TWI580656B - Optical Glass - Google Patents

Optical Glass Download PDF

Info

Publication number
TWI580656B
TWI580656B TW105131498A TW105131498A TWI580656B TW I580656 B TWI580656 B TW I580656B TW 105131498 A TW105131498 A TW 105131498A TW 105131498 A TW105131498 A TW 105131498A TW I580656 B TWI580656 B TW I580656B
Authority
TW
Taiwan
Prior art keywords
glass
crystallization
sub
temperature
refractive index
Prior art date
Application number
TW105131498A
Other languages
Chinese (zh)
Other versions
TW201713602A (en
Inventor
毛露路
Original Assignee
成都光明光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都光明光電股份有限公司 filed Critical 成都光明光電股份有限公司
Publication of TW201713602A publication Critical patent/TW201713602A/en
Application granted granted Critical
Publication of TWI580656B publication Critical patent/TWI580656B/en

Links

Landscapes

  • Glass Compositions (AREA)

Description

光學玻璃Optical glass

本發明涉及一種高折射率光學玻璃,特別是涉及一種折射率為1.81-1.88、阿貝數為31-38的光學玻璃,其透過率高、析晶溫度低,成型粘度高,適合於二次壓型。The invention relates to a high refractive index optical glass, in particular to an optical glass having a refractive index of 1.81-1.88 and an Abbe number of 31-38, which has high transmittance, low crystallization temperature and high molding viscosity, and is suitable for secondary Press type.

對於光學玻璃來說,折射率、阿貝數、透過率是其核心特徵。折射率和阿貝數決定了玻璃的基本功能,折射率為1.81-1.88,阿貝數為31-38的光學玻璃屬於高折射率中高色散光學玻璃,其可以縮短鏡頭的成像長度,與低折射率低色散玻璃耦合使用時,可以有效消除鏡頭的色差。For optical glass, refractive index, Abbe number, and transmittance are the core features. The refractive index and Abbe number determine the basic function of the glass. The refractive index is 1.81-1.88, and the optical glass with the Abbe number of 31-38 belongs to the high refractive index medium and high dispersion optical glass, which can shorten the imaging length of the lens and low refraction. When the low-dispersion glass is used in combination, the chromatic aberration of the lens can be effectively eliminated.

透過率也是玻璃的核心指標,其代表了玻璃透過光線的能力,對於折射率高於1.81的高折射率光學玻璃來說,由於其組分的特性,大約對應380nm-440nm波長的紫藍色波段的光線,透過率比低折射率光學玻璃要低很多。如某公司18-300mm交換鏡頭,由18枚鏡片構成,其中高折射率光學玻璃有4片,如果這些玻璃紫藍色波段透過率較低,最後能達到感光元件的紫藍色波段光線較其他波段的光線要低很多,對照片的色彩還原帶來了較大的負面影響。光學玻璃的紫藍光透過率可以用τ400nm(10mm)來表示,其表徵10mm厚度的某種光學玻璃在400nm波長處的內透過率。對於折射率在1.81-1.88,阿貝數處於31-38的光學玻璃來說,τ400nm(10mm)的值至少要達到88%以上才能滿足光學儀器的使用,尤其是長焦鏡頭使用。一般來講,其值越高越好。Transmittance is also the core index of glass, which represents the ability of glass to transmit light. For high refractive index optical glass with a refractive index higher than 1.81, due to its compositional characteristics, it corresponds to the purple-blue band of 380nm-440nm wavelength. The light transmittance is much lower than that of the low refractive index optical glass. For example, a company's 18-300mm interchangeable lens consists of 18 lenses, of which 4 are high-refractive-index optical glasses. If the transmittance of these glasses is low, the violet-blue band of the photosensitive element can be lighter than others. The light in the band is much lower, which has a greater negative impact on the color reproduction of the photo. The violet blue transmittance of the optical glass can be expressed as τ400 nm (10 mm), which characterizes the internal transmittance of a certain optical glass having a thickness of 10 mm at a wavelength of 400 nm. For optical glasses with a refractive index of 1.81-1.88 and an Abbe number of 31-38, the value of τ400nm (10mm) must be at least 88% to meet the needs of optical instruments, especially for telephoto lenses. In general, the higher the value, the better.

近年來,大口徑鏡片需求越來越多,對光學玻璃胚料厚度也提出了較高的要求,通常厚度需要大於20mm,甚至達到40mm。由於玻璃是一種熱的不良導體,這樣的厚度要求,對玻璃在成型中的散熱和冷卻提出了挑戰,尤其是對易析晶玻璃的析晶和條紋控制是非常困難的。這樣的情況就需要在組分研發過程中考慮如何平衡玻璃組分,達到提升玻璃的抗析晶性能的同時,加大成型粘度,使得厚規格玻璃在生產中避免析晶和條紋的產生,同時適合於二次壓型和非球面精密壓型工藝。In recent years, there has been an increasing demand for large-diameter lenses, and high requirements have been placed on the thickness of optical glass blanks, which usually require thicknesses greater than 20 mm or even 40 mm. Since glass is a poor conductor of heat, such thickness requirements pose a challenge to the heat dissipation and cooling of the glass during molding, especially for the crystallization and stripe control of the easy-to-crystallize glass. In this case, it is necessary to consider how to balance the glass components in the component development process, to improve the anti-crystallization property of the glass, and to increase the molding viscosity, so that the thick gauge glass avoids crystallization and streaking in the production, and at the same time Suitable for secondary molding and aspheric precision molding.

析晶是光學玻璃常見的品質缺陷,對於光學玻璃的製造及加工來說,玻璃的抗析晶性能主要體現在生產過程中是否容易析晶以及在加工過程中是否容易析晶兩個方面。Crystallization is a common quality defect of optical glass. For the manufacture and processing of optical glass, the anti-crystallization property of glass is mainly reflected in whether it is easy to decrystallize in the production process and whether it is easy to decrystallize during processing.

生產過程中的析晶主要是指玻璃從玻璃液冷卻到固態時,如果漏料時玻璃液處在玻璃的析晶溫度範圍內,組分中的物質首先在玻璃表面或者內部形成晶核(尺寸從數十納米到數百納米不等)。如果條件合適,如厚規格玻璃在成型冷卻時,玻璃中心溫度較高,冷卻較慢,那麼晶核會進一步長大為析晶,影響光線透過,造成玻璃產品報廢。若玻璃中只存在直徑較小,不影響玻璃成像的晶核(尺寸從數十納米到數百納米不等),那麼玻璃還可以在後期通過冷加工製作為合格的光學零件。但是,如果內部有晶核的玻璃,通過再加熱的“二次壓型”或者“非球面精密壓型”工藝製作光學零件,那麼在再加熱過程中晶核會有長大為析晶顆粒的風險,造成玻璃零件報廢。The crystallization in the production process mainly refers to the glass is cooled from the glass liquid to the solid state. If the glass liquid is in the crystallization temperature range of the glass during the leakage, the material in the component first forms a crystal nucleus on the surface or inside the glass. From tens of nanometers to hundreds of nanometers). If the conditions are suitable, such as thick gauge glass during molding cooling, the glass center temperature is higher, and the cooling is slower, then the crystal nucleus will further grow into crystallization, which will affect the light transmission, causing the glass product to be scrapped. If there is only a small diameter in the glass that does not affect the imaging of the glass (ranging from tens of nanometers to hundreds of nanometers), then the glass can be made into qualified optical parts by cold working in the later stage. However, if the glass with nucleation inside is used to make optical parts by reheating "secondary pressing" or "aspheric precision molding" process, the crystal nucleus will grow up to be crystallization particles during reheating. , causing glass parts to be scrapped.

目前大部分的光學零件加工採取對玻璃進行再次加熱並再進行塑形的“二次壓型”或者“非球面精密壓型”工藝,二次加熱壓型工藝與冷加工工藝相比,效率高,成本低,大幅度減少污染物的排放,是目前大批量光學零件加工的主流方式。在二次加熱的過程中,如果玻璃的抗析晶性能不好,會造成壓型工藝很窄,良品率較低,嚴重時甚至不能用於壓型工藝。At present, most of the optical parts processing adopts a "secondary pressing type" or an "aspherical precision pressing type" process for reheating and reshaping the glass, and the secondary heating molding process is more efficient than the cold working process. The low cost and the significant reduction of pollutant emissions are the mainstream methods for processing large-volume optical parts. In the process of secondary heating, if the anti-crystallization property of the glass is not good, the molding process is narrow, the yield is low, and even in severe cases, it cannot be used in the molding process.

在高折射率光學玻璃的出料過程中,為了避免玻璃產生晶核或析晶,會把玻璃液出料溫度設置在析晶溫度下限50℃以上。這樣又產生了另外一個問題:漏料溫度越高,雖然對緩解析晶有利,但是玻璃的粘度隨著溫度的增高而減小。在成型過程中,玻璃在模具中從液態冷卻為固態,過小成型粘度容易在成型過程中使玻璃在冷卻過程中產生不均勻的絮流,冷卻後在玻璃中形成條紋。In the discharge process of the high refractive index optical glass, in order to avoid nucleation or crystallization of the glass, the glass liquid discharge temperature is set at a lower limit of the crystallization temperature of 50 ° C or higher. This creates another problem: the higher the temperature of the leak, the better the retardation of the crystal, but the viscosity of the glass decreases with increasing temperature. During the molding process, the glass is cooled from a liquid state to a solid state in the mold, and the too small molding viscosity easily causes uneven flocculation of the glass during the cooling process, and forms streaks in the glass after cooling.

在光學玻璃的生產中,條紋是一種常見的品質缺陷,通常產生於玻璃的上下表面,嚴重時會在玻璃內部出現。因此,為了得到析晶品質和條紋品質都滿意的玻璃產品,需要在玻璃組分設計中考慮到降低玻璃的析晶溫度的同時加大玻璃的成型粘度。一般來講,在玻璃析晶溫度以上50℃,高溫粘度達到1dPaS以上的玻璃,在成型過程中才能避免析晶和條紋的出現。In the production of optical glass, streaks are a common quality defect that usually occurs on the upper and lower surfaces of the glass and, in severe cases, inside the glass. Therefore, in order to obtain a glass product which is satisfactory in both the devitrification quality and the stripe quality, it is necessary to increase the glass forming viscosity while reducing the crystallization temperature of the glass in the glass component design. In general, glass with a high temperature viscosity of 1 dPaS or more above the glass crystallization temperature can avoid the occurrence of crystallization and streaking during the molding process.

另外,值得注意的是,通常低軟化點光學玻璃中含有較多的Li 2O組分。Li 2O加入到玻璃組分中,可以有效降低玻璃的Tg溫度。但是,含有Li 2O的低軟化點光學玻璃通常使用鉑金坩堝熔煉,在熔煉過程中,玻璃組分中的Li 2O容易腐蝕鉑金坩堝,造成成品玻璃中產生較多的脫落鉑金以及鉑析晶物,造成玻璃的良品率下降。另一方面,此類玻璃用於精密壓型過程中時,容易產生玻璃元件表面模糊的風險,原因在於模具中一般塗有含碳元素的脫模劑,玻璃組分中的Li2O容易和脫模劑中的碳元素發生反應,在玻璃原件表面產生粗糙的不透明膜層。 In addition, it is worth noting that usually the low softening point optical glass contains more Li 2 O components. The addition of Li 2 O to the glass component can effectively lower the Tg temperature of the glass. However, low softening point optical glass containing Li 2 O is usually smelted using platinum ruthenium. During the smelting process, Li 2 O in the glass component is liable to corrode platinum ruthenium, resulting in more detached platinum and platinum crystallization in the finished glass. Things, causing a decline in the yield of glass. On the other hand, when such a glass is used in a precision molding process, the risk of blurring of the surface of the glass component is apt to occur because the mold is generally coated with a mold release agent containing carbon, and the Li2O in the glass component is easily and demolded. The carbon element in the agent reacts to produce a rough opaque film layer on the surface of the glass original.

中國專利98802074.2描述的玻璃,折射率和阿貝數與本發明玻璃範圍有一定重合,但其組分中ZnO含量很低,導致Tg溫度較高,不適合非球面精密壓型。The glass described in Chinese Patent No. 98802074.2, the refractive index and the Abbe number have a certain overlap with the glass range of the present invention, but the ZnO content in the composition is very low, resulting in a high Tg temperature, which is not suitable for aspherical precision molding.

中國專利201210244584.8中描述的玻璃,折射率和阿貝數與本發明玻璃有一定重合,但其Tg溫度高達650℃,不適合非球面壓型,同時其著色度偏高,λ70處達到了410nm,這對鏡頭的藍光波段的透過是不利的。The glass described in Chinese Patent No. 201210244584.8, the refractive index and the Abbe number have a certain overlap with the glass of the present invention, but the Tg temperature is as high as 650 ° C, which is not suitable for the aspherical pressing type, and the coloring degree thereof is high, and the λ70 reaches 410 nm, which is It is unfavorable for the transmission of the blue light band of the lens.

本發明所要解決的技術問題是提供一種折射率為1.81-1.88、阿貝數為31-38的適合於二次壓型以及非球面精密壓型的光學玻璃。The technical problem to be solved by the present invention is to provide an optical glass suitable for a secondary press type and an aspherical precision press type having a refractive index of 1.81-1.88 and an Abbe number of 31-38.

本發明解決技術問題所採用的技術方案是:光學玻璃,其氧化物的摩爾百分比組成包括:SiO 26-23%、B 2O 320-35%、TiO 23-9%、ZnO 17-42%、La 2O 33-18%、Y 2O 31-5%、ZrO 21-7% 、Nb 2O 54-10%、WO 30.4-4% 、BaO 3-15%。 The technical solution adopted by the present invention to solve the technical problem is: optical glass, the molar percentage composition of the oxide includes: SiO 2 6-23%, B 2 O 3 20-35%, TiO 2 3-9%, ZnO 17- 42%, La 2 O 3 3-18%, Y 2 O 3 1-5%, ZrO 2 1-7%, Nb 2 O 5 4-10%, WO 3 0.4-4%, BaO 3-15%.

進一步的,還包括:CaO 0-5%、SrO 0-5%、Sb 2O 30-1%。 Further, it further includes: CaO 0-5%, SrO 0-5%, and Sb 2 O 3 0-1%.

進一步的,其中,CaO 0-3%或/和SrO 0-3%。Further, wherein CaO 0-3% or / and SrO 0-3%.

進一步的,玻璃組分中不含有Ta 2O 5、Gd 2O 3、Li 2O。 Further, the glass component does not contain Ta 2 O 5 , Gd 2 O 3 , and Li 2 O.

進一步的,其中,SiO 28-21%或/和B 2O 322-33%或/和TiO 24-8%或/和ZnO 20-39%或/和La 2O 34-16%或/和Y 2O 32-4%或/和ZrO 21.5-6%或/和Nb 2O 55-8%或/和WO 30.5-3%或/和BaO 5-12%。 Further, among them, SiO 2 8-21% or/and B 2 O 3 22-33% or/and TiO 2 4-8% or/and ZnO 20-39% or/and La 2 O 3 4-16% Or / and Y 2 O 3 2-4% or / and ZrO 2 1.5-6% or / and Nb 2 O 5 5-8% or / and WO 3 0.5-3% or / and BaO 5-12%.

進一步的,其中,B 2O 3/(SiO 2+BaO)的值為0.8-2.5。 Further, wherein the value of B 2 O 3 /(SiO 2 +BaO) is 0.8-2.5.

進一步的,其中,(La 2O 3+Nb 2O 5)/ (Y 2O 3+ZrO 2+TiO 2+WO 3)的值為0.6-1.8。 Further, the value of (La 2 O 3 + Nb 2 O 5 ) / (Y 2 O 3 + ZrO 2 + TiO 2 + WO 3 ) is 0.6-1.8.

進一步的,所述玻璃的折射率為1.81-1.88,阿貝數為31-38。Further, the glass has a refractive index of 1.81-1.88 and an Abbe number of 31-38.

進一步的,所述玻璃的折射率為1.82-1.86(不含1.86),阿貝數為32-37。Further, the glass has a refractive index of 1.82-1.86 (excluding 1.86) and an Abbe number of 32-37.

進一步的,所述玻璃400nm波長處內透過率τ400nm大於88%;Tg溫度低於620℃;析晶上限溫度不高於1180℃;析晶溫度上限以上50℃處粘度大於1dPaS。Further, the transmittance of the glass at a wavelength of 400 nm is greater than 88%; the Tg temperature is lower than 620 ° C; the upper limit temperature of crystallization is not higher than 1180 ° C; and the viscosity at 50 ° C above the upper limit of the crystallization temperature is greater than 1 dPaS.

進一步的,所述玻璃析晶溫度上限以上50℃處粘度大於1.5dPaS。Further, the viscosity of the glass crystallization temperature above 50 ° C is greater than 1.5 dPaS.

本發明的有益效果是:通過合理組成玻璃配比,玻璃折射率為1.81-1.88,阿貝數為31-38;透過率較高,τ400nm的值高於88%;Tg低於620℃,適用於非球面精密壓型;析晶溫度以上50℃以上的粘度大於1dPaS,生產厚度大於20mm的玻璃不易產生析晶和條紋,良品率較高;同時組分中不含有Ta 2O 5、Gd 2O 3等貴重氧化物,也不含有Li 2O。 The beneficial effects of the invention are: by reasonable composition of the glass ratio, the refractive index of the glass is 1.81-1.88, the Abbe number is 31-38; the transmittance is higher, the value of τ400nm is higher than 88%; the Tg is lower than 620 ° C, suitable for For aspherical precision molding; the viscosity above 50 °C above the crystallization temperature is greater than 1dPaS, the glass with thickness greater than 20mm is less prone to crystallization and streaking, and the yield is higher; at the same time, the composition does not contain Ta 2 O 5 , Gd 2 A noble oxide such as O 3 does not contain Li 2 O.

下面將描述本發明玻璃的各個組分,除非另有說明,各個組分的含量是用摩爾%表示。The respective components of the glass of the present invention will be described below, and the contents of the respective components are expressed in mol% unless otherwise stated.

在本發明玻璃體系中,B 2O 3是玻璃主要形成體,是構成玻璃骨架的主要成分。若其含量高於35%,玻璃的折射率會低於設計目標,若其含量低於20%,玻璃的抗析晶性能將會極大地下降。因此,在本發明中,B 2O 3的含量為20-35%,優選為22-33%。 In the glass system of the present invention, B 2 O 3 is a main form of glass and is a main component constituting a glass skeleton. If the content is higher than 35%, the refractive index of the glass will be lower than the design target. If the content is less than 20%, the anti-crystallization property of the glass will be greatly reduced. Therefore, in the present invention, the content of B 2 O 3 is from 20 to 35%, preferably from 2 to 23 %.

一般來講,以B 2O 3和La 2O 3為主體的玻璃抗析晶性能比較差,同時高溫粘度極小,生產過程中極易出現析晶和條紋缺陷。其原因在於單純的B 2O 3在玻璃中是由硼氧三角體[BO 3]組成,其結構為無序的層狀和鏈狀疏鬆結構,所以其高溫粘度很低。當La 2O 3、Nb 2O 5等易析晶氧化物加入玻璃時,進一步打斷了硼氧三角體[BO 3]所組成的疏鬆網路,使得本來就較低的高溫粘度進一步降低。同時,由於網路疏鬆,析晶閾值較低,La 2O 3、Nb 2O 5等可以輕易的跨過析晶勢壘,形成晶體,造成玻璃抗析晶性能不佳。因此,如何將此類玻璃中B 2O 3的網路變得緻密是提升玻璃抗析晶性能和高溫粘度的關鍵。發明人通過銳意研究發現,加入少量SiO 2和一定量的鹼土金屬氧化物,尤其是BaO,是提升玻璃抗析晶性能和高溫粘度的關鍵因素之一。 In general, the glass-based devitrification performance of B 2 O 3 and La 2 O 3 is relatively poor, and the high-temperature viscosity is extremely small, and crystallization and streaking defects are prone to occur in the production process. The reason for this is that pure B 2 O 3 is composed of a boron oxytribe [BO 3 ] in the glass, and its structure is a disordered layered and chain-like loose structure, so its high temperature viscosity is low. When a readily crystallization oxide such as La 2 O 3 or Nb 2 O 5 is added to the glass, the loose network composed of the boron oxytribe [BO 3 ] is further interrupted, so that the inherently low temperature viscosity is further lowered. At the same time, due to the loose network, the crystallization threshold is low, and La 2 O 3 , Nb 2 O 5 , etc. can easily cross the crystallization barrier to form crystals, resulting in poor anti-crystallization properties of the glass. Therefore, how to densify the network of B 2 O 3 in such glass is the key to improving the anti-crystallization property and high-temperature viscosity of the glass. The inventors have found through careful research that the addition of a small amount of SiO 2 and a certain amount of alkaline earth metal oxides, especially BaO, is one of the key factors for improving the anti-crystallization property and high-temperature viscosity of the glass.

SiO 2也是玻璃形成體,與B 2O 3所構成的疏鬆的鏈狀層狀網路不同,SiO 2在玻璃中形成的是矽氧四面體三維網路,非常緻密堅固。這樣的網路加入到玻璃中,對疏鬆的硼氧三角體[BO 3]網路進行加固,使其變得緻密,從而提升玻璃的高溫粘度。與此同時,矽氧四面體三維網路的加入,玻璃網路隔離La 2O 3、Nb 2O 5等析晶陽離子和陰離子的能力增強,增加了析晶閾值,使得玻璃的抗析晶性能提升。但若SiO 2的含量無限制的加大,一方面會造成溶解困難,另一方面為了維持較高的折射率,勢必會減少B 2O 3的含量,SiO 2對La 2O 3的溶解度極低,會造成玻璃抗析晶性能急劇下降。因此,如果在本發明中SiO 2的含量若低於6%,高溫粘度會降低,玻璃成型時容易產生條紋,同時玻璃的抗析晶性能會下降;若其含量高於23%,玻璃需要在較高溫度下熔煉,會導致透過率下降,尤其是在玻璃中含有TiO 2、Nb 2O 5等組分時,過高的熔煉溫度會導致透過率的急劇下降,同時過高的SiO 2的含量會導致玻璃抗析晶性能的下降。因此,在本發明中,其含量限定為6-23%,優選為8-21%。 SiO 2 is also a glass-formed body. Unlike the loose chain-like layered network composed of B 2 O 3 , SiO 2 forms a three-dimensional network of xenon tetrahedrons in the glass, which is very dense and strong. Such a network is added to the glass to reinforce the loose boron oxide triangle [BO 3 ] network to make it dense, thereby increasing the high temperature viscosity of the glass. At the same time, the addition of a three-dimensional network of helium-oxytetrahedrons, the ability of the glass network to isolate cations and anions such as La 2 O 3 and Nb 2 O 5 is enhanced, and the crystallization threshold is increased, so that the anti-crystallization properties of the glass are enhanced. Upgrade. However, if the content of SiO 2 is unrestricted, on the one hand, it will cause difficulty in dissolution, on the other hand, in order to maintain a high refractive index, the content of B 2 O 3 will be reduced, and the solubility of SiO 2 to La 2 O 3 will be extremely high. Low, will cause a sharp drop in the anti-crystallization properties of the glass. Therefore, if the content of SiO 2 in the present invention is less than 6%, the viscosity at high temperature is lowered, streaks are likely to occur during glass forming, and the anti-crystallization property of the glass is lowered; if the content is higher than 23%, the glass needs to be Melting at higher temperatures leads to a decrease in transmittance. Especially when the glass contains components such as TiO 2 and Nb 2 O 5 , too high a melting temperature leads to a sharp drop in transmittance, and too high SiO 2 The content causes a decrease in the anti-crystallization property of the glass. Therefore, in the present invention, the content thereof is limited to 6 to 23%, preferably 8 to 21%.

BaO、SrO以及CaO屬於鹼土金屬氧化物,其加入玻璃中在調節玻璃折射率和阿貝數的同時,還可以提升玻璃的抗析晶穩定性。本發明人銳意研究,發現在此類硼鑭系統玻璃中,一定量的鹼土金屬氧化物的加入會提升玻璃的高溫粘度和抗析晶性能,其原因在於,鹼土金屬氧化物的陽離子場強相對較低,加入到玻璃中會提供游離氧離子,B 2O 3所構成的疏鬆硼氧三角體[BO 3]會吸收游離氧離子形成結構相對緻密的[BO 4]四面體網路,從而提升玻璃的高溫粘度和抗析晶性能。但是,過少的鹼土金屬氧化物不能提供足夠的游離氧離子用於硼氧三角體[BO 3]轉變為結構緻密的[BO 4]四面體網路,從而不能獲得良好的抗析晶性能和理想的高溫粘度;而當過量的鹼土金屬氧化物加入玻璃中,因為鹼土金屬氧化物在提供游離氧離子的同時,其陽離子也會破壞玻璃網路,會使玻璃的抗析晶性能和高溫粘度下降。 BaO, SrO and CaO are alkaline earth metal oxides, which are added to the glass to adjust the refractive index and Abbe number of the glass, and also improve the anti-crystallization stability of the glass. The inventors have intensively studied and found that in such a boron bismuth system glass, the addition of a certain amount of alkaline earth metal oxide enhances the high temperature viscosity and the anti-crystallization property of the glass, because the cation field strength of the alkaline earth metal oxide is relatively Lower, added to the glass will provide free oxygen ions, B 2 O 3 formed by the loose boron oxygen triangle [BO 3 ] will absorb free oxygen ions to form a relatively dense [BO 4 ] tetrahedral network, thereby enhancing High temperature viscosity and anti-crystallization properties of glass. However, too little alkaline earth metal oxide does not provide enough free oxygen ions for the conversion of the boron oxygen triangle [BO 3 ] into a structurally dense [BO 4 ] tetrahedral network, so that good anti-crystallization properties and ideals cannot be obtained. High temperature viscosity; when an excessive amount of alkaline earth metal oxide is added to the glass, because the alkaline earth metal oxide provides free oxygen ions, the cation also destroys the glass network, which causes the glass to have devitrification resistance and high temperature viscosity. .

從鹼土金屬氧化物的種類來講,BaO中的Ba 2+場強較小,在相同的摩爾含量下,比SrO、CaO提供游離氧的能力更強,同時由於其離子半徑較大,對玻璃的析晶性能提升更有利。另外,根據發明者的研究,BaO在相同含量下,玻璃的密度比使用同含量的SrO、CaO的玻璃更高一些,這對於在成型過程中條紋的消除是有利的。因此,在本發明中,鹼土金屬氧化物主要使用BaO,其含量限定為3-15%,優選為5-12%。SrO的含量限定為0-5%,優選為0-3%,更優選為不添加。CaO的含量限定為0-5%,優選為0-3%,更優選為不添加。 From alkaline earth metal oxides in terms of type, BaO Ba 2+ in small field strength, at the same molar content, the ratio of SrO, CaO greater capacity to provide free oxygen, and because of its large ionic radius, glass The crystallization performance improvement is more favorable. Further, according to the study by the inventors, the density of glass at the same content of BaO is higher than that of glass using the same content of SrO or CaO, which is advantageous for the elimination of streaks during the molding process. Therefore, in the present invention, the alkaline earth metal oxide mainly uses BaO, and its content is limited to 3-15%, preferably 5-12%. The content of SrO is limited to 0 to 5%, preferably 0 to 3%, and more preferably is not added. The content of CaO is limited to 0 to 5%, preferably 0 to 3%, and more preferably is not added.

進一步的,從此類玻璃的微觀結構來講,SiO 2和BaO的作用都是在調節玻璃折射率和阿貝數的同時,修補B 2O 3疏鬆的結構網路,從而起到提升玻璃抗析晶性能和高溫粘度的作用。但是,根據上文所述,兩種氧化物對玻璃網路增強的機理是不一致的,危害也不是一致的。因此,在設計中必須研究B 2O 3、SiO 2和BaO三者的協同效應,儘量減少其危害,利用其優勢。經過本發明人銳意研究,發現B 2O 3/(SiO 2+BaO)的值處於0.8-2.5時,玻璃的高溫粘度和抗析晶性能最佳。 Further, from the microstructure of such glass, the roles of SiO 2 and BaO are both to adjust the refractive index and Abbe number of the glass, and to repair the loose network structure of B 2 O 3 , thereby enhancing the glass anti-analysis. The role of crystal properties and high temperature viscosity. However, according to the above, the mechanism by which the two oxides enhance the glass network is inconsistent and the hazards are not uniform. Therefore, in the design, it is necessary to study the synergistic effect of B 2 O 3 , SiO 2 and BaO to minimize the damage and take advantage of it. After intensive research by the present inventors, it was found that the high temperature viscosity and the anti-crystallization property of the glass were the best when the value of B 2 O 3 /(SiO 2 +BaO) was 0.8-2.5.

ZnO是本發明玻璃組分中降低玻璃Tg溫度的主要組分,同時提升玻璃的折射率和色散,還可以降低玻璃的高溫粘度,提升玻璃的耐候性。但如果加入量過多,玻璃高溫粘度下降較快,玻璃析晶性能會下降;如果加入量過小,不能實現較低的Tg溫度。因此,其含量限定為17-42%,優選為20-39%。ZnO is the main component of the glass component of the present invention for lowering the Tg temperature of the glass, and at the same time, increasing the refractive index and dispersion of the glass, and also lowering the high temperature viscosity of the glass and improving the weather resistance of the glass. However, if the amount of addition is too large, the viscosity of the glass will decrease rapidly, and the devitrification performance of the glass will decrease. If the amount added is too small, a lower Tg temperature cannot be achieved. Therefore, its content is limited to 17 to 42%, preferably 20 to 39%.

La 2O 3屬於高折射低色散氧化物,是本發明實現高折射性能的主要組分。La 2O 3的含量若低於3%,則達不到設計的折射率;若其含量如果超過18%,那麼玻璃的抗析晶性能會惡化,其高溫粘度也會很低。因此,La 2O 3的含量設置為3-18%,優選為4-16%。 La 2 O 3 is a high refractive low dispersion oxide and is a main component of the present invention for achieving high refractive properties. If the content of La 2 O 3 is less than 3%, the refractive index of the design is not obtained; if the content exceeds 18%, the anti-crystallization property of the glass is deteriorated, and the high-temperature viscosity is also low. Therefore, the content of La 2 O 3 is set to 3-18%, preferably 4-16%.

Nb 2O 5屬於高折射高色散氧化物,加入玻璃組分中可以提升玻璃折射率,調節玻璃的阿貝數。若其含量低於4%,玻璃的折射率和阿貝數達不到設計要求;若其含量高於10%,玻璃的抗析晶性能將會極大地下降。因此Nb 2O 5的含量為4-10%,優選為5-8%。 Nb 2 O 5 is a high-refraction, high-dispersion oxide. Adding to the glass component can increase the refractive index of the glass and adjust the Abbe number of the glass. If the content is less than 4%, the refractive index and Abbe number of the glass do not meet the design requirements; if the content is higher than 10%, the anti-crystallization property of the glass will be greatly reduced. Therefore, the content of Nb 2 O 5 is 4 to 10%, preferably 5 to 8%.

在此類玻璃中,產生析晶的組分主要是La 2O 3和Nb 2O 5,為了降低這兩種氧化物在玻璃中的析晶能力,現有的技術方案通常是加入Ta 2O 5和Ga 2O 3組分,如專利200610076607所描述,添加了15-25%的Ta 2O 5,但是 Ta 2O 5非常稀有,價格非常高昂,大量加入玻璃中會造成成本激增,同時面臨原料穩定供貨的問題。Ga 2O 3加入玻璃中會引起玻璃熔煉溫度增高,尤其是在含鈦玻璃組分中,過高的熔煉溫度會導致透過率的下降。 In such glasses, the components that cause crystallization are mainly La 2 O 3 and Nb 2 O 5 . In order to reduce the crystallization ability of the two oxides in the glass, the prior art solution usually involves adding Ta 2 O 5 . And the Ga 2 O 3 component, as described in patent 200610076607, adds 15-25% of Ta 2 O 5 , but Ta 2 O 5 is very rare and the price is very high, and a large amount of addition to the glass causes a cost increase and faces raw materials. Stable supply issues. The addition of Ga 2 O 3 to the glass causes an increase in the glass melting temperature, especially in the titanium-containing glass component, where an excessively high melting temperature causes a decrease in transmittance.

本發明人在實驗中發現,玻璃系統成分越簡單,則在熔體冷卻至液相線溫度時,化合物各組成部分相互碰撞排列成一定晶格的幾率越大,這種玻璃也越容易析晶,特別是在低共熔點上時。如果組分系統要析出幾種以上晶體,在初期形成晶核結構時相互產生干擾,從而降低玻璃的析晶傾向,難於析晶。因此,基於以上發現,本發明人使用Y 2O 3、ZrO 2、TiO 2、WO 3等易析晶物質進行組合並合理配比,可以極大提升玻璃抗析晶性能,同時調節玻璃的折射率和阿貝數,原料成本遠低於使用Ta 2O 5的玻璃。但是,以上幾種氧化物析晶閾值不同,析晶時力圖達到的配位也不同,分別具有不同的析晶特性。所以此種添加易析晶氧化物來抑制整個組分系統的析晶趨向的方法,需要合理搭配氧化物組分,研究其協同效應,否則反而會造成整個玻璃系統的析晶性能下降。 The inventors have found in experiments that the simpler the composition of the glass system, the greater the probability that the components of the compound collide with each other to form a certain crystal lattice when the melt is cooled to the liquidus temperature, and the glass is more susceptible to crystallization. Especially when it is on the eutectic point. If the component system is to precipitate several or more crystals, interference occurs at the initial stage when the crystal nucleus structure is formed, thereby lowering the crystallization tendency of the glass and making it difficult to crystallize. Therefore, based on the above findings, the inventors used Y 2 O 3 , ZrO 2 , TiO 2 , WO 3 and other readily crystallization materials to combine and rationally ratio, which can greatly improve the anti-crystallization property of the glass and simultaneously adjust the refractive index of the glass. And Abbe number, the raw material cost is much lower than the glass using Ta 2 O 5 . However, the above several oxides have different crystallization thresholds, and the coordination positions obtained by the crystallization are different, and have different crystallization characteristics. Therefore, such a method of adding a crystallization-preventing oxide to suppress the crystallization tendency of the entire component system requires a reasonable combination of the oxide components to study the synergistic effect, which would otherwise cause a decline in the crystallization performance of the entire glass system.

Y 2O 3屬於高折射低色散氧化物,若含量低於1%,提升抗析晶性能不明顯;若超過5%,玻璃抗析晶性能下降。因此其含量為1-5%,優選為2-4%。 Y 2 O 3 is a high-refractive low-dispersion oxide. If the content is less than 1%, the anti-crystallization property is not obvious; if it exceeds 5%, the anti-crystallization property of the glass decreases. Therefore, its content is 1-5%, preferably 2-4%.

ZrO 2屬於高折射氧化物,其加入玻璃中能顯著提升玻璃的折射率,同時提升玻璃抗析晶性能。但是,ZrO 2屬於難溶氧化物,加入量過多也會顯著提升玻璃的融化溫度,同時會降低玻璃的透過率,而且會帶來產生結石與析晶的風險。因此,其含量限定為1-7%,優選為1.5-6%。 ZrO 2 is a high refractive oxide, which is added to the glass to significantly increase the refractive index of the glass, while improving the anti-crystallization properties of the glass. However, ZrO 2 is a poorly soluble oxide. Too much addition will significantly increase the melting temperature of the glass, and at the same time reduce the transmittance of the glass, and the risk of stone formation and crystallization. Therefore, its content is limited to 1-7%, preferably 1.5-6%.

TiO 2屬於高折射氧化物,其加入玻璃中能顯著提升玻璃的折射率和色散,同時可以進入玻璃網路從而提升玻璃的抗析晶性能。若其含量低於3%,折射率達不到設計要求,同時提升抗析晶性能不明顯。但是,過多TiO 2加入玻璃會損害玻璃的透過率,並降低玻璃的抗析晶性能。因此,TiO 2的含量限定為3-9%,優選為4-8%。 TiO 2 is a high refractive oxide, which can significantly increase the refractive index and dispersion of the glass when it is added to the glass, and can enter the glass network to enhance the anti-crystallization property of the glass. If the content is less than 3%, the refractive index does not meet the design requirements, and the anti-crystallization property is not obvious. However, excessive addition of TiO 2 to the glass impairs the transmittance of the glass and reduces the anti-crystallization property of the glass. Therefore, the content of TiO 2 is limited to 3 to 9%, preferably 4 to 8%.

WO 3也是高折射率高色散氧化物,加入本發明玻璃中可以起到調節折射率、色散,以及提升玻璃抗析晶性能的作用。若其含量低於0.4%,提升抗析晶性能不明顯;若含量高於4%,玻璃的抗析晶性能會下降。因此,其含量限定為0.4-4%,優選為0.5-3%。 WO 3 is also a high refractive index high dispersion oxide, which can be used to adjust the refractive index, dispersion, and enhance the anti-crystallization property of the glass by adding to the glass of the present invention. If the content is less than 0.4%, the anti-crystallization property is not obvious; if the content is higher than 4%, the anti-crystallization property of the glass will decrease. Therefore, its content is limited to 0.4 to 4%, preferably 0.5 to 3%.

進一步的,考慮到La 2O 3、Nb 2O 5、Y 2O 3、ZrO 2、TiO 2、WO 3等幾種易析晶組分的協同效應,本發明人發現,當(La 2O 3+Nb 2O 5)/ (Y 2O 3+ZrO 2+TiO 2+WO 3)的值處於0.6-1.8時,抗析晶性能最佳。 Further, considering the synergistic effect of several easily crystallizable components such as La 2 O 3 , Nb 2 O 5 , Y 2 O 3 , ZrO 2 , TiO 2 , WO 3 , etc., the inventors have found that when (La 2 O When the value of 3 + Nb 2 O 5 ) / (Y 2 O 3 + ZrO 2 + TiO 2 + WO 3 ) is 0.6-1.8, the anti-crystallization property is optimal.

Sb 2O 3是一種澄清劑,添加到玻璃中使氣泡消除變得更加容易。在本發明中其含量限定為0-1%,優選為不添加。 Sb 2 O 3 is a clarifying agent that is added to the glass to make bubble elimination easier. In the present invention, the content thereof is limited to 0-1%, preferably not added.

下面將描述本發明的光學玻璃的性能:The performance of the optical glass of the present invention will be described below:

折射率與阿貝數按照《GB/T 7962.1—2010》規定方法測試。The refractive index and Abbe number are tested according to the method specified in GB/T 7962.1-2010.

10mm厚度樣品400nm波長處內透過率τ400nm(10mm)按照《GB/T 7962.12—2010》規定方法測試。The transmittance of the sample of 10 mm thickness at a wavelength of 400 nm is measured by the method specified in GB/T 7962.12-2010.

玻璃的Tg溫度按照《GB/T 7962.16—2010》規定方法測試。The Tg temperature of the glass is tested in accordance with the method specified in GB/T 7962.16-2010.

析晶上限溫度採用梯度溫度爐測量,其測試方法為將玻璃加工為長細條狀,放入溫度梯度爐中,爐體中的溫度按700℃-1210℃沿玻璃長度方向均勻設置,保溫4小時後,取出玻璃樣品在顯微鏡下觀察,樣品中嚴重析晶區和玻璃區的分界線所對應的溫度即為析晶上限溫度。The upper limit temperature of crystallization is measured by gradient temperature furnace. The test method is to process the glass into long strips and put them into a temperature gradient furnace. The temperature in the furnace body is uniformly set along the length of the glass at 700 °C-1210 °C, and the temperature is kept for 4 hours. After that, the glass sample is taken out and observed under a microscope, and the temperature corresponding to the boundary between the severe crystallization zone and the glass zone in the sample is the crystallization upper limit temperature.

高溫粘度使用高溫粘度計測量,數值單位為dPaS,其數值越小,表示粘度越小。The high temperature viscosity is measured using a high temperature viscometer, and the numerical unit is dPaS. The smaller the value, the smaller the viscosity.

經過測試,本發明的光學玻璃具有以下性能:折射率下限為1.81,優選為1.82,;折射率上限為1.88,優選為1.86,且不包含1.86;阿貝數下限為31,優選為32;阿貝數上限為38,優選為37;400nm波長處內透過率τ400nm(10mm)大於88%;Tg溫度低於620℃;析晶上限溫度不高於1180℃;析晶溫度上限以上50℃處粘度大於1dPaS,優選大於1.5dPaS。The optical glass of the present invention has been tested to have the following properties: a lower refractive index of 1.81, preferably 1.82, an upper refractive index of 1.88, preferably 1.86, and no 1.86; a lower Abbe number of 31, preferably 32; The upper limit of the number of shells is 38, preferably 37; the transmittance at a wavelength of 400 nm is τ400 nm (10 mm) is greater than 88%; the temperature of Tg is lower than 620 ° C; the upper limit temperature of crystallization is not higher than 1180 ° C; the viscosity at the upper limit of crystallization temperature above 50 ° C Greater than 1 dPaS, preferably greater than 1.5 dPaS.

實施例Example

為了進一步瞭解本發明的技術方案,現在將描述本發明光學玻璃的實施例,應該注意到,這些實施例沒有限制本發明的範圍。In order to further understand the technical solution of the present invention, an embodiment of the optical glass of the present invention will now be described, and it should be noted that these examples do not limit the scope of the present invention.

表1-2中顯示的光學玻璃(實施例1-20)是通過按照表1-2所示各個實施例的比值稱重並混合光學玻璃用普通原料(如氧化物、氫氧化物、碳酸鹽、硝酸鹽等),將混合原料放置在鉑金坩堝中,在1260-1300℃中融化2.5-4小時,並且經澄清、攪拌和均化後,得到沒有氣泡及不含未溶解物質的均質熔融玻璃,將此熔融玻璃在模具內鑄型並退火而成。The optical glasses (Examples 1-20) shown in Table 1-2 were weighed and mixed with ordinary raw materials (such as oxides, hydroxides, carbonates) for optical glass by the ratios of the respective examples shown in Table 1-2. , nitrate, etc.), the mixed raw materials are placed in platinum crucible, melted at 1260-1300 ° C for 2.5-4 hours, and after clarification, stirring and homogenization, to obtain homogeneous molten glass without bubbles and no undissolved matter The molten glass is cast in a mold and annealed.

本發明實施例1-20的組成與折射率(nd)、阿貝數(vd)、B 2O 3/(SiO 2+BaO)的摩爾百分比以A表示、(La 2O 3+Nb 2O 5)/ (Y 2O 3+ZrO 2+TiO 2+WO 3)的摩爾百分比以B表示、400nm波長處內透過率用C表示、析晶上限溫度用D表示、析晶溫度上限以上50℃處粘度用E表示。 The composition and the refractive index (nd), the Abbe number (vd), and the molar percentage of B 2 O 3 /(SiO 2 +BaO) of the present invention 1-20 are represented by A, (La 2 O 3 + Nb 2 O The molar percentage of 5 )/(Y 2 O 3 +ZrO 2 +TiO 2 +WO 3 ) is represented by B, the internal transmittance at a wavelength of 400 nm is represented by C, the upper limit temperature of crystallization is represented by D, and the upper limit of crystallization temperature is 50 ° C or more. The viscosity is indicated by E.

表1 <TABLE border="1" borderColor="#000000" width="_0002"><TBODY><tr><td>   組分 </td><td> 實        施      例 </td></tr><tr><td> 1 </td><td> 2 </td><td> 3 </td><td> 4 </td><td> 5 </td><td> 6 </td><td> 7 </td><td> 8 </td><td> 9 </td><td> 10 </td></tr><tr><td> SiO<sub>2</sub></td><td> 10.25 </td><td> 10.20 </td><td> 16.20 </td><td> 20.40 </td><td> 7.20 </td><td> 9.80 </td><td> 7.30 </td><td> 16.90 </td><td> 16.40 </td><td> 16.30 </td></tr><tr><td> B<sub>2</sub>O<sub>3</sub></td><td> 31.85 </td><td> 31.90 </td><td> 26.20 </td><td> 22.90 </td><td> 23.30 </td><td> 30.40 </td><td> 23.70 </td><td> 27.30 </td><td> 26.50 </td><td> 26.30 </td></tr><tr><td> TiO<sub>2</sub></td><td> 5.10 </td><td> 7.70 </td><td> 6.90 </td><td> 6.15 </td><td> 5.40 </td><td> 5.90 </td><td> 5.50 </td><td> 6.40 </td><td> 6.10 </td><td> 6.10 </td></tr><tr><td> ZnO </td><td> 24.20 </td><td> 20.15 </td><td> 22.50 </td><td> 21.10 </td><td> 37.20 </td><td> 23.10 </td><td> 37.90 </td><td> 18.80 </td><td> 21.20 </td><td> 22.50 </td></tr><tr><td> La<sub>2</sub>O<sub>3</sub></td><td> 10.20 </td><td> 9.80 </td><td> 10.00 </td><td> 10.20 </td><td> 3.70 </td><td> 7.20 </td><td> 7.00 </td><td> 10.10 </td><td> 9.80 </td><td> 10.10 </td></tr><tr><td> Y<sub>2</sub>O<sub>3</sub></td><td> 2.70 </td><td> 3.25 </td><td> 3.80 </td><td> 3.80 </td><td> 1.90 </td><td> 2.60 </td><td> 3.30 </td><td> 4.00 </td><td> 3.80 </td><td> 3.80 </td></tr><tr><td> ZrO<sub>2</sub></td><td> 2.00 </td><td> 2.10 </td><td> 2.00 </td><td> 2.00 </td><td> 5.80 </td><td> 1.90 </td><td> 5.90 </td><td> 2.00 </td><td> 2.00 </td><td> 2.00 </td></tr><tr><td> Nb<sub>2</sub>O<sub>5</sub></td><td> 7.00 </td><td> 5.50 </td><td> 5.95 </td><td> 6.00 </td><td> 4.60 </td><td> 4.90 </td><td> 4.70 </td><td> 6.20 </td><td> 6.00 </td><td> 6.00 </td></tr><tr><td> WO<sub>3</sub></td><td> 0.50 </td><td> 0.55 </td><td> 0.50 </td><td> 1.00 </td><td> 0.90 </td><td> 0.50 </td><td> 1.60 </td><td> 1.20 </td><td> 1.30 </td><td> 0.50 </td></tr><tr><td> BaO </td><td> 6.15 </td><td> 8.80 </td><td> 5.90 </td><td> 6.40 </td><td> 10.00 </td><td> 13.70 </td><td> 3.10 </td><td> 7.10 </td><td> 6.90 </td><td> 6.40 </td></tr><tr><td> CaO </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td></tr><tr><td> SrO </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td></tr><tr><td> Sb<sub>2</sub>O<sub>3</sub></td><td> 0.05 </td><td> 0.05 </td><td> 0.05 </td><td> 0.05 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td></tr><tr><td> 合計 </td><td> 100.00 </td><td> 100.00 </td><td> 100.00 </td><td> 100.00 </td><td> 100.00 </td><td> 100.00 </td><td> 100.00 </td><td> 100.00 </td><td> 100.00 </td><td> 100.00 </td></tr><tr><td> A </td><td> 1.94 </td><td> 1.68 </td><td> 1.19 </td><td> 0.85 </td><td> 1.35 </td><td> 1.29 </td><td> 2.28 </td><td> 1.14 </td><td> 1.14 </td><td> 1.16 </td></tr><tr><td> B </td><td> 1.67 </td><td> 1.13 </td><td> 1.21 </td><td> 1.25 </td><td> 0.59 </td><td> 1.11 </td><td> 0.72 </td><td> 1.20 </td><td> 1.20 </td><td> 1.30 </td></tr><tr><td> nd </td><td> 1.84981 </td><td> 1.84775 </td><td> 1.85218 </td><td> 1.84933 </td><td> 1.83859 </td><td> 1.82263 </td><td> 1.86987 </td><td> 1.84838 </td><td> 1.84960 </td><td> 1.84823 </td></tr><tr><td> Vd </td><td> 34.96 </td><td> 34.96 </td><td> 34.84 </td><td> 34.97 </td><td> 34.35 </td><td> 36.53 </td><td> 33.56 </td><td> 35.01 </td><td> 34.98 </td><td> 35.33 </td></tr><tr><td> Tg </td><td> 601 </td><td> 605 </td><td> 610 </td><td> 619 </td><td> 590 </td><td> 593 </td><td> 585 </td><td> 615 </td><td> 609 </td><td> 603 </td></tr><tr><td> C </td><td> 90.5 </td><td> 89.3 </td><td> 90.3 </td><td> 90.1 </td><td> 91.5 </td><td> 92.1 </td><td> 91.2 </td><td> 90.8 </td><td> 91.7 </td><td> 90.9 </td></tr><tr><td> D </td><td> 1120 </td><td> 1130 </td><td> 1150 </td><td> 1170 </td><td> 1110 </td><td> 1120 </td><td> 1140 </td><td> 1160 </td><td> 1150 </td><td> 1150 </td></tr><tr><td> E </td><td> 2.6 </td><td> 2.8 </td><td> 2.0 </td><td> 1.9 </td><td> 2.1 </td><td> 2.4 </td><td> 2.2 </td><td> 2.1 </td><td> 2.0 </td><td> 1.9 </td></tr></TBODY></TABLE>表2 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td>   組分 </td><td> 實        施      例 </td></tr><tr><td> 11 </td><td> 12 </td><td> 13 </td><td> 14 </td><td> 15 </td><td> 16 </td><td> 17 </td><td> 18 </td><td> 19 </td><td> 20 </td></tr><tr><td> SiO<sub>2</sub></td><td> 16.40 </td><td> 9.80 </td><td> 10.25 </td><td> 10.25 </td><td> 19.35 </td><td> 9.80 </td><td> 10.20 </td><td> 7.30 </td><td> 10.10 </td><td> 10.80 </td></tr><tr><td> B<sub>2</sub>O<sub>3</sub></td><td> 26.60 </td><td> 30.40 </td><td> 31.85 </td><td> 31.85 </td><td> 22.90 </td><td> 30.40 </td><td> 31.90 </td><td> 23.70 </td><td> 31.90 </td><td> 30.40 </td></tr><tr><td> TiO<sub>2</sub></td><td> 6.20 </td><td> 5.90 </td><td> 5.10 </td><td> 4.90 </td><td> 5.50 </td><td> 6.90 </td><td> 7.00 </td><td> 5.50 </td><td> 5.45 </td><td> 4.90 </td></tr><tr><td> ZnO </td><td> 21.20 </td><td> 23.10 </td><td> 24.20 </td><td> 24.20 </td><td> 28.00 </td><td> 23.10 </td><td> 20.15 </td><td> 37.90 </td><td> 24.20 </td><td> 23.10 </td></tr><tr><td> La<sub>2</sub>O<sub>3</sub></td><td> 10.20 </td><td> 7.20 </td><td> 10.20 </td><td> 10.20 </td><td> 10.00 </td><td> 7.20 </td><td> 11.80 </td><td> 5.00 </td><td> 10.20 </td><td> 8.20 </td></tr><tr><td> Y<sub>2</sub>O<sub>3</sub></td><td> 3.80 </td><td> 2.60 </td><td> 2.70 </td><td> 2.70 </td><td> 2.80 </td><td> 2.60 </td><td> 3.25 </td><td> 3.30 </td><td> 2.70 </td><td> 2.60 </td></tr><tr><td> ZrO<sub>2</sub></td><td> 2.00 </td><td> 1.90 </td><td> 2.00 </td><td> 2.00 </td><td> 1.00 </td><td> 1.90 </td><td> 2.10 </td><td> 5.90 </td><td> 2.00 </td><td> 1.90 </td></tr><tr><td> Nb<sub>2</sub>O<sub>5</sub></td><td> 6.00 </td><td> 4.90 </td><td> 7.00 </td><td> 7.20 </td><td> 6.00 </td><td> 4.90 </td><td> 5.00 </td><td> 4.70 </td><td> 7.00 </td><td> 4.30 </td></tr><tr><td> WO<sub>3</sub></td><td> 1.10 </td><td> 0.50 </td><td> 0.50 </td><td> 0.50 </td><td> 1.00 </td><td> 1.00 </td><td> 0.55 </td><td> 1.60 </td><td> 0.50 </td><td> 0.80 </td></tr><tr><td> BaO </td><td> 6.50 </td><td> 12.70 </td><td> 4.15 </td><td> 6.15 </td><td> 3.40 </td><td> 11.20 </td><td> 8.80 </td><td> 3.10 </td><td> 5.90 </td><td> 12.00 </td></tr><tr><td> CaO </td><td> 0.00 </td><td> 1.00 </td><td> 1.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 2.00 </td><td> 0.00 </td><td> 1.00 </td></tr><tr><td> SrO </td><td> 0.00 </td><td> 0.00 </td><td> 1.00 </td><td> 0.00 </td><td> 0.00 </td><td> 1.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td></tr><tr><td> Sb<sub>2</sub>O<sub>3</sub></td><td> 0.00 </td><td> 0.00 </td><td> 0.05 </td><td> 0.05 </td><td> 0.05 </td><td> 0.00 </td><td> 0.05 </td><td> 0.00 </td><td> 0.05 </td><td> 0.00 </td></tr><tr><td> 合計 </td><td> 100.00 </td><td> 100.00 </td><td> 100.00 </td><td> 100.00 </td><td> 100.00 </td><td> 100.00 </td><td> 100.80 </td><td> 100.00 </td><td> 100.00 </td><td> 100.00 </td></tr><tr><td> A </td><td> 1.16 </td><td> 1.35 </td><td> 2.21 </td><td> 1.94 </td><td> 1.01 </td><td> 1.45 </td><td> 1.68 </td><td> 2.28 </td><td> 1.99 </td><td> 1.33 </td></tr><tr><td> B </td><td> 1.24 </td><td> 1.11 </td><td> 1.67 </td><td> 1.72 </td><td> 1.55 </td><td> 0.98 </td><td> 1.30 </td><td> 0.60 </td><td> 1.62 </td><td> 1.23 </td></tr><tr><td> nd </td><td> 1.85027 </td><td> 1.82011 </td><td> 1.84680 </td><td> 1.85230 </td><td> 1.84124 </td><td> 1.82854 </td><td> 1.85450 </td><td> 1.85102 </td><td> 1.85487 </td><td> 1.81724 </td></tr><tr><td> Vd </td><td> 35.15 </td><td> 36.60 </td><td> 35.12 </td><td> 34.70 </td><td> 36.82 </td><td> 35.80 </td><td> 36.10 </td><td> 34.80 </td><td> 34.30 </td><td> 37.30 </td></tr><tr><td> Tg </td><td> 608 </td><td> 593 </td><td> 603 </td><td> 603 </td><td> 601 </td><td> 593 </td><td> 611 </td><td> 581 </td><td> 604 </td><td> 610 </td></tr><tr><td> C </td><td> 90.2 </td><td> 92.3 </td><td> 89.6 </td><td> 89.4 </td><td> 90.7 </td><td> 92.3 </td><td> 89.4 </td><td> 91.3 </td><td> 89.2 </td><td> 93.0 </td></tr><tr><td> D </td><td> 1150 </td><td> 1120 </td><td> 1130 </td><td> 1120 </td><td> 1160 </td><td> 1130 </td><td> 1140 </td><td> 1120 </td><td> 1130 </td><td> 1130 </td></tr><tr><td> E </td><td> 2.0 </td><td> 2.4 </td><td> 2.2 </td><td> 2.1 </td><td> 1.6 </td><td> 2.1 </td><td> 2.2 </td><td> 1.9 </td><td> 2.2 </td><td> 2.0 </td></tr></TBODY></TABLE>Table 1         <TABLE border="1" borderColor="#000000" width="_0002"><TBODY><tr><td> Components</td><td> Implementation </td></tr><tr ><td> 1 </td><td> 2 </td><td> 3 </td><td> 4 </td><td> 5 </td><td> 6 </td>< Td> 7 </td><td> 8 </td><td> 9 </td><td> 10 </td></tr><tr><td> SiO<sub>2</sub> </td><td> 10.25 </td><td> 10.20 </td><td> 16.20 </td><td> 20.40 </td><td> 7.20 </td><td> 9.80 </ Td><td> 7.30 </td><td> 16.90 </td><td> 16.40 </td><td> 16.30 </td></tr><tr><td> B<sub>2< /sub>O<sub>3</sub></td><td> 31.85 </td><td> 31.90 </td><td> 26.20 </td><td> 22.90 </td><td > 23.30 </td><td> 30.40 </td><td> 23.70 </td><td> 27.30 </td><td> 26.50 </td><td> 26.30 </td></tr> <tr><td> TiO<sub>2</sub></td><td> 5.10 </td><td> 7.70 </td><td> 6.90 </td><td> 6.15 </td ><td> 5.40 </td><td> 5.90 </td><td> 5.50 </td><td> 6.40 </td><td> 6.10 </td><td> 6.10 </td>< /tr><tr><td> ZnO </td><td> 24.20 </td><td> 20.15 </td><td> 22.50 </td><td> 21.10 </td><td> 37.20 </td><td> 23.10 </td><td> 37.90 </td><td> 18.80 </td><td> 21. 20 </td><td> 22.50 </td></tr><tr><td> La<sub>2</sub>O<sub>3</sub></td><td> 10.20 < /td><td> 9.80 </td><td> 10.00 </td><td> 10.20 </td><td> 3.70 </td><td> 7.20 </td><td> 7.00 </td ><td> 10.10 </td><td> 9.80 </td><td> 10.10 </td></tr><tr><td> Y<sub>2</sub>O<sub>3< /sub></td><td> 2.70 </td><td> 3.25 </td><td> 3.80 </td><td> 3.80 </td><td> 1.90 </td><td> 2.60 </td><td> 3.30 </td><td> 4.00 </td><td> 3.80 </td><td> 3.80 </td></tr><tr><td> ZrO<sub >2</sub></td><td> 2.00 </td><td> 2.10 </td><td> 2.00 </td><td> 2.00 </td><td> 5.80 </td> <td> 1.90 </td><td> 5.90 </td><td> 2.00 </td><td> 2.00 </td><td> 2.00 </td></tr><tr><td> Nb<sub>2</sub>O<sub>5</sub></td><td> 7.00 </td><td> 5.50 </td><td> 5.95 </td><td> 6.00 </td><td> 4.60 </td><td> 4.90 </td><td> 4.70 </td><td> 6.20 </td><td> 6.00 </td><td> 6.00 </ Td></tr><tr><td> WO<sub>3</sub></td><td> 0.50 </td><td> 0.55 </td><td> 0.50 </td>< Td> 1.00 </td><td> 0.90 </td><td> 0.50 </td><td> 1.60 </td><td> 1.20 </td><td> 1.30 </td><td> 0.50 </td></tr><tr><td> BaO </td><td> 6.15 </td><td> 8.80 </td><td> 5.90 </td><td> 6.40 </td><td> 10.00 </td><td> 13.70 </ Td><td> 3.10 </td><td> 7.10 </td><td> 6.90 </td><td> 6.40 </td></tr><tr><td> CaO </td>< Td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td></tr><tr><td> SrO </td><td> 0.00 </ Td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td> <td> 0.00 </td><td> 0.00 </td><td> 0.00 </td></tr><tr><td> Sb<sub>2</sub>O<sub>3</ Sub></td><td> 0.05 </td><td> 0.05 </td><td> 0.05 </td><td> 0.05 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td></tr><tr><td> Total </td ><td> 100.00 </td><td> 100.00 </td><td> 100.00 </td><td> 100.00 </td><td> 100.00 </td><td> 100.00 </td>< Td> 100.00 </td><td> 100.00 </td><td> 100.00 </td><td> 100.00 </td></tr><tr><td> A </td><td> 1.94 </td><td> 1.68 </td><td> 1.19 </td><td> 0.85 </td><td> 1.35 </td><td> 1.2 9 </td><td> 2.28 </td><td> 1.14 </td><td> 1.14 </td><td> 1.16 </td></tr><tr><td> B </ Td><td> 1.67 </td><td> 1.13 </td><td> 1.21 </td><td> 1.25 </td><td> 0.59 </td><td> 1.11 </td> <td> 0.72 </td><td> 1.20 </td><td> 1.20 </td><td> 1.30 </td></tr><tr><td> nd </td><td> 1.84981 </td><td> 1.84775 </td><td> 1.85218 </td><td> 1.84933 </td><td> 1.83859 </td><td> 1.82263 </td><td> 1.86987 < /td><td> 1.84838 </td><td> 1.84960 </td><td> 1.84823 </td></tr><tr><td> Vd </td><td> 34.96 </td> <td> 34.96 </td><td> 34.84 </td><td> 34.97 </td><td> 34.35 </td><td> 36.53 </td><td> 33.56 </td><td > 35.01 </td><td> 34.98 </td><td> 35.33 </td></tr><tr><td> Tg </td><td> 601 </td><td> 605 < /td><td> 610 </td><td> 619 </td><td> 590 </td><td> 593 </td><td> 585 </td><td> 615 </td ><td> 609 </td><td> 603 </td></tr><tr><td> C </td><td> 90.5 </td><td> 89.3 </td><td > 90.3 </td><td> 90.1 </td><td> 91.5 </td><td> 92.1 </td><td> 91.2 </td><td> 90.8 </td><td> 91.7 </td><td> 90.9 </td></tr><tr><td> D </td><td> 1120 </td><td> 1130 </td><td> 1150 </td><td> 1170 </td><td> 1110 </td><td> 1120 </td><td> 1140 </td><td> 1160 </ Td><td> 1150 </td><td> 1150 </td></tr><tr><td> E </td><td> 2.6 </td><td> 2.8 </td>< Td> 2.0 </td><td> 1.9 </td><td> 2.1 </td><td> 2.4 </td><td> 2.2 </td><td> 2.1 </td><td> 2.0 </td><td> 1.9 </td></tr></TBODY></TABLE> Table 2         <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Components</td><td> Implementation </td></tr>< Tr><td> 11 </td><td> 12 </td><td> 13 </td><td> 14 </td><td> 15 </td><td> 16 </td> <td> 17 </td><td> 18 </td><td> 19 </td><td> 20 </td></tr><tr><td> SiO<sub>2</sub ></td><td> 16.40 </td><td> 9.80 </td><td> 10.25 </td><td> 10.25 </td><td> 19.35 </td><td> 9.80 < /td><td> 10.20 </td><td> 7.30 </td><td> 10.10 </td><td> 10.80 </td></tr><tr><td> B<sub>2 </sub>O<sub>3</sub></td><td> 26.60 </td><td> 30.40 </td><td> 31.85 </td><td> 31.85 </td>< Td> 22.90 </td><td> 30.40 </td><td> 31.90 </td><td> 23.70 </td><td> 31.90 </td><td> 30.40 </td></tr ><tr><td> TiO<sub>2</sub></td><td> 6.20 </td><td> 5.90 </td><td> 5.10 </td><td> 4.90 </ Td><td> 5.50 </td><td> 6.90 </td><td> 7.00 </td><td> 5.50 </td><td> 5.45 </td><td> 4.90 </td> </tr><tr><td> ZnO </td><td> 21.20 </td><td> 23.10 </td><td> 24.20 </td><td> 24.20 </td><td> 28.00 </td><td> 23.10 </td><td> 20.15 </td><td> 37.90 </td>< Td> 24.20 </td><td> 23.10 </td></tr><tr><td> La<sub>2</sub>O<sub>3</sub></td><td> 10.20 </td><td> 7.20 </td><td> 10.20 </td><td> 10.20 </td><td> 10.00 </td><td> 7.20 </td><td> 11.80 < /td><td> 5.00 </td><td> 10.20 </td><td> 8.20 </td></tr><tr><td> Y<sub>2</sub>O<sub> 3</sub></td><td> 3.80 </td><td> 2.60 </td><td> 2.70 </td><td> 2.70 </td><td> 2.80 </td>< Td> 2.60 </td><td> 3.25 </td><td> 3.30 </td><td> 2.70 </td><td> 2.60 </td></tr><tr><td> ZrO <sub>2</sub></td><td> 2.00 </td><td> 1.90 </td><td> 2.00 </td><td> 2.00 </td><td> 1.00 </ Td><td> 1.90 </td><td> 2.10 </td><td> 5.90 </td><td> 2.00 </td><td> 1.90 </td></tr><tr>< Td> Nb<sub>2</sub>O<sub>5</sub></td><td> 6.00 </td><td> 4.90 </td><td> 7.00 </td><td > 7.20 </td><td> 6.00 </td><td> 4.90 </td><td> 5.00 </td><td> 4.70 </td><td> 7.00 </td><td> 4.30 </td></tr><tr><td> WO<sub>3</sub></td><td> 1.10 </td><td> 0.50 </td><td> 0.50 </td ><td> 0.50 </td><td> 1.00 </td><td> 1.00 </td><td> 0.55 </td><td> 1.60 </td><td> 0.50 </td>< Td> 0.80 </td></tr><tr> <td> BaO </td><td> 6.50 </td><td> 12.70 </td><td> 4.15 </td><td> 6.15 </td><td> 3.40 </td><td > 11.20 </td><td> 8.80 </td><td> 3.10 </td><td> 5.90 </td><td> 12.00 </td></tr><tr><td> CaO < /td><td> 0.00 </td><td> 1.00 </td><td> 1.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td ><td> 0.00 </td><td> 2.00 </td><td> 0.00 </td><td> 1.00 </td></tr><tr><td> SrO </td><td > 0.00 </td><td> 0.00 </td><td> 1.00 </td><td> 0.00 </td><td> 0.00 </td><td> 1.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td><td> 0.00 </td></tr><tr><td> Sb<sub>2</sub>O<sub >3</sub></td><td> 0.00 </td><td> 0.00 </td><td> 0.05 </td><td> 0.05 </td><td> 0.05 </td> <td> 0.00 </td><td> 0.05 </td><td> 0.00 </td><td> 0.05 </td><td> 0.00 </td></tr><tr><td> Total </td><td> 100.00 </td><td> 100.00 </td><td> 100.00 </td><td> 100.00 </td><td> 100.00 </td><td> 100.00 < /td><td> 100.80 </td><td> 100.00 </td><td> 100.00 </td><td> 100.00 </td></tr><tr><td> A </td> <td> 1.16 </td><td> 1.35 </td><td> 2.21 </td><td> 1.94 </td><td> 1.01 </td ><td> 1.45 </td><td> 1.68 </td><td> 2.28 </td><td> 1.99 </td><td> 1.33 </td></tr><tr><td > B </td><td> 1.24 </td><td> 1.11 </td><td> 1.67 </td><td> 1.72 </td><td> 1.55 </td><td> 0.98 </td><td> 1.30 </td><td> 0.60 </td><td> 1.62 </td><td> 1.23 </td></tr><tr><td> nd </td ><td> 1.85027 </td><td> 1.82011 </td><td> 1.84680 </td><td> 1.85230 </td><td> 1.84124 </td><td> 1.82854 </td>< Td> 1.85450 </td><td> 1.85102 </td><td> 1.85487 </td><td> 1.81724 </td></tr><tr><td> Vd </td><td> 35.15 </td><td> 36.60 </td><td> 35.12 </td><td> 34.70 </td><td> 36.82 </td><td> 35.80 </td><td> 36.10 </ Td><td> 34.80 </td><td> 34.30 </td><td> 37.30 </td></tr><tr><td> Tg </td><td> 608 </td>< Td> 593 </td><td> 603 </td><td> 603 </td><td> 601 </td><td> 593 </td><td> 611 </td><td> 581 </td><td> 604 </td><td> 610 </td></tr><tr><td> C </td><td> 90.2 </td><td> 92.3 </ Td><td> 89.6 </td><td> 89.4 </td><td> 90.7 </td><td> 92.3 </td><td> 89.4 </td><td> 91.3 </td> <td> 89.2 </td><td> 93.0 </td></tr><tr><td> D </td><td> 1150 </td> <td> 1120 </td><td> 1130 </td><td> 1120 </td><td> 1160 </td><td> 1130 </td><td> 1140 </td><td > 1120 </td><td> 1130 </td><td> 1130 </td></tr><tr><td> E </td><td> 2.0 </td><td> 2.4 < /td><td> 2.2 </td><td> 2.1 </td><td> 1.6 </td><td> 2.1 </td><td> 2.2 </td><td> 1.9 </td ><td> 2.2 </td><td> 2.0 </td></tr></TBODY></TABLE>

no

<TABLE border="1" borderColor="#000000" width="_0003"><TBODY><tr><td> 無 </td><td></td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="_0003"><TBODY><tr><td> None</td><td></td></tr></TBODY></ TABLE>

Claims (11)

一種光學玻璃,其特徵在於,其氧化物的摩爾百分比組成包括:SiO 26-23%、B 2O 320-35%、TiO 23-9%、ZnO 17-42%、La 2O 33-18%、Y 2O 31-5%、ZrO 21-7% 、Nb 2O 54-10%、WO 30.4-4% 、BaO 3-15%。 An optical glass characterized in that the molar percentage composition of the oxide comprises: SiO 2 6-23%, B 2 O 3 20-35%, TiO 2 3-9%, ZnO 17-42%, La 2 O 3 3-18%, Y 2 O 3 1-5%, ZrO 2 1-7%, Nb 2 O 5 4-10%, WO 3 0.4-4%, BaO 3-15%. 如請求項1所述的光學玻璃,其特徵在於,還包括:CaO 0-5%、SrO 0-5%、Sb 2O 30-1%。 The optical glass according to claim 1, further comprising: CaO 0-5%, SrO 0-5%, and Sb 2 O 3 0-1%. 如請求項2所述的光學玻璃,其特徵在於,其中,CaO 0-3%或/和SrO 0-3%。The optical glass according to claim 2, wherein CaO 0-3% or/and SrO 0-3%. 如請求項1所述的光學玻璃,其特徵在於,玻璃組分中不含有Ta 2O 5、Gd 2O 3、Li 2O。 The optical glass according to claim 1, characterized in that the glass component does not contain Ta 2 O 5 , Gd 2 O 3 or Li 2 O. 如請求項1所述的光學玻璃,其特徵在於,其中,SiO 28-21%或/和B 2O 322-33%或/和TiO 24-8%或/和ZnO 20-39%或/和La 2O 34-16%或/和Y 2O 32-4%或/和ZrO 21.5-6%或/和Nb 2O 55-8%或/和WO 30.5-3%或/和BaO 5-12%。 The optical glass according to claim 1, wherein SiO 2 8-21% or/and B 2 O 3 22-33% or/and TiO 2 4-8% or/and ZnO 20-39% Or / and La 2 O 3 4-16% or / and Y 2 O 3 2-4% or / and ZrO 2 1.5-6% or / and Nb 2 O 5 5-8% or / and WO 3 0.5-3 % or / and BaO 5-12%. 如請求項1所述的光學玻璃,其特徵在於,其中,B 2O 3/(SiO 2+BaO)的值為0.8-2.5。 The optical glass according to claim 1, wherein the value of B 2 O 3 /(SiO 2 +BaO) is from 0.8 to 2.5 . 如請求項1所述的光學玻璃,其特徵在於,其中,(La 2O 3+Nb 2O 5)/ (Y 2O 3+ZrO 2+TiO 2+WO 3)的值為0.6-1.8。 The optical glass according to claim 1, wherein the value of (La 2 O 3 + Nb 2 O 5 ) / (Y 2 O 3 + ZrO 2 + TiO 2 + WO 3 ) is 0.6 to 1.8. 如請求項1所述的光學玻璃,其特徵在於,所述玻璃的折射率為1.81-1.88,阿貝數為31-38。The optical glass according to claim 1, wherein the glass has a refractive index of 1.81-1.88 and an Abbe number of 31-38. 如請求項1所述的光學玻璃,其特徵在於,所述玻璃的折射率為1.82-1.86(不含1.86),阿貝數為32-37。The optical glass according to claim 1, wherein the glass has a refractive index of 1.82-1.86 (excluding 1.86) and an Abbe number of 32-37. 如請求項1所述的光學玻璃,其特徵在於,所述玻璃400nm波長處內透過率τ400nm大於88%;Tg溫度低於620℃;析晶上限溫度不高於1180℃;析晶溫度上限以上50℃處粘度大於1dPaS。The optical glass according to claim 1, wherein the glass has a transmittance of τ400 nm greater than 88% at a wavelength of 400 nm; a Tg temperature of less than 620 ° C; an upper limit temperature of crystallization is not higher than 1180 ° C; and an upper limit of crystallization temperature The viscosity at 50 ° C is greater than 1 dPaS. 如請求項1所述的光學玻璃,其特徵在於,所述玻璃析晶溫度上限以上50℃處粘度大於1.5dPaS。The optical glass according to claim 1, wherein the viscosity at 50 ° C above the upper limit of the crystallization temperature of the glass is greater than 1.5 dPaS.
TW105131498A 2015-10-14 2016-09-30 Optical Glass TWI580656B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510661453.3A CN105271715B (en) 2015-10-14 2015-10-14 Optical glass

Publications (2)

Publication Number Publication Date
TW201713602A TW201713602A (en) 2017-04-16
TWI580656B true TWI580656B (en) 2017-05-01

Family

ID=55141644

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105131498A TWI580656B (en) 2015-10-14 2016-09-30 Optical Glass

Country Status (2)

Country Link
CN (1) CN105271715B (en)
TW (1) TWI580656B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110342815B (en) * 2016-05-10 2021-10-26 成都光明光电股份有限公司 Lanthanum flint optical glass
CN106810066A (en) * 2016-09-30 2017-06-09 成都光明光电股份有限公司 Optical glass, gas preform, optical element and optical instrument
JP7394523B2 (en) * 2018-10-11 2023-12-08 Hoya株式会社 Optical glass, glass materials for press molding, optical element blanks and optical elements
JP7194551B6 (en) * 2018-10-11 2024-02-06 Hoya株式会社 Optical glass, glass materials for press molding, optical element blanks and optical elements
CN110540361B (en) * 2019-08-22 2022-03-15 株洲醴陵旗滨玻璃有限公司 Holographic imaging glass composition, glass substrate and preparation method
US11999651B2 (en) 2020-09-10 2024-06-04 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and low density
US11976004B2 (en) 2020-09-10 2024-05-07 Corning Incorporated Silicoborate and borosilicate glasses having high refractive index and high transmittance to blue light
US11802073B2 (en) 2020-09-10 2023-10-31 Corning Incorporated Silicoborate and borosilicate glasses with high refractive index and low density

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201408616A (en) * 2012-08-27 2014-03-01 Cdgm Optical Glass Co Ltd Optical glass for precise die pressing, glass preform, optical element, and optical instrument
TW201529515A (en) * 2014-01-22 2015-08-01 Cdgm Glass Co Ltd High refractivity and high dispersion optical glass, element and instrument

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4508987B2 (en) * 2005-08-31 2010-07-21 Hoya株式会社 Optical glass, precision press-molding preform and manufacturing method thereof, and optical element and manufacturing method thereof
JP4459184B2 (en) * 2006-03-20 2010-04-28 Hoya株式会社 Aspherical lens and manufacturing method thereof
JP5138401B2 (en) * 2008-01-30 2013-02-06 Hoya株式会社 Optical glass, glass gob for press molding, optical element, manufacturing method thereof, and manufacturing method of optical element blank
CN107721160A (en) * 2013-04-05 2018-02-23 株式会社小原 Optical glass, preforming material and optical element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201408616A (en) * 2012-08-27 2014-03-01 Cdgm Optical Glass Co Ltd Optical glass for precise die pressing, glass preform, optical element, and optical instrument
TW201529515A (en) * 2014-01-22 2015-08-01 Cdgm Glass Co Ltd High refractivity and high dispersion optical glass, element and instrument

Also Published As

Publication number Publication date
CN105271715A (en) 2016-01-27
CN105271715B (en) 2018-05-25
TW201713602A (en) 2017-04-16

Similar Documents

Publication Publication Date Title
TWI580656B (en) Optical Glass
JP5727689B2 (en) Optical glass, optical element and optical instrument
JP6055545B2 (en) Optical glass, optical element blank, press-molding glass material, optical element, and method for producing the same
TW201739712A (en) Lanthanum flint optical glass
TWI639570B (en) Optical glass and optical components
WO2013146378A1 (en) Optical glass and use thereof
US20180086658A1 (en) Optical glass, glass preform and optical element
TW201722877A (en) Optical glass
JP7427068B2 (en) Optical glass, preforms and optical elements
US20180086659A1 (en) Optical glass, glass preform and optical element
TWI729505B (en) Fluorophosphate optical glass, optical preforms, components and instruments
JP2009040663A (en) Optical glass
TWI777931B (en) Optical glass, preforms and optical components
JP2023542723A (en) optical glass
JP5823859B2 (en) Optical glass, optical element and precision press molding preform
CN113264675B (en) Optical glass, optical element and optical instrument
JP2012025638A (en) Optical glass, preform material, and optical element
JP2010006692A (en) Optical glass, optical element and preform for precision press molding
JP6943995B2 (en) Optical glass and its use
JP2010260740A (en) Optical glass, and optical element
WO2017152656A1 (en) Optical glass and optical element
JP5698642B2 (en) Optical glass and optical element
JP2009102215A (en) Optical glass for mold press molding
JP2011230997A (en) Optical glass, optical element and preform for precision press forming
TWI635064B (en) Optical glass, optical components and preforms