized aluminum on.

10‧‧‧雷射 10‧‧‧Laser

12‧‧‧雷射脈衝 12‧‧‧Laser pulse

14‧‧‧雷射光學模組 14‧‧‧Laser optical module

16‧‧‧雷射光斑 16‧‧‧Laser spot

18‧‧‧物品 18‧‧‧ Items

20‧‧‧控制器 20‧‧‧ Controller

22‧‧‧平台 22‧‧‧ platform

30‧‧‧經過陽極氧化之鋁 30‧‧‧Aluminized aluminum

32‧‧‧裂縫 32‧‧‧ crack

34‧‧‧標記區域 34‧‧‧Marked area

36‧‧‧經過陽極氧化之鋁 36‧‧‧Aluminized aluminum

38‧‧‧標記 38‧‧‧ mark

40‧‧‧焦斑 40‧‧‧Spot

42‧‧‧光束腰徑表面 42‧‧‧ Beam waist surface

44‧‧‧光軸 44‧‧‧ optical axis

46‧‧‧直徑 46‧‧‧diameter

48‧‧‧直徑 48‧‧‧diameter

60-66‧‧‧標記 60-66‧‧‧ mark

70‧‧‧經過陽極氧化之鋁 70‧‧‧Aluminized aluminum

72‧‧‧標記 72‧‧‧ mark

74‧‧‧鋁質物品 74‧‧‧Aluminum goods

80‧‧‧鋁質物品 80‧‧‧Aluminum goods

82‧‧‧標記 82‧‧‧ mark

100‧‧‧經過陽極氧化之鋁質物品 100‧‧‧Aluminized aluminum articles

102‧‧‧標記 102‧‧‧ mark

110‧‧‧圖案 110‧‧‧ patterns

112‧‧‧數位表示方式 112‧‧‧Digital representation

114‧‧‧列表 114‧‧‧list

116‧‧‧列表中的項目 116‧‧‧Items in the list

118‧‧‧鋁質物品 118‧‧‧Aluminum goods

120‧‧‧透明陽極氧化層 120‧‧‧Transparent anodized layer

122‧‧‧標記 122‧‧‧ mark

124‧‧‧光阻層 124‧‧‧ photoresist layer

126‧‧‧雷射脈衝 126‧‧‧Laser pulse

128‧‧‧光阻區域 128‧‧‧ photoresist area

130‧‧‧光阻區域 130‧‧‧Light resistance area

132‧‧‧光阻層中的空位 132‧‧‧ vacancies in the photoresist layer

134‧‧‧光阻層 134‧‧‧ photoresist layer

136‧‧‧空位下方的區段 136‧‧‧section below the vacancy

138‧‧‧第二光阻層 138‧‧‧second photoresist layer

140‧‧‧第二光阻層中的區域 140‧‧‧A region in the second photoresist layer

142‧‧‧雷射脈衝 142‧‧‧Laser pulse

144‧‧‧著色區域 144‧‧‧Colored area

146‧‧‧著色區域 146‧‧‧Colored area

Fb‧‧‧陽極氧化區脫色的能量密度門檻值 Fb‧‧‧Enhanced energy density threshold for anodization

Fu‧‧‧標記陽極氧化區下之鋁的能量密度門檻值 Fu‧‧‧ marks the energy density threshold of aluminum under the anodized zone

Fs‧‧‧表面燒蝕的能量密度門檻值 Fs‧‧‧Energy density threshold for surface ablation

圖1,雷射處理系統。 Figure 1. Laser processing system.

圖2,以先前技術奈秒脈衝製做出之標記。 Figure 2 is a representation of the prior art nanosecond pulse system.

圖3,以皮秒脈衝製做出之標記。 Figure 3. Marks made in picosecond pulses.

圖4,射束腰徑。 Figure 4, beam waist diameter.

圖5,位於經過陽極氧化之鋁上的灰階標記。 Figure 5 is a gray scale mark on anodized aluminum.

圖6,位於經過陽極氧化之鋁上的標記。 Figure 6. Mark on the anodized aluminum.

圖7,染色後的、加上可見光標記之經過陽極氧化之鋁。 Figure 7. Aluminized anodized aluminum with a visible mark after dyeing.

圖8,染色後的、加上IR標記之經過陽極氧化之鋁。 Figure 8. Aluminized anodized aluminum with an IR mark after dyeing.

圖9,顯示可見光雷射脈衝門檻值之關係圖。 Figure 9 is a graph showing the relationship between thresholds of visible laser light pulses.

圖10,顯示IR雷射脈衝門檻值之關係圖。 Figure 10 is a graph showing the relationship between IR laser pulse threshold values.

圖11,轉換成雷射參數的影像資料。 Figure 11. Image data converted to laser parameters.

圖12a-i,施加至一鋁質物品之著色陽極氧化區。 Figures 12a-i are applied to the colored anodization zone of an aluminum article.

本發明之一目標係以各種不同光學密度及顏色之可看見標記,耐久性地、可選擇性地、可預測性地且可重複性地標記經過陽極氧化 處理之鋁質物品。以有利之方式,其使得該等標記出現於鋁的表面或其附近,並維持陽極氧化層大致完整無損以保護該表面和該等標記。以此方式做出的標記被稱為夾層標記(interlayer mark),因為其被製做於形成陽極氧化區的氧化層下方的鋁的表面處或表面上。理想情況下,氧化物在標記之後維持完整無損以保護標記並提供一機械性地毗連於相鄰標記及非標記區域間之表面。此外,該等標記應能夠可靠且可重複性地產生,意味若需要具有一特定顏色及光學密度之標記,則其知悉當以雷射處理系統處理該經過陽極氧化之鋁時將會產生預定結果之一組雷射參數。其同時亦應理解,此等以一雷射處理系統建立之標記係看不見的。在此特色之中,該雷射處理系統建立在一般觀看條件下不可看見之標記,但在例如當被紫外光照射時的其他條件下變成可被看見。其應可理解,此等標記係被用以提供防盜標記或其他特殊標記。 One object of the present invention is to label anodized durable, selectively, predictably, and reproducibly with visible marks of various optical densities and colors. Handled aluminum items. In an advantageous manner, it causes the indicia to appear on or near the surface of the aluminum and to maintain the anodized layer substantially intact to protect the surface and the indicia. The mark made in this way is referred to as an interlayer mark because it is formed at or on the surface of the aluminum under the oxide layer forming the anodization region. Ideally, the oxide remains intact after labeling to protect the label and provide a surface that is mechanically contiguous between adjacent labeled and non-marked regions. Moreover, the indicia should be able to be produced reliably and reproducibly, meaning that if a mark of a particular color and optical density is desired, it is known that when the anodized aluminum is processed by a laser processing system, a predetermined result will result. One set of laser parameters. It should also be understood that such markings established by a laser processing system are invisible. Within this feature, the laser processing system establishes an invisible mark under normal viewing conditions, but becomes visible when under other conditions, such as when illuminated by ultraviolet light. It should be understood that such indicia are used to provide anti-theft tags or other special indicia.

本發明之一實施例使用一經過調構之雷射處理系統以標記經過陽極氧化之鋁質物品。可以被調構成用以標記經過陽極氧化之鋁質物品之一示範性雷射處理系統係由位於97229,OR,Poitland之Electro Scientific Industries公司所產製的ESI MM5330微加工系統(micromachining system)。此系統係採用二極體激發式Q型開關固態雷射之微加工系統,其在30KHz脈衝重複率、第二諧振倍增至532奈米波長下具有5.7W之平均功率。另一可以被調構成用以標記經過陽極氧化之鋁質物品之示範性雷射處理系統係亦由位於97229,OR,Portland之Electro Scientific Industries公司所產製的ESI ML5900微加工系統。此系統採用之固態二極體激發式雷射可以被組構成在上達5MHz的脈衝重複率下發射出從大約355奈米(UV)到大約1064奈米(IR) 之波長。上述之任一系統均可以藉由加入適當之雷射、雷射光學模組、部件處置設備及控制軟體而被調構成用以依據揭示於本說明書中的方法在經過陽極氧化之鋁的表面上可靠地且可重複地產生標記。這些修改使得雷射處理系統能夠在預定的速率及間距下將具有適當雷射參數的雷射脈衝導控至預定地方之適當定位及承置的經過陽極氧化之鋁質物品上以建立具有預定顏色及光學密度的標記。此一經過調構之系統之示意圖顯示於圖1之中。 One embodiment of the present invention uses a structured laser processing system to mark anodized aluminum articles. An exemplary laser processing system that can be tuned to mark an anodized aluminum article is the ESI MM5330 micromachining system manufactured by Electro Scientific Industries, Inc., 97229, OR, Poitland. This system is a micromachining system using a diode-excited Q-switch solid-state laser with an average power of 5.7 W at a pulse repetition rate of 30 KHz and a second resonance multiplication to a wavelength of 532 nm. Another exemplary laser processing system that can be tuned to mark anodized aluminum articles is also the ESI ML5900 micromachining system manufactured by Electro Scientific Industries, Inc., 97229, OR, Portland. The solid-state diode-excited laser used in this system can be assembled to emit from about 355 nanometers (UV) to about 1064 nanometers (IR) at a pulse repetition rate of up to 5 MHz. The wavelength. Any of the above systems can be configured to incorporate an appropriate laser, laser optical module, component handling device, and control software for use on the surface of anodized aluminum in accordance with the method disclosed in this specification. The marking is produced reliably and reproducibly. These modifications enable the laser processing system to direct laser pulses with appropriate laser parameters to a suitably positioned and placed anodized aluminum article at a predetermined rate and spacing to create a predetermined color. And the marking of optical density. A schematic of this structured system is shown in FIG.

圖1顯示依據本發明一實施例之被調構成用以標記物品之ESI MM5330微加工系統之示意圖。調構內容包含雷射10,此在本發明一實施例之中係運作於1064奈米波長之二極體激發Nd:YVO4固態雷射,由德國Kaiserslautern的Lumera laser GmbH製造的Rapid型號機組。此雷射選擇性地利用固態諧振頻率產生器將頻率倍增以使得波長降低至532奈米或使頻率增加至三倍而將波長降低至355奈米,從而分別產生可見光(綠色)或紫外線(UV)雷射脈衝。此雷射10額定產生6瓦特之連續功率並具有1000KHz的最大脈衝重複率。此雷射10與控制器20協同運作以產生具有1至1,000皮秒持續時間之雷射脈衝12。這些雷射脈衝12可以是高斯型或者是經由雷射光學模組14特別形塑或裁製過之形式以允許預定之標記施加。雷射光學模組14,與控制器20協同運作,導控雷射脈衝12以在物品18之上或其附近形成雷射光斑16。物品18被固定於平台22之上,其包含移動控制構件,與控制器20及雷射光學模組14協同運作以提供複合射束定位能力。複合射束定位係在物品18相對於雷射光斑16移動之時,藉由使控制器20導控雷射光學模組14中之操控構件而補償平台22、雷射光斑16或二者引發的相對運動,以將形狀標記於物品18之上的功能。 1 shows a schematic diagram of an ESI MM5330 micromachining system configured to mark an article in accordance with an embodiment of the present invention. The configuration includes laser 10, which in one embodiment of the invention operates a diode-operated Nd:YVO4 solid state laser at a wavelength of 1064 nm, a Rapid model unit manufactured by Lumera laser GmbH of Kaiserslautern, Germany. The laser selectively utilizes a solid-state resonant frequency generator to multiply the frequency to reduce the wavelength to 532 nm or to triple the frequency and to reduce the wavelength to 355 nm, thereby producing visible (green) or ultraviolet (UV, respectively) ) Laser pulse. This laser 10 is rated to produce 6 watts of continuous power and has a maximum pulse repetition rate of 1000 KHz. This laser 10 cooperates with the controller 20 to produce a laser pulse 12 having a duration of 1 to 1,000 picoseconds. These laser pulses 12 may be Gaussian or specially shaped or tailored via the laser optics module 14 to allow for the application of predetermined indicia. The laser optics module 14, in cooperation with the controller 20, directs the laser pulses 12 to form a laser spot 16 on or near the article 18. The article 18 is secured to the platform 22 and includes a movement control member that cooperates with the controller 20 and the laser optics module 14 to provide composite beam positioning capabilities. The composite beam positioning compensates for the platform 22, the laser spot 16, or both by causing the controller 20 to direct the steering member in the laser optical module 14 as the article 18 moves relative to the laser spot 16. Relative motion, a function of marking a shape on an item 18.

當雷射脈衝12被導控以在物品18之上或其附近形成雷射光斑16之時,亦由雷射光學模組14配合控制器20加以塑形。雷射光學模組14控制雷射脈衝12之空間形狀,其可以是高斯或特別形塑之形狀。舉例而言,其可以使用"頂帽式(top hat)"空間形貌,其投送出在照射至被標記物品的整個光斑內具有均勻輻射劑量之雷射脈衝12。諸如此類的特殊形塑形狀之空間形貌可以利用繞射光學構件造出。雷射脈衝12亦可以被雷射光學模組14中的光電式構件、可操控反射鏡構件或振鏡(galvanometer)構件柵阻或導控。 When the laser pulse 12 is directed to form the laser spot 16 on or near the article 18, it is also shaped by the laser optics module 14 in conjunction with the controller 20. The laser optics module 14 controls the spatial shape of the laser pulse 12, which may be Gaussian or specially shaped. For example, it may use a "top hat" spatial topography that delivers a laser pulse 12 having a uniform radiation dose across the entire spot of illumination of the marked item. The spatial shape of a special shaped shape such as this can be created using a diffractive optical member. The laser pulse 12 can also be gated or guided by a photovoltaic component, an steerable mirror component, or a galvanometer component in the laser optics module 14.

雷射光斑16係指雷射脈衝12所形成的雷射光束之焦斑。如前所述,雷射光斑16處的雷射能量分佈係取決於雷射光學模組14。此外,雷射光學模組14控制雷射光斑16的聚焦深度(depth of focus),或是量測平面遠離焦平面(focal plane)時光斑失焦的速度。藉由控制聚焦深度,控制器20可以導控雷射光學模組14以及平台22可重複地以高精確度將雷射光斑16定位於物品18的表面處或其附近。藉由將焦斑定位於物品表面的上方或下方以製做標記允許雷射光束失焦特定程度,從而增加雷射脈衝照射之區域並減少表面處的雷射能量密度(fluence)。由於光束腰徑之幾何結構已知,將焦斑明確定位於物品實際表面上方或下方將對光斑尺寸及能量密度提供進一步的精確控制。 The laser spot 16 is the focal spot of the laser beam formed by the laser pulse 12. As previously mentioned, the laser energy distribution at the laser spot 16 is dependent on the laser optics module 14. In addition, the laser optics module 14 controls the depth of focus of the laser spot 16, or the speed at which the spot is out of focus when the plane is away from the focal plane. By controlling the depth of focus, the controller 20 can direct the laser optics module 14 and the platform 22 to repeatedly position the laser spot 16 at or near the surface of the article 18 with high precision. Marking the focal spot above or below the surface of the article to create a mark allows the laser beam to be out of focus to a certain extent, thereby increasing the area illuminated by the laser pulse and reducing the laser energy fluence at the surface. Since the geometry of the beam waist diameter is known, determining the focal spot above or below the actual surface of the article provides further precise control of spot size and energy density.

皮秒級雷射,其產生範圍從1到1,000皮秒的雷射脈衝寬度,係用以在經過陽極氧化之鋁上可靠地並可重複地建立標記之較佳雷射。圖2係顯微照片,其顯示利用大於1奈秒脈衝之先前技術雷射建立於經過陽極氧化之鋁30上之一標記。該陽極氧化區在標記區域34之中顯示清 楚的裂縫痕跡32,一個不良的結果。圖3顯示利用皮秒級雷射在同一形式的經過陽極氧化之鋁36上製做出的同一顏色及光學密度之標記38,其顯示並無裂痕。皮秒級雷射對經過陽極氧化之鋁質物品施加符合商業需求之黑色標記,且未對氧化層造成損傷。商業上可接受之黑色係定義成一個具有CIE色度L*=40、a*=5、且b*=10或更小之標記。使用皮秒級雷射之另一優點在於其更加便宜、需要更少之維護以及通常比先前技術飛秒級雷射具有遠遠較長的運作壽命。此外,本發明之特色不需要在陽極氧化之前先清潔鋁的表面以建立符合商業需求的標記。 A picosecond laser, which produces a laser pulse width ranging from 1 to 1,000 picoseconds, is used to reliably and reproducibly mark the preferred laser on anodized aluminum. Figure 2 is a photomicrograph showing the creation of a mark on anodized aluminum 30 using a prior art laser having a pulse of greater than one nanosecond. The anodization zone shows clear in the marking area 34 Chu's crack marks 32, a bad result. Figure 3 shows the same color and optical density mark 38 made on the same form of anodized aluminum 36 using a picosecond laser showing no cracks. The picosecond laser applies a black marking that meets commercial requirements to the anodized aluminum article without causing damage to the oxide layer. A commercially acceptable black color is defined as a mark having a CIE chromaticity L*=40, a*=5, and b*=10 or less. Another advantage of using a picosecond laser is that it is cheaper, requires less maintenance, and typically has a much longer operational life than prior art femtosecond lasers. Moreover, the features of the present invention do not require cleaning the surface of the aluminum prior to anodization to create a marking that meets commercial requirements.

本發明之一實施例在陽極氧化區下的經過陽極氧化之鋁上執行標記之施加。對於待產生的夾層標記,其雷射能量密度定義為:F=E/s One embodiment of the invention performs the application of the mark on the anodized aluminum under the anodization zone. For the interlayer mark to be produced, the laser energy density is defined as: F=E/s

其中E係雷射脈衝能量而s係雷射光斑面積,必須滿足Fu<F<Fs,其中Fu係基板之雷射修改門檻值,此例中之基板係鋁,而Fs係表面層或陽極氧化區之損傷門檻值。Fu和Fs已然經由實驗獲得,且代表所選擇雷射使基板及表面層開始受損之能量密度。對於10皮秒(ps)脈衝,實驗顯示Al(鋁)的Fu對於皮秒綠光係~0.13焦耳/平方公分(J/cm2)而對於皮秒IR則是~0.2焦耳/平方公分,而Fs對於皮秒綠光係~0.18焦耳/平方公分而對於皮秒IR則是~1焦耳/平方公分。在此等數值之間改變雷射能量密度產生不同顏色及光學密度之標記。不同的脈衝持續時間及雷射波長將各自具有對應的Fu及Fs數值。一組特定之雷射參數的實際門檻值係經由實驗決定。 Where E is the laser pulse energy and s is the laser spot area, it must satisfy Fu<F<Fs, where the laser of the Fu-based substrate is modified by the threshold value. In this example, the substrate is aluminum, and the Fs is surface layer or anodized. The damage threshold of the district. Fu and Fs have been experimentally obtained and represent the energy density at which the selected lasers begin to damage the substrate and surface layer. For a 10 picosecond (ps) pulse, experiments have shown that Al (aluminum) Fu is ~0.13 joules per square centimeter (J/cm 2 ) for picosecond green light and ~0.2 joules per square centimeter for picosecond IR, Fs is ~0.18 joules per square centimeter for picosecond green light and ~1 joules per square centimeter for picosecond IR. Changing the laser energy density between these values produces markers of different colors and optical densities. Different pulse durations and laser wavelengths will each have a corresponding Fu and Fs value. The actual threshold for a particular set of laser parameters is determined experimentally.

關聯一特定顏色或光學密度之雷射參數亦可以透過實驗以外的方法決定。例如,雷射參數可以藉由執行雷射/材料交互作用之電腦模 擬而決定。其可以取用諸如教科書、雷射手冊或其他技術文獻等有關雷射/材料交互作用之資訊的其他來源,並自其推斷而決定適當之雷射參數。藉由導控雷射處理系統以產生具有適當雷射參數之雷射脈衝並精確地控制雷射能量密度,可以在經過陽極氧化之鋁質物品上可靠地並可重複地建立預定顏色及光學密度之標記。 Laser parameters associated with a particular color or optical density can also be determined by methods other than experiments. For example, laser parameters can be performed by a computer model that performs laser/material interactions. It is intended to be decided. It may use other sources of information about laser/material interactions, such as textbooks, laser manuals, or other technical literature, and infer from it to determine appropriate laser parameters. By directing the laser processing system to produce laser pulses with appropriate laser parameters and accurately controlling the laser energy density, predetermined and optical densities can be reliably and reproducibly established on anodized aluminum articles. Marked.

本發明之一實施例藉由調整雷射光斑之位置,從位於鋁質物品的表面處變成位於鋁的表面上方或下方之一明確距離處,而精確地控制在該鋁質物品的表面處的雷射能量密度。圖4顯示雷射脈衝焦斑40及其鄰近處之光束腰徑之示意圖。光束腰徑由表面42表示,其係雷射脈衝由FWHM方法在該雷射脈衝沿其行進的光軸44上量測的空間能量分佈之直徑。直徑48代表當雷射處理系統將雷射脈衝聚焦於該表面上方一距離(A-O)處時該鋁的表面上的雷射脈衝光斑尺寸。直徑46代表當雷射處理系統將雷射脈衝聚焦於該表面下方一距離(B-O)處時該鋁的表面上的雷射脈衝光斑尺寸。 An embodiment of the present invention precisely controls the position of the laser spot by adjusting the position of the laser spot from a surface located at the surface of the aluminum article to a clear distance above or below the surface of the aluminum. Laser energy density. Figure 4 shows a schematic representation of the beam waist diameter of the laser pulse focal spot 40 and its vicinity. The beam waist diameter is represented by surface 42 which is the diameter of the spatial energy distribution measured by the FWHM method on the optical axis 44 along which the laser pulse travels. Diameter 48 represents the size of the laser pulse spot on the surface of the aluminum when the laser processing system focuses the laser pulse at a distance (A-O) above the surface. Diameter 46 represents the size of the laser pulse spot on the surface of the aluminum when the laser processing system focuses the laser pulse at a distance (B-O) below the surface.

除了符合商業需求之黑色,對物品施加具有灰階數值之標記亦有效用。圖5及圖6顯示由本發明一實施例所做出的施加於經過陽極氧化之鋁上的一連串灰階標記。標記的光學密度範圍從幾乎與背景無法分辨到全黑。依據本發明之一特色,每一灰階標記均可以被表示成CIE色度量測數值之特有三元數組,L*、a*及b*。本發明之一特色將每一預定灰階數值連結一組雷射參數,其依照命令可靠地且可重複地在經過陽極氧化之鋁上產生預定之灰階數值標記。其亦應注意,肉眼可能看起來無法察覺的標記,當以廣域可見光之外的頻率照射時,例如紫外光,可以變成可被看見。 In addition to the black color that meets commercial needs, it is also effective to apply a mark having a grayscale value to the article. Figures 5 and 6 show a series of gray scale marks applied to anodized aluminum by an embodiment of the present invention. The optical density of the mark ranges from almost indistinguishable to the background to all black. According to one feature of the invention, each gray scale mark can be represented as a unique ternary array of CIE color metric values, L*, a* and b*. One feature of the present invention combines each predetermined gray scale value with a set of laser parameters that reliably and reproducibly produce predetermined gray scale value indicia on the anodized aluminum in accordance with the command. It should also be noted that indicia that may appear undetectable to the naked eye, when illuminated at frequencies other than wide-area visible light, such as ultraviolet light, may become visible.

圖5顯示本發明一實施例在經過陽極氧化之鋁70上製造出 的黑色標記60、62、64以及66。此等標記60、62、64以及66具有範圍從小於L*=40、a*=5及b*=10到完全透明的CIE色度,使之成為符合商業需求之標記。該等標記的另一特徵在於,由於它們係位於無損傷的陽極氧化區的下方,故其在一寬廣的視角範圍內均具有一致的外觀。利用先前技術方法所做出的標記,由於對於陽極氧化層之損傷,故傾向於隨著視角的改變在外觀上具有很大的差異。特別是,當利用先前技術奈秒級脈衝進行標記之時,施加足夠雷射脈衝能量至表面以做出深色標記對陽極氧化區造成損傷,此使得標記之外觀隨著視角變化。依據本發明一特色做出之標記,無論標記顏色多深,均不會損傷陽極氧化區,亦不會隨著視角不同而在外觀上有所變化。此等改良之標記係利用以下雷射參數造成: Figure 5 shows black indicia 60, 62, 64 and 66 fabricated on anodized aluminum 70 in accordance with one embodiment of the present invention. These indicia 60, 62, 64, and 66 have CIE chromaticities ranging from less than L*=40, a*=5, and b*=10 to fully transparent, making them a mark of commercial need. Another feature of the markers is that they have a consistent appearance over a wide viewing angle range since they are located below the non-damaging anodization zone. The mark made by the prior art method tends to have a large difference in appearance with a change in the viewing angle due to damage to the anodized layer. In particular, when marking with prior art nanosecond pulses, applying sufficient laser pulse energy to the surface to make dark marks causes damage to the anodization region, which causes the appearance of the mark to vary with viewing angle. According to a feature of the present invention, no matter how deep the mark is, it does not damage the anodization zone, and does not change in appearance depending on the viewing angle. These improved markings are caused by the following laser parameters:

標記60、62、64、66之光學密度範圍從相對於未標記的鋁 幾乎無法察覺的60到全黑的66。介於該二個極端之間的灰階光學密度64、66係藉由移動焦斑使其更接近物品、增加能量密度從而建立更深色之標記而產生。焦斑在鋁的表面上方的高度之改變從零開始,即最深色光學密度標記62之情形,在圖5之中由右至左每一標記64、66遞增500微米之增量,結束於表面上方5毫米處的最淺色標記60。注意以位於鋁的表面上方4.5至1.5毫米之焦斑所產生的標記64顯現出棕褐或金黃色,而以焦斑一毫米或更短者產生之標記62及66則顯現出灰色或黑色。維持此對於雷射焦斑距工作表面距離的精確控制加上將其他雷射參數維持於正常雷射處理的公差之內,使其得以在經過陽極氧化之鋁上製做出具有預定顏色及光學密度之雷射標記。此外,最深色標記顯示一小於L*=40、a*=5而b*=10之CIE色度,使其成為符合商業需求之黑色標記。 The optical densities of the marks 60, 62, 64, 66 range from relative to unmarked aluminum Almost undetectable 60 to all black 66. The grayscale optical density 64, 66 between the two extremes is created by moving the focal spot closer to the article, increasing the energy density to create a darker mark. The change in height of the focal spot above the surface of the aluminum begins at zero, i.e., the darkest optical density mark 62, which is incremented by 500 microns in each of the marks 64, 66 from right to left in Figure 5, ending at the surface. The lightest mark 60 at 5 mm above. Note that the indicia 64 produced by a focal spot located 4.5 to 1.5 mm above the surface of the aluminum exhibits a brown or golden yellow color, while the indicia 62 and 66 produced with a focal spot of one millimeter or less appear gray or black. Maintaining this precise control of the distance from the laser focal spot to the working surface plus maintaining other laser parameters within the tolerances of normal laser processing allows it to be fabricated on anodized aluminum to have a predetermined color and optical density Laser mark. In addition, the darkest mark shows a CIE chromaticity less than L*=40, a*=5 and b*=10, making it a black mark that meets commercial needs.

本發明之另一特色決定具有灰階之外顏色之標記與皮秒雷射脈衝參數之間的關係。灰階之外的顏色可以以二種不同方式產生於經過陽極氧化之鋁上。第一,其可以在一光學密度之範圍中產生金黃色調。其係藉由在鋁及氧化物塗層間的交界面處做出變化而產生此顏色。仔細選擇雷射脈衝參數將產生預定之金黃顏色而不致損傷氧化物塗層。圖5亦顯示由本發明之一特色產生之金黃或棕褐的各種不同色彩。 Another feature of the invention determines the relationship between the indicia of the color outside the grayscale and the picosecond laser pulse parameters. Colors other than the gray scale can be produced on the anodized aluminum in two different ways. First, it can produce a golden hue in the range of optical density. This color is produced by making changes at the interface between the aluminum and oxide coatings. Careful selection of the laser pulse parameters will produce a predetermined golden color without damaging the oxide coating. Figure 5 also shows various colors of golden or brown produced by one of the features of the present invention.

經過陽極氧化之鋁的雷射標記亦可以藉由使用IR波長雷射脈衝以對鋁施加標記的本發明之一特色達成。此特色藉由以二種不同方式改變鋁的表面處之雷射能量密度而產生不同灰階密度之標記。如上所述,其可以藉由將焦斑定位於鋁的表面的上方或下方以改變表面處之能量密度而造出灰階。控制灰階的第二種方式係藉由在標記預定圖案之時改變照射 點距(bite size)或線條間距以改變位於鋁的表面處之總劑量。改變照射點距係指調整雷射脈衝光束相對於鋁的表面移動之速率或者改變脈衝重複率或者二者均改變,此導致在鋁上連續雷射脈衝撞擊位置間的距離改變。改變線條間距係指調整標記線條之間的距離以達成各種不同程度之交疊。圖6顯示具有標記72的陣列之一鋁質物品74。此等標記72被安排於包含六行四列的陣列之中。此六行代表鋁的表面上方範圍從0(頂列)到5毫米(底列)的六個焦斑Z向高度。四列則代表由左至右的5、10、20及50微米之間距。其應可以從圖6看出,改變焦斑之Z向高度及改變雷射脈衝之間距能夠以可預測之方式產生從小於CIEL*=40、a*=5、且b*=10到幾近透明之間的任何預定光學密度之灰階,從而在經過陽極氧化之鋁上產生符合商業需求之標記。 The laser marking of the anodized aluminum can also be achieved by the use of an IR wavelength laser pulse to characterize the aluminum. This feature produces markers of different gray scale densities by varying the laser energy density at the surface of the aluminum in two different ways. As described above, it is possible to create a gray scale by positioning the focal spot above or below the surface of the aluminum to change the energy density at the surface. The second way to control the gray scale is to change the illumination by marking the predetermined pattern. The bite size or line spacing is used to vary the total dose at the surface of the aluminum. Changing the illumination point distance means adjusting the rate at which the laser pulse beam moves relative to the surface of the aluminum or changing the pulse repetition rate or both, which results in a change in the distance between successive laser pulse impact locations on the aluminum. Changing the line spacing means adjusting the distance between the marked lines to achieve a different degree of overlap. FIG. 6 shows an aluminum article 74 having an array of indicia 72. These indicia 72 are arranged in an array comprising six rows and four columns. These six rows represent the six focal spot Z-direction heights above the surface of the aluminum ranging from 0 (top column) to 5 mm (bottom column). The four columns represent the distance between 5, 10, 20 and 50 microns from left to right. It should be seen from Figure 6 that changing the Z-direction height of the focal spot and changing the laser pulse spacing can be produced in a predictable manner from less than CIEL*=40, a*=5, and b*=10 to near The gray scale of any predetermined optical density between the transparents creates a mark on the anodized aluminum that meets commercial requirements.

可以利用皮秒雷射脈衝施加至經過陽極氧化之鋁上之一第二種型態之標記係藉由藉由被染色陽極氧化區之脫色所造成的顏色對比上之改變。在一微觀的尺度上,陽極氧化區係多孔性的,且將輕易地接受許多種染劑。再次參見圖3,此經過陽極氧化之鋁之顯微照片顯示表面之多孔性質。用以標記染色後的經過陽極氧化之鋁之雷射脈衝可以,取決於波長及脈衝能量,在標記鋁時將染色脫除,使得陽極氧化區變成透明,從而將下方的鋁之上的標記顯現出來。利用較高之能量密度,其有可能同時進行染色脫除以及先前段落所述之以黑色、灰階或彩色標記陽極氧化層下方之鋁。能量較低之脈衝可以部分脫除陽極氧化區之染色,使其呈半透明,從而對其下之鋁標記局部上色。最後,較長波長的脈衝可以在未造成陽極氧化區之脫色下在鋁上施加具有符合商業需求的黑色或灰階顏色之標記。圖7顯示一染色後的經過陽極氧化之鋁質物品,具有利用可見光(532奈米)雷射脈衝製做而成之標記。注意陽極氧化區中的染色在接受雷射脈衝的區域中被脫除。圖8顯示同一種染色後的經過陽極氧化之鋁質物品,具有利用IR(1064奈米)雷射脈衝製做而成之標記。注意陽極氧化區並未被IR雷射脈衝脫色,故未能使得下方的鋁質顏色穿越原始氧化物的半透明狀態而顯現出來。 A second type of mark that can be applied to the anodized aluminum by a picosecond laser pulse is a change in color contrast caused by decolorization of the dyed anodization zone. On a microscopic scale, the anodization zone is porous and will readily accept many dyes. Referring again to Figure 3, this photomicrograph of anodized aluminum shows the porous nature of the surface. The laser pulse for marking the anodized aluminum after dyeing can, depending on the wavelength and the pulse energy, remove the dye when the aluminum is marked, so that the anodization zone becomes transparent, thereby revealing the mark on the underlying aluminum. come out. With a higher energy density, it is possible to simultaneously perform dye removal as well as the aluminum underlying the anodized layer in black, grayscale or color as described in the previous paragraph. The lower energy pulse can partially remove the dyeing of the anodization zone to make it translucent, thereby locally coloring the underlying aluminum mark. Finally, longer wavelength pulses can be applied to the aluminum with a black or grayscale color that meets commercial requirements without causing discoloration of the anodization zone. Figure 7 shows a dyed anodized aluminum article having a mark made from visible (532 nm) laser pulses. Note that the staining in the anodization zone is removed in the area where the laser pulse is received. Figure 8 shows the same dyed anodized aluminum article with a mark made from IR (1064 nm) laser pulses. Note that the anodization region was not discolored by the IR laser pulse, so the underlying aluminum color did not appear to pass through the translucent state of the original oxide.

本發明之另一特色係有關於利用皮秒雷射以經過著色之陽極氧化區對經過陽極氧化之鋁施加雷射標記。由於陽極氧化通常形成一多孔性之表面,故可能引入染劑,其改變鋁之外觀。此等染劑可以是不透明或半透明,允許不同數量之入射光抵達鋁,且經由陽極氧化區被反射回來。圖7顯示經過陽極氧化之鋁質物品80,其依據本發明之一特色在陽極氧化 區之中具有粉紅染色並被製做成標記82的陣列。顏色之產生係藉由脫除氧化層中的染色,而下方的鋁顯現出從原有(銀)色到一系列經過雷射標記的色彩從棕褐到灰色最後到黑色之顏色。這些色彩係藉由改變鋁的表面處的雷射脈衝之能量密度而產生。圖中的四列代表將雷射脈衝之間距從10微米改變到50微米,而行則代表將距表面的焦斑距離從0.0毫米改變到5.0毫米。此等雷射參數在所有的情況下均使得覆蓋鋁的氧化物中的染色脫除,而讓鋁上的標記得以顯現出來。雷射標記光學密度之範圍從透明到CIE色度小於L*=40、a*=5、b*=10。用以產生此等標記之雷射參數顯示於表3之中。 Another feature of the invention relates to the application of a laser marking to anodized aluminum using a picosecond laser to pass a colored anodization zone. Since anodization generally forms a porous surface, it is possible to introduce a dye which changes the appearance of aluminum. These dyes may be opaque or translucent, allowing a different amount of incident light to reach the aluminum and be reflected back through the anodization zone. Figure 7 shows an anodized aluminum article 80 which is anodized in accordance with one feature of the present invention. The area has a pink tint and is made into an array of indicia 82. The color is produced by removing the dye from the oxide layer, while the underlying aluminum exhibits a color from the original (silver) color to a series of laser-marked colors from brown to gray to black. These colors are produced by varying the energy density of the laser pulses at the surface of the aluminum. The four columns in the figure represent the change in the distance between the laser pulses from 10 microns to 50 microns, while the row represents the change in the focal spot distance from the surface from 0.0 mm to 5.0 mm. These laser parameters in all cases result in the removal of dye in the oxide covering the aluminum, allowing the marking on the aluminum to be revealed. The laser marker optical density ranges from transparent to CIE chromaticity less than L*=40, a*=5, b*=10. The laser parameters used to generate these markers are shown in Table 3.

陽極氧化區染色之脫除係與頻率相關的。如圖7所示,532奈米之雷射脈衝即使在最低的能量密度亦能脫除陽極氧化區之染色。另一方面,IR雷射波長,在染色後的經過陽極氧化之鋁上建立標記,且對於多數的半透明染劑顏色並不會脫除其染色。圖8顯示經過陽極氧化之鋁質物 品100,具有粉紅染色以及以1R雷射脈衝製做而成之標記102。該等標記從半透明到黑色,且係藉由改變焦斑到表面之距離以及藉由改變間距二者,以修改雷射能量密度而製成。圖中的六行代表使雷射脈衝焦斑與鋁的表面之間的距離從5.5毫米(右側)變化到零(左側)。圖中的四列則代表使雷射脈衝間距從10微米變化到50微米。用以產生此等標記之雷射參數顯示於表4之中。 The removal of dyeing in the anodization zone is frequency dependent. As shown in Figure 7, the 532 nm laser pulse removes the dyeing of the anodization zone even at the lowest energy density. On the other hand, the IR laser wavelength establishes a mark on the anodized aluminum after dyeing and does not remove the dye for most translucent dye colors. Figure 8 shows anodized aluminum Product 100 has a pink coloration and a marking 102 made with a 1R laser pulse. The marks are from translucent to black and are made by modifying the distance of the focal spot to the surface and by varying the spacing to modify the laser energy density. The six rows in the figure represent the change in the distance between the laser pulse focal spot and the surface of the aluminum from 5.5 mm (right side) to zero (left side). The four columns in the figure represent a change in the laser pulse pitch from 10 microns to 50 microns. The laser parameters used to generate these markers are shown in Table 4.

針對532奈米(綠光)雷射波長之陽極氧化區染色脫除、對鋁進行標記以及使表面燒蝕之間的關係顯示於圖9之中。針對532奈米(綠光)雷射脈衝配合給定於表1、2及3內的參數,圖9顯示以焦耳/平方公分(Joules/cm2)為單位的陽極氧化區脫色(Fb)、標記陽極氧化區下之鋁(Fu)、以 及表面燒蝕(Fs)的能量密度門檻值。就本發明之一特色而言,532奈米雷射脈衝產生的數值係Fb=0.1焦耳/平方公分、Fu=0.13焦耳/平方公分以及Fs=0.18焦耳/平方公分。圖10顯示配合給定於表1、2及3內的參數之1064奈米(IR)雷射脈衝之以焦耳/平方公分為單位的能量密度門檻值。就本發明之一特色而言,1064奈米(IR)雷射脈衝之以焦耳/平方公分為單位的能量密度門檻值係Fu=0.2焦耳/平方公分以及Fs=1.0焦耳/平方公分。注意其並無針對陽極氧化區脫色之門檻值,因為IR波長雷射脈衝在雷射能量密度大到足以損傷覆蓋的陽極氧化區之前,尚無法開始對陽極氧化區脫色。其亦應注意Fb、Fu及Fs的精確數值將取決於所使用的特定雷射及光學模組。對於一特定之處理配置以及待進行標記之物品,其應以實驗的方式決定,並儲存於控制器之中以供後續使用。 The relationship between dye removal for the anodic oxidation zone of the 532 nm (green) laser wavelength, marking of aluminum, and surface ablation is shown in FIG. For the 532 nm (green) laser pulse with the parameters given in Tables 1, 2 and 3, Figure 9 shows the anodization decolorization (Fb), mark in Joules per square centimeter (Joules/cm2) Aluminum (Fu) under the anodized zone And the energy density threshold of surface ablation (Fs). In one aspect of the invention, the 532 nm laser pulse produces a value of Fb = 0.1 joules per square centimeter, Fu = 0.13 joules per square centimeter, and Fs = 0.18 joules per square centimeter. Figure 10 shows the energy density threshold in joules per square centimeter for 1064 nanometer (IR) laser pulses given the parameters given in Tables 1, 2 and 3. In one feature of the invention, the energy density threshold of Joules per square centimeter for 1064 nanometer (IR) laser pulses is Fu = 0.2 joules per square centimeter and Fs = 1.0 joules per square centimeter. Note that there is no threshold for the decolorization of the anodization zone because the IR wavelength laser pulse cannot begin to decolorize the anodization zone until the laser energy density is large enough to damage the covered anodization zone. It should also be noted that the exact values of Fb, Fu and Fs will depend on the particular laser and optical module used. For a particular processing configuration and the item to be marked, it should be experimentally determined and stored in the controller for subsequent use.

在本發明之另一實施例中,經過調構之雷射處理系統之可編程特性使得經過陽極氧化之鋁質物品可以標記以符合商業需求之標記圖案。如圖11所示,在此特色之中,一圖案110被轉換成一數位表示方式112,其被分解成一列表114,其中在列表114之中的每一項目116均包含一位置或複數位置的表示方式,具有一顏色及光學密度關聯至每一位置。列表114被儲存於控制器20之中。控制器20將雷射參數連結列表114中的每一項目116,當該等雷射參數被以命令之形式傳送至雷射10、光學模組14及移動控制平台22之時,將致使雷射10發出一或多個雷射脈衝12,照射到鋁質物品18的表面16或其附近。該等脈衝將建立一具有預定顏色及光學密度之標記。當標記正被建立時,藉由依據儲存於列表中的位置相對於鋁質物品18移動雷射脈衝12,使得預定範圍顏色及光學密度之標記以預定之圖案被 製做於經過陽極氧化之鋁的表面之上。 In another embodiment of the invention, the programmable nature of the modulated laser processing system allows the anodized aluminum article to be marked to conform to commercially demanded marking patterns. As shown in FIG. 11, in this feature, a pattern 110 is converted into a digital representation 112 that is broken down into a list 114, wherein each item 116 in the list 114 includes a representation of a position or a plurality of positions. The way, with a color and optical density associated to each location. The list 114 is stored in the controller 20. The controller 20 will cause each item 116 in the laser parameter linkage list 114 to cause the laser when the laser parameters are transmitted to the laser 10, the optical module 14 and the mobile control platform 22 in the form of commands. 10 emits one or more laser pulses 12 that illuminate the surface 16 of the aluminum article 18 or its vicinity. These pulses will create a mark with a predetermined color and optical density. When the mark is being created, the predetermined range of color and optical density marks are in a predetermined pattern by moving the laser pulse 12 relative to the aluminum article 18 in accordance with the position stored in the list. Made on the surface of anodized aluminum.

在本發明的另一實施例之中,著色之陽極氧化區被圖案化於先前圖案化的標記之上以呈現額外的顏色及光學密度。在此特色之中,灰階圖案被建立於經過陽極氧化之鋁質物品之上。該物品接著被塗覆以光阻塗層,其可以藉由曝光至雷射脈衝而被顯影。經過灰階圖案化及光阻塗覆後之物品被置入雷射處理系統之中,並進行校準對齊使得系統可以準確地將雷射脈衝施加至已經加諸於物品上的圖案。所使用的光阻係一種被稱為"負型"光阻劑者,其中暴露至雷射輻射之區域將被移除,而未暴露之區域將留存於物品上繼續後續之處理。殘留的光阻保護物品表面使其免於被染色,而已被曝光且之後被移除的陽極氧化區域將被染上預定之顏色。此陽極氧化層被設計成半透明以容許光線穿過陽極氧化區而到達下方的圖案並被反射回來穿過陽極氧化區,從而產生具有選定顏色及光學密度之有色圖案。此有色陽極氧化區若有需要亦可以利用本發明其他特色所揭示之技術予以脫色,以產生具有預定透明度之預定顏色。此顏色可以施加於其下圖案的整個區域,或者以逐點的方式為之,僅受限於雷射系統之解析度,通常在10到400微米的範圍之內。此動作可以重覆以產生多重顏色之疊覆。在本發明之一特色中,其以多重顏色疊覆網格之形式施加陽極氧化區顏色疊覆,諸如貝爾圖案(Bayer pattern)。藉由將灰階圖案設計成配合顏色疊覆網格,可以將耐久性、符合商業需求之全彩影像建立於經過陽極氧化之鋁質物品之上。 In another embodiment of the invention, the colored anodized regions are patterned over the previously patterned indicia to exhibit additional color and optical density. Among these features, the grayscale pattern is built on an anodized aluminum article. The article is then coated with a photoresist coating that can be developed by exposure to a laser pulse. The gray-scale patterned and photoresist-coated articles are placed into the laser processing system and aligned for alignment so that the system can accurately apply laser pulses to the pattern that has been applied to the article. The photoresist used is a type of "negative" photoresist where the area exposed to the laser radiation will be removed and the unexposed areas will remain on the item for subsequent processing. The residual photoresist protects the surface of the article from being stained, while the anodized regions that have been exposed and subsequently removed will be dyed to a predetermined color. The anodized layer is designed to be translucent to allow light to pass through the anodization region to the underlying pattern and be reflected back through the anodization region to produce a colored pattern having a selected color and optical density. The colored anodization zone can also be decolorized, if desired, using techniques disclosed by other features of the present invention to produce a predetermined color having a predetermined transparency. This color can be applied to the entire area of the underlying pattern, or in a point-by-point manner, limited only by the resolution of the laser system, typically in the range of 10 to 400 microns. This action can be repeated to create a multi-color overlay. In one feature of the invention, an anodic oxidation zone color overlay, such as a Bayer pattern, is applied in the form of a multi-color overlay grid. By designing the grayscale pattern to match the color overlay grid, durable, commercially available full color images can be built on anodized aluminum articles.

圖12a至圖12i顯示用以利用二種顏色建立此種顏色疊覆的一連串步驟。在圖12a之中,鋁質物品118具有透明陽極氧化層120以及先 前依據本發明之其他特色施加之標記122。負型光阻124被施加至透明陽極氧化層120之表面。在圖12b之中,雷射脈衝126對光阻124之區域128、130進行曝光。在圖12c之中,未曝光之光阻134在光阻處理之後留存下來,但已曝光之光阻被移除,留下處理後之光阻層134中的空位132。圖12d顯示基礎陽極氧化層120中在處理後之光阻層134中的空位132下方的區段136中的陽極氧化區被染以顏色。完整無損的處理後之光阻層134防止陽極氧化區獲致顏色,除了處理後之光阻層134中已被移除的區域132之外。圖12e顯示物品118在處理後之光阻層移除之後包含具有顏色部分之陽極氧化區136之基礎陽極氧化區120以及先前施加之標記122之相對位置。 Figures 12a through 12i show a series of steps for establishing such a color overlay using two colors. In Figure 12a, the aluminum article 118 has a transparent anodized layer 120 and The indicia 122 previously applied in accordance with other features of the present invention. A negative photoresist 124 is applied to the surface of the transparent anodized layer 120. In Figure 12b, laser pulse 126 exposes regions 128, 130 of photoresist 124. In Figure 12c, the unexposed photoresist 134 remains after the photoresist treatment, but the exposed photoresist is removed leaving the vacancies 132 in the processed photoresist layer 134. Figure 12d shows that the anodization zone in section 136 below the vacancies 132 in the treated photoresist layer 134 in the base anodized layer 120 is colored. The intact photoresist layer 134 prevents the anodized regions from being colored, except for the regions 132 of the photoresist layer 134 that have been removed. Figure 12e shows the relative position of the article 118 comprising the base anodization region 120 having an anodized region 136 having a color portion and the previously applied indicia 122 after removal of the treated photoresist layer.

圖12f顯示一物品118具有基礎陽極氧化區120,包含顏色部分136以及第二光阻層138。圖12g顯示此光阻之第二疊層138被雷射脈衝142照射,使得區域140被曝光。圖12h顯示具有基礎陽極氧化區120之物品118進行被移除光阻140下方陽極氧化區之染色以及殘留光阻138移除之後之情況。此使得完整無損的基礎陽極氧化層包含著色區域136、144,位於先前標記區域122之上。圖12i顯示後續雷射脈衝146被用以選擇性地對該鋁質物品先前經過陽極氧化及染色之部分進行脫色,以產生額外的預定顏色或光學密度。本發明此特色所述之處理造成彩色圖案疊覆於灰階圖案之上,以可編程的圖案形式產生具有耐久性且符合商業需求之顏色及光學密度之範圍寬廣之標記。 Figure 12f shows an article 118 having a base anodization region 120 comprising a color portion 136 and a second photoresist layer 138. Figure 12g shows that the second stack 138 of photoresist is illuminated by a laser pulse 142 such that region 140 is exposed. Figure 12h shows the condition after the article 118 having the base anodization region 120 is subjected to the dyeing of the anodization region below the removed photoresist 140 and the residual photoresist 138 is removed. This causes the intact underlying anodized layer to contain colored regions 136, 144 overlying the previously marked regions 122. Figure 12i shows that subsequent laser pulses 146 are used to selectively decolorize the previously anodized and dyed portions of the aluminum article to produce an additional predetermined color or optical density. The process described in this feature of the present invention causes the color pattern to be overlaid on the grayscale pattern to produce a wide range of markers of durable and commercially desirable color and optical density in a programmable pattern.

在本發明的另一實施例之中,可以使用特定之圖案將著色陽極氧化區建立於經過陽極氧化之鋁質物品之上,產生觀看時呈全彩影像之外觀。在此特色之中,其利用本文所述之技術將一影像之圖案代表形式施 加至表面上。顏色染劑以例示於圖12a至圖12i之方式引入,但該等染劑引入陽極氧化基礎層之圖案係被設計成將灰階表示方式轉換成全彩的方式。此一圖案之一實例係一貝爾濾光鏡(Bayer filter,圖中未顯示),其將紅色、綠色及藍色濾光鏡元素並列於一圖案之中,使得眼睛對紅色、綠色及藍色元素之感知融合成其光學密度與著色陽極氧化區濾光鏡下方的灰階標記相關之單一顏色,從而產生全彩影像或圖案之外觀。光阻可以是負型或正型光阻,且曝光該光阻之圖案可以藉由遮罩產生,諸如使用於電路或半導體應用之中者,或者由電子裝置直接寫入,或者藉由諸如噴墨之技術直接沉積,或者藉由雷射直接燒蝕。 In another embodiment of the invention, a colored pattern of anodized regions can be created on the anodized aluminum article using a particular pattern to produce a full color image for viewing. Among these features, it uses the techniques described herein to represent the pattern of an image. Add to the surface. The colorants are introduced in the manner illustrated in Figures 12a through 12i, but the pattern in which the dyes are introduced into the anodized base layer is designed to convert the gray scale representation into a full color. An example of such a pattern is a Bayer filter (not shown) that juxtaposes red, green, and blue filter elements in a pattern such that the eyes are red, green, and blue. The perception of the elements merges into a single color associated with the grayscale mark beneath the colored anodized filter, resulting in the appearance of a full-color image or pattern. The photoresist may be a negative or positive photoresist, and the pattern exposing the photoresist may be generated by a mask, such as for use in a circuit or semiconductor application, or written directly by an electronic device, or by spraying, for example. The technique of ink is deposited directly or directly by laser ablation.

前述實施例之細節可以在未脫離本發明之基本原理下進行許多修改,此對於習於斯藝者應係顯而易見的。本發明之範疇因此應由以下之申請專利範圍所界定。 The details of the foregoing embodiments may be modified in many ways without departing from the basic principles of the invention, which should be apparent to those skilled in the art. The scope of the invention is therefore intended to be defined by the scope of the following claims.

60-66‧‧‧標記 60-66‧‧‧ mark

70‧‧‧經過陽極氧化之鋁 70‧‧‧Aluminized aluminum

Claims (12)

一種經過陽極氧化之鋁質物品,包含:鋁質基板;氧化層,設置在該鋁質基板的基板表面之上,該氧化層具有表面;以及雷射標記,製作於該物品的該氧化層的該表面之下的明確距離處,其中該標記對肉眼而言是無法察覺的,但是當以廣域可見光之外的光照射該標記時,該標記可以變成可被看見。 An anodized aluminum article comprising: an aluminum substrate; an oxide layer disposed on a surface of the substrate of the aluminum substrate, the oxide layer having a surface; and a laser mark formed on the oxide layer of the article The clear distance below the surface, where the mark is undetectable to the naked eye, but when the mark is illuminated with light other than wide-area visible light, the mark can become visible. 如申請專利範圍第1項所述之經過陽極氧化之鋁質物品,其中該標記具有等於或小於L*=40、a*=5及b*=10之光學密度。 The anodized aluminum article of claim 1, wherein the mark has an optical density equal to or less than L*=40, a*=5, and b*=10. 如申請專利範圍第1項所述之經過陽極氧化之鋁質物品,其中該標記在寬廣的視角範圍內均具有一致的外觀。 The anodized aluminum article of claim 1, wherein the marking has a uniform appearance over a wide viewing angle range. 如申請專利範圍第1項所述之經過陽極氧化之鋁質物品,其中該經過陽極氧化之鋁質物品具有在鋁之上的氧化層,其中該標記包括與非標記區域相鄰的標記區域,以及其中該氧化層維持完整無損且保持它的表面,使得該氧化層機械性地毗連於相鄰的該標記區域及該非標記區域間之。 The anodized aluminum article of claim 1, wherein the anodized aluminum article has an oxide layer over the aluminum, wherein the indicia comprises a marking region adjacent to the non-marking region, And wherein the oxide layer remains intact and retains its surface such that the oxide layer is mechanically adjacent to the adjacent between the marked region and the non-marked region. 如申請專利範圍第1項所述之經過陽極氧化之鋁質物品,其中該標記在以UV照射下為可看見。 The anodized aluminum article of claim 1, wherein the mark is visible under UV illumination. 如申請專利範圍第1項所述之經過陽極氧化之鋁質物品,其中該標記具有黑色、透明、灰色、棕褐色(tan)或金黃色(gold)的其中之一的顏色。 The anodized aluminum article of claim 1, wherein the mark has a color of one of black, transparent, gray, tan or gold. 如申請專利範圍第1項所述之經過陽極氧化之鋁質物品,其中該標記具有銀色的顏色。 The anodized aluminum article of claim 1, wherein the mark has a silver color. 如申請專利範圍第1項所述之經過陽極氧化之鋁質物品,其中該標記以變化的光學密度呈現預定圖案,以形成影像。 The anodized aluminum article of claim 1, wherein the indicia exhibits a predetermined pattern at a varying optical density to form an image. 如申請專利範圍第1項所述之經過陽極氧化之鋁質物品,其中該標記係在該基板表面之上的明確距離處。 The anodized aluminum article of claim 1, wherein the marking is at a clear distance above the surface of the substrate. 如申請專利範圍第1項所述之經過陽極氧化之鋁質物品,其中該氧化層是以染劑染色。 The anodized aluminum article of claim 1, wherein the oxide layer is dyed with a dye. 如申請專利範圍第10項所述之經過陽極氧化之鋁質物品,其中該氧化層的染色被雷射脫色。 The anodized aluminum article of claim 10, wherein the dyeing of the oxide layer is decolored by a laser. 如申請專利範圍第1至11項中任一項所述之經過陽極氧化之鋁質物品,其中該經過陽極氧化之鋁質物品是由以下方法所製成,該方法包括:提供雷射標記系統,其具有雷射、雷射光學模組、平台以及有效連接至該雷射及該雷射光學模組及該平台之控制器,該雷射發出雷射脈衝,該雷射脈衝在該控制器的導控下藉由該雷射光學模組與該平台協同運作而被導控至該經過陽極氧化之鋁質物品,該雷射標記系統還具有雷射脈衝參數以界定該雷射脈衝與該經過陽極氧化之鋁質物品間之交互作用之特性;決定與建立具有預定性質之該標記相關聯之特定雷射脈衝參數;提供該特定雷射脈衝參數予該控制器;以及與該控制器、該雷射光學模組及該平台協同運作,控制該雷射以產生具有該特定雷射脈衝參數之該雷射脈衝;以及導控該雷射脈衝以照射至該經過陽極氧化之鋁質物品,從而建立具有該預定性質之該標記。 The anodized aluminum article according to any one of claims 1 to 11, wherein the anodized aluminum article is produced by the following method, the method comprising: providing a laser marking system a laser, a laser optical module, a platform, and a controller operatively coupled to the laser and the laser optical module and the platform, the laser emitting a laser pulse, the laser pulse being at the controller Directed by the laser optical module in cooperation with the platform to be controlled to the anodized aluminum article, the laser marking system further having a laser pulse parameter to define the laser pulse and Characterizing the interaction between the anodized aluminum articles; determining a particular laser pulse parameter associated with establishing the tag having a predetermined property; providing the particular laser pulse parameter to the controller; and The laser optical module and the platform cooperate to control the laser to generate the laser pulse having the specific laser pulse parameter; and direct the laser pulse to illuminate the anodized Quality items, in order to establish the nature of the mark having the predetermined.
TW105116084A 2011-03-21 2011-03-21 Anodized aluminum article TWI583478B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105116084A TWI583478B (en) 2011-03-21 2011-03-21 Anodized aluminum article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105116084A TWI583478B (en) 2011-03-21 2011-03-21 Anodized aluminum article

Publications (2)

Publication Number Publication Date
TW201630680A TW201630680A (en) 2016-09-01
TWI583478B true TWI583478B (en) 2017-05-21

Family

ID=57442915

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105116084A TWI583478B (en) 2011-03-21 2011-03-21 Anodized aluminum article

Country Status (1)

Country Link
TW (1) TWI583478B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07204871A (en) * 1994-01-20 1995-08-08 Fuji Electric Co Ltd Marking method
CN1336878A (en) * 1999-11-11 2002-02-20 皇家菲利浦电子有限公司 Marking of an anodized layer of an aluminium object
US20060000814A1 (en) * 2004-06-30 2006-01-05 Bo Gu Laser-based method and system for processing targeted surface material and article produced thereby
WO2007049064A1 (en) * 2005-10-28 2007-05-03 Powerlase Limited A method of laser marking a surface

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07204871A (en) * 1994-01-20 1995-08-08 Fuji Electric Co Ltd Marking method
CN1336878A (en) * 1999-11-11 2002-02-20 皇家菲利浦电子有限公司 Marking of an anodized layer of an aluminium object
US20060000814A1 (en) * 2004-06-30 2006-01-05 Bo Gu Laser-based method and system for processing targeted surface material and article produced thereby
WO2007049064A1 (en) * 2005-10-28 2007-05-03 Powerlase Limited A method of laser marking a surface

Also Published As

Publication number Publication date
TW201630680A (en) 2016-09-01

Similar Documents

Publication Publication Date Title
US8761216B2 (en) Method and apparatus for reliably laser marking articles
US9375946B2 (en) Method and apparatus for reliably laser marking articles
KR101869435B1 (en) Method and apparatus for reliably laser marking articles
US8379678B2 (en) Method and apparatus for reliably laser marking articles
KR101881621B1 (en) Method and apparatus for reliably laser marking articles
EP2683518A1 (en) Method and apparatus for reliably laser marking articles
JP6689067B2 (en) Method of making a glass-ceramic component with a patterned coating
US9138826B2 (en) Method for laser marking a metal surface with a desired colour
US20160168779A1 (en) Laser-marked fabric
JP6474810B2 (en) Laser system and method for marking inside a thin layer and object produced thereby
TWI540014B (en) Method and apparatus for reliably laser marking articles
TWI583478B (en) Anodized aluminum article
TWI640384B (en) Method for creating a mark on an article, laser marking apparatus, article having a mark, anodized metallic article having a mark and anodized metallic article
TW201208899A (en) Method and apparatus for reliably laser marking articles
TWI549836B (en) Method and apparatus for reliably laser marking articles
Bosman Processes and strategies for solid state Q-switch laser marking of polymers
JP4721157B2 (en) Coloring method and device using laser light
Patwa et al. Laser color marking with color monitoring

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees