TWI580802B - Beryllium-free multi-element copper alloy - Google Patents

Beryllium-free multi-element copper alloy Download PDF

Info

Publication number
TWI580802B
TWI580802B TW105128017A TW105128017A TWI580802B TW I580802 B TWI580802 B TW I580802B TW 105128017 A TW105128017 A TW 105128017A TW 105128017 A TW105128017 A TW 105128017A TW I580802 B TWI580802 B TW I580802B
Authority
TW
Taiwan
Prior art keywords
sub
copper alloy
bismuth
free multi
free
Prior art date
Application number
TW105128017A
Other languages
Chinese (zh)
Other versions
TW201807207A (en
Inventor
葉均蔚
Original Assignee
國立清華大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立清華大學 filed Critical 國立清華大學
Priority to TW105128017A priority Critical patent/TWI580802B/en
Application granted granted Critical
Publication of TWI580802B publication Critical patent/TWI580802B/en
Publication of TW201807207A publication Critical patent/TW201807207A/en

Links

Description

無鈹多元銅合金Innocent multi-component copper alloy

本發明係關於合金材料之相關技術領域,尤指一種無鈹多元銅合金。The invention relates to the related technical field of alloy materials, in particular to a non-bismuth multi-component copper alloy.

由於具有良好的導電性及導熱性、高耐蝕能力、中高機械強度、抗疲勞能力、獨特的金屬光澤,因此銅及銅合金被廣泛地應用在日常生活之上。Copper and copper alloys are widely used in daily life due to their good electrical and thermal conductivity, high corrosion resistance, medium and high mechanical strength, fatigue resistance and unique metallic luster.

在眾多銅合金之中,銅-鈹合金係具有最優異的機械強度。如熟悉合金材料設計與製造的工程師所熟知的,隨著溫度的改變,鈹在銅中的固溶度會有非常明顯的變化。例如,當溫度為25°C之時,鈹在銅中的固溶度為0.5wt% (3.4at%);並且,當溫度高達886°C之時,鈹在銅中的固溶度則上升至2.7wt% (16.4at%)。因此,製造銅-鈹合金之時,便可以利用此固溶度差異進以根據應用需求而製造出不同硬度的銅-鈹合金。一般而言,所製得的銅-鈹合金的硬度主要係依據鈹含量(0.6~2.7 wt%)以及時效處理的條件而有所不同。舉例而言,目前商業上可取得的高硬度銅-鈹合金包括:鍛製合金(例如:C17000(Cu-1.7Be-0.3Co)與C17200(Cu-1.9Be-0.2Co)以及鑄造合金(例如:C82400(Cu-1.7Be-0.3Co)、C82500(Cu-2Be-0.5Co-0.25Si)、C82600(Cu-2.4Be-0.5Co)、與C82800(Cu-2.6Be-0.5Co-0.3Si),在不同的鑄造、鍛造及熱處理條件下,它們的硬度約介於HV200~460(相當於HRC 18~46)之間。Among many copper alloys, copper-bismuth alloys have the most excellent mechanical strength. As is well known to engineers familiar with the design and manufacture of alloy materials, the solid solubility of niobium in copper changes significantly as the temperature changes. For example, when the temperature is 25 ° C, the solid solubility of cerium in copper is 0.5 wt% (3.4 at%); and, when the temperature is as high as 886 ° C, the solid solubility of cerium in copper increases. To 2.7 wt% (16.4 at%). Therefore, when a copper-bismuth alloy is produced, the difference in solid solubility can be utilized to produce copper-bismuth alloys having different hardnesses according to application requirements. In general, the hardness of the obtained copper-bismuth alloy differs mainly depending on the niobium content (0.6 to 2.7 wt%) and the conditions of the aging treatment. For example, currently commercially available high hardness copper-bismuth alloys include: forged alloys (eg, C17000 (Cu-1.7Be-0.3Co) and C17200 (Cu-1.9Be-0.2Co) and cast alloys (eg, : C82400 (Cu-1.7Be-0.3Co), C82500 (Cu-2Be-0.5Co-0.25Si), C82600 (Cu-2.4Be-0.5Co), and C82800 (Cu-2.6Be-0.5Co-0.3Si) Under different casting, forging and heat treatment conditions, their hardness is between HV200~460 (corresponding to HRC 18~46).

由於具有優良的導電性與導熱性、高機械強度、及抗疲勞能力,銅-鈹合金長期以來被廣泛的應用於導電彈簧、散熱片、電極之製造。此外,銅-鈹合金與鋼有低摩擦、不產生火花之作用,是以亦被應用於無火花工具、軸承、齒輪、活塞等構件之製造。Due to its excellent electrical and thermal conductivity, high mechanical strength, and fatigue resistance, copper-bismuth alloys have long been widely used in the manufacture of conductive springs, heat sinks, and electrodes. In addition, copper-bismuth alloy and steel have low friction and no sparking effect, and are also applied to the manufacture of components such as non-sparking tools, bearings, gears, and pistons.

即便銅-鈹合金具有上述之諸多優點與應用,銅-鈹合金仍舊於實務上顯示出以下之缺陷: (1)由於鈹金屬極為昂貴,導致以銅-鈹合金加工製成的金屬件的販售價格高居不下; (2)鈹金屬具有相當程度的毒性,導致以銅-鈹合金加工製成的金屬件衍生出環保及安全方面的顧慮。Even though copper-bismuth alloys have many of the above advantages and applications, copper-bismuth alloys still show the following drawbacks in practice: (1) Due to the extremely high cost of base metals, the sale of metal parts made of copper-bismuth alloys The selling price is high; (2) The base metal has a considerable degree of toxicity, which leads to environmental and safety concerns arising from the processing of metal parts made of copper-bismuth alloy.

因此,有鑑於習用的銅-鈹合金於實務面仍具備諸多缺陷,本案之發明人乃極力研究開發含多元素的銅合金之材料配方,最終研發完成本發明之一種無鈹多元銅合金。Therefore, in view of the fact that the conventional copper-bismuth alloy still has many defects in the practical aspect, the inventors of the present invention have vigorously researched and developed a material formulation of a copper alloy containing a multi-element, and finally developed a non-twisted multi-component copper alloy of the present invention.

有鑑於習用的銅-鈹合金具有價格昂貴、相當程度的毒性、造成環保安全等問題,本發明係提供一種無鈹多元銅合金,其係至少由45~80at%的Cu、4~17at%的Al、3~19at%的Ni、以及Cr、Fe等多種金屬元素所組成;其中,Cr及Fe的原子百分比皆高於0.5at%,同時Cr及Fe的原子百分比總和必須大於或等於2at%並小於或等於26at%。進一步地,該無鈹多元銅合金可更包括原子百分比總和不超過15at%的至少一種強化元素,且該強化元素可以為Sn、Co、V、Ti、Mn、Zn、Pb、Ge、C、P、Mg、Ce、Y、La、B、Sb、Zr、Mo、Si、Nb等元素。並且,經由實際量測數據證明,本發明之無鈹多元銅合金的多組實施例的維氏硬度皆大於HV200;因此,本發明之無鈹多元銅合金係能夠取代習用的銅-鈹合金,進而應用於塑膠射出成型模具、導電彈簧、散熱片、電極、無火花工具、軸承、齒輪、活塞等構件。In view of the fact that the conventional copper-bismuth alloy has the problems of high price, considerable toxicity, environmental safety and the like, the present invention provides a bismuth-free multi-component copper alloy which is at least 45-80 at% of Cu and 4 to 17 at%. Al, 3~19at% of Ni, and Cr, Fe and other metal elements; wherein, the atomic percentage of Cr and Fe are higher than 0.5at%, and the sum of atomic percentages of Cr and Fe must be greater than or equal to 2at% and Less than or equal to 26 at%. Further, the germanium-free multi-component copper alloy may further include at least one strengthening element having a total atomic percentage of not more than 15 at%, and the strengthening element may be Sn, Co, V, Ti, Mn, Zn, Pb, Ge, C, P. , Mg, Ce, Y, La, B, Sb, Zr, Mo, Si, Nb and other elements. Moreover, it has been confirmed by actual measurement data that the plurality of sets of examples of the bismuth-free multi-copper alloy of the present invention have a Vickers hardness greater than HV200; therefore, the bismuth-free multi-component copper alloy of the present invention can replace the conventional copper-bismuth alloy. Furthermore, it is applied to plastic injection molding dies, conductive springs, heat sinks, electrodes, non-sparking tools, bearings, gears, pistons and other components.

為了達成上述本發明之目的,本案之發明人係提出所述無鈹多元銅合金之一實施例;其中,該無鈹多元銅合金係具有高於HV200的一特定維氏硬度,且該無鈹多元銅合金的組成係由下列之組成式所表示:Cu xAl yNi zCr mFe n;並且,顯示於組成式中的x、y、z、m、與n係滿足以下不等式:45%≦x≦80%、4%≦y≦17%、3%≦z≦19%、0.5%≦m、0.5%≦n、2%≦(m+n)≦26%。 In order to achieve the above object of the present invention, the inventors of the present invention have proposed an embodiment of the bismuth-free multi-component copper alloy; wherein the bismuth-free multi-component copper alloy has a specific Vickers hardness higher than HV200, and the flawless The composition of the multi-component copper alloy is represented by the following composition formula: Cu x Al y Ni z Cr m Fe n ; and x, y, z, m, and n series shown in the composition formula satisfy the following inequality: 45% ≦x≦80%, 4%≦y≦17%, 3%≦z≦19%, 0.5%≦m, 0.5%≦n, 2%≦(m+n)≦26%.

於所述無鈹多元銅合金之實施例中,更可添加另一種強化元素至該無鈹多元銅合金,使得該無鈹多元銅合金的組成由下列之組成式所表示:Cu xAl yNi zCr mFe nM s;其中,M可為下列任一者:鉛(Pb)、錫(Sn)、鍺(Ge)、矽(Si)、碳(C)、銻(Sb)、磷(P)、硼(B)、鎂(Mg)、鈷(Co)、鋅(Zn)、錳(Mn)、鉬(Mo)、釩(V)、鈮(Nb)、鈦(Ti)、鋯(Zr)、釔(Y)、鑭(La)、 鈰(Ce)、上述任兩者之組合、或上述任兩者以上之組合;並且,0%≦s≦15%。 In the embodiment of the germanium-free multi-element copper alloy, another strengthening element may be further added to the germanium-free multi-element copper alloy, such that the composition of the niobium-free multi-element copper alloy is represented by the following composition formula: Cu x Al y Ni z Cr m Fe n M s ; wherein M may be any of the following: lead (Pb), tin (Sn), germanium (Ge), germanium (Si), carbon (C), antimony (Sb), phosphorus ( P), boron (B), magnesium (Mg), cobalt (Co), zinc (Zn), manganese (Mn), molybdenum (Mo), vanadium (V), niobium (Nb), titanium (Ti), zirconium ( Zr), 钇 (Y), 镧 (La), 铈 (Ce), a combination of any two of the above, or a combination of any two or more of the above; and, 0% ≦ s ≦ 15%.

於所述無鈹多元銅合金之實施例中,當所述M包含錫(Sn)之時,錫(Sn)的原子百分比不超過10at%。In the embodiment of the germanium-free multi-element copper alloy, when the M contains tin (Sn), the atomic percentage of tin (Sn) does not exceed 10 at%.

於所述無鈹多元銅合金之實施例中,當所述M包含其他元素時,每一種元素的原子百分比不超過6at%。In the embodiment of the germanium-free multi-element copper alloy, when the M contains other elements, the atomic percentage of each element does not exceed 6 at%.

為了能夠更清楚地描述本發明所提出之一種無鈹多元銅合金,以下將配合圖式,詳盡說明本發明之較佳實施例。In order to more clearly describe a non-twisted multi-element copper alloy proposed by the present invention, a preferred embodiment of the present invention will be described in detail below with reference to the drawings.

本發明所提出的無鈹多元銅合金係具有大於HV200的一特定維氏硬度,並由一主要金屬元素以及四種第一強化元素。其中,該主要金屬元素係用以形成此無鈹多元銅合金之一基地相結構,且該基地相結構係為面心立方晶格結構(face centered cubic, FCC);並且,該主要金屬元素為原子百分比介於45at%至80at%之間的銅金屬元素(Cu)。再者,該四種第一強化元素係用以形成該無鈹多元銅合金之至少一強化相結構;該四種金屬元素包括:原子百分比介於4at%至17at%之間的鋁金屬元素(Al)、原子百分比介於3at%至19at%之間的鎳金屬元素(Ni)、原子百分比高於0.5at%的鉻金屬元素(Cr)、以及原子百分比高於0.5at%的鐵金屬元素(Fe)。必須特別說明的是,所述鉻金屬元素(Cr)及所述鐵金屬元素(Fe)具有一第一原子百分比總和,且該第一原子百分比總和係大於或等於2at%並小於或等於26at%。The niobium-free multi-element copper alloy proposed by the present invention has a specific Vickers hardness greater than HV200 and consists of a main metal element and four first strengthening elements. Wherein, the main metal element is used to form a base phase structure of the germanium-free multi-element copper alloy, and the base phase structure is a face centered cubic (FCC); and the main metal element is A copper metal element (Cu) having an atomic percentage of between 45 at% and 80 at%. Furthermore, the four first strengthening elements are used to form at least one reinforcing phase structure of the germanium-free multi-element copper alloy; the four metal elements include: aluminum metal elements having an atomic percentage between 4 at% and 17 at% ( Al), a nickel metal element (Ni) having an atomic percentage between 3 at% and 19 at%, a chromium metal element (Cr) having an atomic percentage higher than 0.5 at%, and an iron metal element having an atomic percentage higher than 0.5 at% ( Fe). It must be particularly noted that the chromium metal element (Cr) and the iron metal element (Fe) have a first atomic percentage sum, and the first atomic percentage sum is greater than or equal to 2 at% and less than or equal to 26 at%. .

本發明之無鈹多元銅合金的成分組成可以簡單地表示為Cu xAl yNi zCr mFe n之組合式。其中,x、y、z、m、以及n為原子百分比之數值,並符合下列不等式:45%≦x≦80%、4%≦y≦17%、3%≦z≦19%、0.5%≦m、0.5%≦n、2%≦(m+n)≦26%。 The composition of the bismuth-free multicomponent copper alloy of the present invention can be simply expressed as a combination of Cu x Al y Ni z Cr m Fe n . Where x, y, z, m, and n are atomic percentages and meet the following inequalities: 45% ≦ x ≦ 80%, 4% ≦ y ≦ 17%, 3% ≦ z ≦ 19%, 0.5% ≦ m, 0.5% ≦n, 2% ≦ (m+n) ≦ 26%.

值得說明的是,本發明之無鈹多元銅合金的成分組成可更同時包含至少一種第二強化元素,用以藉由提升該無鈹多元銅合金的固溶強化、析出強化及/或散佈強化的方式而加強該無鈹多元銅合金的該特定維氏硬度;其中,所述第二強化元素可以為: 鉛(Pb)、錫(Sn)、鍺(Ge)、矽(Si)、碳(C)、銻(Sb)、磷(P)、硼(B)、鎂(Mg)、鈷(Co)、鋅(Zn)、錳(Mn)、鉬(Mo)、釩(V)、鈮(Nb)、鈦(Ti)、鋯(Zr)、釔(Y)、鑭(La)、鈰(Ce)、上述任兩者之組合、或上述任兩者以上之組合。It is to be noted that the composition of the germanium-free multi-component copper alloy of the present invention may further comprise at least one second strengthening element for enhancing solid solution strengthening, precipitation strengthening and/or spreading strengthening of the non-cerium multi-component copper alloy. And strengthening the specific Vickers hardness of the bismuth-free poly-copper alloy; wherein the second strengthening element may be: lead (Pb), tin (Sn), germanium (Ge), germanium (Si), carbon ( C), antimony (Sb), phosphorus (P), boron (B), magnesium (Mg), cobalt (Co), zinc (Zn), manganese (Mn), molybdenum (Mo), vanadium (V), antimony ( Nb), titanium (Ti), zirconium (Zr), yttrium (Y), lanthanum (La), cerium (Ce), a combination of any two of the above, or a combination of any two or more of the above.

進一步包含第二強化元素的無鈹多元銅合金的組成可以簡單地表示為Cu xAl yNi zCr mFe nM s之組合式。其中,x、y、z、m、n、以及s為原子百分比之數值,並符合下列不等式:45%≦x≦80%、4%≦y≦17%、3%≦z≦19%、0.5%≦m、0.5%≦n、2%≦(m+n)≦26%、0<s≦15%。必須特別說明的是,當所述M包含錫(Sn)時,錫(Sn)的原子百分比不超過10at%;並且,當所述M包含其他元素時,每一種元素的原子百分比不超過6at%。 The composition of the germanium-free polynuclear copper alloy further containing the second strengthening element can be simply expressed as a combination of Cu x Al y Ni z Cr m Fe n M s . Where x, y, z, m, n, and s are atomic percentages and meet the following inequalities: 45% ≦ x ≦ 80%, 4% ≦ y ≦ 17%, 3% ≦ z ≦ 19%, 0.5 %≦m, 0.5%≦n, 2%≦(m+n)≦26%, 0<s≦15%. It must be particularly noted that when the M contains tin (Sn), the atomic percentage of tin (Sn) does not exceed 10 at%; and, when the M contains other elements, the atomic percentage of each element does not exceed 6 at% .

本發明之無鈹多元銅合金可以利用真空電弧熔煉法、電熱絲加熱法、感應加熱法、快速凝固法、機械合金法、或粉末冶金法製造而得。並且,所製得之無鈹多元銅合金的成品或半成品之型態可以是粉末、線材、焊條、包藥焊絲、或塊材,並沒有特別限定的型態。另一方面,熟悉合金材料設計與製造的工程師係能夠根據其工程經驗將本發明之無鈹多元銅合金的成品或半成品進行加工,且該加工方式可以是鑄造、電弧焊、雷射焊、電漿焊、熱噴塗、或熱燒結;如此,便能夠將本發明之無鈹多元銅合金應用至於塑膠射出成型模具、導電彈簧、散熱片、電極、無火花工具、軸承、齒輪、活塞等構件的製造。The flawless multi-component copper alloy of the present invention can be produced by a vacuum arc melting method, a heating wire heating method, an induction heating method, a rapid solidification method, a mechanical alloy method, or a powder metallurgy method. Moreover, the form of the finished or semi-finished product of the obtained bismuth-free multi-component copper alloy may be a powder, a wire, an electrode, a coated wire, or a block, and is not particularly limited. On the other hand, engineers who are familiar with the design and manufacture of alloy materials can process the finished or semi-finished products of the flawless multi-copper alloy of the present invention according to their engineering experience, and the processing method can be casting, arc welding, laser welding, electricity. Slurry welding, thermal spraying, or thermal sintering; thus, the flawless multi-component copper alloy of the present invention can be applied to plastic injection molding dies, conductive springs, heat sinks, electrodes, non-sparking tools, bearings, gears, pistons, and the like. Manufacturing.

為了證實上述關於本發明之無鈹多元銅合金的材料組成與技術特徵係的確能夠被據以實施的,以下將藉由多組實驗資料的呈現,加以證實之。In order to confirm that the material composition and technical characteristics of the above-mentioned flawless multi-element copper alloy according to the present invention can be implemented, the following will be confirmed by the presentation of a plurality of sets of experimental materials.

實施例一Embodiment 1

本發明之實施例係採用真空電弧熔煉爐來熔煉合金,並後續進行均質化熱處理以及時效硬化處理,最後進行硬度量測、微結構觀察及成分分析。熔煉時係先將總重量約50克之純金屬或母合金(master alloy)顆粒依前述成分配比置於電弧熔煉爐的水冷銅模上,接著蓋上電弧熔煉爐的上蓋,抽取真空至0.01atm,而後通入純氬氣至0.2atm。值得說明的是,為了避免合金大量氧化,再重複如上所述之抽氣充氣過程三次後,方進行熔煉處理,其中熔煉電流為500安培。另一方面,均質化處理目的在消除樹枝狀偏析及增加固溶度,以增進析出硬化,其中均質化溫度落在900~1100°C之間。並且,熱處理溫度是為了時效析出增進硬度,處理溫度為400°C。In the embodiment of the present invention, a vacuum arc melting furnace is used to melt the alloy, followed by homogenization heat treatment and age hardening treatment, and finally hardness measurement, microstructure observation and composition analysis. In the smelting process, the pure metal or master alloy particles having a total weight of about 50 g are first placed on the water-cooled copper mold of the arc melting furnace according to the above-mentioned distribution ratio, and then the upper cover of the arc melting furnace is covered, and the vacuum is extracted to 0.01 atm. Then pass pure argon to 0.2 atm. It is worth noting that in order to avoid a large amount of oxidation of the alloy, the smelting treatment is repeated three times after the above-described pumping and aeration process, wherein the smelting current is 500 amps. On the other hand, the purpose of the homogenization treatment is to eliminate dendritic segregation and increase solid solubility to enhance precipitation hardening, wherein the homogenization temperature falls between 900 and 1100 °C. Further, the heat treatment temperature was for aging precipitation to increase the hardness, and the treatment temperature was 400 °C.

請參閱如下表(1),係紀錄了本發明之無鈹多元銅合金的多個測試樣品及其相關硬度數據。如表(1)所示,各測試樣品的主要金屬元素(亦即,Cu)之原子百分比皆被設計為45at%,並設計讓不同的各測試樣品搭配不同原子百分比之第一強化元素(Al、Ni、Cr、Fe)以及不同原子百分比之第二強化元素(Sn、Co、V、Ti、Mn、Zn、Pb、Ge、C、P、Mg、Ce、Y、La、B、Sb、Zr、Mo、Si、Nb)。值得說明的是,成分包含銅元素45at%的樣品被稱為Cu45系列之無鈹多元銅合金。 表(1) <TABLE border="1" borderColor="#000000" width="_0002"><TBODY><tr><td>   Cu45系列之無鈹多元銅合金 </td><td> 維氏硬度(HV) </td></tr><tr><td>   樣品 </td><td> 合金元素組成 (Elemental composition of alloy) (at%) </td><td> 鑄造態 </td><td> 均質化態 </td><td> 最大的時效硬化態 (400 <sup>o</sup>C) </td></tr><tr><td> Cu45 #1 </td><td> Cu<sub>45</sub>Al<sub>17</sub>Cr<sub>6</sub>Fe<sub>13</sub>Ni<sub>19</sub></td><td> 273 </td><td> 245 </td><td> 320 </td></tr><tr><td> Cu45 #2 </td><td> Cu<sub>45</sub>Al<sub>17</sub>Cr<sub>6</sub>Fe<sub>11</sub>Ni<sub>18</sub>Sn<sub>3</sub></td><td> 302 </td><td> 278 </td><td> 420 </td></tr><tr><td> Cu45 #3 </td><td> Cu<sub>45</sub>Al<sub>17</sub>Cr<sub>6</sub>Fe<sub>11</sub>Ni<sub>13</sub>Sn<sub>3</sub>Co<sub>5</sub></td><td> 321 </td><td> 348 </td><td> 447 </td></tr><tr><td> Cu45 #4 </td><td> Cu<sub>45</sub>Al<sub>9</sub>Cr<sub>13</sub>Fe<sub>12</sub>Ni<sub>11</sub>Sn<sub>5</sub>V<sub>2.5</sub>Mn<sub>2.5</sub></td><td> 353 </td><td> 333 </td><td> 434 </td></tr><tr><td> Cu45 #5 </td><td> Cu<sub>45</sub>Al<sub>7</sub>Cr<sub>13</sub>Fe<sub>13</sub>Ni<sub>15</sub>Sn<sub>7</sub></td><td> 384 </td><td> 322 </td><td> 398 </td></tr><tr><td> Cu45 #6 </td><td> Cu<sub>45</sub>Al<sub>15</sub>Cr<sub>11</sub>Fe<sub>6</sub>Ni<sub>10</sub>Sn<sub>8</sub>Ti<sub>5</sub></td><td> 535 </td><td> 450 </td><td> 520 </td></tr><tr><td> Cu45 #7 </td><td> Cu<sub>45</sub>Al<sub>17</sub>Cr<sub>8</sub>Fe<sub>9</sub>Ni<sub>6</sub>Sn<sub>10</sub>Zr<sub>2.5</sub>Mo<sub>2.5</sub></td><td> 604 </td><td> 500 </td><td> 650 </td></tr><tr><td> Cu45 #8 </td><td> Cu<sub>45</sub>Al<sub>17</sub>Cr<sub>8</sub>Fe<sub>9</sub>Ni<sub>9</sub>Sn<sub>7</sub>Zn<sub>3</sub>Zr<sub>2</sub>Nb<sub>3</sub></td><td> 562 </td><td> 480 </td><td> 623 </td></tr><tr><td> Cu45 #9 </td><td> Cu<sub>45</sub>Al<sub>11</sub>Cr<sub>8</sub>Fe<sub>9</sub>Ni<sub>6</sub>Sn<sub>7</sub>Zn<sub>5</sub>Pb<sub>3</sub>Si<sub>6</sub></td><td> 402 </td><td> 385 </td><td> 465 </td></tr><tr><td> Cu45 #10 </td><td> Cu<sub>45</sub>Al<sub>11</sub>Cr<sub>8</sub>Fe<sub>9</sub>Ni<sub>8</sub>Sn<sub>7</sub>Zn<sub>6</sub>Ge<sub>3</sub>C<sub>3</sub></td><td> 413 </td><td> 401 </td><td> 454 </td></tr><tr><td> Cu45 #11 </td><td> Cu<sub>45</sub>Al<sub>14</sub>Cr<sub>5</sub>Fe<sub>6</sub>Ni<sub>14</sub>Sn<sub>8</sub>Sb<sub>8</sub>Mg<sub>3</sub>P<sub>2</sub></td><td> 388 </td><td> 400 </td><td> 485 </td></tr><tr><td> Cu45 #12 </td><td> Cu<sub>45</sub>Al<sub>14</sub>Cr<sub>8</sub>Fe<sub>9</sub>Ni<sub>6</sub>Sn<sub>6</sub>Sb<sub>3</sub>B<sub>3</sub>Y<sub>1</sub> Ce<sub>1</sub>La<sub>1</sub></td><td> 443 </td><td> 395 </td><td> 522 </td></tr></TBODY></TABLE>Referring to Table (1) below, a plurality of test samples of the flawless multi-component copper alloy of the present invention and their associated hardness data are recorded. As shown in Table (1), the atomic percentage of the main metal elements (ie, Cu) of each test sample is designed to be 45 at%, and is designed to match different test samples with different atomic percentages of the first strengthening element (Al). , Ni, Cr, Fe) and second strengthening elements of different atomic percentages (Sn, Co, V, Ti, Mn, Zn, Pb, Ge, C, P, Mg, Ce, Y, La, B, Sb, Zr , Mo, Si, Nb). It is worth noting that the sample containing 45 at% of the copper element is called the Cu45 series of bismuth-free multi-copper alloy. Table 1)         <TABLE border="1" borderColor="#000000" width="_0002"><TBODY><tr><td> Cu45 series of flawless multi-element copper alloy</td><td> Vickers hardness (HV) < /td></tr><tr><td> Sample </td><td> Elemental composition of alloy (at%) </td><td> Casting state </td><td> Homogenization state </td><td> maximum age hardening state (400 <sup>o</sup>C) </td></tr><tr><td> Cu45 #1 </td><td >Cu<sub>45</sub>Al<sub>17</sub>Cr<sub>6</sub>Fe<sub>13</sub>Ni<sub>19</sub></td> <td> 273 </td><td> 245 </td><td> 320 </td></tr><tr><td> Cu45 #2 </td><td> Cu<sub>45< /sub>Al<sub>17</sub>Cr<sub>6</sub>Fe<sub>11</sub>Ni<sub>18</sub>Sn<sub>3</sub></ Td><td> 302 </td><td> 278 </td><td> 420 </td></tr><tr><td> Cu45 #3 </td><td> Cu<sub> 45</sub>Al<sub>17</sub>Cr<sub>6</sub>Fe<sub>11</sub>Ni<sub>13</sub>Sn<sub>3</sub> Co<sub>5</sub></td><td> 321 </td><td> 348 </td><td> 447 </td></tr><tr><td> Cu45 #4 </td><td> Cu<sub>45</sub>Al<sub>9</sub>Cr<sub>13</sub>Fe<sub>12</sub>Ni<sub>11</ Sub>Sn<sub>5</sub>V<sub>2.5</sub>Mn<sub>2.5</sub></td><td> 353 </td><td> 333 </td><td> 434 </td></tr><tr><td> Cu45 #5 </td><td> Cu<sub>45</sub>Al <sub>7</sub>Cr<sub>13</sub>Fe<sub>13</sub>Ni<sub>15</sub>Sn<sub>7</sub></td><td > 384 </td><td> 322 </td><td> 398 </td></tr><tr><td> Cu45 #6 </td><td> Cu<sub>45</sub >Al<sub>15</sub>Cr<sub>11</sub>Fe<sub>6</sub>Ni<sub>10</sub>Sn<sub>8</sub>Ti<sub> 5</sub></td><td> 535 </td><td> 450 </td><td> 520 </td></tr><tr><td> Cu45 #7 </td> <td> Cu<sub>45</sub>Al<sub>17</sub>Cr<sub>8</sub>Fe<sub>9</sub>Ni<sub>6</sub>Sn< Sub>10</sub>Zr<sub>2.5</sub>Mo<sub>2.5</sub></td><td> 604 </td><td> 500 </td><td> 650 < /td></tr><tr><td> Cu45 #8 </td><td> Cu<sub>45</sub>Al<sub>17</sub>Cr<sub>8</sub> Fe<sub>9</sub>Ni<sub>9</sub>Sn<sub>7</sub>Zn<sub>3</sub>Zr<sub>2</sub>Nb<sub>3 </sub></td><td> 562 </td><td> 480 </td><td> 623 </td></tr><tr><td> Cu45 #9 </td>< Td> Cu<sub>45</sub>Al<sub>11</sub>Cr<sub>8</sub>Fe<sub>9</sub>Ni<sub>6</sub>Sn<sub >7</sub>Zn<sub>5</sub>Pb<sub>3</sub>Si<sub>6</sub></td><td> 402 </td><td> 385 < /td><td> 465 </td></tr>< Tr><td> Cu45 #10 </td><td> Cu<sub>45</sub>Al<sub>11</sub>Cr<sub>8</sub>Fe<sub>9</sub> >Ni<sub>8</sub>Sn<sub>7</sub>Zn<sub>6</sub>Ge<sub>3</sub>C<sub>3</sub></td> <td> 413 </td><td> 401 </td><td> 454 </td></tr><tr><td> Cu45 #11 </td><td> Cu<sub>45< /sub>Al<sub>14</sub>Cr<sub>5</sub>Fe<sub>6</sub>Ni<sub>14</sub>Sn<sub>8</sub>Sb< Sub>8</sub>Mg<sub>3</sub>P<sub>2</sub></td><td> 388 </td><td> 400 </td><td> 485 < /td></tr><tr><td> Cu45 #12 </td><td> Cu<sub>45</sub>Al<sub>14</sub>Cr<sub>8</sub> Fe<sub>9</sub>Ni<sub>6</sub>Sn<sub>6</sub>Sb<sub>3</sub>B<sub>3</sub>Y<sub>1 </sub> Ce<sub>1</sub>La<sub>1</sub></td><td> 443 </td><td> 395 </td><td> 522 </td> </tr></TBODY></TABLE>

比較樣品Cu45#1與Cu45#2可以輕易地發現,藉由添加至少一種第二強化元素於該無鈹多元銅合金的成分組成之中,的確是能夠提升無鈹多元銅合金的維氏硬度;然而,無鈹多元銅合金的維氏硬度的提升並非與添加越多種類的第二強化元素呈現正相關。舉例而言,比較Cu45#7與Cu45#12可以發現,雖然Cu45#12的元素組成中含有6種第二強化元素,但其維氏硬度卻低於元素組成中僅含有3種第二強化元素的Cu45#7。同時,表(1)的量測資料也證實了本發明之無鈹多元銅合金具有大於HV200之維氏硬度。Comparing the samples Cu45#1 and Cu45#2, it can be easily found that by adding at least one second strengthening element to the composition of the non-cerium multi-copper alloy, it is indeed capable of improving the Vickers hardness of the non-bismuth multi-copper alloy; However, the increase in Vickers hardness of the bismuth-free multi-copper alloy is not positively correlated with the addition of a plurality of second reinforcing elements. For example, comparing Cu45#7 with Cu45#12, it can be found that although the elemental composition of Cu45#12 contains six second strengthening elements, its Vickers hardness is lower than that of the elemental composition, which contains only three second strengthening elements. Cu45#7. Meanwhile, the measurement data of Table (1) also confirmed that the flawless multi-copper alloy of the present invention has a Vickers hardness greater than HV200.

必須補充說明的是,表(1)所列之12種樣品之製程原料的純度皆在99%以上。並且,合金製備的方法係包括以下步驟:  步驟(1):以電弧熔煉法在水冷銅模中氬氣保護下熔解各成分原料;  步驟(2):待合金錠固化之後再次翻面熔解及固化;  步驟(3):再次重複該步驟(2)共4次,即獲得鑄造狀態之無鈹多元銅合金。It must be added that the purity of the process materials of the 12 samples listed in Table (1) is above 99%. Moreover, the method for preparing the alloy comprises the following steps: Step (1): melting the raw materials of each component under the argon gas protection in a water-cooled copper mold by an arc melting method; Step (2): after the alloy ingot is solidified, the surface is melted and solidified again. Step (3): This step (2) is repeated four times in total to obtain a flawless multi-component copper alloy in a cast state.

進一步地,將經由上述步驟(1)至步驟(3)所製得之無鈹多元銅合金之樣品進行切片取樣,接著於1000°C的溫度環境對樣品切片進行均質化製程,歷時6小時。繼續地,將完成均質化製程之樣品切片進行水淬之後,即獲得均質化態之無鈹銅合金樣品。之後,再將均質化態之無鈹多元銅合金樣品置入時效處理爐之中,於400°C的溫度下進行時效熱處理。繼續地,將完成時效處理之樣品切片進行水淬之後,即獲得呈現時效硬化態之無鈹多元銅合金樣品,且該無鈹多元銅合金樣品經量測顯示具有相較於均質化態之較高維氏硬度(如表(1)所示)。請參閱圖1,係顯示時效處理時間相對於維氏硬度之曲線圖。由圖1,熟悉合金材料設計與製造的工程師可非常容易地發現到,本發明之無鈹多元銅合金的Cu45#3樣品的最大的時效硬度為HV447。Further, samples of the bismuth-free multi-component copper alloy prepared through the above steps (1) to (3) were sliced, and then the sample sections were homogenized in a temperature environment of 1000 ° C for 6 hours. Continuing, after the sample section of the homogenization process is subjected to water quenching, a sample of the niobium-free copper alloy in a homogenized state is obtained. Thereafter, the homogenized undoped multi-copper alloy sample was placed in an aging furnace and subjected to an aging heat treatment at a temperature of 400 °C. Continuing, after the aging treatment sample is subjected to water quenching, a ruthenium-free multi-copper alloy sample exhibiting age hardening state is obtained, and the ruthenium-free multi-copper alloy sample is measured to have a comparison with the homogenization state. High Vickers hardness (as shown in Table (1)). Referring to Figure 1, a graph showing the aging time versus Vickers hardness is shown. From Fig. 1, an engineer familiar with the design and manufacture of alloy materials can very easily find that the maximum age hardness of the Cu45#3 sample of the flawless multi-copper alloy of the present invention is HV447.

實施例二Embodiment 2

請參閱如下表(2),係紀錄了本發明之無鈹多元銅合金的多個測試樣品及其相關硬度數據。如表(2)所示,各測試樣品的主要金屬元素(亦即,Cu)之原子百分比皆被設計為52at%,並設計讓不同的各測試樣品搭配不同原子百分比之第一強化元素(Al、Ni、Cr、Fe)以及不同原子百分比之第二強化元素(Sn、Co、V、Ti、Mn、Zn、Pb、Ge、C、P、Mg、Ce、Y、La、B、Sb、Zr、Mo、Si、Nb)。值得說明的是,成分包含銅元素52at%的樣品被稱為Cu52系列之無鈹多元銅合金。 表(2) <TABLE border="1" borderColor="#000000" width="_0003"><TBODY><tr><td>   Cu52系列之無鈹多元銅合金 </td><td> 維氏硬度(HV) </td></tr><tr><td>   樣品 </td><td> 合金組成 (Elemental composition of alloy) (at%) </td><td> 鑄造態 </td><td> 均質化態 </td><td> 最大的時效硬化態 (400 <sup>o</sup>C) </td></tr><tr><td> Cu52 #1 </td><td> Cu<sub>52</sub>Al<sub>11</sub>Cr<sub>13</sub>Fe<sub>10</sub>Ni<sub>14</sub></td><td> 210 </td><td> 180 </td><td> 285 </td></tr><tr><td> Cu52 #2 </td><td> Cu<sub>52</sub>Al<sub>11</sub>Cr<sub>13</sub>Fe<sub>10</sub>Ni<sub>12</sub>Sn<sub>2</sub></td><td> 262 </td><td> 221 </td><td> 340 </td></tr><tr><td> Cu52 #3 </td><td> Cu<sub>52</sub>Al<sub>11</sub>Cr<sub>13</sub>Fe<sub>10</sub>Ni<sub>11</sub>Sn<sub>3</sub></td><td> 282 </td><td> 240 </td><td> 361 </td></tr><tr><td> Cu52 #4 </td><td> Cu<sub>52</sub>Al<sub>15</sub>Cr<sub>4</sub>Fe<sub>11</sub>Ni<sub>6</sub>Sn<sub>7</sub>V<sub>5</sub></td><td> 513 </td><td> 420 </td><td> 526 </td></tr><tr><td> Cu52 #5 </td><td> Cu<sub>52</sub>Al<sub>17</sub>Cr<sub>4</sub>Fe<sub>8</sub>Ni<sub>6</sub>Sn<sub>8</sub>Si<sub>5</sub></td><td> 490 </td><td> 435 </td><td> 513 </td></tr><tr><td> Cu52 #6 </td><td> Cu<sub>52</sub>Al<sub>9</sub>Cr<sub>9</sub>Fe<sub>6</sub>Ni<sub>14</sub>Sn<sub>10</sub></td><td> 420 </td><td> 381 </td><td> 439 </td></tr><tr><td> Cu52 #7 </td><td> Cu<sub>52</sub>Al<sub>6</sub>Cr<sub>7</sub>Fe<sub>7</sub>Ni<sub>13</sub>Sn<sub>8</sub>Co<sub>5</sub>Zr<sub>2</sub></td><td> 300 </td><td> 231 </td><td> 405 </td></tr><tr><td> Cu52 #8 </td><td> Cu<sub>52</sub>Al<sub>5</sub>Cr<sub>4</sub>Fe<sub>5</sub>Ni<sub>19</sub>Sn<sub>10</sub>Mo<sub>1</sub>Ti<sub>3</sub>Y<sub>1</sub></td><td> 3400 </td><td> 270 </td><td> 432 </td></tr><tr><td> Cu52 #9 </td><td> Cu<sub>52</sub>Al<sub>13</sub>Cr<sub>3</sub>Fe<sub>6</sub>Ni<sub>11</sub>Mn<sub>2</sub>Mg<sub>1</sub>Pb<sub>1</sub>Zn<sub>3</sub></td><td> 322 </td><td> 264 </td><td> 413 </td></tr><tr><td> Cu52 #10 </td><td> Cu<sub>52</sub>Al<sub>13</sub>Cr<sub>4</sub>Fe<sub>4</sub>Ni<sub>13</sub>Sn<sub>5</sub>Nb<sub>2</sub>Ti<sub>4</sub>La<sub>1</sub>Ce<sub>2</sub></td><td> 362 </td><td> 282 </td><td> 434 </td></tr><tr><td> Cu52 #11 </td><td> Cu<sub>52</sub>Al<sub>10</sub>Cr<sub>8</sub>Fe<sub>4</sub>Ni<sub>12</sub>Sn<sub>8</sub>Ge<sub>2</sub>Sb<sub>1</sub>C<sub>3</sub></td><td> 384 </td><td> 354 </td><td> 422 </td></tr><tr><td> Cu52 #12 </td><td> Cu<sub>52</sub>Al<sub>10</sub>Cr<sub>4</sub>Fe<sub>5</sub>Ni<sub>12</sub>Sn<sub>10</sub>Mo<sub>1</sub>B<sub>2</sub>P<sub>4</sub></td><td> 401 </td><td> 340 </td><td> 426 </td></tr></TBODY></TABLE>Referring to Table (2) below, a plurality of test samples of the flawless multi-component copper alloy of the present invention and their associated hardness data are recorded. As shown in Table (2), the atomic percentage of the main metal elements (ie, Cu) of each test sample was designed to be 52 at%, and the different test samples were designed to match the first strengthening elements of different atomic percentages (Al). , Ni, Cr, Fe) and second strengthening elements of different atomic percentages (Sn, Co, V, Ti, Mn, Zn, Pb, Ge, C, P, Mg, Ce, Y, La, B, Sb, Zr , Mo, Si, Nb). It is worth noting that the sample containing 52 at% of the copper element is called the Cu52 series of bismuth-free multi-copper alloy. Table 2)         <TABLE border="1" borderColor="#000000" width="_0003"><TBODY><tr><td> Cu52 series of flawless multi-element copper alloy</td><td> Vickers hardness (HV) < /td></tr><tr><td> sample</td><td> Elemental composition of alloy (at%) </td><td> cast state </td><td> homogeneous </ </td><td> Maximum age hardening state (400 <sup>o</sup>C) </td></tr><tr><td> Cu52 #1 </td><td> Cu<sub>52</sub>Al<sub>11</sub>Cr<sub>13</sub>Fe<sub>10</sub>Ni<sub>14</sub></td>< Td> 210 </td><td> 180 </td><td> 285 </td></tr><tr><td> Cu52 #2 </td><td> Cu<sub>52</ Sub>Al<sub>11</sub>Cr<sub>13</sub>Fe<sub>10</sub>Ni<sub>12</sub>Sn<sub>2</sub></td ><td> 262 </td><td> 221 </td><td> 340 </td></tr><tr><td> Cu52 #3 </td><td> Cu<sub>52 </sub>Al<sub>11</sub>Cr<sub>13</sub>Fe<sub>10</sub>Ni<sub>11</sub>Sn<sub>3</sub>< /td><td> 282 </td><td> 240 </td><td> 361 </td></tr><tr><td> Cu52 #4 </td><td> Cu<sub >52</sub>Al<sub>15</sub>Cr<sub>4</sub>Fe<sub>11</sub>Ni<sub>6</sub>Sn<sub>7</sub> >V<sub>5</sub></td><td> 513 </td><td> 420 </td><td> 526 </td></ Tr><tr><td> Cu52 #5 </td><td> Cu<sub>52</sub>Al<sub>17</sub>Cr<sub>4</sub>Fe<sub>8 </sub>Ni<sub>6</sub>Sn<sub>8</sub>Si<sub>5</sub></td><td> 490 </td><td> 435 </td ><td> 513 </td></tr><tr><td> Cu52 #6 </td><td> Cu<sub>52</sub>Al<sub>9</sub>Cr<sub >9</sub>Fe<sub>6</sub>Ni<sub>14</sub>Sn<sub>10</sub></td><td> 420 </td><td> 381 < /td><td> 439 </td></tr><tr><td> Cu52 #7 </td><td> Cu<sub>52</sub>Al<sub>6</sub>Cr <sub>7</sub>Fe<sub>7</sub>Ni<sub>13</sub>Sn<sub>8</sub>Co<sub>5</sub>Zr<sub>2< /sub></td><td> 300 </td><td> 231 </td><td> 405 </td></tr><tr><td> Cu52 #8 </td><td >Cu<sub>52</sub>Al<sub>5</sub>Cr<sub>4</sub>Fe<sub>5</sub>Ni<sub>19</sub>Sn<sub> 10</sub>Mo<sub>1</sub>Ti<sub>3</sub>Y<sub>1</sub></td><td> 3400 </td><td> 270 </ Td><td> 432 </td></tr><tr><td> Cu52 #9 </td><td> Cu<sub>52</sub>Al<sub>13</sub>Cr< Sub>3</sub>Fe<sub>6</sub>Ni<sub>11</sub>Mn<sub>2</sub>Mg<sub>1</sub>Pb<sub>1</sub> Sub>Zn<sub>3</sub></td><td> 322 </td><td> 264 </td><td> 413 </td></tr><tr><td> Cu52 #10 </td><td> Cu<sub>52</sub> Al<sub>13</sub>Cr<sub>4</sub>Fe<sub>4</sub>Ni<sub>13</sub>Sn<sub>5</sub>Nb<sub>2 </sub>Ti<sub>4</sub>La<sub>1</sub>Ce<sub>2</sub></td><td> 362 </td><td> 282 </td ><td> 434 </td></tr><tr><td> Cu52 #11 </td><td> Cu<sub>52</sub>Al<sub>10</sub>Cr<sub >8</sub>Fe<sub>4</sub>Ni<sub>12</sub>Sn<sub>8</sub>Ge<sub>2</sub>Sb<sub>1</sub> >C<sub>3</sub></td><td> 384 </td><td> 354 </td><td> 422 </td></tr><tr><td> Cu52 # 12 </td><td> Cu<sub>52</sub>Al<sub>10</sub>Cr<sub>4</sub>Fe<sub>5</sub>Ni<sub>12< /sub>Sn<sub>10</sub>Mo<sub>1</sub>B<sub>2</sub>P<sub>4</sub></td><td> 401 </td ><td> 340 </td><td> 426 </td></tr></TBODY></TABLE>

同樣地,表(2)的量測資料證實了本發明之無鈹多元銅合金具有大於HV200之維氏硬度。繼續地,請再參閱如下表(3),係紀錄了本發明之無鈹多元銅合金的多個測試樣品及其相關硬度數據。如表(3)所示,各測試樣品的主要金屬元素(亦即,Cu)之原子百分比皆被設計為60at%,並設計讓不同的各測試樣品搭配不同原子百分比之第一強化元素(Al、Ni、Cr、Fe)以及不同原子百分比之第二強化元素(Sn、Co、V、Ti、Mn、Zn、Pb、Ge、C、P、Mg、Ce、Y、La、B、Sb、Zr、Mo、Si、Nb)。值得說明的是,成分包含銅元素60at%的樣品被稱為Cu60系列之無鈹多元銅合金。 表(3) <TABLE border="1" borderColor="#000000" width="_0004"><TBODY><tr><td> Cu60系列之無鈹多元銅合金 </td><td> 維氏硬度(HV) </td></tr><tr><td> 樣品 </td><td> 合金組成 (Elemental composition of alloy) (at%) </td><td> 鑄造態 </td><td> 均質化態 </td><td> 最大的時效 硬化態 (400 <sup>o</sup>C) </td></tr><tr><td> Cu60 #1 </td><td> Cu<sub>60</sub>Al<sub>13</sub>Cr<sub>9</sub>Fe<sub>6</sub>Ni<sub>12</sub>Sn<sub>1</sub>Mn<sub>5</sub></td><td> 181 </td><td> 160 </td><td> 300 </td></tr><tr><td> Cu60 #2 </td><td> Cu<sub>60</sub>Al<sub>13</sub>Cr<sub>4</sub>Fe<sub>6</sub>Ni<sub>9</sub>Sn<sub>3</sub>Mo<sub>5</sub></td><td> 219 </td><td> 200 </td><td> 378 </td></tr><tr><td> Cu60 #3 </td><td> Cu<sub>60</sub>Al<sub>15</sub>Cr<sub>6</sub>Fe<sub>8</sub>Ni<sub>8</sub>Sn<sub>3</sub></td><td> 268 </td><td> 308 </td><td> 333 </td></tr><tr><td> Cu60 #4 </td><td> Cu<sub>60</sub>Al<sub>11</sub>Cr<sub>6</sub>Fe<sub>12</sub>Ni<sub>8.5</sub>Sn<sub>2.5</sub></td><td> 200 </td><td> 165 </td><td> 348 </td></tr><tr><td> Cu60 #5 </td><td> Cu<sub>60</sub>Al<sub>11</sub>Cr<sub>6</sub>Fe<sub>12</sub>Ni<sub>6</sub>Sn<sub>5</sub></td><td> 280 </td><td> 254 </td><td> 387 </td></tr><tr><td> Cu60 #6 </td><td> Cu<sub>60</sub>Al<sub>7</sub>Cr<sub>11</sub>Fe<sub>8</sub>Ni<sub>6</sub>Sn<sub>8</sub></td><td> 341 </td><td> 273 </td><td> 403 </td></tr><tr><td> Cu60 #7 </td><td> Cu<sub>60</sub>Al<sub>11</sub>Cr<sub>6</sub>Fe<sub>9</sub>Ni<sub>6</sub>Sn<sub>8</sub></td><td> 354 </td><td> 370 </td><td> 438 </td></tr><tr><td> Cu60 #8 </td><td> Cu<sub>60</sub>Al<sub>8</sub>Cr<sub>4</sub>Fe<sub>6</sub>Ni<sub>7</sub>Sn<sub>10</sub>Ti<sub>2.5</sub>Si<sub>2.5</sub></td><td> 455 </td><td> 445 </td><td> 498 </td></tr><tr><td> Cu60 #9 </td><td> Cu<sub>60</sub>Al<sub>8</sub>Cr<sub>4</sub>Fe<sub>6</sub>Ni<sub>7</sub>Sn<sub>8</sub>Ge<sub>2</sub>Sb<sub>2</sub>Si<sub>3</sub></td><td> 432 </td><td> 372 </td><td> 470 </td></tr><tr><td> Cu60 #10 </td><td> Cu<sub>60</sub>Al<sub>8</sub>Cr<sub>4</sub>Fe<sub>6</sub>Ni<sub>6</sub>Sn<sub>4</sub>Co<sub>3</sub>Ti<sub>2</sub>Si<sub>2</sub>P<sub>3</sub>B<sub>2</sub></td><td> 351 </td><td> 316 </td><td> 413 </td></tr><tr><td> Cu60 #11 </td><td> Cu<sub>60</sub>Al<sub>6</sub>Cr<sub>4</sub>Fe<sub>6</sub>Ni<sub>7</sub>Sn<sub>5</sub>Mn<sub>2</sub>Zr<sub>2</sub>Si<sub>5</sub>La<sub>2</sub>Ce<sub>1</sub></td><td> 423 </td><td> 380 </td><td> 466 </td></tr><tr><td> Cu60 #12 </td><td> Cu<sub>60</sub>Al<sub>6</sub>Cr<sub>4</sub>Fe<sub>6</sub>Ni<sub>7</sub>Sn<sub>10</sub>Mg<sub>2</sub>Nb<sub>2</sub>C<sub>2</sub>Y<sub>1</sub></td><td> 419 </td><td> 382 </td><td> 457 </td></tr></TBODY></TABLE>Similarly, the measurement data of Table (2) confirmed that the flawless multi-component copper alloy of the present invention has a Vickers hardness greater than HV200. Continuing, please refer to Table (3) below to record a plurality of test samples of the flawless multi-component copper alloy of the present invention and their associated hardness data. As shown in Table (3), the atomic percentage of the main metal element (ie, Cu) of each test sample is designed to be 60 at%, and is designed to match different test samples with different atomic percentages of the first strengthening element (Al). , Ni, Cr, Fe) and second strengthening elements of different atomic percentages (Sn, Co, V, Ti, Mn, Zn, Pb, Ge, C, P, Mg, Ce, Y, La, B, Sb, Zr , Mo, Si, Nb). It is worth noting that the sample containing 60 at% of the copper element is called the Cu60 series of bismuth-free multi-copper alloy. table 3)         <TABLE border="1" borderColor="#000000" width="_0004"><TBODY><tr><td> Cu60 series of flawless multi-element copper alloy</td><td> Vickers hardness (HV) < /td></tr><tr><td> sample</td><td> Elemental composition of alloy (at%) </td><td> cast state </td><td> homogeneous </ </td><td> Maximum age hardening state (400 <sup>o</sup>C) </td></tr><tr><td> Cu60 #1 </td><td> Cu<sub>60</sub>Al<sub>13</sub>Cr<sub>9</sub>Fe<sub>6</sub>Ni<sub>12</sub>Sn<sub>1 </sub>Mn<sub>5</sub></td><td> 181 </td><td> 160 </td><td> 300 </td></tr><tr><td > Cu60 #2 </td><td> Cu<sub>60</sub>Al<sub>13</sub>Cr<sub>4</sub>Fe<sub>6</sub>Ni<sub >9</sub>Sn<sub>3</sub>Mo<sub>5</sub></td><td> 219 </td><td> 200 </td><td> 378 </ Td></tr><tr><td> Cu60 #3 </td><td> Cu<sub>60</sub>Al<sub>15</sub>Cr<sub>6</sub>Fe <sub>8</sub>Ni<sub>8</sub>Sn<sub>3</sub></td><td> 268 </td><td> 308 </td><td> 333 </td></tr><tr><td> Cu60 #4 </td><td> Cu<sub>60</sub>Al<sub>11</sub>Cr<sub>6</sub> >Fe<sub>12</sub>Ni<sub>8.5</sub>Sn<sub>2.5</sub></td><td> 200 </td><td> 165 < /td><td> 348 </td></tr><tr><td> Cu60 #5 </td><td> Cu<sub>60</sub>Al<sub>11</sub>Cr <sub>6</sub>Fe<sub>12</sub>Ni<sub>6</sub>Sn<sub>5</sub></td><td> 280 </td><td> 254 </td><td> 387 </td></tr><tr><td> Cu60 #6 </td><td> Cu<sub>60</sub>Al<sub>7</sub >Cr<sub>11</sub>Fe<sub>8</sub>Ni<sub>6</sub>Sn<sub>8</sub></td><td> 341 </td>< Td> 273 </td><td> 403 </td></tr><tr><td> Cu60 #7 </td><td> Cu<sub>60</sub>Al<sub>11< /sub>Cr<sub>6</sub>Fe<sub>9</sub>Ni<sub>6</sub>Sn<sub>8</sub></td><td> 354 </td ><td> 370 </td><td> 438 </td></tr><tr><td> Cu60 #8 </td><td> Cu<sub>60</sub>Al<sub> 8</sub>Cr<sub>4</sub>Fe<sub>6</sub>Ni<sub>7</sub>Sn<sub>10</sub>Ti<sub>2.5</sub> Si<sub>2.5</sub></td><td> 455 </td><td> 445 </td><td> 498 </td></tr><tr><td> Cu60 #9 </td><td> Cu<sub>60</sub>Al<sub>8</sub>Cr<sub>4</sub>Fe<sub>6</sub>Ni<sub>7</ Sub>Sn<sub>8</sub>Ge<sub>2</sub>Sb<sub>2</sub>Si<sub>3</sub></td><td> 432 </td> <td> 372 </td><td> 470 </td></tr><tr><td> Cu60 #10 </td><td> Cu<sub>60</sub>Al<sub>8 </sub>Cr<sub>4</sub>Fe<sub> 6</sub>Ni<sub>6</sub>Sn<sub>4</sub>Co<sub>3</sub>Ti<sub>2</sub>Si<sub>2</sub> P<sub>3</sub>B<sub>2</sub></td><td> 351 </td><td> 316 </td><td> 413 </td></tr> <tr><td> Cu60 #11 </td><td> Cu<sub>60</sub>Al<sub>6</sub>Cr<sub>4</sub>Fe<sub>6</ Sub>Ni<sub>7</sub>Sn<sub>5</sub>Mn<sub>2</sub>Zr<sub>2</sub>Si<sub>5</sub>La<sub >2</sub>Ce<sub>1</sub></td><td> 423 </td><td> 380 </td><td> 466 </td></tr><tr> <td> Cu60 #12 </td><td> Cu<sub>60</sub>Al<sub>6</sub>Cr<sub>4</sub>Fe<sub>6</sub>Ni <sub>7</sub>Sn<sub>10</sub>Mg<sub>2</sub>Nb<sub>2</sub>C<sub>2</sub>Y<sub>1< /sub></td><td> 419 </td><td> 382 </td><td> 457 </td></tr></TBODY></TABLE>

表(3)的量測資料證實了本發明之無鈹多元銅合金具有大於HV200之維氏硬度。繼續地,請再參閱如下表(4),係紀錄了本發明之無鈹多元銅合金的多個測試樣品及其相關硬度數據。如表(4)所示,各測試樣品的主要金屬元素(亦即,Cu)之原子百分比皆被設計為75at%,並設計讓不同的各測試樣品搭配不同原子百分比之第一強化元素(Al、Ni、Cr、Fe)以及不同原子百分比之第二強化元素(Sn、Co、V、Ti、Mn、Zn、Pb、Ge、C、P、Mg、Ce、Y、La、B、Sb、Zr、Mo、Si、Nb)。值得說明的是,成分包含銅元素75at%的樣品被稱為Cu75系列之無鈹多元銅合金。 表(4) <TABLE border="1" borderColor="#000000" width="_0005"><TBODY><tr><td> Cu75系列之無鈹多元銅合金 </td><td> 維氏硬度(HV) </td></tr><tr><td> 樣品 </td><td> 合金組成 (Elemental composition of alloy) (at%) </td><td> 鑄造態 </td><td> 均質化 態 </td><td> 最大的時效 硬化態 (400 <sup>o</sup>C) </td></tr><tr><td> Cu75 #1 </td><td> Cu<sub>75</sub>Al<sub>8</sub>Cr<sub>5</sub>Fe<sub>4</sub>Ni<sub>8</sub></td><td> 140 </td><td> 125 </td><td> 310 </td></tr><tr><td> Cu75 #2 </td><td> Cu<sub>75</sub>Al<sub>11</sub>Cr<sub>4</sub>Fe<sub>3</sub>Ni<sub>3</sub>Sn<sub>1</sub>Mn<sub>1</sub>Mo<sub>2</sub></td><td> 135 </td><td> 118 </td><td> 300 </td></tr><tr><td> Cu75 #3 </td><td> Cu<sub>75</sub>Al<sub>12</sub>Cr<sub>2</sub>Fe<sub>2</sub>Ni<sub>7</sub>Sn<sub>2</sub></td><td> 134 </td><td> 116 </td><td> 328 </td></tr><tr><td> Cu75 #4 </td><td> Cu<sub>75</sub>Al<sub>10</sub>Cr<sub>2</sub>Fe<sub>4</sub>Ni<sub>8</sub>Sn<sub>1</sub></td><td> 126 </td><td> 115 </td><td> 296 </td></tr><tr><td> Cu75 #5 </td><td> Cu<sub>75</sub>Al<sub>13</sub>Cr<sub>0.5</sub>Fe<sub>1.5</sub>Ni<sub>8</sub>Sn<sub>2</sub></td><td> 139 </td><td> 125 </td><td> 320 </td></tr><tr><td> Cu75 #6 </td><td> Cu<sub>75</sub>Al<sub>7</sub>Cr<sub>1</sub>Fe<sub>4</sub>Ni<sub>6</sub>Sn<sub>7</sub></td><td> 223 </td><td> 177 </td><td> 317 </td></tr><tr><td> Cu75 #7 </td><td> Cu<sub>75</sub>Al<sub>4</sub>Cr<sub>5</sub>Fe<sub>6</sub>Ni<sub>4</sub>Sn<sub>6</sub></td><td> 164 </td><td> 143 </td><td> 316 </td></tr><tr><td> Cu75 #8 </td><td> Cu<sub>75</sub>Al<sub>5</sub>Cr<sub>1</sub>Fe<sub>4</sub>Ni<sub>5</sub>Sn<sub>5</sub>Ti<sub>3</sub>Si<sub>2</sub></td><td> 185 </td><td> 167 </td><td> 237 </td></tr><tr><td> Cu75 #9 </td><td> Cu<sub>75</sub>Al<sub>5</sub>Cr<sub>1</sub>Fe<sub>4</sub>Ni<sub>3</sub>Co<sub>3</sub>Sb<sub>3</sub>B<sub>2</sub>P<sub>2</sub>C<sub>2</sub></td><td> 160 </td><td> 145 </td><td> 300 </td></tr><tr><td> Cu75 #10 </td><td> Cu<sub>75</sub>Al<sub>5</sub>Cr<sub>3</sub>Fe<sub>4</sub>Ni<sub>3</sub>Nb<sub>2</sub>V<sub>2</sub>Zr<sub>2</sub>Ti<sub>2</sub>Ce<sub>1</sub>Y<sub>1</sub></td><td> 178 </td><td> 140 </td><td> 328 </td></tr><tr><td> Cu75 #11 </td><td> Cu<sub>75</sub>Al<sub>4</sub>Cr<sub>2</sub>Fe<sub>3</sub>Ni<sub>4</sub>Co<sub>2</sub>Zn<sub>5</sub>Ge<sub>3</sub>Y<sub>2</sub></td><td> 156 </td><td> 138 </td><td> 286 </td></tr><tr><td> Cu75 #12 </td><td> Cu<sub>75</sub>Al<sub>4</sub>Cr<sub>2</sub>Fe<sub>3</sub>Ni<sub>4</sub>Zn<sub>5</sub>Mg<sub>2</sub>Pb<sub>3</sub>Ce<sub>1</sub>La<sub>1</sub></td><td> 165 </td><td> 140 </td><td> 293 </td></tr></TBODY></TABLE>The measurement data of Table (3) confirmed that the flawless multi-component copper alloy of the present invention has a Vickers hardness greater than HV200. Continuing, please refer to Table (4) below to record a plurality of test samples of the flawless multi-component copper alloy of the present invention and their associated hardness data. As shown in Table (4), the atomic percentage of the main metal element (ie, Cu) of each test sample is designed to be 75 at%, and is designed to match different test samples with different atomic percentages of the first strengthening element (Al). , Ni, Cr, Fe) and second strengthening elements of different atomic percentages (Sn, Co, V, Ti, Mn, Zn, Pb, Ge, C, P, Mg, Ce, Y, La, B, Sb, Zr , Mo, Si, Nb). It is worth noting that the sample containing 75 at% of the copper element is called the Cu75 series of bismuth-free multi-copper alloy. Table 4)         <TABLE border="1" borderColor="#000000" width="_0005"><TBODY><tr><td> Cu75 series of flawless multi-element copper alloy</td><td> Vickers hardness (HV) < /td></tr><tr><td> sample</td><td> Elemental composition of alloy (at%) </td><td> cast state </td><td> homogeneous </ttd><td> Maximum age hardening state (400 <sup>o</sup>C) </td></tr><tr><td> Cu75 #1 </td><td> Cu<sub>75</sub>Al<sub>8</sub>Cr<sub>5</sub>Fe<sub>4</sub>Ni<sub>8</sub></td>< Td> 140 </td><td> 125 </td><td> 310 </td></tr><tr><td> Cu75 #2 </td><td> Cu<sub>75</ Sub>Al<sub>11</sub>Cr<sub>4</sub>Fe<sub>3</sub>Ni<sub>3</sub>Sn<sub>1</sub>Mn<sub >1</sub>Mo<sub>2</sub></td><td> 135 </td><td> 118 </td><td> 300 </td></tr><tr> <td> Cu75 #3 </td><td> Cu<sub>75</sub>Al<sub>12</sub>Cr<sub>2</sub>Fe<sub>2</sub>Ni <sub>7</sub>Sn<sub>2</sub></td><td> 134 </td><td> 116 </td><td> 328 </td></tr>< Tr><td> Cu75 #4 </td><td> Cu<sub>75</sub>Al<sub>10</sub>Cr<sub>2</sub>Fe<sub>4</sub> >Ni<sub>8</sub>Sn<sub>1</sub></td><td> 126 </td><td> 115 </td><td> 296 </td></ Tr><tr><td> Cu75 #5 </td><td> Cu<sub>75</sub>Al<sub>13</sub>Cr<sub>0.5</sub>Fe<sub>1.5 </sub>Ni<sub>8</sub>Sn<sub>2</sub></td><td> 139 </td><td> 125 </td><td> 320 </td> </tr><tr><td> Cu75 #6 </td><td> Cu<sub>75</sub>Al<sub>7</sub>Cr<sub>1</sub>Fe<sub >4</sub>Ni<sub>6</sub>Sn<sub>7</sub></td><td> 223 </td><td> 177 </td><td> 317 </ Td></tr><tr><td> Cu75 #7 </td><td> Cu<sub>75</sub>Al<sub>4</sub>Cr<sub>5</sub>Fe <sub>6</sub>Ni<sub>4</sub>Sn<sub>6</sub></td><td> 164 </td><td> 143 </td><td> 316 </td></tr><tr><td> Cu75 #8 </td><td> Cu<sub>75</sub>Al<sub>5</sub>Cr<sub>1</sub> >Fe<sub>4</sub>Ni<sub>5</sub>Sn<sub>5</sub>Ti<sub>3</sub>Si<sub>2</sub></td> <td> 185 </td><td> 167 </td><td> 237 </td></tr><tr><td> Cu75 #9 </td><td> Cu<sub>75< /sub>Al<sub>5</sub>Cr<sub>1</sub>Fe<sub>4</sub>Ni<sub>3</sub>Co<sub>3</sub>Sb< Sub>3</sub>B<sub>2</sub>P<sub>2</sub>C<sub>2</sub></td><td> 160 </td><td> 145 </td><td> 300 </td></tr><tr><td> Cu75 #10 </td><td> Cu<sub>75</sub>Al<sub>5</sub> Cr<sub>3</sub>Fe<sub>4</sub>Ni<sub >3</sub>Nb<sub>2</sub>V<sub>2</sub>Zr<sub>2</sub>Ti<sub>2</sub>Ce<sub>1</sub> >Y<sub>1</sub></td><td> 178 </td><td> 140 </td><td> 328 </td></tr><tr><td> Cu75 # 11 </td><td> Cu<sub>75</sub>Al<sub>4</sub>Cr<sub>2</sub>Fe<sub>3</sub>Ni<sub>4< /sub>Co<sub>2</sub>Zn<sub>5</sub>Ge<sub>3</sub>Y<sub>2</sub></td><td> 156 </td ><td> 138 </td><td> 286 </td></tr><tr><td> Cu75 #12 </td><td> Cu<sub>75</sub>Al<sub> 4</sub>Cr<sub>2</sub>Fe<sub>3</sub>Ni<sub>4</sub>Zn<sub>5</sub>Mg<sub>2</sub> Pb<sub>3</sub>Ce<sub>1</sub>La<sub>1</sub></td><td> 165 </td><td> 140 </td><td> 293 </td></tr></TBODY></TABLE>

表(4)的量測資料證實了本發明之無鈹銅合金可具有大於HV200之時效硬度。繼續地,請再參閱如下表(5),係紀錄了本發明之無鈹多元銅合金的多個測試樣品及其相關硬度數據。如表(5)所示,各測試樣品的主要金屬元素(亦即,Cu)之原子百分比皆被設計為80at%,並設計讓不同的各測試樣品搭配不同原子百分比之第一強化元素(Al、Ni、Cr、Fe) 以及不同原子百分比之第二強化元素(Sn、Co、V、Ti、Mn、Zn、Pb、Ge、C、P、Mg、Ce、Y、La、B、Sb、Zr、Mo、Si、Nb)。值得說明的是,成分包含銅元素80at%的樣品被稱為Cu80系列之無鈹多元銅合金。 表(5) <TABLE border="1" borderColor="#000000" width="_0006"><TBODY><tr><td> Cu80系列之無鈹多元銅合金 </td><td> 維氏硬度(HV) </td></tr><tr><td> 樣品 </td><td> 合金組成 (Elemental composition of alloy) (at%) </td><td> 鑄造態 </td><td> 均質化 態 </td><td> 最大的時效 硬化態 (400 <sup>o</sup>C) </td></tr><tr><td> Cu80 #1 </td><td> Cu<sub>80</sub>Al<sub>12</sub>Cr<sub>1</sub>Fe<sub>2</sub>Ni<sub>5</sub></td><td> 120 </td><td> 90 </td><td> 275 </td></tr><tr><td> Cu80 #2 </td><td> Cu<sub>80</sub>Al<sub>9</sub>Cr<sub>2</sub>Fe<sub>2</sub>Ni<sub>3</sub>Sn<sub>2</sub>Nb<sub>1</sub>V<sub>1</sub></td><td> 115 </td><td> 103 </td><td> 297 </td></tr><tr><td> Cu80 #3 </td><td> Cu<sub>80</sub>Al<sub>8</sub>Cr<sub>2</sub>Fe<sub>2</sub>Ni<sub>6</sub>Sn<sub>2</sub></td><td> 120 </td><td> 103 </td><td> 318 </td></tr><tr><td> Cu80 #4 </td><td> Cu<sub>80</sub>Al<sub>8</sub>Cr<sub>2</sub>Fe<sub>3</sub>Ni<sub>6</sub>Ti<sub>1</sub></td><td> 126 </td><td> 110 </td><td> 321 </td></tr><tr><td> Cu80 #5 </td><td> Cu<sub>80</sub>Al<sub>6</sub>Cr<sub>1.5</sub>Fe<sub>0.5</sub>Ni<sub>10</sub>Sn<sub>2</sub></td><td> 135 </td><td> 115 </td><td> 316 </td></tr><tr><td> Cu80 #6 </td><td> Cu<sub>80</sub>Al<sub>5</sub>Cr<sub>1</sub>Fe<sub>4</sub>Ni<sub>5</sub>Sn<sub>4</sub>Co<sub>1</sub></td><td> 151 </td><td> 117 </td><td> 270 </td></tr><tr><td> Cu80 #7 </td><td> Cu<sub>80</sub>Al<sub>4</sub>Cr<sub>1.5</sub>Fe<sub>1.5</sub>Ni<sub>7</sub>Sn<sub>4</sub>Zn<sub>2</sub></td><td> 140 </td><td> 123 </td><td> 312 </td></tr><tr><td> Cu80 #8 </td><td> Cu<sub>80</sub>Al<sub>4</sub>Cr<sub>4</sub>Fe<sub>1</sub>Ni<sub>5</sub>Sn<sub>1</sub>Ti<sub>3</sub>Si<sub>1</sub>V<sub>1</sub></td><td> 206 </td><td> 125 </td><td> 275 </td></tr><tr><td> Cu80 #9 </td><td> Cu<sub>80</sub>Al<sub>4</sub>Cr<sub>4</sub>Fe<sub>1</sub>Ni<sub>5</sub>Sn<sub>1</sub>Mn<sub>2</sub>Zr<sub>2</sub>B<sub>1</sub></td><td> 180 </td><td> 120 </td><td> 315 </td></tr><tr><td> Cu80 #10 </td><td> Cu<sub>80</sub>Al<sub>4</sub>Cr<sub>4</sub>Fe<sub>1</sub>Ni<sub>5</sub>Zn<sub>2</sub>Mg<sub>1</sub>Zr<sub>1</sub>Mo<sub>1</sub>V<sub>1</sub></td><td> 190 </td><td> 126 </td><td> 312 </td></tr><tr><td> Cu80 #11 </td><td> Cu<sub>80</sub>Al<sub>4</sub>Cr<sub>4</sub>Fe<sub>1</sub>Ni<sub>5</sub>Zn<sub>1</sub>Mg<sub>2</sub>P<sub>1</sub>Pb<sub>1</sub>Y<sub>1</sub></td><td> 158 </td><td> 116 </td><td> 298 </td></tr><tr><td> Cu80 #12 </td><td> Cu<sub>80</sub>Al<sub>4</sub>Cr<sub>4</sub>Fe<sub>1</sub>Ni<sub>5</sub>Ti<sub>2</sub>Zr<sub>1</sub>Si<sub>1</sub>Ce<sub>1</sub>La<sub>1</sub></td><td> 170 </td><td> 125 </td><td> 318 </td></tr></TBODY></TABLE>The measurement data of Table (4) confirmed that the beryllium-free copper alloy of the present invention can have an ageing hardness greater than HV200. Continuing, please refer to the following table (5), which records a plurality of test samples of the flawless multi-copper alloy of the present invention and their associated hardness data. As shown in Table (5), the atomic percentage of the main metal element (ie, Cu) of each test sample was designed to be 80 at%, and the different test samples were designed with different atomic percentages of the first strengthening element (Al). , Ni, Cr, Fe) and second strengthening elements of different atomic percentages (Sn, Co, V, Ti, Mn, Zn, Pb, Ge, C, P, Mg, Ce, Y, La, B, Sb, Zr , Mo, Si, Nb). It is worth noting that the sample containing 80 at% of the copper element is called the Cu80 series of bismuth-free multi-copper alloy. table 5)         <TABLE border="1" borderColor="#000000" width="_0006"><TBODY><tr><td> Cu80 series of flawless multi-copper alloys</td><td> Vickers hardness (HV) < /td></tr><tr><td> sample</td><td> Elemental composition of alloy (at%) </td><td> cast state </td><td> homogeneous </ttd><td> Maximum age hardening state (400 <sup>o</sup>C) </td></tr><tr><td> Cu80 #1 </td><td> Cu<sub>80</sub>Al<sub>12</sub>Cr<sub>1</sub>Fe<sub>2</sub>Ni<sub>5</sub></td>< Td> 120 </td><td> 90 </td><td> 275 </td></tr><tr><td> Cu80 #2 </td><td> Cu<sub>80</ Sub>Al<sub>9</sub>Cr<sub>2</sub>Fe<sub>2</sub>Ni<sub>3</sub>Sn<sub>2</sub>Nb<sub >1</sub>V<sub>1</sub></td><td> 115 </td><td> 103 </td><td> 297 </td></tr><tr> <td> Cu80 #3 </td><td> Cu<sub>80</sub>Al<sub>8</sub>Cr<sub>2</sub>Fe<sub>2</sub>Ni <sub>6</sub>Sn<sub>2</sub></td><td> 120 </td><td> 103 </td><td> 318 </td></tr>< Tr><td> Cu80 #4 </td><td> Cu<sub>80</sub>Al<sub>8</sub>Cr<sub>2</sub>Fe<sub>3</sub> >Ni<sub>6</sub>Ti<sub>1</sub></td><td> 126 </td><td> 110 </td><td> 321 </td></tr >< Tr><td> Cu80 #5 </td><td> Cu<sub>80</sub>Al<sub>6</sub>Cr<sub>1.5</sub>Fe<sub>0.5</sub >Ni<sub>10</sub>Sn<sub>2</sub></td><td> 135 </td><td> 115 </td><td> 316 </td></tr ><tr><td> Cu80 #6 </td><td> Cu<sub>80</sub>Al<sub>5</sub>Cr<sub>1</sub>Fe<sub>4< /sub>Ni<sub>5</sub>Sn<sub>4</sub>Co<sub>1</sub></td><td> 151 </td><td> 117 </td> <td> 270 </td></tr><tr><td> Cu80 #7 </td><td> Cu<sub>80</sub>Al<sub>4</sub>Cr<sub> 1.5</sub>Fe<sub>1.5</sub>Ni<sub>7</sub>Sn<sub>4</sub>Zn<sub>2</sub></td><td> 140 < /td><td> 123 </td><td> 312 </td></tr><tr><td> Cu80 #8 </td><td> Cu<sub>80</sub>Al< Sub>4</sub>Cr<sub>4</sub>Fe<sub>1</sub>Ni<sub>5</sub>Sn<sub>1</sub>Ti<sub>3</sub> Sub>Si<sub>1</sub>V<sub>1</sub></td><td> 206 </td><td> 125 </td><td> 275 </td></ Tr><tr><td> Cu80 #9 </td><td> Cu<sub>80</sub>Al<sub>4</sub>Cr<sub>4</sub>Fe<sub>1 </sub>Ni<sub>5</sub>Sn<sub>1</sub>Mn<sub>2</sub>Zr<sub>2</sub>B<sub>1</sub>< /td><td> 180 </td><td> 120 </td><td> 315 </td></tr><tr><td> Cu80 #10 </td><td> Cu<sub >80</sub>Al<sub>4</sub>Cr<su b>4</sub>Fe<sub>1</sub>Ni<sub>5</sub>Zn<sub>2</sub>Mg<sub>1</sub>Zr<sub>1</ Sub>Mo<sub>1</sub>V<sub>1</sub></td><td> 190 </td><td> 126 </td><td> 312 </td></ Tr><tr><td> Cu80 #11 </td><td> Cu<sub>80</sub>Al<sub>4</sub>Cr<sub>4</sub>Fe<sub>1 </sub>Ni<sub>5</sub>Zn<sub>1</sub>Mg<sub>2</sub>P<sub>1</sub>Pb<sub>1</sub>Y <sub>1</sub></td><td> 158 </td><td> 116 </td><td> 298 </td></tr><tr><td> Cu80 #12 < /td><td> Cu<sub>80</sub>Al<sub>4</sub>Cr<sub>4</sub>Fe<sub>1</sub>Ni<sub>5</sub> >Ti<sub>2</sub>Zr<sub>1</sub>Si<sub>1</sub>Ce<sub>1</sub>La<sub>1</sub></td> <td> 170 </td><td> 125 </td><td> 318 </td></tr></TBODY></TABLE>

表(5)的量測資料證實了本發明之無鈹多元銅合金可具有大於HV200之時效硬度。The measurement data of Table (5) confirmed that the flawless multi-component copper alloy of the present invention can have an ageing hardness greater than HV200.

必須補充說明的是,本發明之無鈹多元銅合金在鑄造狀態下的主要相係為由FCC結晶所組成的富銅相基地,其他的相有富鎳鋁、富鐵鉻等多元相,由於富銅相有固溶強化及過飽和析出的析出硬化,而其他的相又具有散佈強化的效果,因此本發明之無鈹多元銅合金可提供不同的強硬度;並且,經由實際量測數據證明,此新穎之無鈹多元銅合金的鑄造態、均質化態、及/或時效硬化態皆具有大於HV200之維氏硬度。顯然地,相對於習用的銅-鈹合金具有價格昂貴、相當程度的毒性、造成環保安全等問題,本發明之無鈹多元銅合金係能夠取代習用的銅-鈹合金,進而應用於塑膠射出成型模具、導電彈簧、散熱片、電極、無火花工具、軸承、齒輪、活塞等構件的製造。It must be added that the main phase of the flawless multi-component copper alloy of the present invention in the as-cast state is a copper-rich phase base composed of FCC crystals, and the other phases are rich in nickel-rich aluminum, iron-rich chromium and the like, due to The copper-rich phase has solid solution strengthening and precipitation hardening of supersaturation precipitation, while other phases have the effect of dispersion strengthening, so the flawless multi-copper alloy of the present invention can provide different hardness; and, through actual measurement data, The cast, homogenized, and/or age hardened state of the novel niobium-free multi-component copper alloy has a Vickers hardness greater than HV200. Obviously, the copper-bismuth alloy of the invention has the advantages of high price, considerable toxicity, environmental protection and the like, and the flawless multi-copper alloy of the invention can replace the conventional copper-bismuth alloy, and is applied to plastic injection molding. Manufacture of molds, conductive springs, heat sinks, electrodes, non-sparking tools, bearings, gears, pistons, etc.

必須加以強調的是,上述之詳細說明係針對本發明可行實施例之具體說明,惟該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實施或變更,均應包含於本案之專利範圍中。It is to be understood that the foregoing detailed description of the embodiments of the present invention is not intended to Both should be included in the scope of the patent in this case.

<本發明> <TABLE border="1" borderColor="#000000" width="_0007"><TBODY><tr><td> 無 </td><td>   </td></tr></TBODY></TABLE><present invention>           <TABLE border="1" borderColor="#000000" width="_0007"><TBODY><tr><td> None</td><td> </td></tr></TBODY></ TABLE>

<習知> <TABLE border="1" borderColor="#000000" width="_0008"><TBODY><tr><td> 無 </td><td>   </td></tr></TBODY></TABLE><知知>           <TABLE border="1" borderColor="#000000" width="_0008"><TBODY><tr><td> None</td><td> </td></tr></TBODY></ TABLE>

圖1係顯示時效處理時間相對於維氏硬度之資料曲線圖。Figure 1 is a graph showing the aging treatment time versus Vickers hardness.

Claims (8)

一種無鈹多元銅合金,係具有一特定維氏硬度,且該特定維氏硬度係大於HV200;其中,所述無鈹銅合金的組成係由下列之組成式所表示:CuxAlyNizCrmFen;並且,顯示於組成式中的x、y、z、m、與n係滿足以下不等式:45%≦x≦80%、4%≦y≦17%、3%≦z≦19%、0.5%≦m、0.5%≦n、2%≦(m+n)≦26%。 A non-twisted multi-component copper alloy having a specific Vickers hardness, and the specific Vickers hardness is greater than HV200; wherein the composition of the beryllium-free copper alloy is represented by the following composition formula: Cu x Al y Ni z Cr m Fe n ; and x, y, z, m, and n which are shown in the composition formula satisfy the following inequalities: 45% ≦ x ≦ 80%, 4% ≦ y ≦ 17%, 3% ≦ z ≦ 19 %, 0.5% ≦m, 0.5% ≦n, 2% ≦ (m+n) ≦ 26%. 如申請專利範圍第1項所述之無鈹多元銅合金,其中,該基地相結構係為面心立方晶格結構(face centered cubic,FCC)。 The bismuth-free multi-element copper alloy according to claim 1, wherein the base phase structure is a face centered cubic (FCC) structure. 如申請專利範圍第1項所述之無鈹多元銅合金,其中,係可透過下列任一種製程方法製得:真空電弧熔煉法、電熱絲加熱法、感應加熱法、快速凝固法、機械合金法、或粉末冶金法。 The bismuth-free multi-component copper alloy according to claim 1, wherein the method can be obtained by any of the following process methods: vacuum arc melting, electric heating, induction heating, rapid solidification, mechanical alloying Or powder metallurgy. 如申請專利範圍第1項所述之無鈹多元銅合金,其中,所述無鈹多元銅合金之成品或半成品的型態可為下列任一者:粉末、線材、焊條、包藥焊絲、或塊材。 The bismuth-free multi-component copper alloy according to claim 1, wherein the finished product or the semi-finished product of the bismuth-free multi-component copper alloy may be any of the following: powder, wire, welding rod, coated wire, or Block. 如申請專利範圍第1項所述之無鈹多元銅合金,其中,所述無鈹多元銅合金可透過以下任一種製程方式而被加工披覆至一目標工件的表面上:鑄造、電弧焊、雷射焊、電漿焊、熱噴塗、或熱燒結。 The bismuth-free multi-copper alloy according to claim 1, wherein the bismuth-free multi-copper alloy is processed and coated onto a surface of a target workpiece by any one of the following processes: casting, arc welding, Laser welding, plasma welding, thermal spraying, or thermal sintering. 如申請專利範圍第1項所述之無鈹多元銅合金,其中,所述無鈹多元銅合金係經由均質化熱處理而呈現均質化態,並且,呈現均質化狀態的該無鈹銅合金係經由高溫時效處理而呈現時效硬化態。 The bismuth-free multi-component copper alloy according to claim 1, wherein the ruthenium-free multi-element copper alloy exhibits a homogenized state by homogenization heat treatment, and the niobium-free copper alloy exhibiting a homogenized state is via Ageing hardening state due to high temperature aging treatment. 如申請專利範圍第1項所述之無鈹多元銅合金,係更包括一M元素組成,其中,所述M元素組成可為下列任一者:鉛(Pb)、錫(Sn)、鍺(Ge)、矽(Si)、碳(C)、銻(Sb)、磷(P)、鎂(Mg)、鈷(Co)、鋅(Zn)、錳(Mn)、鉬(Mo)、釩(V)、鈮(Nb)、鈦(Ti)、鋯(Zr)、釔(Y)、鑭(La)、鈰(Ce)、上述任兩者之組合、或上述任兩者以上之組合;並且,該M元素組成的原子百分比係介於0at%至15at%之間。 The bismuth-free multi-component copper alloy according to claim 1, further comprising an M element composition, wherein the M element composition may be any one of the following: lead (Pb), tin (Sn), bismuth ( Ge), bismuth (Si), carbon (C), antimony (Sb), phosphorus (P), magnesium (Mg), cobalt (Co), zinc (Zn), manganese (Mn), molybdenum (Mo), vanadium ( V), niobium (Nb), titanium (Ti), zirconium (Zr), yttrium (Y), lanthanum (La), cerium (Ce), a combination of any two of the above, or a combination of any two or more thereof; The atomic percentage of the M element is between 0 at% and 15 at%. 如申請專利範圍第7項所述之無鈹多元銅合金,其中,當所述M元素組成包含錫(Sn)時,錫(Sn)的原子百分比不超過10at%;並且,當所述M元素組成包含其他元素時,每一種元素的原子百分比不超過6at%。 The bismuth-free multi-component copper alloy according to claim 7, wherein when the M element composition contains tin (Sn), the atomic percentage of tin (Sn) does not exceed 10 at%; and, when the M element When the composition contains other elements, the atomic percentage of each element does not exceed 6 at%.
TW105128017A 2016-08-31 2016-08-31 Beryllium-free multi-element copper alloy TWI580802B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105128017A TWI580802B (en) 2016-08-31 2016-08-31 Beryllium-free multi-element copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105128017A TWI580802B (en) 2016-08-31 2016-08-31 Beryllium-free multi-element copper alloy

Publications (2)

Publication Number Publication Date
TWI580802B true TWI580802B (en) 2017-05-01
TW201807207A TW201807207A (en) 2018-03-01

Family

ID=59367485

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105128017A TWI580802B (en) 2016-08-31 2016-08-31 Beryllium-free multi-element copper alloy

Country Status (1)

Country Link
TW (1) TWI580802B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109706341B (en) * 2019-01-18 2021-02-12 沈阳金科有色产品研制有限公司 Cobalt-containing high-strength high-hardness wear-resistant copper alloy and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395464A (en) * 1981-04-01 1983-07-26 Marko Materials, Inc. Copper base alloys made using rapidly solidified powders and method
CN103261460A (en) * 2010-12-13 2013-08-21 日本精线株式会社 Copper alloy wire and copper alloy spring

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395464A (en) * 1981-04-01 1983-07-26 Marko Materials, Inc. Copper base alloys made using rapidly solidified powders and method
CN103261460A (en) * 2010-12-13 2013-08-21 日本精线株式会社 Copper alloy wire and copper alloy spring

Also Published As

Publication number Publication date
TW201807207A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
CA2662814C (en) Lead-free free-cutting silicon brass alloy
CN1969051B (en) Middle alloy for copper alloy casting and its casting method
KR102393772B1 (en) Copper-nickel-tin alloy, method for manufacturing and use thereof
WO2010122960A1 (en) High-strength copper alloy
KR102420968B1 (en) Copper-nickel-tin alloy, method for manufacturing and use thereof
JP7294527B2 (en) alloys and components
US9994946B2 (en) High strength, homogeneous copper-nickel-tin alloy and production process
EP3872197A1 (en) Composite copper alloy comprising high-entropy alloy, and manufacturing method therefor
CN114606422B (en) CrCoNi medium-entropy alloy and low-temperature rolling method thereof
CN111218586A (en) Scandium-titanium-zirconium-element-containing aluminum alloy for 3D printing
CN103805807A (en) Copper alloy material for electrical and electronic components and process for producing same
JP2016539248A (en) Antibacterial white copper alloy
JP2010106363A (en) Age precipitation type copper alloy, copper alloy material, copper alloy component and method for producing copper alloy material
JP2024020264A (en) Cr-Ni alloy, method for producing Cr-Ni alloy, and rapidly solidified compact
CN107779647A (en) Beryllium-free polybasic copper alloy
CN111212923B (en) Casting die material and copper alloy material
Sankar et al. Focused review on Cu–Ni–Sn spinodal alloys: from casting to additive manufacturing
Hussein et al. Influence of Al and Ti additions on microstructure and mechanical properties of leaded brass alloys
TWI580802B (en) Beryllium-free multi-element copper alloy
JP5688744B2 (en) High strength and high toughness copper alloy forging
Eqal et al. Characterization of Microstructure and Mechanical Properties of CuCr Alloy Produced by Stir Casting
JP5522692B2 (en) High strength copper alloy forging
KR20170059435A (en) CASTING MOLD MATERIAL AND Cu-Cr-Zr ALLOY MATERIAL
JP2012236212A (en) Consumable electrode for electroslag remelting and method for manufacturing the same
JP2020015925A (en) Cr-BASED TWO-PHASE ALLOY MANUFACTURED ARTICLE AND MANUFACTURING METHOD THEREFOR